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REPRESENTATION OF WEAK LIMITS AND DEFINITION
OF NONCONSERVATIVE PRODUCTS*

PHILIPPE G. LEFLOCHT AND ATHANASIOS E. TZAVARASH

Abstract. The goal of this article is to show that the notion of generalized graphs is able to
represent the limit points of the sequence {g(un) duy } in the weak-* topology of measures when {un }
is a sequence of continuous functions of uniformly bounded variation. The representation theorem
induces a natural definition for the nonconservative product g(u) du in a BV context. Several existing
definitions of nonconservative products are then compared, and the theory is applied to provide
a notion of solutions and an existence theory to the Riemann problem for quasi-linear, strictly
hyperbolic systems.
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1. Introduction. The objective of this article is to present a theoretical frame
for the definition and properties of nonconservative products in one space dimension.
The issue of defining nonconservative products appears with Volpert’s chain rule [31]
for BV functions in several space dimensions. It is a central problem for defining a
notion of weak solutions for a general quasi-linear hyperbolic system

(1.1) Owu + A(u) Ozu =0, u(z,t) RN, z€R, t>0.

Such systems appear in several models of the engineering and physics literature, e.g.,
[5, 8, 23, 24, 25, 28]. The origin of the nonconservative terms is usually a simplifying
modeling assumption or a closure hypothesis. If (1.1) is conservative, i.e., A(u) =
VF(u) for some F : RY — RY then weak solutions are defined in the sense of
distributions. In the general case, however, the term A(u) d,u will contain products
of discontinuous functions with measures, and its definition is not obvious. At present,
successful definitions exist in the one-space dimensional BV framework by LeFloch
[14, 15], Dal Maso, LeFloch, and Murat [10] and Raymond [27]. The definition in [10]
is based on a family of Lipschitz paths, is stable under weak convergence, and leads to a
solution of the Riemann problem in the class of genuinely nonlinear, strictly hyperbolic
systems with Riemann data that are sufficiently close. It has prompted investigations
on existence of weak solutions to (1.1), LeFloch and Liu [17], and on convergence of
numerical schemes, Hou and LeFloch [12]. The concept of extended graphs is used in
[27] to provide a general definition that is stable under weak convergence.
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Related issues appear in studies of transport equations with discontinuous coeffi-
cients (e.g., LeFloch [15, 16], LeFloch and Xin [20], Poupaud and Rascle [22], Bouchut
and James [4]) and in minimization of certain types of functionals in the space of
functions of bounded variation (e.g., Aviles and Giga [1], Raymond and Seghir [26]).
The reader is referred to Colombeau [6], Colombeau and Leroux [7] for a theory of
nonconservative products in a weaker functional framework.

Let g : RY — R be a continuous function and u : [a,b] — RY be a function of
bounded variation. Our scope is to provide a justifiable definition for the inner product
of g(u) and 2%, formally given by g(u)% = Zf\il g'(u) dd—‘g‘;. This definition will be
suggested by a representation theory of the limit points of sequences {g(un)%‘—;} in
weak topologies when the functions u,, are smooth. This viewpoint reflects the premise
that (1.1) arises in the limit of regularized problems as the dissipative mechanisms,
such as viscosity or relaxation time, tend to zero. Accordingly, the nonconservative
product will appear as a limit of regularized sequences.

If v is a continuous BV function, there is a natural definition of the product

du

p = g(u) T as a Radon measure on Cla,b]. This is done by setting

(1.2) (1.6) = /[ | 0@g(ute) du(@), 0 b

where the right-hand side is viewed as a Borel-Stieltjes integral relative to the (vector-
valued, signed) measure generated by «w € CNBV. This definition is appropriate when
w is continuous. If u has discontinuities, definition (1.2) is “not stable,” because the
integral [ fdu, for f € L'(du), changes values when changing f at the points of
discontinuity of w.

Consider a sequence {u,} of continuous functions u, : [a,b] — R that are of
uniformly bounded variation

(13) ?UI? |un| + T‘/[a,b] (un) <C.
a,b

The products g(u,)du, are well defined by (1.2) and belong to M([a,b] = [C[a, b]] *, the
dual space of C([a, b]; RY). The space of Radon measures M|a, ] is usually equipped
either with the strong topology, generated by the dual norm ||.| o, or with the weak-x
topology. On account of (1.3), the sequence {g(un)duy} satisfies ||g(un)dun||m < C7.
(Throughout C, C”, ... will stand for constants that are independent of n.) Therefore,
along a subsequence,

(1.4) g(un) o e weak-x in M{a, b]

to some measure y. Example 1.1 illustrates that, even if u,(z) — w(x) pointwise, the
sequence {g(un)duy} may have multiple limit points in the weak-x topology.

Ezample 1.1. Let uq, u; be two states in RN, 2y € (a,b) and 7 : [0,1] — RY be a
Lipschitz continuous path satisfying 7 (0) = ug and 7(1) = u;. Consider the sequence
of functions v,,, defined by

ug if x € [a, 29 — 1/n],
(1.5) vp () := W(W) if ¢ € [xg — 1/n, 20 + 1/n],
Uy it z € [zg+1/n,b].



WEAK LIMITS OF NONCONSERVATIVE PRODUCTS 1311

As n — oo, the sequence {v,} converges pointwise,

Ug if € [a, x9),
(1.6) vp(x) = v(z) == w(1/2) if x =z,
U if z € (x0,b],

and a calculation shows that

dvy,

/ab @(x)g(vn(x))% dx — (/01 g(ﬂ'(s))ﬂ’(s)ds> o(z0)

for ¢ € Cla,b]. That is,

(1.7) g(vn)ilﬁ — (g, m)6z, weak-x in M|a,b],
T

where 6, stands for the Dirac measure at zo and the scalar ¢(g, ) is given by the
formula

(1.8) c(g.7) = /O g(r(s)) (5)ds.

Therefore, first, the limit points of {g(vn)?—;} depend on the limiting graph selected
by {v,}, expressed via the path 7. Second, by mixing sequences whose internal
structure is described by several distinct paths =;, it is easy to generate a sequence
{vn} which converges pointwise to the (same) limit v, but where {g(v,)%=} has
multiple weak-x limit points. There exists a notable exception to these features: If
g = Vf forsome f: RY — R, then c(g,7) = f(u1) — f(ug) and the weak-x limit (1.7)
is independent of . O

To characterize the weak-* limit points of {g(u,)du,} we follow the approach
of Tartar [29], in his representation theory of weak limits via Young measures. Let
Co([a, b] xRY) be the space of RY -valued continuous functions f = f(z, \) that tend to
zero as A € RY tends to infinity, equipped with the sup-norm, and let M([a, b] x RYV) =
[Co([a,b] x RN)]* be the dual space of Radon measures on [a,b] x RY. Define the
Radon measures p,, by

b
(1.9) (P f) = / @y un(@)) dun(z)  for f € Colla,b] x RY).
Then (1.3) implies that

|<pny f>| < (Tvv[a,b} (un)) sup |f($, /\)|
z€Ja,bl,| A\ <C

and, hence, ||pnllm < C. There exist a subsequence {p,,} and a measure p €
M([a,b] x RY) such that

(1.10) Py — p  weakly-x in M([a, b] x RN).

The question becomes to characterize the weak-* limit points of the sequence {p,}.
The characterization is effected by using the concept of graph completion or (as
we prefer to call it) generalized graph. This concept was introduced by Bressan and
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Rampazzo [3] in a context of control problems and turns out to be sufficiently dis-
criminating to capture the limiting graphs of the sequence {u,}. Generalized graphs
were used by Dal Maso, LeFloch, and Murat [10] and Raymond [27] as intermediate
steps in their definitions of nonconservative products.

DEFINITION 1.2 (see [3]). A generalized graph of u is a map (X,U) : [0,1] —
[a,b] x RN such that X, U are Lipschitz continuous and satisfy

(1) (X(0),U(0)) = (a,u(a)), (X(1),U(1)) = (b, u(b)):

(2) X is increasing: s1 < s2 implies X (s1) < X(s2);

(3) given y € [a,b], there exists s € [0,1] such that X(s) =y, U(s) = u(y).

Our aim is to reveal the central role of generalized graphs in providing a ge-
ometrically motivated definition of nonconservative products. To this end we ex-
ploit an equivalence relation on the space of continuous functions, accounting for
reparametrizations of graphs, and the associated pseudometric of uniform graph con-
vergence [3]. By definition, a sequence of graphs {gr(u,)} is Cauchy in the sense of
graph convergence, if upon reparametrizing its elements gr(u,) we obtain a Cauchy
sequence in the uniform metric. We will show that, given a sequence of continuous
functions {u,} that is bounded in BV]a,b], generalized graphs emerge as and are
in correspondence to limit points of the sequence of graphs of w,, {gr(uy,)}, in the
pseudometric of uniform graph convergence. Therefore, the terminology “graph com-
pletion” is somewhat misleading, in that it suggests that the completion of the graph
is effected arbitrarily from the outside. Since such objects emerge as limits of graphs
of sequences of continuous functions, we opt for the more pertinent terminology gen-
eralized graph. Using this notion we prove a representation theorem on the weak-x
limits in (1.4) and (1.10).

THEOREM 1.3. (a) Let {u,} be a sequence of continuous functions satisfying
the uniform bounds (1.3). There exists a subsequence {uy,, } and a generalized graph
(X,U) such that, for any continuous function g = g(\), we have

(1.11) /[ | 09l () i, () = (p(9).0)  for 0 € Clos b

where p : Co(RY) — Mla, b] is defined by

(1.12) (). 8) = / 0(X (3))g(U(s)) dU(s).

(b) Conversely, given a generalized graph (X,U), let pu be defined by (1.12). There
exists a sequence of Lipschitz functions {uy}, uniformly bounded in BV, such that for
any continuous g,

(1.13) g(up)dun, — pu(g)  weak-x in Mla,b].

The plan of the article is as follows. Section 2 is preliminary, presenting a change
of variable formula for Borel-Stieltjes integrals, an equivalence relation accounting for
reparametrizations of continuous paths, and the notion of uniform graph convergence.
The case of a continuous BV function is also considered; we introduce the arc-length
(or canonical) parametrization of the graph of v and use it, in conjunction with the
change of variable formula, to explore the ramifications of definition (1.2) for the
nonconservative product g(u) du, with uw € C N BV.

