MATERIALS WITH INTERNAL VARIABLES
AND
RELAXATION TO CONSERVATION LAWS

ATHANASIOS E. TzAVARAS!

ABSTRACT. The theory of materials with internal state variables of Coleman and Gurtin [CG] pro-
vides a natural framework to investigate the structure of relaxation approximations of conservation
laws from the viewpoint of continuum thermomechanics. After reviewing the requirements imposed
on constitutive theories by the principle of consistency with the Clausius-Duhem inequality, we pur-
sue two specific theories pertaining to stress relaxation and relaxation of internal energy, respectively.
They each lead to a relaxation framework towards the theory of thermoelastic non-conductors of
heat, equipped with globally defined ”entropy” functions for the associated relaxation process. Next,
we consider a semilinear model problem of stress relaxation. We discuss uniform stability and com-
pactness for solutions of the relaxation system, in the zero-relaxation limit, and establish convergence
to the system of isothermal elastodynamics, by using compensated compactness. Finally, we prove
a strong dissipation estimate for the relaxation approximations proposed in Jin-Xin [JX], when the
limit system is equipped with a strictly convex entropy.

1. INTRODUCTION

The presence of relaxation mechanisms is widespread in both the continuum mechanics as well
as the kinetic theory contexts. The Broadwell model, the equations of chromatography, certain
models for viscoelastic flow and models for traffic flow form an increasing list of examples involving
relaxation mechanisms. The Chapman-Enskog expansion provides an effective equation for the
relaxation process and reveals the stabilizing role of the subcharacteristic condition, Whitham
[W], Liu [Li]. A framework for investigating relaxation to processes containing shocks is proposed
in Chen-Levermore-Liu [CLL|, and the mechanism motivates a class of nonoscillatory numerical
schemes for conservation laws [JX]. Analytical investigations [CLL, N;, TW, LM, KT, N3, BCN]
indicate that relaxation provides a subtle ” dissipative” mechanism against the destabilizing effect
of nonlinear response, as well as a damping effect on oscillations when assisted by nonlinear
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2 ATHANASIOS TZAVARAS

response. The theory of weak solutions for conservation laws with memory [Das, NRT, CD]
provides another testing ground for dissipation induced by damping mechanisms.

The objective of the present study is (a) to investigate the mechanism of relaxation from the
viewpoint of continuum thermomechanics, and (b) to study the strength of dissipation for relax-
ation processes. The dissipative structure for relaxation, as it emerges from general considerations
of the second law of thermodynamics, is weaker than that of viscosity approximations. In gen-
eral, under subcharacteristic type of conditions, it leads to what is called in [CLL] an ”entropy”
function and to control of the distance from equilibrium. Nevertheless, for several models of
semilinear relaxation approximations a stronger dissipative structure occurs, matching the one of
viscosity approximations. This is the case for a model pursued in [FM] and describing isothermal
stress relaxation, see Section 3, as well as for the relaxation approximations of [JX] when the
limit is a symmetric hyperbolic system, see Section 4.

It is well known that the subject of viscosity approximations for conservation laws is inti-
mately tied to the mechanical issue of the passage from the theory of thermoviscoelasticity to
the theory of thermoelasticity and, in turn, to the theory of thermoelastic non-conductors of
heat, e.g. Dafermos [Da;]|. The relation among these theories is understood by monitoring the
entropy production in the course of passing from one theory to the next. The natural frame-
work, in the continuum thermomechanics context, to place relaxation approximations is offered
by the theory of materials with internal variables of Coleman-Gurtin [CG]. This theory along
with the (more general) theory of simple materials with fading memory, [Co], were developed to
explore the dissipative structure of materials that exhibit memory effects. The requirement of
consistency of constitutive relations with the second law of thermodynamics, in the form of the
Clausius-Duhem inequality, reveals the dissipative structure of the theory of materials with in-
ternal variables. Remarkably, theories with internal variables that are consistent with the second
law of thermodynamics are automatically equipped with what is called in the theory of relaxation
an entropy function for the relaxation process.

The format of constitutive theories with internal variables can be complicated and is not
generally given in closed-form relations, as is the case in the theory of thermoviscoelasticity.
The problem of identifying specific constitutive theories and relating internal variable theories
with the (limiting) equilibrium theories has been extensively studied in the mechanics literature,
c.f. Coleman-Gurtin [CG], Gurtin-Williams-Suliciu [GWS], Faciu and Mihailescu-Suliciu [FM],
Suliciu [Su] and references therein. The issue is important in the design of relaxation schemes for
the equations of gas dynamics, Coquel-Perthame [CP].

We begin in Section 2 with a review of the thermodynamics of materials with internal vari-

ables. Following that, we derive necessary conditions at the general level and pursue two specific



INTERNAL VARIABLES AND RELAXATION 3

constitutive theories, one pertaining to stress relaxation and one pertaining to relaxation of in-
ternal energy. These theories are completely solvable: it is possible to give simple necessary and
sufficient conditions so that the relaxation theory is consistent with the Clausius-Duhem inequal-
ity, and the constitutive functions are explicitly identified. In turn, consistency with the second
law of thermodynamics leads to ”entropy” functions for the associated relaxation process.

In Section 3, we consider the semilinear system
Ou — Ozv=0
(1.1) 0w — 0,0 =0
00— Bu) = —(o — g(u)

describing isothermal motions of a viscoelastic material. This model is studied in [FM] and
emerges as a special case of the isothermal theory of stress relaxation, developed in Section 2. It
is achieved by a theory compatible with the Clausius-Duhem inequality, if and only if g, < F,
while, in the formal zero relaxation-time limit ¢ — 0, it yields the equations of isothermal

elastodynamics
Ou — Oz,v =0

(12) Ov — 0zg(u) = 0.

