

Monte Carlo Methods

Spring Semester 2013/14, Department of Applied Mathematics, University of Crete

Instructor: Harmandaris Vagelis, email: vagelis@tem.uoc.gr

Part II: Monte Carlo Integration, Random Numbers generators

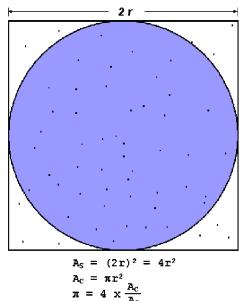
Introductory Examples: Calculate π

Calculation of number π with the following method:

▶Περικλείουμε κύκλο με ένα τετράγωνο. Δημιουργούμε m τυχαία σημεία μέσα στο τετράγωνο.

▶Βρίσκουμε τα σημεία που εμπεριέχονται και μέσα στον κύκλο, n.

ightharpoonupΑν r = n/m, τότε ο αριθμός π προσεγγίζεται ως $\pi \approx 4r$. Όσο περισσότερα τα σημεία mτόσο μεγαλύτερη ακρίβεια του υπολογισμού.



THINON ME

Introductory Examples: Calculate π

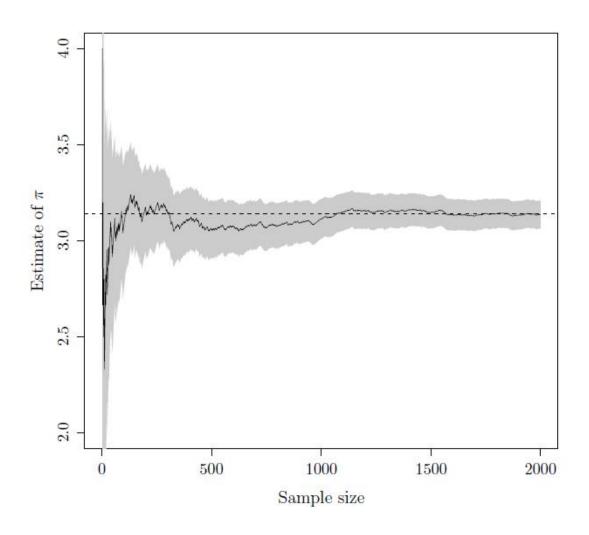
Algorithm:

```
npoints = 1000000
circle_count = 0
do j = 1, npoints
    generate 2 random numbers between 0 and 1
    xcoordinate = random1
    ycoordinate = random2
    if (xcoordinate, ycoordinate) inside circle then
        circle_count = circle_count + 1
end do
PI = 4.0*circle_count/npoints
```

- Ο χρόνος υπολογισμού είναι κυρίως ο χρόνος εκτέλεσης της επαναληπτικής διαδικασίας (loop).
- Αυτό οδηγεί σε (σχεδόν) 'τέλειο παραλληλισμό' (embarrassingly parallelism):
 - ≻Εντατικοί υπολογισμοί.
 - Ελάχιστη επικοινωνία, ελάχιστο Ι/Ο.

Introductory Examples: Calculate π

\square Estimate π as a function of sample size:



- Two major classes of numerical problems that arise in statistical inference
 - o optimization problems
 - \circ integration problems
- Although optimization is generally associated with the likelihood approach, and integration with the Bayesian approach, these are not strict classifications
- Generic problem of evaluating the integral

$$E_f[h(X)] = \int_{\mathcal{X}} h(x) f(x) dx.$$

- Based on previous developments, it is natural to propose using a sample (X_1, \ldots, X_m) generated from the density f
- Approximate the integral by the empirical average
- This approach is often referred to as the Monte Carlo method

Strong Law

• For a sample (X_1, \ldots, X_m) , the empirical average

$$\overline{h}_m = \frac{1}{m} \sum_{j=1}^m h(x_j) ,$$

converges almost surely to

$$\mathrm{E}_f[h(X)]$$

• This is the Strong Law of Large Numbers

Central Limit Theorem

Estimate the variance with

$$\operatorname{var}(\overline{h}_m) = \frac{1}{m} \int_{\mathcal{X}} (h(x) - \operatorname{E}_f[h(X)])^2 f(x) dx$$

 \bullet For m large,

$$\frac{\overline{h_m} - \mathrm{E}_f[h(X)]}{\sqrt{v_m}}$$

is therefore approximately distributed as a $\mathcal{N}(0,1)$ variable

This leads to the construction of a convergence test and of confidence bounds on the approximation of E_f[h(X)].