In sections 3 and 4 we study properties of sequences of continuous functions {u,, }
that are bounded in BV[a,b]. After presenting the notion of a generalized graph,



WEAK LIMITS OF NONCONSERVATIVE PRODUCTS 1313

we show that, first, generalized graphs arise as limits of subsequences to {gr(u,)} in
the pseudometric of graph convergence and, second, that a given generalized graph
can always be approximated by a suitable sequence of graphs of continuous functions.
The results are summarized in Theorem 3.2 and are put in a metric space framework
at the end of section 3.1. Then in section 3.2 we prove a representation theorem.

The representation theorem suggests to define nonconservative products as mea-
sures based on generalized graphs. Two definitions, along with associated weak sta-
bility theorems, are pursued: In section 4.1, the nonconservative product is defined as
a Radon measure (Definition 4.1), while, in section 4.2, it is defined as a signed Borel
measure via its distribution function (Definition 4.4). The definitions are equivalent
and invariant under reparametrizations of the geometric graph determined by (X, U);
i.e., they depend on the equivalence class of the generalized graph (X, U) but not on
the specific representative.

In sections 4.3 and 4.4, we compare various definitions of nonconservative prod-
ucts. To assess the issue, it is instructive to keep in mind the analogy to the solution
of the Riemann problem for hyperbolic systems. There exist two approaches for solv-
ing the Riemann problem: In the first the solution is effected by patching together
elementary solutions (shocks, rarefaction waves, and contact discontinuities), while in
the second the whole wave fan is visualized to emerge as a single structure in a small
parameter (viscosity, relaxation, etc.) limit of a higher-order theory. Accordingly,
two viewpoints for defining nonconservative products can be taken: (i) the product is
defined in a pointwise fashion by using a predetermined family of paths at points of
jump discontinuity, (ii) the product is defined on the whole structure (the generalized
graph). The comparison hinges on the relation between generalized graphs and graphs
of functions of bounded variation (Propositions 4.7 and 4.8). The emerging defini-
tions are consistent, with each being more adept for a different range of applications.
Section 4.4 analyzes several typical examples of nonconservative products.

We complete the article with a study of the Riemann problem for quasi-linear
hyperbolic systems. For genuinely nonlinear systems the solution of the Riemann
problem is established in LeFloch [14] and Dal Maso, LeFloch, and Murat [10]. The
main step is a construction of the shock curves in the nonconservative case, in the
spirit of Lax [13]. The present result is based on an entirely different construction
process, following the method of self-similar zero-viscosity limits (see Dafermos [9],
Tzavaras [30]). It yields a solution for weak waves of the Riemann problem in the
class of general strictly hyperbolic systems with no further assumptions (like genuine
nonlinearity or finite number of inflection points) on the characteristic fields. The
necessary a priori BV estimates are established in the companion articles [18, 19].

2. Preliminary notions.

2.1. Change of variables formula. Throughout, we work in the framework of
functions of bounded variation. The total variation of an R¥-valued function « on an
interval [a, b] is defined by

n

TVigp(u) := supz |u(zs) — w(zi—1)l,

i=1
where | - | stands for the Euclidean length in RV and the supremum is taken over all
finite partitions a = 29 < 77 < --- < , = b. Let u : [a,b] — R¥ be a function of

bounded variation and let T}, : [a,b] — [0,00) be the total variation function of u,
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defined by
(2.1) Ty(x) :=TV]q 4 (u) for x € [a, b].

The domain of u can be decomposed into two disjoint sets: C, the set of points of
continuity of v and S,, the set of points of discontinuity, respectively. The set S,, is at
most countable, and the right and left limits u(z+), u(z—), for z € (a,b), and u(a+),
u(b—) exist and are finite. We use the notation u(a—) = u(a) and u(b+) = u(b). Note
that « is a point of (right or left) continuity for w if and only if z is a point of (right or
left) continuity for T. In the particular case that u is Lipschitz continuous (or even
when u is absolutely continuous, u € W'+ (a, b)), the total variation function 7, can
be computed by the formula

(2.2) T = [ W)y

If u is of bounded variation and right continuous on (a, b), there exists a unique
finite, signed Borel measure p,, generated by u,

u(z) — u(a+) = py((a,z]) for x € (a,b], ulat+) — u(a) = p,({a}).

The measure (i, is typically denoted by du, its total variation measure satisfies |du| =
dT,, and it can be decomposed into an absolutely continuous part u'(z)dz, an atomic
part d,u, and a singular part (relative to the Lebesgue measure) dsu, according to
the formula du = v/ (z)dx + d,u + dsu.

For functions u, v : [a,b] — RY right continuous and of bounded variation, there
is an integration by parts formula: If u and v have no common points of discontinuity,
S. NS, =0, then

(2.3) / v(x)du(x) + / u(z)dv(z) = v(B+)u(f+) — v(a—)u(a—)
(e, 3] [a,]

for any [o, 8] C [a,b]. (Here and in what follows we use the notation v du to mean the

inner product ), v;du;, where u; and v; are the components of u and v, respectively.)

If v is absolutely continuous, (2.3) takes the more conventional form

(2.4) / v(z)du(z) = —/ w(z)v' (z)dr + v(B)u(B+) — v(a)ula—).
[, 8] [c, 8]

We will need certain change of variable formulas that follow from a general mea-
sure theoretic construction. We first outline the general construction of image mea-
sures, taken out of Folland [11, p. 287]. Let (£2, B, i) be a measure space, let (', B)
be a measurable space, and let ¢ : Q — Q' be a (B, B’)-measurable map. Then pu
induces an image measure p% on ' by

(2.5) 1 (E) = p(e™'(B)) for £ € B'.

It is easy to check that p? defines a measure on (2, 8). (The reader is warned not to
confuse the measure p¥ with the Borel measure pu, generated by the right continuous
BV function u.) One also has the formula.

ProPOSITION 2.1. If f : ) — R is a measurable function, then

(2.6) /Q fdp? = /Q (few)du

whenever either side is defined.
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The proof of (2.6) follows the familiar process of first proving it for characteristic
functions f = 1 with ' € B, by using Ig o ¢ = 1,-1(g) and (2.5), then for simple
functions and finally for integrable functions; cf. [11, p. 287]. In probability theory,
when p is a probability measure and ¢ : @ — R is a Borel-measurable real-valued
function, the image measure u? is called the distribution of the random variable .

For u a right continuous function of bounded variation, let L!(du) denote the
integrable functions with respect to the (signed) vector measure du. For instance,
all the bounded, Borel measurable functions belong to L!(du). Proposition 2.1 pro-
vides certain change of variable formulas for Borel-Stieltjes integrals that are used
extensively in the sequel.

THEOREM 2.2. Let u : [a,b] — RN be a right continuous function of bounded
variation, and let X : [0, 1] — [a,b] be a continuous increasing (not necessarily strictly
increasing) change of variables with X(0) = a, X (1) = b.

(a) If X~ denotes the left-continuous inverse of X, then, for f € L' (d(uo X)),
we have

(2.7) f(s)d(uoX)(s) = fo X Hz)du(x).

[0,1] [a,b]

(b) For any function g € L* (du), we have

(2.8) /[O (o X)) (e X)(s) = / o(z) du(z).

[a,b]

Formula (2.8) when du is the Lebesgue measure is stated as an exercise in Folland
[11, p. 103]. It is easy to construct examples showing that (2.8) fails if the hypothesis
“X continuous” is replaced by “X right continuous.”

Proof. We first establish (2.7) and (2.8) under the hypotheses

w: [a,b] = R increasing and right continuous,
(2.9) f:[0,1] = [0,00]  Borel measurable,

g :la,b] = [0,00] Borel measurable.

Since X is increasing, the inverse of X is a multivalued increasing map. We select
the single-valued left-continuous inverse ¢ = X ! of the map X. Note that X oy = id,
but in general ¢ o X # id. The function ¢ : [a,b] — [0, 1] is single valued, increasing,
and satisfies

@71((5,7]) = (X(s),X(7)] for s, €][0,1].

Since the half-open intervals generate the Borel o-algebra, ¢ is a (Bjq 3], Bjo,1))-measur-
able map, that is, a Borel measurable map. Also, f o ¢ is Borel measurable as well.

Let p,, be the Borel measure generated by u, and let pf be the image measure of
1y, under . Then

pi ((s7]) = pa (07 (5, 71)) = (X (), X(7)]) = o ((5,7]) -

Since ¥ and py0x agree on the half-open intervals, the extension theorems for pre-
measures (e.g., [11, Thms. 1.14 and 1.16]) imply pf = pruex on the Borel sets Bg 1.
Formula (2.7) is then a consequence of Proposition 2.1. In turn, (2.8) follows from
(2.7), upon setting f = g o X and using the identity X o ¢ = id.
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Once (2.7) and (2.8) are established under (2.9), they are extended to hold under
the hypotheses of Theorem 2.2. Cousider, for instance, (2.7). It is first extended to
hold for Borel measurable functions f : [0,1] — R that are integrable with respect
to d(u o X), by using the decomposition f = f*— f~, with f, f~ € L'(d(uo X)).
Next, if w : [a,b] — R is a function of bounded variation, it can be decomposed in the
form u = uy; — u2, with uy, us increasing and thus duy, dus positive measures. Using
the induced decomposition d(u o X) = d(uj o X) — d(uz o X) of the signed measure
d(u o X) into a difference of positive measures, we can extend (2.7) to hold in this
case also. Finally, the extension to the vector-valued case is trivial. 0

Theorem 2.2 also yields a simple proof of the chain rule for Lipschitz functions in
the one-dimensional context (see Marcus and Mizel [21], Boccardo and Murat [2]).

COROLLARY 2.3. Suppose that u : [a,b] — RN is absolutely continuous and
X :[0,1] — [a,b] is increasing, continuous, and onto. Then

(2.10) d(uo X) = (v o X)dX.
If X is absolutely continuous, then
(2.11)
d , dx
g(u o X)(s) =u'(X(s)) E(s) for almost everywhere (a.e.) s € [0,1].

Proof. We will show that

/ d(wo X) :/ W(X(s))dX(s) for s € [0,1].

