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Introductory Examples: Calculate mt

Calculation of number nt with the following method:
»leplKAelOUE KUKAO HE €val TETPpAYWVO. AnULOUpyoUpE m tuyaia onpela péoa oto
TETPAYWVO.

»BploKOUUE Ta ONUELQ TTOU EUTIEPLEXOVTAL KOL LECO OTOV KUKAO, N.

»Av r = n/m, T0te 0 aplOUOC T mpooeyylletal we T = 4r. Oco MEPLOCOTEPA TA CNHELA M
TOOO PeyaAUTEPN akpiBeLa Tou utoAoyLopoU.
I 2r ——

A; = (2r)?2 = 4r?
A = =mr?

T =4 x—

As
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Introductory Examples: Calculate mt

Algorithm:

npoints = 1000000

circle count=0

do j =1, npoints
generate 2 random numbers between 0 and 1
xcoordinate = randoml
ycoordinate = random?2
if (xcoordinate, ycoordinate) inside circle then

circle count = circle count + 1
end do

PI = 4.0*circle_count/npoints

* O (pOVOC VITOAOYIGULOD Elval KUPI®G 0 ¥POVOG EKTEAEGTC TNG EMAVOANTTIKNG O100IKAGTOG
(loop).
* Avto 00nYel o€ (o%edOV) ‘TéAE0 Tapaiinoud’ (embarrassingly parallelism):

»Evtatikol vroloyiouoi.
PENGy1otn emkoivovia, eEldyioto 1/0.
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Introductory Examples: Calculate mt

O Estimate & as a function of sample size:

Estimate of o
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Monte Carlo Integration
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Monte Carlo Integration
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Monte Carlo Integration
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Monte Carlo Integration: Example

1 Example: Calculate the integral of a function h(x)
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Monte Carlo Integration: Example

 Example: Estimators
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Monte Carlo Integration

U Generalization of Integration: Riemann sums vs MC method (see hand notes).

1
/f(:c) dax
0
1 pf(x)
= // 1 dt dx
0o Jo
= // 1dt dx

{(z.t):t<f(x)}

14 1 dt dx
{(x,t):t<f(z)}

[ 1dt dx

{0<z,t<1}

F2 0,4] —s 0. 4]
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Monte Carlo Integration

O Comparison — Speed of Convergence:

@ Speed of convergence of Monte Carlo integration is

Op(n=1/2).

@ Speed of convergence of numerical integration of a
one-dimensional function by Riemann sums is O(n=1).

@ Does not compare favourably for one-dimensional problems.
@ However:

e Order of convergence of Monte Carlo integration is
independent of the dimension.
o Order of convergence of numerical integration techniqges like
Riemann sums deteriorates with the dimension increasing.
~+ Monte Carlo methods can be a good choice for
high-dimensional integrals.
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Random Number Generators

@ Philosophical paradox:

e We need to reproduce randomness by a computer algorithm.
e A computer algorithm is deterministic in nature.

~ 'pseudo-random numbers”

@ Pseudo-random number from U[0, 1| will be our only “source
of randomness” .

o Other distributions can be derived from U|0. 1]
pseudo-random numbers using deterministic algorithms.

=
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Pseudo-Random Number Generators

@ A pseudo-random number generator (RNG) should produce
output for which the U[0, 1] distribution is a suitable model.

@ [he pseudo-random numbers X, Xs. ... should thus have the
same relevant statistical properties as independent realisations
of a U[0, 1] random variable.

o They should reproduce independence ( “lack of predictability” ):
X1....,X,, should not contain any discernible information on
the next value X,,11.This property is often referred to as the
lack of predictability.

o [he numbers generated should be spread out evenly across
0, 1].
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Pseudo-Random Number Generators

O A simple example: Congruential pseudo-RNG.

Algorithm 1.1: Congruential pseudo-random number generator
1. Choose a, M € N ¢ € Ny, and the initial value ( “seed”)
2o 6{1,...M—-1}.
2. Fore=1,2 ...
Set Z; = (aZ;_1+c¢) mod M, and X; = Z;/M.

Z; € {0 Livs el — 1}, thus X, € [0 Al
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Pseudo-Random Number Generators

Cosider the choice of a = 81, ¢ = 35, M = 256, and seed Zy = 4.

Z1 = (81-4+435) mod 256 = 359 mod 256 = 103
Zy = (81-103+35) mod 256 = 8378 mod 256 = 186
Z3 = (81-186+35) mod 256 = 15101 mod 256 = 253

The corresponding X; are X7 = 103/256 = 0.4023438,
X9 = 186/256 = 0.72656250, X7 = 253/256 = 0.98828120.
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Pseudo-Random Number Generators

(J RANDU: A typical poor choice of RNG.

@ Very popular in the 1970s
(e.g. System /360,
PDP-11).

@ Linear congruential
generator with
=216 43 <=0, and
M =22k

@ The numbers generated
by RANDU lie on only 15

hyperplanes in the
3-dimensional unit cube!

According to a salesperson at the time: “We guarantee that each number is
random individually, but we don’t guarantee that more than one of them is

random."
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Pseudo-Random Number Generators

 Flaw of the linear congruential RNG.

@ “Crystalline” nature is a problem for every linear congurentrial
generator.

@ Sequence of generated values X, Xo.... viewed as points in
an n-dimension cube lies on a finite, and often very small
number of parallel hyperplanes.

o Marsaglia (1968): “the points [generated by a congruential
generator| are about as randomly spaced in the unit n-cube as
the atoms in a perfect crystal at absolute zero.”

@ [he number of hyperplanes depends on the choice of a, c,

and M.

@ For these reasons do not use the linear congurential generator!
Use more powerful generators (like e.g. the Mersenne twister,

available in GNU R).
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Pseudo-Random Number Generators

1 Another problematic example:

Linear congruential generator with @ = 1229, ¢ = 1, and M = 211,
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Xok_1 —2log(Xop—1) cos(27 Xoy.)

Yairs of generated values (Xogp—1, Xok) Transformed by Box-Muller method
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