Monte Carlo Integration: Example

☐ Example: Calculate the integral of a function h(x)

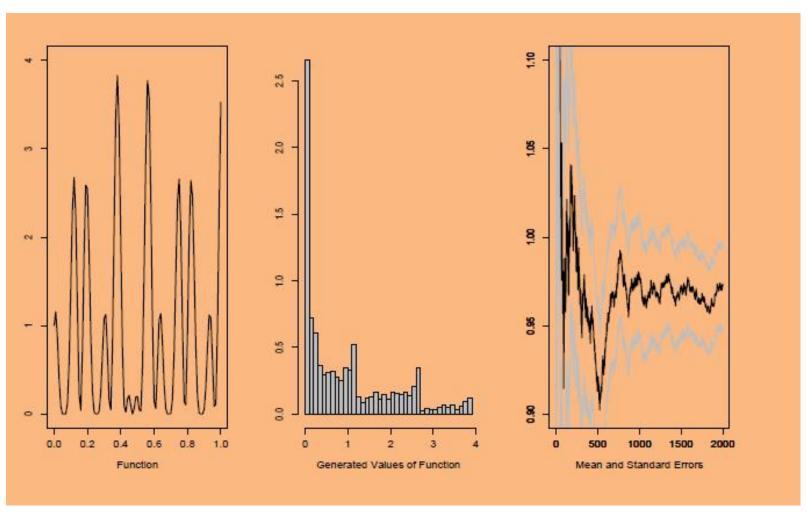
$$h(x) = [\cos(50x) + \sin(20x)]^2$$

.

- To calculate the integral, we generate U_1, U_2, \ldots, U_n iid $\mathcal{U}(0,1)$ random variables, and approximate $\int h(x)dx$ with $\sum h(U_i)/n$.
- It is clear that the Monte Carlo average is converging, with value of 0.963 after 10,000 iterations.

Monte Carlo Integration: Example

☐ Example: Estimators



☐ Generalization of Integration: Riemann sums vs MC method (see hand notes).

$$\int_{0}^{1} f(x) dx$$

$$= \int_{0}^{1} \int_{0}^{f(x)} 1 dt dx$$

$$= \int_{0}^{1} \int 1 dt dx$$

$$\begin{cases} (x,t):t \le f(x) \end{cases}$$

$$= \int_{0}^{1} \int 1 dt dx$$

$$\begin{cases} (x,t):t \le f(x) \end{cases}$$

$$\int_{0}^{1} \int 1 dt dx$$

$$\begin{cases} 0 \le x, t \le 1 \end{cases}$$

□ Comparison – Speed of Convergence:

- Speed of convergence of Monte Carlo integration is $O_{\mathbb{P}}(n^{-1/2})$.
- Speed of convergence of numerical integration of a one-dimensional function by Riemann sums is $O(n^{-1})$.
- Does not compare favourably for one-dimensional problems.
- However:
 - Order of convergence of Monte Carlo integration is independent of the dimension.
 - Order of convergence of numerical integration techniqes like Riemann sums deteriorates with the dimension increasing.
 - → Monte Carlo methods can be a good choice for high-dimensional integrals.

Random Number Generators

- Philosophical paradox:
 - We need to reproduce randomness by a computer algorithm.
 - A computer algorithm is deterministic in nature.
 - → "pseudo-random numbers"
- Pseudo-random number from U[0,1] will be our only "source of randomness".
- Other distributions can be derived from U[0, 1]
 pseudo-random numbers using deterministic algorithms.

- A pseudo-random number generator (RNG) should produce output for which the U[0,1] distribution is a suitable model.
- The pseudo-random numbers X_1, X_2, \ldots should thus have the same *relevant* statistical properties as independent realisations of a U[0, 1] random variable.
 - They should reproduce independence ("lack of predictability"): X_1, \ldots, X_n should not contain any discernible information on the next value X_{n+1} . This property is often referred to as the lack of predictability.
 - The numbers generated should be spread out evenly across [0,1].