0 0

Fix s € [0,1] and let y = X(s) and 5 = inf{s € [0,1] : X(s) > y}. Then X(7) =y on
the interval [s, 3], and (2.8) in Theorem 2.2 implies

/Os duoX) = /08 duoX) = /{MA du(x) = /[a]y] W (z)dx

_ /0 (X (s))dX (s) = /0 o (X (s))dX (s).

Hence, (2.10) follows.

If X is absolutely continuous, then wo X is also absolutely continuous and (2.11)
follows from (2.10). O

Let BV]a,b] be the set of all functions u : [a,b] — RY of bounded variation. The
space BV [a,b] can be identified to the space of (equivalence classes of) functions v in
L'(a,b) whose distributional derivative, du/dz, is a finite, signed Borel measure. To
see that, let uw € BV][a,b] and let @ denote a right continuous BV function such that
u = @ a.e. (the function @ is uniquely determined by the equivalence class of u). By
the Riesz representation theorem, the signed Borel measure du, generated by u, can
be identified with a bounded linear functional vz on Cla, ],

(2.12) (v, 0) = / O(z)di(x) for 0 € Cla,b).
[a,b]
Then (2.4) implies that, for ¢ € C}(a,b),

(2.13) (va, o) :/( ) o(z)du(z) = —/( ) o' (z)u(z)de,
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i.e., the distributional derivative of u satisfies du/dz = vy. Moreover,
(2.14) lval ([a,b]) = TVie(@).

We note that if another representative is used on the right of (2.14), then equality is
in general replaced by a strict inequality. The space BV]a,b], when equipped with
the norm

lullsy = llullz: + val(la. 8]),

becomes a Banach space. For functions of one variable, it is customary to use the
equivalent norm

lullv = llullz + [val([a. b])-

We refer to Folland [11] and Volpert [31] for further information on the theory of BV
functions.

2.2. Reparametrizations and distance of graphs. We present first the no-
tion of uniform graph convergence [3, 10], which emerges when continuous paths are
studied from the viewpoint of identifying two paths if their ranges coincide. In CJ[0, 1],
the space of continuous paths V' : [0,1] — RM | an equivalence relation is introduced.

DEFINITION 2.4. We say that Vi and V3 are equivalent, Vi ~ Vs, if and only
if there exist two continuous, increasing (but not necessarily strictly increasing) and
surjective maps v1, v2 : [0,1] — [0,1] such that Vi oy = Va 0 va.

The following lemma is proved in [3, Lemma 1].

LEMMA 2.5. Let Vq, Vo € C[0,1]. Given two continuous, increasing, and surjec-
tive maps y1, v2 : [0,1] — [0,1] there exist two increasing, surjective maps oy, a :
[0,1] — [0, 1], Lipschitz continuous with Lipschitz constant 3, such that

max’Vloal —‘/20052’ =max|Vlo~/1 — Vo 0sl.
[0,1] [0,1]

Therefore, V7 ~ V5 if and only if there exist two Lipschitz continuous, increasing,
and surjective maps aq, ag : [0,1] — [0, 1] such that Vj o a; = V5 0 ao.

If V' is continuous and of bounded variation (and T'Vjg1)(V) # 0), then V€ :
[0,1] — RM the canonical parametrization of V, is defined by

1
(2.15) Ve(r)=V(s), 7= T Tv(s), where L:=TVj1(V),
the total variation function Ty being defined by (2.1). It is easy to check that V¢ is
well defined and, for 71 < 7o,

(2.16) [VE(r2) = Ve(m)| = [V(s2) = V(s1)| < Tv(s2) — Tv(s1) = L(12 — 71)-

Hence, V. = V¢ o~ where V¢ is a Lipschitz continuous path and v = (1/L)Ty is
continuous. The equivalence relation separates C[0, 1] into equivalence classes that
satisfy the following properties:

(1) If V4 ~ V3 and V; is of bounded variation, then V3 is of bounded variation.

(2) If V is of bounded variation, then a Lipschitz continuous representative of the
class can be selected, V°.

(3) If V4, V4 are of bounded variation, then V; ~ V5 if and only if V¢ = Vi .
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Statements (1) and (2) are clear. To show (3), suppose that V3 ~ Vs are of
bounded variation and introduce the canonical parametrizations V, = V,© o ~,, where
v. = (1/L,)Ty, for « = 1,2. Let aj, as : [0,1] — [0,1] be Lipschitz continuous,
increasing, surjective maps such that V; o a; = V5 0 as. Then Ty, oy = Ty, o ag,
Y1 0 a1 = 72 © ag, and thus V¥ = V.

On the space of continuous paths, we define a distance function:

(2.17) dist(V1, Vo) := inf max |(V1 oy1)(s) — (Va2 042)(s)],

Y1,72 s€[0,1]
where the infimum is taken over all continuous, increasing, and surjective maps 1, 2 :
[0,1] — [0,1]. Bressan and Rampazzo [3] introduce the distance and show that it
defines a pseudometric,

dist(V1, Vo) = dist(Va, V1),
dist(V, V) = 0,
dist(V3, V3) < dist(Vq, Vo) + dist(Va, V3),

and that, by virtue of Lemma 2.5, the infimum in (2.15) is attained on two Lipschitz
continuous paths a1, as, so that the distance can be computed by

dist(Vi, V2) = max |(Vi o an)(s) = (Va0 aa)(s)]
In particular, that implies dist(Vi, V) = 0 if and only if V3 ~ V5 and, thus, if the
distance is viewed on the quotient space X = [C([0, 1]; R})/ ~], it induces a metric.
(Working with equivalence classes has the disadvantage of being cumbersome and
identifying otherwise different functions; we will avoid doing that directly, but it
is instructive to keep the structure in mind.) The associated convergence is called

uniform graph convergence and is denoted by V,, 4y {V,,} converges in graph to

V if dist(V,,, V) — 0. Equivalently, V, 9V if there exist two Lipschitz continuous,
increasing, surjective maps a,, « : [0,1] — [0, 1] such that

dist(V,,, V) = I[nazj(|Vn oap —Voal—0 asn— oo
0,1
Finally we state a compactness result in Proposition 2.6.
PROPOSITION 2.6. Let {V,,} be a sequence of continuous functions on [0, 1] that
are of uniformly bounded total variation. There exists a subsequence {V,,} and a

Lipschitz continuous representative V° : [0,1] — RM such that Vi 4 ye,

Proof. Let V¢ be the canonical representatives of V,,, say, V,, = V,¢ o ,. By
(2.15) (2.16), V,¢ are uniformly Lipschitz continuous, with Lipschitz constant equal
to the uniform variation bound of the sequence V,,. Since V,, ~ V¢, Lemma 2.5 implies
there exist sequences «,,, (3, of uniformly Lipschitz continuous parametrizations such
that V,, o i, = Vi 0 B,,. By the Ascoli-Arzela theorem there exist subsequences V7 ,
@y By » and Lipschitz continuous functions V¢ : [0, 1] — R™ and a, 3 : [0,1] — [0,1]
so that V¢ — V¢ ay, — a, and (3,, — (3 uniformly on [0, 1]. Then

_ c
Vnk © ank - Vnk © /Bnk

= (Vi 0Bn = Vi 0B) + Vi 08 — Ve p

uniformly on [0, 1] and, thus, V,,, 94 ye. ]
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2.3. Nonconservative products for continuous BV functions. The con-
cepts of canonical parametrization and distance of continuous paths have implications
when applied to graphs of continuous functions of bounded variation.

Let u : [a,b] — RY be a continuous function of bounded variation. The graph of
Uu,

(2.18) gr(u) = {(xu(z)) tx € [a,b]},

is a continuous curve in R x RV, We introduce a canonical representative in the spirit
of (2.15) (cf. [10]). Let o : [a,b] — [0, 1] be defined by

1
(2.19) o(x):= z(w —a+T,(z)), where L:=b—a+1TVjy(u)>0.

Then o is strictly increasing, continuous, and surjective and satisfies o(a) = 0 <
o(z) <1=o0(b) for € (a,b). The inverse of o is a function X : [0,1] — [a, b], which
is strictly increasing, continuous, and surjective. If we set U := u o X, the function
(X,U) :[0,1] — [a,b] x RY is a representative of the graph of u. Further, if s; < s9
in [0,1] and y1, y2 their respective images under X, o(y1) = s; and o(y2) = s2, then

X(s2) = X(s1) =y2 —y1 < L(o(y2) — (1)) = L(s2 — 51),

B200 (sa) = U(s1)] = ) — ulwn)] < Tulw) — Tulen) < L(sa — s1).

Hence, (X, U) is Lipschitz continuous with Lipschitz constant L and will be referred
to as the arc-length parametrization (or canonical representative) of the graph of
ueCNBV.

The terminology “arc-length parametrization” is justified as follows: Since T}, o
X = T,ox =Ty, the parametrization (X, U) satisfies

(2.21) s=0(X(s)) = —(X(s) — a+Tu(s))

Sl

for s in [0,1]. Therefore, (2.21) implies

dX |dU

2.22 —_ —_—
( ) ds + ds

:L’

which means that the tangent vector to the curve (X(s),U(s)) has constant length
equal to L. Strictly speaking, the arc-length parametrization corresponds to L =1 in
(2.22). This can be attained by stretching the interval [0, 1], but we avoid that here.

The graph of a continuous BV function u may be represented by several contin-
uous, increasing, and surjective parametrizations (Y,V) : [0,1] — [a,b] x RY with
Y increasing. The representative can always be chosen to be a Lipschitz continuous
path (X, U) with X strictly increasing. The distance between two graphs represented
by (Y,V) and (Y, V) is defined by dist((Y,V),(Y,V)) as in (2.17). The notion of
distance and the equivalence relation ~ provide a suitable tool for factoring represen-
tatives of the same graph (viewed as a geometric object). In what follows, we use the
notation (Y, V) ~ gr(u) to denote the general continuous representative (Y, V) of the
graph of u and retain the notation (X,U) for the arc-length parametrization or for
the associated notion of generalized graph defined in section 3.1.

The arc-length parametrization (X, U) may be used to express the Borel measure
du generated by a continuous function of bounded variation u. Using Theorem 2.2,
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for the change of variable z = X(s), we obtain

(2.23) /[ ) dutz) = /0 (mx)(@% ds for 0 € Cla,b).

