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Basic Idea

What we have seen . ..

How to generate uniform U|0, 1] pseudo-random numbers.

This lecture will cover . ..

Generating random numbers from any distribution using

o transformations (CDF inverse, Box-Muller method).

@ rejection sampling.

[ Transformation Methods:

@ We can generate

U ~ U[0, 1].
@ Can we find a transformation 7' such that
TU)~F

for a distribution of interest with CDF F'?
@ One answer to this question: inversion method.
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Transformation Methods

(] CDF and its Generalized Inverse:

Cumulative distribution function (CDF)

Plzj=F X < =)

Generalised inverse of the CDF

F~(u):=inf{z: F(z) > u}

Ve e F~([0,1])
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Transformation Methods

[ Inversion Method:

Theorem 2.1: Inversion method

Let U ~ U[0,1] and F' be a CDF. Then F—(U) has the CDF F.

Proof: From the definition of the CDF, F(x) = P(U < F(x)), so

we need to prove that

It is sufficient to prove the equivalence:

F-(U)<zeU<F(2)
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Inverse Method

1 Example: Exponential Distribution

The exponential distribution with rate A > 0 has the CDF (x > 0)

F(z) = 1—exp(—Ax)
Fou) = F;l(u.) = —log(1 —u)/A\.

So we have a simple algorithm for drawing Expo(\):
@ Draw U ~ UJ0, 1].
log(1—U)

log(U)
X ]

A

O Set X = —

, or equivalently X = —
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Inverse Method

U Example: Box — Muller method for Generating Gaussians

Box-Muller method
O Draw

i.i.d.

U, Uy ~ U0, 1].
Q Set

X1 = /—2log(Uy) - cos(2nls),
Xy = +/—2log(U,) - sin(27U3).

i.kd.

Then X1?X2 ~ N(O,l).
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Inverse Method

 Example: Box — Muller method for Generating Gaussians

Q

Consider a bivariate real-valued random variable (X7, X2) and
its polar coordinates (R, #), i.e

X1 =R -cos(h), X2 =R -sin(f) (1)

Then the following equivalence holds:

X1, X2 % N(0,1) < 6 ~ U[0,27] and R? ~ Expo(1/2)
indep.

Suggests following algorithm for generating two Gaussians

X, X 78 N(O, 1):
@ Draw angle 6 ~ U[0,27] and squared radius R? ~ Expo(1/2).
@ Convert to Cartesian coordinates as in (1)

From Uy, Uy & U[0, 1] we can generate R and € by
R = +/—2log(Uy), 0 = 2nls,

giving
= +/—21log(U;)-cos(2mUs), = \/—2log(Uy)-sin(27
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Rejection Sampling

(] Basic Idea:

@ Assume we cannot directly draw from density f.
@ T[entative idea:

©Q Draw X from another density ¢ (similar to f, easy to sample
from).

Q Only keep some of the X depending on how likely they are
under f.
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Rejection Sampling
U Basic Idea:

e Consider the identity

flz)
flz)= / 1 du = /lg{u{ﬂm) du.
0 e

=f(zu)
@ f(x) can be interpreted as the marginal density of a uniform
distribution on the area under the density f(x):

M al) ¢ 0= fiE) )k

@ Sample from f by sampling from the area under the density.

u
A
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Rejection Sampling

O Rejection Sampling Algorithm:

Algorithm 2.1: Rejection sampling

Given two densities f, g with f(z) < M - g(x) for all =, we can
generate a sample from f by

1. Draw X ~ g.
2. Accept X as a sample from f with probability
f(X)
M- g(X)’

otherwise go back to step 1.

Note: f(x) << M - g(x) implies that f cannot have heavier tails
than ¢.
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Rejection Sampling

O Rejection Sampling Algorithm:

If we know f only up to a multiplicative constant, i.e. if we only
know 7(x), where f(z) = C'- w(x), we can carry out rejection
sampling using

7 (X)
M - g(X)

as probability of rejecting X, provided 7 (z) < M - g(x) for all .

Can be useful in Bayesian statistics:

Prior (I (yq, ..., ¥n|f) :
pcrstg L f ( — . fPrIoT ()] g n9
70 Jo [P (D(y1, . ... ynld) di G )
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Rejection Sampling

O Example: Rejection Sampling from the N[0,1] distribution using the Cauchy proposal

@ Recall the following densities:

1 T2
N(O.1)  f(r) = QTexp(—g)
1

Cauchy g(x) = (1 + 22)

@ For M = /27 - exp(—1/2) we have that f(z) < Mg(z).
~+ We can use rejection sampling to sample from f using ¢ as
proposal.
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Rejection Sampling
O Example: Rejection Sampling from the N[0,1] distribution using the Cauchy proposal

O NOTE:
@ We cannot sample from a Cauchy distribution (g) using a
Gaussian (f) as instrumental distribution.

@ Whe Cauchy distribution has heavier tails than the Gaussian
distribution: there is no M € R such that

1 v/ 1 ( .-1.'2)
<. vl - ex —— f
(1 + 22) NG 1 2

J Drawbacks:
o We need that f(z) < M - g(x)

@ On average we need to repeat the first step M times before
we can accept a value proposed by g.
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Importance Sampling

U Fundamental Identities:

Assume that g(x) > 0 for (almost) all = with f(z) > 0. Then for a
measurable set A:

P(XQA)—Lf(m) dx—[qg(m) f(z) dx—[qg(m)w(x) dx

o)

=:w(x)

i

For some integrable function h, assume that g(x) > 0 for (almost)
all =z with f(z)-h(x)#0
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Importance Sampling

@ How can we make use of E¢(h(X)) = E,(w(X) - h(X))?
o Consider Xy,...,X,, ~gand E;|w(X)-h(X)| < 4o00. Then

1.8.