☐ A simple example: Congruential pseudo-RNG.

Algorithm 1.1: Congruential pseudo-random number generator

- 1. Choose $a, M \in \mathbb{N}$, $c \in \mathbb{N}_0$, and the initial value ("seed") $Z_0 \in \{1, \ldots M 1\}$.
- 2. For i = 1, 2, ...Set $Z_i = (aZ_{i-1} + c) \mod M$, and $X_i = Z_i/M$.

$$Z_i \in \{0, 1, \dots, M-1\}$$
, thus $X_i \in [0, 1)$.

Cosider the choice of a=81, c=35, M=256, and seed $Z_0=4$.

$$Z_1 = (81 \cdot 4 + 35) \mod 256 = 359 \mod 256 = 103$$

$$Z_2 = (81 \cdot 103 + 35) \mod 256 = 8378 \mod 256 = 186$$

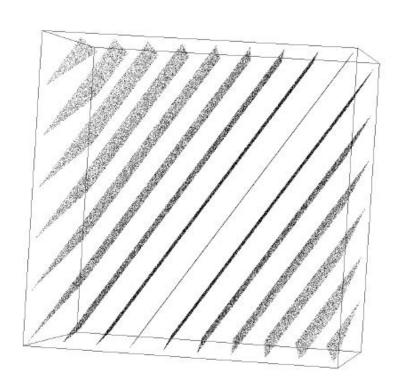
$$Z_3 = (81 \cdot 186 + 35) \mod 256 = 15101 \mod 256 = 253$$

. . .

The corresponding
$$X_i$$
 are $X_1 = 103/256 = 0.4023438$, $X_2 = 186/256 = 0.72656250$, $X_1 = 253/256 = 0.98828120$.

☐ RANDU: A typical poor choice of RNG.

- Very popular in the 1970s (e.g. System/360, PDP-11).
- Linear congruential generator with $a=2^{16}+3,\ c=0,\ {\rm and}$ $M=2^{31}.$
- The numbers generated by RANDU lie on only 15 hyperplanes in the 3-dimensional unit cube!



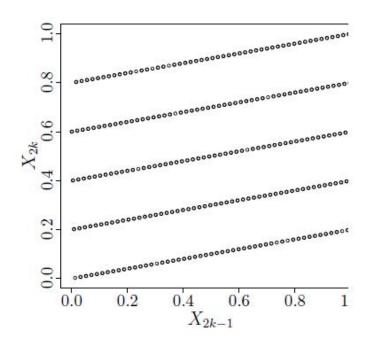
According to a salesperson at the time: "We guarantee that each number is random individually, but we don't guarantee that more than one of them is random."

☐ Flaw of the linear congruential RNG.

- "Crystalline" nature is a problem for every linear congurentrial generator.
- Sequence of generated values X_1, X_2, \ldots viewed as points in an n-dimension cube lies on a finite, and often very small number of parallel hyperplanes.
- Marsaglia (1968): "the points [generated by a congruential generator] are about as randomly spaced in the unit n-cube as the atoms in a perfect crystal at absolute zero."
- The number of hyperplanes depends on the choice of a, c, and M.
- For these reasons do not use the linear congurential generator!
 Use more powerful generators (like e.g. the Mersenne twister, available in GNU R).

☐ Another problematic example:

Linear congruential generator with $a=1229,\,c=1,$ and $M=2^{11}.$



 $\frac{(\sqrt[3]{2}X)}{-10} = \frac{10}{-5} = \frac{10}{-2} = \frac{10} = \frac{10}{-2} = \frac{10}{-2} = \frac{10}{-2} = \frac{10}{-2} = \frac{10}{-2} =$

Pairs of generated values (X_{2k-1}, X_{2k})

Transformed by Box-Muller method

Bibliography

- ☐ Monte Carlo Strategies in Scientific Computing, J. Liu, Springer, New York, 2001.
- ☐ *Monte Carlo Statistical Methods*, C. Robert, G. Casella, Springer, New York, 2004.
- ☐ Stochastic Methods: A Handbook for the Natural and Social Sciences, C. Gardiner, Springer, New York, 2009.