The left side in (2.23) is interpreted as a Borel-Stieltjes integral, while the right side
is a Lebesgue integral; the formula is useful for theoretical computations involving the
measure du. If (Y, V) is an equivalent continuous representative of gr(u), (Y,V) ~
(X, U), repeated use of Theorem 2.2 implies

0(x) du(x) = 0o X)(s)dU(s) = 0oY)(s)dV (s).
[ owdu) = [ 0o X)@au(s) = [ (@0¥)6)ave

That is, the Borel measure du depends on gr(u) but not on the particular represen-
tative.

We turn now to the definition of nonconservative products for continuous func-
tions of bounded variation. A natural way of defining u = g(u)‘;—z is as a Borel
measure, via (1.2). The definition is invariant under reparametrizations of gr(u) and

reads

(st o) = [ @v)@ave)ave) = [ (00 x) 6w )y

where (X, U) is the arc-length parametrization and (Y, V') ~ gr(u) stands for a general
representative of the graph of u. This definition is consistent with the one proposed
in section 4 for discontinuous BV functions.

3. Generalized graphs.

3.1. Generalized graphs of BV functions. The graph of a general function
w : [a,b] — RN of bounded variation has jumps at the points of discontinuity of .
The notion of generalized graph (or graph completion), introduced by Bressan and
Rampazzo [3], is an attempt to fill in the jumps by extending the idea of arc-length
(or canonical) parametrization.

DEFINITION 3.1. A generalized graph of u is a map (X,U) : [0,1] — [a,b] x RY
such that X, U are Lipschitz continuous and satisfy the following conditions:

(1) (X(0),U(0)) = (@, u(a)), (X(1),U(1)) = (b, u(b)).

(2) X is increasing: s1 < sy implies X (s1) < X(s2).

(3) Given y € [a,b], there erists s € [0, 1] such that X (s) =y, U(s) = u(y).

The range of (X,U) is a compact, connected set containing the graph of u. Let
o = X! be the set theoretic inverse of X; then o : [a,b] — [0,1] is a strictly
increasing, multivalued map. The set C, of points of continuity of o (that is, the
point where o is single valued) is dense in [a, b]. The set S, of points of discontinuity
of o (that is, the points where ¢ is truly multivalued) is countable and serves as a
counter of the jumps and possible loops attached to the graph of w. In this paper, a
point x € S, is called a point of jump if u(x—) # u(z+) and a loop if u(z—) = u(z+).

The domain and range of o admit the decompositions [a,b] = C, U S, and

(1) 0.1=0C)uo(S) = (U few?}) v ( U ) ow+).
yeCo YES,

respectively. The function u is recovered by the formula

(3.2) uw(y) =U(o(y)) foryeC,.
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The following theorem indicates that the notion of generalized graph captures
the limiting graphs selected by pointwise convergent sequences {u,} of continuous
functions that are stable in BV{a,b]. Part (a) of the theorem below provides an
extension (and an alternative proof) of the classical Helly selection principle.

THEOREM 3.2. (a) Let {un} be a sequence of continuous functions u, : [a,b] —
RYN satisfying the uniform bounds (1.3) and let (X, U,) be the arc-length parametriza-
tions of gr(uy). There exists a subsequence {un,}, a function of bounded variation
w: [a,b] — RY, and an associated generalized graph (X, U) such that

(1) (Xug, Uny) = (X, U);

(2) on, (YY) = (y), un, (y) — uly) for ally € C, and a.e. in [a,b],
where o, = X, and 0 = X1 are the set theoretic inverses of X,, and X, respectively.

(b) Conversely, given a generalized graph (X,U) associated with a BV function
u, there exists a sequence {un} of Lipschitz continuous functions such that

(1) {un} is uniformly bounded in BV,

(2) (Yo, Vi) 4 (X, U) for any representative (Yy, Vy) ~ gr(uy,),

(3) un(y) — u(y) fory € Cy and a.e. in [a,b)].

The proof is based on the following lemma.

LEMMA 3.3. Suppose that (X,,Uy,) : [0,1] — [a,b] x RN satisfy the following
conditions:

(1) X, is strictly increasing and surjective,

(2) (X, U,) are uniformly Lipschitz continuous,

(3) (X, U,) — (X, U) uniformly on [0,1].

Leto,, = X;l, Uy = UHOijl. Then (X,,,U,,) is a Lipschitz continuous representative
of gr(uy) and

dist (Yo, Vo), (X,U)) — 0 for any representative (Yy,,Vy,) ~ gr(un),

on(y) = o(y), un(y) — uly) forallyeC,.

Proof. Since X,, is strictly increasing, the functions o, = X, ! : [a,b] — [0,1]
and u,, = U, o Xn’1 are well defined and continuous. The couple (X,,U,) is a

representative of the graph of w,,.
Fix y € C, and let s = o(y), s, = 0,(y). We can write the chain of identities

50 =5 =0u(y) = 0(y) = o (X(02(v)) ) = o (X (00(®)))
- U(X(sn)) - U(Xn(sn)> .

Since X,, — X uniformly and X,(s,) =y € C,, we deduce s,, — s.
Next, assumption (2) implies
|Un(sn) — Un(s)| < Lip(Up,) |sn — s| — 0.
Hence, un(y) = Un(sn) - U(S) = u(y).
Finally, if (Y,,,V,,) is any continuous representative of gr(u, ), then

dist ((Yn, Vo), (X, 0)) < dist((Xp,Un), (X,U)) =0 asn — ooc.

This completes the proof. 0
Proof of Theorem 3.2. (a) The sequence {u,} consists of continuous functions.
Let (X,,U,) be the arc-length parametrizations of gr(u,), defined by inverting

onr) = 2 (r—a+ T (@), Lu=b—a+tT, ()

n
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and setting X,, = o, %, Up := u, 0 X,,. In view of (2.22) and (1.3), (X,,U,
are uniformly Lipschitz continuous. There exists a subsequence (X,,,Uy,) and a
Lipschitz continuous function (X, U) : [0,1] — [a, b] x RN such that

(3.3) Xp, = X, Uy, — U  uniformly on [0, 1].

Hence, dist((Xpn, , Un, ), (X,U)) — 0 as k — oo, and (3.3), in conjunction with Lemma
3.3, yields the conclusion of part (a).
(b) Given a generalized graph (X,U), let (X, U, ) be defined by

1 1
X, = <1>X—|—(a+(ba)s), U, :=U.

n n
Then X, : [0,1] — a,b] is strictly increasing, Lipschitz continuous, and surjective;
{(Xn,Up)} are uniformly Lipschitz continuous, while (X,,U,) — (X,U) uniformly
on [0,1]. The functions u,,, defined by u,, = U,, o X,; !, are Lipschitz continuous and
satisfy

sup [up| = sup |U],
[a,b] 0,1]

TViap(un) = TV)o 1)(U) < Lip(U).

The conclusion of part (b) now follows from Lemma 3.3. a
It is instructive to place the above concepts in a functional analysis framework.
Let

(3.4) E={,V)ec([0,1];]a,b] x RY) :Y(0) =a, Y(1) = b}

and X := (E/ ~) be the quotient space of E over the equivalence relation ~ introduced
in Definition 2.4. The elements of X’ are equivalence classes of functions: (Y7, V1),
(Y3, V) are in the same equivalence class if and only if (Y7, V1 )oa = (Y3, Va)of for some
Lipschitz and increasing reparametrizations of [0, 1]; that is, the curves determined by
the functions (Y7, V1) and (Y3, V2) coincide. The elements of X can thus be visualized
as geometric curves in [a, b] x RY with Y/(0) = a, Y/(1) = b.

If (Y,V) € EN BV, one can select, using (2.19), a Lipschitz continuous represen-
tative of the equivalence class [(Y, V')]. This representative is denoted here by (X, U)
and is characteristic to the class. The reason is that, for (Y, V) and (Y, V') of bounded
variation, (Y, V) ~ (Y, V) if and only if the corresponding canonical representatives
of [(Y,V)] and [(Y,V)] are identical, (X,U) = (X,U). We emphasize that we can
talk about the canonical representative only for C N BV curves. (Recall that if one
representative of the equivalence class is of bounded variation, any representative is
of bounded variation.)

When X is equipped with the pseudometric dist((Y, V), (Y, V)), defined in (2.17),
it becomes a metric space. Consider now the sets

(3.5)
F={[(Y,V)]€ X : (Y,V) is of bounded variation and X is strictly increasing},
G={l(Y,V)] € X : (Y,V) is of bounded variation and X is increasing},

where (X, U) always refers to the canonical representative of [(Y, V)]. Section 2.3 in-

dicates that F can be identified with the set of continuous functions of bounded varia-
tion, (CNBV)([a, b]; RY). The elements of F are viewed as the graphs of the functions
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u, with the canonical representative coinciding with the arc-length parametrization
of gr(u) in (2.19). The set G is the closure of F in the metric induced by the distance
function (2.17) and may itself be viewed as a complete metric space. The canonical
representative of each equivalence class element of G is a generalized graph in the
sense of Definition 3.1. Henceforth, elements of G are denoted by gr(X,U) and are
visualized as the geometric graphs generated by (X,U). We remark that elements of
G are not in correspondence with the space of BV functions, but rather G consists of
all possible limit points of F in the distance metric.

3.2. Representation of weak-x limits. Consider a sequence {u,} of contin-
uous functions satisfying the uniform bounds (1.3). The sequence {g(un)dun} may
have multiple limit points in the weak-x topology of Ma, b] (cf. Example 1.1). We now
characterize such limits for any continuous ¢ in the following representation theorem.

THEOREM 3.4. (a) Let {u,} be a sequence of continuous functions satisfying
the uniform bounds (1.3). There exists a subsequence {uy,,} and a generalized graph
(X,U) such that, for any continuous function g = g(\), we have

(3.6) /[ 0@, (), (2) = (p(5).0) Jor 0 Clet],

where p : Co(RN) — M(a, b] is defined by

(3.7) (u(g). 0) = / 0(X(5)g(U(s)) dU(s).

(b) Conversely, given a generalized graph (X,U), let p be defined by (3.7). There
exists a sequence of Lipschitz functions {uy}, uniformly bounded in BV, such that for
any continuous g,

(3.8) g(uy)du, — pu(g)  weak-* in Mia, b].