Y w(Xoh(X) "= Ey(w(X) - h(X)

(law of large numbers), which implies

l.5.

%Z'w(Xi)h(Xi) = ]Ef(h(X))
=1

o Thus we can estimate p :=E;(h(X)) by
O Sample X4,...,X,, ~ g
Q i:=>7, wX)h(X;)
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Importance Sampling
O Importance Sampling Algorithm:

Algorithm 2.1a: Importance Sampling

Choose g such that supp(g) D supp(f - h).
1, Fors =, 000, 16

i. Generate X; ~ g.
i. Set w(X;) = £24.
2. Return .
i = 2_ic1 WXG)h(X5)

n
as an estimate of E¢(h(X)).

@ Contrary to rejection sampling, importance sampling does not
yield realisations from f, but a weighted sample (X;, W;).

@ [he weighted sample can be used for estimating expectations
E¢(h(X)) (and thus probabilities, etc.)
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Importance Sampling

O Importance Sampling Algorithm - Basic Properties:
@ We have already seen that [i is consistent if
supp(g) D supp(f - h) and E,|w(X) - h(X)| < 400, as

a.s.

o= 0 w(Xa)h(Xs) "= By (h(X)
=1

@ The expected value of the weights is E,(w(X)) = 1.

@ [i is unbiased (see theorem below)

Theorem 2.2: Bias and Variance of Importance Sampling

Vary(ji) =

y

MC Methods, Ch. 3: Importance Sampling



Importance Sampling

O If we know f up to a multiplicative constant:

@ Assume f(x) = Cm(z). Then

- Y w(X)h(X;) 1= Cn(Xy) e
= - ; g(x;) )

n T

@ |dea: Estimate 1/C as well. Consider the estimator

= E?’Zl w(X;)h(X;)
D e w(X5)

@ Now we have that

mn m X@:
S w(X)h(X) | Xim gy )

'a: n . o n  w(X;
2 imq W(Xe) Yoiei g((Xi))

~ [1 does not depend on C'
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Importance Sampling

O Importance Sampling Algorithm - Revised:

Algorithm 2.1b: Importance Sampling using self-normalised

weights

Choose ¢ such that supp(g) D supp(f - h).
1. Fori=1,...,n:

I. Generate X; ~ g.

i, Set w(X;) = L&)

g(Xi) -
2. Return

as an estimate of E¢(h(X)).
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Importance Sampling

[ Basic Properties of the Estimate:

@ /i is consistent as

. w(X)h(X) n i
== o > Er(h(X)),
) VAT A
=p—Ef(h(X)) —1

(provided supp(g) D supp(f-h) and E;|w(X)-h(X)| < +00)

@ (i is biased, but asymptotically unbiased (see theorem below)

Theorem 2.2: Bias and Variance (ctd.)

pVary (w(X)) — Covy(w(X), w(X) - h(X))

Ey(i) = p+ . +0(n™)
Vary )~ Ve 0X) ) = 2Cov, (X, (X))
V(X)) |,
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Importance Sampling

[ Finite Variance Estimators:

@ Importance sampling estimate consistent for large choice of g.
(only need that ...)

@ More important in practice: finite variance estimators, i.e.

Var(ji) = Var (Z?l “}(X*')h(X*')) < 400

T

o Sufficient conditions for finite variance of ji:
o f(x) < M -g(x) and Vars(h(X)) < o0, or
e F is compact, f is bounded above on E, and g is bounded
below on E.

@ Note: If f has heavier tails then g, then the weights will have
infinite variance!
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Importance Sampling

O Optimal Proposal:

Theorem 2.3: Optimal proposal

The proposal distribution g that minimises the variance of /i is

o Ih@If@)
) = T (6 de

@ [heorem of little practical use: the optimal proposal involves
[ |h(t)| f(t) dt, which is the integral we want to estimate!

@ Practical relevance of theorem 2.3:
Choose g such that it is close to |A(x)| - f(z)
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Importance Sampling
1 Super-efficiency of Importance Sampling:

@ For the optimal g* we have that

Ve, (h(Xl) +. 4 h(X,)

n

) > Varg«(f),

if h is not almost surely constant.

Superefficiency of importance sampling

The variance of the importance sampling estimate can be /ess than
the variance obtained when sampling directly from the target f.

@ Intuition: Importance sampling allows us to choose g such
that we focus on areas which contribute most to the integral

| hiz) flz) dz.

@ Even sub-optimal proposals can be super-efficient.
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Importance Sampling: Example

[ Calculation of integral in 2 dimensions of f(x,y):

I .hr[n 1p40.1] f {I1 y }M’ f (: 2 el _V) =Q. 5{3—9&[;;—0_5]‘_45.:}.”_1}4 i E““ﬂx’fﬂ-“]‘—ﬁ“{y—&if

oA 057][1/180 0 (T—04][1/90 0
Proposal Distribution : q(x.y)=0.46N , +0.54N\ : |
0.1 0 1/20] | 05 0 1/120

i

e
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Importance Sampling: Example
U Obtained Estimates:

d N=2000, count =20 (we take 2000 random sample points
per run and run the simulation 20 times)

 The results of importance sampling are more accurate
than the standard MC method.

U.2 T T T 1
+  Importance sampling
* Standard MC
Q.15
& +~t— & -.g.— S ey # E— + IR i ‘-?‘.z"_:ﬂ'{ .I+ #
01
0.05
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