Theorem 3.4 is based on a characterization of the weak-+ limit points to the
sequence of Radon measures {p,, } defined in (1.9). The key ingredient is the following
weak stability type of theorem.

THEOREM 3.5. Let {u,} be a sequence of continuous functions u,, : [a,b] — RY
satisfying the uniform bounds (1.3), and let (X,,,Uy,) be the arc-length parametrization

of gr(uy). If
(3.9) (X0, Up) % (X,U)

to some generalized graph (X,U) associated with a BV function u, then

(3.10) f(z u,(2)) duy, (x) —>/0 F(X(s),U(s))dU(s) for f € Co([a,b] x RY).

[a,b]

Proof. Let (X,,,Uy,) be the arc-length parametrizations of gr(u,), and let (X, U)
be a generalized graph of u. Hypothesis (3.9) implies that for some «,, and «a, Lipschitz
continuous reparametrizations of the interval [0, 1], we have

Y, =Xp,oa, > Xoa=Y uniformly on [0, 1],

Vpi=U,oa, -Uoca=V uniformly on [0, 1].
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By virtue of Theorem 2.2, we may express the integrals

F (@, wn () dun (& / FX (5))dUn(s) = /0 F(Ya(s), Vi) dVia(5),

/Of(X(S)vU(S))dU(S)Z/O (Y (), V(s))dV (s).

Fix f € Co([a,b] x RY). Note that (V,,V,) and (Y, V) are continuous and satisfy
TV (V) =TV (U,) < C,

(Yo, Vi) = (Y, V) uniformly on [0, 1].

It suffices to show that (3.11) implies

(3.12) / £, 1)V (s) — / Ay 4V (s).

Step 1. We first show that, if V,,, V' :[0,1] — RY are functions of bounded
variation (not necessarily continuous) such that

(1) [V =Vl — 0,

(2) TV(V,) < C,
then, for any [«, 8] C [0,1] and ¢ € C|a, (], we have

(3.13) / ©(8) dV,(s) — p(s)dV (s).
[@,] [a,8]

If ¢ € Cta, (], then (2.4) implies

[a,b]

(3.11)

[ mw(S) dVn(s) = — [ mw 8) Va(s)ds + P (B)Vy(B+) — ¥(a)Va(a—)
(3.14) = s V' (s) V(s)ds + ¥ (B)V(B+) — b(a)V(a—)
= P(s)dV(s).
o]

Given ¢ € Cla, 3], there exists for every ¢ > 0 a function ¢ € C![a, ] such that
[l — ¢lloc < e. The relation

8)dV,(s) — s)dV (s
|/[a,ﬁﬁ”” (s) /[a’mw (s)

Y(s) dVy,(s) — Y(s)dV(s)
[, 3] [, 3]

in conjunction with (3.14), yields (3.13).
Step 2. Step 1, in conjunction with (3.11), implies

/0 OV (5), V($))dVi(s) — / v av (s).

On the other hand, again by (3.11),

< ETV[a’m(Vn) + +€TV[Q75](V),

< (max |f (Yo, V) — FV,V)]) / AV, | 0,

(0,1]

1
/0 (Yo Va) — F(Y.V))dVi

as n — oo. Hence, (3.12) follows. o
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Proof of Theorem 3.4. (a) Let {u,} be the sequence of continuous functions
satisfying (1.3), and let (X,,,U,) be the arc-length parametrizations of gr(u,); the
latter are uniformly Lipschitz continuous. Let {p, } be the sequence of Radon measures
defined in (1.9). The sequence {p,} is bounded, ||p,||m < C, by the uniform BV
bound of {u,}.

Let p be a weak-x limit point of {p,}. For a subsequence

(Pnys f(2,0)) = s F@, tn,)dun, — (p, f(z,))) for f € Co(la,] x RY).

Using part (a) of Theorem 3.2 and passing to a further subsequence {uy, }, if neces-
sary, we may assume that there is a generalized graph (X, U), so that the arc-length

parametrizations (X, , Uy, ) N (X,U). Theorem 3.5 implies

(b, f(2.)) = / F(X(),U(5))dU (s).

Taking f(x,\) = 6(x)g(\) gives the desired result for g € Co(R™) and, due to the
uniform sup-norm bound of {u,}, for any continuous g.

(b) Given a generalized graph (X,U), let © be defined by (3.7) and let {u,} be
the sequence of Lipschitz functions constructed in the proof of part (b) of Theorem
3.2. Then {u,} are uniformly bounded in BV, {(X,,U,)} are uniformly Lipschitz
continuous, and (X,,,Uy) — (X, U) uniformly on [0,1]. Theorem 3.5 for f(z,\) =
6(z)g(A) implies (3.8). O

4. Definition of nonconservative products.

4.1. Definition as a Radon measure. In view of Theorem 3.4, the definition
of nonconservative products should be based on a given generalized graph (X,U) :
[0,1] — [a,b] x RY of the function u of bounded variation. The generalized graph
(X,U) determines a geometric object (the graph of u together with paths filling the
jumps and possible attached loops), call it gr(X,U). We define g(u)j—z relative to
gr(X,U), first as a Radon measure in this section, and then as a finite Borel measure
via its distribution function in section 4.2.

DEFINITION 4.1. Let (Y, V) ~ gr(X,U) denote the general continuous represen-

tative of the graph determined by (X,U). Given a continuous map g : RY — RV,
define pu(g) by

(u(g). 0) = / 0(Y ())g(V(s)) AV (s)

au

(4.1) :/O OX(s))g(U(s) T ds  for 6 € Clab)

du

Then pu(g) € Mla,b] is called the nonconservative product of g(u) by G and is denoted

by

du

(4.2) plo) = o) 3]

Remark 4.2. (a) We refer to Dal Maso, LeFloch, and Murat [10] for a slightly
weaker definition of nonconservative products and to Raymond [27] for a definition
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that is equivalent. Comparisons of the various definitions are carried out in section
4.4. References [10, 27] also contain various weak stability results.

(b) Suppose that (Y, V), (Y, V) are two representatives of the same graph, that
is, (Y, V) ~ (Y, V). Then (Y, V)o3 = (Y, V)oa for some Lipschitz reparametrizations
a, 3 of [0,1]. Theorem 2.2 implies the nonconservative product remains invariant,

(4.3) lA oo«s»ga%@>de>:1£ B(Y ())9(V () AV (s).

The measure introduced in Definition 4.1 thus depends on the equivalence class de-
termined by the generalized graph (X,U), i.e., on gr(X,U) as a geometric object.
When a Lipschitz representative, such as (X, U) itself is used, then (u(g),6) may be
expressed via the last integral in (4.1).

(c) If pis viewed as a map p : Co(RY) — Ma, b], then y is linear and bounded.
The boundedness follows from the estimate

(4.4) [{u(9), )| < (TVo,1;(V))  sup [g(N)] sup [0(=)],

[A|<max |U]| z€[0,1]

which implies [|11(g)lm < (TVio,11(V)) llglleo- O
We state next a weak stability theorem for nonconservative products.
THEOREM 4.3. (i) Let {(X,,,U,)} and (X,U) be generalized graphs. If
(1) TV(U,,) is uniformly bounded,
(2) (X, Un) > (X, ),

then

du

i - [Q(U) Az

(4.5) [g(un)% weak-x in M]a, b].

}(Xn,Un) }(X,U)

(ii) Let {u,} be a sequence of continuous functions satisfying (1.3), let (X,,Uy)
be the arc-length parametrizations of gr(uy), and let (X,U) be a generalized graph. If

(Xny Up) % (X, U), then

du

(4.6) gun)dn — [g(u) | (X.0)

Proof. Define the graphs determined by (X,,,U,) and (X,U), and let (Y, V,) ~
gr(Xn, Uy,) and (Y, U) ~ gr(X,U) be continuous representatives such that (Y, V;,) —
(Y, V) uniformly on [0, 1]. Moreover, TV (V,,) = TV (U,) < C. The result follows from
(3.10) in Theorem 3.5, together with part (b) of Remark 4.2. O

weak-+ in M]a, b].

4.2. Distribution functions. We discuss next the properties of nonconser-
vative products when viewed as signed Borel measures defined via their distribu-
tion functions. Recall, for a generalized graph (X,U), the set theoretic inverse
o=X"1:[0,1] — [a,b] is a strictly increasing multivalued map.

THEOREM AND DEFINITION 4.4. Let (Y, V) ~ gr(X,U) be a representative of the
graph determined by (X,U). For x € [a,b] define

du

— ds
ds &%

Y7 (@) XN (at)
wn  F@=[ aveawve = [ )
F(a—) =
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Then F' is a right continuous BV function and generates a signed Borel measure u,
determined by

(4.8) w((a,z]) = F(z) = F(a) for = € (a,b], p({a})=F(a).

Also pi coincides with the nonconservative product [g(u) %] x 1y in (4.1)~(4.2); that
18,

(n,0) = 0(x) dF (x)
(4.9) .01
dU

1
= [ o0 sDaviNav(s) = [ ox(s)aW i), ds
[0,1] 0 s

for any 6 € Cla,b).

Proof. Consider (Y,V) ~ gr(X,U), a general continuous representative of the
graph determined by (X,U). We have the following conditions:

(i) X :1]0,1] — Ja,b] is Lipschitz continuous, increasing, and surjective with
X(0)=a, X(1) =b, and X *(X(s)) = s whenever X(s) € Cx-1.

(i) Y :[0,1] — [a,b] is continuous, increasing, and surjective with Y (0) = a,
Y (1) = b, and Y (Y (s)) = s whenever Y (s) € Cy 1.

(iii) (Y,V)o B = (X,U) o a for some a, : [0,1] — [0, 1] increasing, Lipschitz,
and surjective reparametrizations.

Let F :[a,b] — R be defined by

Y~ (z+)
F(x) = / g(V(s) dV(s), Fla—)=0.

Then F' is a right continuous BV function and generates a signed Borel measure g,
through (4.8). Note that F satisfies

(4.10) F(Y(s)) = /0S g(V)dv for s € Y H(Cy ).

Step 1. The definition of the distribution function F' depends on the equivalence
class of (X,U) but not on the specific representative.

It suffices to define F' at points z € Cy-1 and to extend F' so that it is right
continuous. If (Y, V) ~ (X,U) are two equivalent representatives of gr(X,U), then
Yopf =Xoa, Vo =Uoa, and C(Xoa)—l C Cx-1, C(Yoﬁ)—l C Cy-1. For
T € C(xoa)-1 = C(yop)—1, Theorem 2.2 implies

X~ (=) (Xoa)™ ()
[F(z)] x.0) ::/0 g(U)dU :/0 g(U o a)d(U o a),

Y~ (x) (YopB)™'(x)
POy [ aav= [ 9V o B)d(V o B).

Since such points are dense in [a, b], any of these formulas generates the same distri-
bution function [F|x )y = [F](y,v) and we may use any representative for calculating
F. This shows (4.7).

Step 2. For 0 € Cla, b], we shall show that

4. 0(x)dF(z) = 0(X(s))g(U(s))—ds.
(411) [ o@are) = [ ox @)’y

(Note that this formula is not a direct consequence of Theorem 2.2.)
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Fix ¢ € C'[a,b]. Using (2.4), the change of variables 2 = X (s), (4.7), (4.10), the

property X = 0 on each interval [o(y—),o(y+)] with y € S,, and the chain rule for
Lipschitz continuous functions, we obtain

P(x) dF (z) = (b)F(b+) — ¢(a)Fla—) — U () F(x) d

[a,b] la,b]
~UOF0+) — [ (XD FX () X5
—v0re) - [ e ([ ow)glar)as

o) , oX()N)  qu
Y [ vEEEe < / g(U)deT> ds

YESs
o) [ o= [ L) ([ o) ar) as
thus
[ var@ = [ i

Since F' is of bounded variation and U is Lipschitz continuous, a density argument
yields (4.11). The proof of (4.9) follows from part (b) of Remark 4.2. o

Remark 4.5. In view of (4.7) and (4.8), the nonconservative product u charges
points € Sx -1 according to

X~ (a+)

pl{o}) =)~ Fa) = [ gUs) v, o

X1(a-)

We state and prove a version of the weak stability theorem by using distribution
functions.

THEOREM 4.6. Suppose {uyp} is a sequence of continuous functions satisfying
(1.3). Let (X,,Up) be the arc-length parametrizations of gr(uy), let (X,U) be a
generalized graph, and define the distribution functions

(4.12) Fy(z) = /90 g(un(y)) duy(y),

and F(x) associated with (X,U) by (4.7). If (Xn,Uy) 4, (X,U), then
(4.13) F,(z) — F(x) a.e. in (a,b),

while ., and u, generated by F,, and F, respectively, satisfy p, — p weak-x in
M]a, b].

Proof. Let (X,,Up,) be the arc-length parametrizations of gr(uy); (X,,U,) are
uniformly Lipschitz. There exist reparametrizations of the interval [0, 1], a,, and «
that are uniformly Lipschitz continuous such that (X,,, Up) = (Xpn, Uy) o, (X,U) =
(X,U) o a satisfy the following: (X,,U,,) are uniformly Lipschitz and X,, — X,
U,, — U uniformly on [0, 1].
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Let Sg—1 and Sg-1 be the points of discontinuity of X, 1 and X1, respectively,
and set 7 = (J,,Sx-1) USx-1. Then 7T is countable, and an argument as in the
proof of Lemma 3.3 shows

(4.14) X, Y2) = X Ha) forzela,d]\7T.
Theorem 2.2, for the change of variables y = X, (s), gives

@ X, (@)
(415)  Fo(z) = / 9 () dun () = /0 9(0n(5))d0n(s) for a € Cmr.

An argument, as in the proof of (3.12), shows that

X7l _ X)) _
(4.16) / (T (5))dT, (5) — / o(T(s))dT(s) for € Cgos.
0 0
In turn, (4.14) (4.16) and the fact that U,, are uniformly Lipschitz imply
(4.17) F,(z) — F(x) forxz€a,b\T.

The distribution functions F,, and F satisfy the following properties: F),(a) = 0,
F(a—) =0,

(418) ()= / 9(0(5))d0 (5) ds — / 9(0(s))dT () = F(b).

For any test function ¢ € C'[a, b], the integration by parts formula (2.4), in conjunc-
tion with (4.17)—(4.18), yields

o (z)dFy () = — - V' (2)Fo(2) dz + $(b) F (b) — ¥(a) Fr(a)
" Jow "(2)F (x) dz + ¢ (b)F(b) — ¢(a)F(a—);
hence
(4.19) - b(2)dF,(x) — - Y(z)dF(z).

Since F,, are of uniformly bounded variation, (4.19) and a density argument show
that pu, — p weak-x in M]a, b]. 0

4.3. Generalized graphs and graphs of BV functions. In this section we
examine the relation between a generalized graph (X, U) and the graph of the asso-
ciated BV function u. First observe that Definition 3.1 directly implies the following
proposition.

PROPOSITION 4.7. Let (X,U) be a generalized graph and let 0 = X~' be the set
theoretic inverse of X. Then the following conditions hold:

(i) If y € Co, then u(y) = U(o(y)).

(ii) If y € S,, then X (1) =y and the function

¢y(r) =U(r), 7€ Jy =[o(y=),oly+)],
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determines a Lipschitz continuous curve that lies on the hyperplane {:U = y} and
connects (y,u(y—)) with (y,u(y+)).

(1) The Lipschitz path ¢, : J, — RN is either an arc when u(y—) # u(y+) or a
loop when u(y—) = u(y+).

(2) The Lipschitz continuity of U implies

1
(4.20) > / ‘ %y | 4r < /
0' 0

(iii) C, C Cy, and Sy D Sy

YES, a(y+)]

A generalized graph completely determines u and also specifies the paths connect-
ing points of discontinuity and possible loops attached to the graph of u. There is no
a priori mechanism, given u, for selecting a particular generalized graph. They may
be induced by introducing paths at points of discontinuity in S,, (using straight lines
[31] or families of Lipschitz paths [10]) and by possibly attaching loops at points of
removable discontinuity or even at points of continuity in C,, (cf. the examples pointed
out in [10] and the notion of extended graph in [27]). A converse to Proposition 4.7
has been proved by Raymond [27].

PROPOSITION 4.8 (see [27]). Given a function u : [a,b] — RY of bounded vari-
ation, a countable set T, with [a,b] D T D S,, and a family of Lipschitz paths

® = {¢y}ycr such that

dau

ds < .

¢y :[0,1] — RN is Lipschitz continuous with

(A1)
st( ) = u(y—), ¢y( ) =u(y+) foryeT,

(Ag) dr < o,

yeT

there exists a generalized graph (X,U) associated with the triplet (u, 7T, <I>).

The triplet (u, T, <I>) is called extended graph in [27]. Apart from its theoretical
interest, the proof of the proposition provides a procedure for constructing examples.

Proof. The construction proceeds in two steps.

Step 1. Construction of a continuous, BV representative (Y,V) :[0,1] — [a,b] x
RY of the graph determined by (u, T, <I>).

Define q : [a,b] — [0, 1] by setting ¢(b) = 1 and

q(z):==|xz—a+ Z / % dr for = € [a,b),
(121 re
1
Q _b—a—I-Z/ 90y dr.
vel 0 87—

Then ¢ is a strictly increasing left-continuous (but generally discontinuous) function
satisfying the properties C, = [a,b] \ 7, Sq =T

q(y+) —aly a%

(4.22)
0<x2—x1§Q( ( 2)—(](I1)) for r1 < T2,

and ¢(a) =0 < ¢(z) <1 =¢q(b) for z € (a,b).
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The domain and range of ¢ admit the decompositions

[a.0] = Cy | S,
0,1 = a(C) U (U latw=). a0

yeT

where ¢(Cy) and each J, = [¢(y—), q(y+)] are mutually disjoint. The closure of the
set ¢(C,) is

a(Cy) = ( U {q(y)}) U( U {q(y_)’q(y+)}>'

y€eCq yeT
Define now the function (Y, V') as follows:
(a) On each interval J, = [q(y—),q(y+)] with y € T, set
(4.23) {Y(é) - for s € Jy,
q%(#%) for s € J,,.

(b) On the complement [0, 1] — UyerJy = ¢(Cy), we have s € ¢(C,) if and only if
s = q(y) for precisely one y € Cq. We define

Y(s)=y for s € q(Cy),
(4.24) { —u(y) for s € q(C,).

Clearly, Y is an increasing function, (Y, V') are continuous on the interior of each
interval J,, and also for any s;, s, € J, with s; < s2, we have

s2—q(y—)
wH-1- | O Hog
(4.25) [V (s2) — V(s1)] S/ —4 dTS/ —2\ dr.
S5 | or o |97

We proceed to show (Y, V) is continuous for each s € ¢(C,). This follows by a
case analysis:

(i) s € ¢(Cq), sp, — s with {s,} C ¢(Cq). Then s, = ¢(y,), s = ¢(y) for some
Yn, Y € Cq. By (4.22), y, — y and thus

Y(sn) =yn —y=Y(s),

(ii) s = g(y—) for some y € T, s,, — s with {s,,} C ¢(C,). In this case for large
n it is s, < s, and the corresponding points y, € C, satisty s, = ¢(y») and y, < y.
Again (4.22) implies

0<y—yn<Qa(y—) —alyn))
and thus, by (A1),

Y(sn) =yn = y==Y(s), Vlsn) =ulyn) = uly—) = ¢y(0) = V(s),
(iii) If s = g(y+) for some y € T, s,, — s with {s,,} C ¢(C,). Then, as in (ii)

Y(sn) = y+=Y(s), Visn)=ulyn) = uly+) = ¢y(1) = V(s).
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(iv) Now let s,, — s with {s,} C ¢(C;). For each n, let oy, € ¢(C,) such that
| <2 V(o) - Yl < 2 V(ow) — Visa)l < -
n — °n T On) — Sn ) On) — Sn -
on s n n n

Then o, — s and (i)—(iil) imply Y (s,) — Y (s), V(sn) — V(s).

(v) On the other extreme, let s,, — s with {s,,} C UyerJ,. Then Y(s,) = y,
with y,, € 7. To simplify the exposition, consider the case s,, < s, s,, — s. For each
n, define o,, = q(yn+). Then {0, } C ¢(Cq), 05, — s and (4.25) implies

SV (om) - . 4

It follows from (iv) and hypothesis (Ag) that Y(s,) =Y (0,) — Y (s), V(sn) — V(s).
(vi) For general sequences s,, — s, the result follows by combining (iv) and (v).
The function Y is increasing and thus of bounded variation. The total variation

of V may be explicitly computed

TVio. (V) € TViagy(u) + Y ( /
0

yeT

5%”

dr — |u(y+) — u(y—)]) .

Thus V is also of bounded variation.

Step 2. Construction of a Lipschitz continuous representative (X,U) : [0,1] —
[a,b] x RY of the graph determined by (u, 7T, ®).

Using the reparametrization (2.15) and the analysis of section 2.2, we can con-
struct the canonical representative of the curve (Y, V). This representative (X,U) is
Lipschitz (with Lipschitz constant L) and satisfies

1
(Y,V) = (X,U) o, where v(s) = ET(Y’V)(S)’ 5€10,1], and L = TVjp (Y. V) .

Also, X is increasing and (X, U) is a generalized graph. a

4.4. Comparison with definitions based on families of paths. In this
section, we compare definitions based on families of paths with Theorem 3.4 based on
generalized graphs.

We review the definition proposed by Dal Maso, LeFloch, and Murat [10]. This
theory is based on a given family of Lipschitz continuous paths ¢ : [0,1] x RY x RN —
RY that satisfy, for some K > 0 and for all ug, u; € RY and 7 € [0, 1], the properties

(Hl) ¢(0; UO,U1> = Uop, ¢(1; UO,U1> = Uy,
(H2) (15 ug,u9) = ug,
(H-?)) ‘%(T‘UO Ul) <K|U0—U1|.

87_ ) b) —

THEOREM AND DEFINITION 4.9 (see [10]). Let u : (a,b) — RY be a function of
bounded variation and g : RN — RN be a continuous map. There exists a unique
finite signed Borel measure i on (a,b) such that

(1) if u is continuous on a Borel set B C (a,b), then

(4.26) u(B) = /B o(u) du;
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(2) if u is discontinuous at a point x € (a,b), then

1
0 ,
@21)  pl{x)) = / g(¢(r;u,,u+>)£(T;u,,u+)dT with us = u(a).
0
The measure p is called the nonconservative product of g(u) by Z—;‘ and is denoted by
du
(4.28) p= o] -

Remark 4.10. The stronger condition

(H3/) %(T;anul) - %(Tsvoﬂh)

< K|(u0 —vg) — (w1 —Ul)|

is assumed in [10] in place of (H3), in connection with defining products of the form

g(u)%, where u and v are BV functions. For instance, (H3') guarantees that such

products depend solely on the measure g—” and not on the function v. It is straight-
forward to check that hypotheses (H1)—(H3) suffice for Definition 4.9, for most results
presented in [10], and, in particular, for the theorem on weak stability.

It can be checked that the nonconservative product is independent of reparametriza-
tions of the paths and that the definition is consistent with the usual distributional
definition in the case of conservative products: if f : RY — R is a continuously
differentiable function, then

du d
(4:29) (PN ] = 5 (@),
The left-hand side in (4.29) is understood in the sense of Definition 4.9, while the
right-hand side is understood in the sense of distributions.

Ezample 4.11. A simple example of paths is the family of straight lines ¢g,
defined by

(4.30) ¢s(T5ug, u1) = ug + 7(ur — ug).

Then (4.27) reads

o] o= [ gl 7l w))dr )~ ).

and the nonconservative product coincides with a product introduced by Volpert [31].
To see that, recall that the averaged superposition of a BV function u : (a,b) — RN
by a continuous function g is the function g(u), defined for all = € (a,b) by

(4.31) () (z) = /0 g+ s(us —u_))ds, s = u(at).
Of course, we have

g(u)(z) = g(u(x)) for all z €C,.
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The function g(u) is Borel measurable, and the product g(u)%“ is well defined as
a signed Borel measure. This nonconservative product coincides with the one in

Definition 4.9 if one uses the family of straight lines:

(4.32) [q(u)

as Borel measures on (a, b).

A comparison of (4.20) with the hypotheses of Theorem 4.9 indicates that (H2)
and (H3) are somewhat restrictive, ruling out the possibility of loops attached to the
graph of the BV function u. The gap between the two definitions has been bridged
in a definition given by Raymond [27]. Tt is proved in [27] that this definition is
equivalent to Definition 4.1.

In practice, there should be no confusion between the notation introduced in
Definitions 4.1 and 4.9, respectively, in view of the following result.

THEOREM 4.12. Let u : (a,b) — RY be a function of bounded variation and
(X,U) :[0,1] — [a,b] x RN be a generalized graph of u. Suppose there exists a family
of paths satisfying (H1) (H2) such that, for every point of discontinuity x € Sy,

du ., du
) =0 g

o(riu_,ut) :=U(s_ +7(s4 —s-)), T €[0,1],

(4.33) -
where sy == X" (zx), ux :=u(zt),

and satisfying the “no loop” condition
(4.34) for every x € Cy, there exists a unique s € [0,1] such that X(s) = z.

Then the nonconservative products in Definitions 4.1 and 4.9, respectively, coincide

o) 5] = ot 2

du]qs - %](X,U)

dx
as Borel measures on (a,b).
Proof. It will be convenient to view the product in Definition 4.9 as a Borel-

Stieltjes integral. Namely, by modifying g(u) at most countably many points, we can
construct a function g(u) : [a,b] — R¥ satisfying

(4.35) g(u)(z) = g(u(x)) for x €C,
and for z € S,
(4.36)

9(w) - (u(z+) — u(z-)) =/0 9(d(1su(z=), u(z+))) - d(1; u(z—), u(a+)) dr.

Note that the value of g(u)(x) is not uniquely determined by points © € S, since
any vector othogonal to the jump u(xz+) — u(x—) may be added to g(u)(x). From
Definition 4.9, one deduces that
du
(4.37) o05] =sta
Tl

as Borel measures on (a,b), where the right-hand side is understood as a Borel-
Stieltjes integral. Using the change of variable formula in Theorem 2.2, we thus have

du —
(4.38) /[ayb}o {g(u)d:ﬂhz o /{07”(90){) (g(w) 0 X) d(u o X).
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Consider the decomposition ([0, 1] \ J,,) U J,, where J, :=J,[s—, s4] with s; :=

X~Y(z4). On one hand, by (4.35) one has g(u)(z) = g(u(z)) for z € C, and thus, on

the set [0,1] \ Jy, we obtain wo X = U and g(u) o X = g(uo X) = g(U). Thus

/[ 00X gl 0 X)due X) = /[ 00X (e X)d(ue X)

(4.39) OV 0,1\

_ / 00 x)g(07) WY s,
0,1\ ds

On the other hand, in view of condition (4.34), each interval [s_, s4] C J,, corre-
sponds to a jump in u, say, ux := u(z+) for some z € S,. Using (4.36) and (4.33),
we obtain

/ (QOX)(moX)d(uoX):/ O(I)m(:r)d(uoX)
[s—,s4] - [s—,5+]
=0(x) g(u)(x) - (uy —u-)

1
— () / g((rsule—) u(a+))) B d(rsulw—), u(a+)) dr

— () /[ ) s,

Combining (4.38)—(4.40) we deduce that

(4.40)

/M 9[9(u)2—;‘]¢ = /[071](90)() (9(u) o X)d(uo X)
:/ (60 X)g(U) Z—st
[0,1]

du
[t
/[a’b] ( )dx (X,U0)
for every test function 6. ]

Next, we list examples in order to illustrate the relation between regularized se-
quences {v, }, subject to (1.3), and the associated nonconservative products. Since all
definitions of nonconservative products are equivalent within their range of applicabil-
ity, we will use interchangeably the notation [g(u) 9], and [g(u) %] x,i); the former
is applicable when we are given a family of paths ¢ or an extended graph and the
latter when we are given a generalized graph (X,U). In any case one can pass from
¢ to (X,U) and vice versa by using Propositions 4.7 and 4.8. We recall that, given
a generalized graph (X,U), it is always possible to construct a sequence of smooth
functions {v,} that approach (X, U) in the graph distance (cf. Theorem 3.2).

Ezample 4.13. We return to the sequence {v,} discussed in Example 1.1. With
ug, up € RY, the functions {v,}, v, and the path 7 defined in (1.5)—(1.6), we have

dvuy,

(41) )5 — ( /0 1 g(w(s))w'(s)ds) 6py woakex in Ma,b].

We select the family of paths ¢ so that ¢(.;ug,u1) = 7 holds. Then the noncon-
servative product reads

(4.42) [g(v)%]qﬁ =c(g,7) bz, where ¢(g,7) = /0 g(m(s))n’(s)ds ,
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and for any ¢ continuous we have g(vn)ﬁ’—; — [g(v)49*], weak-x. This example il-
lustrates the important fact that the path ¢ must be selected in agreement with the
regularization under consideration. Different regularizations may give rise to different
paths ¢.

When ug # wui, (4.42) may be interpreted in terms of Definition 4.9. When
ug = ug, this is no longer possible, because hypothesis (Hz) excludes the possibility
of loops. However, it can be interpreted in terms of the more general Definition 4.1
as follows: By Proposition 4.8 the function v together with the location of the loop
discontinuity x¢ and the path = determine a generalized graph. A representative
(Y, V) of this graph is given by the formulas

(4.43)
a+ 3s(zg — a), s € [0, %}, ug, s € [O,%],
Y (s) = < zo, s E [% %], V(s)=¢7m(8s—1), s€ [%, %],
2o+ (3s—2)(b—xy), s€ [%,1}, U, s € [%,1].

Then Definition 4.1 gives

dv
(4.44) EOFS oy = €O b,
and so, as n — 00,
dv, dv
(4.45) gvn) T [g(u)%} oy eaklyx € Mlab]

Note that (4.44) holds for arbitrary ug and w; and that, when ug = uy, the limiting
graph (Y, V) contains a loop at the location . a

Ezample 4.14. Consider next a piecewise constant function v : [a,b] — RY
having three points of discontinuity:

ug for x € [a,c1),
f

(4.46) o(z) = uy  for z € [e1,¢a),

uy  for z € [eg,c3),

uz  for x € [c3, ],

where a < ¢; < ¢ < ¢3 < b are real constants, and the u;’s are constant vectors. Let
m; be Lipschitz continuous paths such that m;(0) = u;_1 and 7;(1) = u;, j = 1,2,3.
In a fashion similar to Example 1.1, we can define a sequence of smooth functions v,,
by replacing the jumps in v with smooth transition layers based on the paths 7; such
that {v,} are uniformly bounded and v,, — v pointwise. Then

v, 1 o
(4.47) g(vn)a — c(g,mj)bc; ,  where c(g,m;) :/0 g(m‘)af; ds.
7j=1,2,3

Accordingly, the nonconservative product is defined so that

dv dv
4.8 s 2] = law] = 73) b
(4.49) 100z ey = 0T, = T lomn,

In most cases this is done by using Definition 4.9, upon selecting the family of paths
¢ so that ¢(.;uj,u;j11) = ;. There are a few interesting exceptions when one needs
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to use Definition 4.1. One is the case where the approximating sequence contains
loops. This is discussed in the previous example. Another case is when the jumps
of v at * = ¢; and * = ¢3 coincide, ug = us and u; = wuz. Then Definition 4.9
prevents us from using, in v,, different paths for approximating the same jump at
two different locations. This difficulty does not arise with Definition 4.1. Upon
constructing a representative of the limiting graph, as in the previous example, we

define the nonconservative product as in (4.48). 0
Ezample 4.15. Given an increasing sequence of points ¢ € [a,b), k =0,1,2,...,
with ¢y = a and ¢, := limg_. ¢ € (a,b), we consider the saltus function w : [a,b] —

RY defined by

ug  for z € [a,c1),
(4.49) v(z)=qu, forz € ek, crr1), K=1,2,...,

Uso fOr T € [Coo, D],

for constants uj and ues in RY. For each jump connecting uj to Ug+1 1D v, we
consider a Lipschitz continuous path m(s) for s € [0, 1] satisfying 4 (0) = ui—1 and
7Tk(1) = Uk-

Let c,f’”, for k,n = 1,2,..., be a sequence of points in the interval (a,b) such
that ¢, " < cx < /" < ¢l1, and Cf’n — ¢ as n — 0o. We construct the sequence
of regularized functions v, : [a,b] — RY by

Uo for x € [a,c]” )
%) forwe [ep ", k=1,2,...,
(4.50) () = m(gfmtzm)  for o € [0 60",
U fora;e[(’z’" ck+1) k=1,2,...,
Uso for z € [¢x0, b].

The functions v,, are continuous and

(4.51) V(v,) Z/

We assume that the right-hand side of (4.51) is finite, so that the sequence {v,} is of
uniformly bounded variation. A calculation shows that

dﬂ'k ‘

dv,
(4.52) g(vn)dL — Y (g, mj)bc;, weak-x in Mla,b],

Jj=1

which suggests that the nonconservative product [g(v)%] x 7y should be defined by

(@53) b0 =S elg

k=1

Because of the uniform constant K in hypothesis (Hz) this cannot be handled in
general by Definition 4.9. By contrast, Definition 4.1 is adequate to define the non-
conservative product as in (4.53); this follows from (A;)—(A3) and the construction
process in the proof of Proposition 4.8. a
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5. The Riemann problem for nonconservative hyperbolic systems. The
theory developed in the previous sections is now applied to the Riemann problem for
first-order quasi-linear hyperbolic systems

(5.1) Oyu + A(u) Oyu = 0, TE€R, t>0,

(@, 0) = u_ for x <0,
" Nuy for x>0,

where the N x N matrix A(u) is a smooth function of u, and u; and u_ are given
vectors in RV, Because of the invariance of the Riemann problem under dilations
(z,t) — (ax,at), for a > 0, the solution is expected to be a self-similar function of
the variable £ = x/t. Accordingly, u = u(z/t) is sought by solving the boundary value
problem

(Po) dg

In the nonconservative case A(u) is not a Jacobian matrix, and one is confronted
with the difficulty of giving an appropriate meaning to the product A(u)du/d¢. To
address this difficulty, we construct solutions of (Pg) as € \ 0 limits of solutions to

dUE dus o d dus
(P.) g Al g e (B(%) d£> ’

ue(£00) = uy

where B(u) is a positive semidefinite N x N matrix. This approach for constructing
solutions to the Riemann problem is called self-similar zero-viscosity limits. For con-
servative strictly hyperbolic systems, this method is known to select shocks having
the internal structure of a traveling wave and to provide the unique solution to the
Riemann problem for weak waves; see Tzavaras [30].

Throughout the paper we proceed under the hypothesis: There exists a family of
smooth solutions u. to (P.), for ¢ > 0, that satisfy uniform in ¢ L and variation
bounds,

(5.2) e —u_| e +TV(12) < C,
as well as uniform convergence properties at infinity,
(5.3) |us(€) —uy| < Cexp(—ae) foré <a+1land £ >b—1,

for some a < b and C,a > 0 independent of €. Such solutions are constructed in
LeFloch—Tzavaras [18, 19] under the following set of structural assumptions:

(i) System (1.1) is strictly hyperbolic; i.e., the matrix A(u) has N real and distinct
eigenvalues A\p (u) < -+ < Ay (u);

(ii) the initial jump |uy — u_| is sufficiently small;

(iii) the diffusion matrix B(u) is the N x N identity matrix Id.
It is, however, expected that estimates (5.2) should hold, together with (5.3) or vari-
ants, under more general circumstances, and the analysis in this section requires only
(5.2)—(5.3).
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The uniform BV estimates provide a natural framework to study the notion of
weak solutions for the nonconservative Riemann problem (Pg). Let (X.,U.) be the
arc-length reparametrization of the graph (£, u.(£)). Theorem 3.2 asserts that there
exists a subsequence {u., } and a generalized graph (X, U), determining a function u
of bounded variation such that

(X5n7 USn) i) (X7 U)7

(5.4)
0., (&) = o(&), u., (&) —u(§) for&edl,.

Recall that 0., = X_ Ll is a strictly increasing function, while 0 = X!

increasing multivalued map.
Using the results of sections 3 and 4, we can give a meaning to the nonconservative
product [A(u)‘é—g](ny), relative to the generalized graph (X,U), as a weak-* limit of

is a strictly

A(us)asf. To this end, we use either Definition 4.1 to interpret [A(u)j—’g}(ny) as a
Radon measure or Definition 4.4 to define it via its distribution function F'. It leads
to a notion of solutions for (Py) as in Definition 5.1.

DEFINITION 5.1. Let (X,U) :[0,1] — [a,b] xRN be a generalized graph associated
with a function of bounded variation u : [a,b] — RY. We say that (X,U) is a weak

solution to the system

du du
if
du du
(>0 - d¢ - {Am)d?] (X,U) =0

in the sense of measures. Equivalently, if for any ¢, € € [a, b],

3 XTHEN)
G7) [eu(e) - Culc)] + /C w(0)d + /X e AW ()T as =0

Remark 5.2. Relation (5.7) suggests that at points £ € Sx-1, the set where
the inverse map X ~! is multivalued, the following analogue of the Rankine-Hugoniot
conditions is satisfied:

X7HE+) dU

(5.8) —¢ [u(§+) —u(g—)} + /X e A(U(s) - ds = 0.

Points £ € Sxy-1 may correspond either to jumps or to loops.

The notion of weak solution depends on the equivalence class, but not on the
specific representative, of the generalized graph.

PROPOSITION 5.3. If a generalized graph (X,U) is a weak solution to (5.4),
then any path (Y, V') belonging to the same equivalence class as (X,U) is also a weak
solution.

Suppose there exists f : RN — RN such that A = Df. Let u of bounded variation
be a solution to (5.4) in the sense of distributions

(5.9) /Ruﬁdij/R(fu—kf(u))Zdezo
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for every smooth function 6 of compact support. Then any generalized graph associated
with u is a weak solution in the sense of Definition 5.1.
The proof of Proposition 5.3 follows from the facts that the nonconservative prod-

uct is independent of reparametrizations of the generalized graph (X,U), and, when
A(u) = Df(u), one has

du} d (w)

[A(u)d? ) de

as measures.
THEOREM 5.4. Fiz us € RN, Let u. : (—o0,+oc) — RN be a family of smooth
solutions to (P.:) for e > 0 that are of uniformly bounded variation and satisfy (5.2)—
(5.3). Consider the arc-length parametrizations (X.,U.) of the graphs of u.. There
exists a subsequence {u., }, with e, — 0, a generalized graph (X,U), and an associated
BV function u, such that (X.,_,,U.,) converges to (X,U) as in (5.4), (X,U) is a weak
solution of (5.5), and
(5.10) u(e) = {u for —co < <a+1,
ug  forb—1< & < +o0.

Combined with [18, 19], where the uniform bounds are established for strictly hy-
perbolic systems and small initial jumps |uy —u_|, Theorem 5.4 provides an existence
result for the Riemann problem (Pg). We refer to [19] for the structure of the result-
ing wave-fan solution of the Riemann problem and the admissibility restrictions that
the process (P.) imposes on shocks. The relation with the solution of the Riemann
problem for genuinely nonlinear systems, obtained in [14, 10], is also investigated in
[19].

Proof. In view of the uniform estimates (5.2)—(5.3) and Theorem 3.2, the graphs
(X.,U.) converge along subsequences in the graph distance. Denote by (X,U) the
limiting graph.

Observe that the right-hand side of the equation in (P.) tends to zero in the sense
of distributions

(5.11)

du. do
c /B(%) dig o dx‘ <Ol TV(1) — 0
for every test function 6.

To determine the limit of the right-hand side of the equation in (P.), one writes

du du

Alu.) (Tg = [ (UE)Tg}(XE,UE)

and one uses the weak stability theorems, either Theorem 4.3 if the nonconservative
product is viewed as a Radon measure or Theorem 4.6 if the distribution function is
used instead. It follows that

du,

[A(us)d—; du

— AW ] kex in M[a, 8]
}(XE,UE) [ (u) a€ ) e weak-* in M|a, b]
Using (5.11), we conclude that (X,U) is a weak solution in the sense of Definition
5.1. Finally, the fact that «(§) admits the boundary conditions as in (5.10) is a direct
consequence of (5.3). a
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