In Section 3, we validate the ¢ — 0 convergence of (1.1) to (1.2), under the subcharacteristic
condition 0 < g, < E and structure and growth hypotheses on g(u), see Theorem 3.3. The main
ingredients are the theory of compensated compactness, Tartar [Ta], Murat [M], the L? theory for
the reduction of generalized Young measures for the equations of elastodynamics, Shearer [Sh],
Serre-Shearer [SSh], and an estimate - valid under the hypothesis 0 < g, < E - measuring the
dissipative strength of the relaxation approximation (1.1) to (1.2), see Lemma 3.3.

In Section 4, we test the extent of validity of such strong dissipations estimates. We consider
semilinear relaxation approximations of the type proposed in Jin-Xin [JX],

Osu+ O0yv =0

(1.3) O+ Adgu =~ (v~ F(w)),

where u,v € R", A is a positive definite symmetric n X n matrix, and the limit system
(1.4) Opu + 0, F(u) =0

is symmetric hyperbolic. Under the subcharacteristic condition, A — F’ (u)2 > v for some v > 0,
these systems are equipped with the strong dissipation estimate (4.9). An analogous result holds

in the multi-dimensional case, again for the limit system being symmetric hyperbolic, see (4.18).
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Finally, in Section 5, we consider systems (1.4) that are equipped with a strictly convex entropy
n(u). It is well known that such systems are symmetrizable [FL]. We consider the relaxation
approximation (1.3) and we prove that if 7, < «I and if

(8") %(ATfr]uu (w) + Nuu(u)A) — aF’T(u)F'(u) > vl

for some a,v > 0, the relaxation process satisfies the strong dissipation estimate (5.4), see
Proposition 5.1.

An earlier version of this material appears in the Lecture Notes [Tz].

2. THERMOMECHANICAL THEORIES FOR MATERIALS WITH INTERNAL STATE VARIABLES

We begin with a review of the restrictions imposed on thermomechanical theories with internal
state variables by the principle of consistency with the second law of thermodynamics, and the
ensuing structure of relaxation approximations. For simplicity, the presentation is done for one-
dimensional thermomechanical theories. The general form of constitutive theories for materials

with internal state variables is analogous in several space dimensions [CG].

2.a Thermomechanical theories in one-space dimension.

Let the function y(z,t) express the motion of a reference interval [a, 8] and 6(z,t) express
its temperature. The displacement y(-,t) is required, for each ¢ > 0, to be a strictly increas-
ing, bi-Lipschitz continuous map of the reference interval [a, 3] onto the current configuration
[y(a,t),y(B,t)]. The list of quantities entering in a Lagrangean description of a thermomechanical
process are: po(x) the mass density in the reference configuration, p(y, t) the mass density in the
current configuration, y the motion, u = % the strain, v = % the velocity, T the stress, f the
body force per unit mass, 6 the temperature (6 > 0), e the specific internal energy (e > 0), ¢ the
heat flux, r the radiating heat density and 7 the specific entropy. The equations

oy
(2.1) P(’yat)a—x = po(z)
(2.2) Opu — Opv =0
(2.3) Ot(pov) — Oz = pof
1
(2.4) Ou(pov” + poe) = 0u(Tv) + Dg + po fv + por

express the balance of mass, the kinematic compatibility relation, the balance of linear mo-
mentum, and the balance of energy (the first law of thermodynamics), respectively. They are

supplemented with the Clausius-Duhem inequality, which reads, in integral form,

d [° z=b b por
(2.5) 7 | Pl dz > —(z,t) + de for [a,b] C [e, B] and t > 0,
a T=a a

I
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or, in local form,

(2.6) podin > Bx(g) + %-

The Clausius-Duhem inequality expresses that the net production of entropy per unit time, in any
control volume [a, b], is positive, and manifests (a form of) the second law of thermodynamics.

The thermomechanical variables are connected through constitutive relations that characterize
the material response. A constitutive theory is determined by assigning a class of independent
(prime) variables and a class of dependent variables, derived from the prime variables via consti-
tutive relations. In this separation, the set of thermodynamic variables is implicitly divided into
“causes” and “effects”. From the phenomenological standpoint of continuum thermomechanics,
there is no a-priori reason why a cause in one constitutive relation should not be a cause in an-
other. Therefore, in determining the general form of constitutive theories, one imposes Truesdell’s
principle of equipresence, which states that a quantity present as an independent variable in one
constitutive relation should be present in all, except if its presence contradicts some law of physics
or material symmetry [TN]. Severe restrictions result from the second law of thermodynamics
and the invariance under change of observers, called respectively principle of consistency with the
Clausius-Duhem inequality and principle of material frame indifference.

The list of constitutive variables (prime and dependent) does not include the reference density
po, the body force f, and the radiating heat transfer r, which are viewed as externally prescribed
fields. Given a constitutive theory, the kinematic compatibility relation, and the balance laws
of momentum and energy form a system of equations whose solution determines the thermome-
chanical process. In the Lagrangean description, the role of the balance of mass is to determine
the current density p, once the process is identified. The role of the Clausius-Duhem inequality is
subtler: For smooth processes, the Clausius-Duhem inequality is viewed as restricting the form of
constitutive relations. By contrast for non-smooth processes', it becomes an additional constraint,
that weak solutions must satisfy.

For smooth processes the balance of energy, balance of linear momentum and Clausius-Duhem

inequality imply the energy dissipation inequality

0

(2.7) 00 (Bte — Ham) — TU; — QTx <0.

Upon introducing the Helmholtz free energy 1 = e — 07, the latter takes the form
90

(2.8) PoO) + pondid — Tur — 5 <0.

1 The term non-smooth processes is used in a loose sense to signify processes containing shocks. It is a question
of analysis to precise the smoothness class in each specific context.
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2.b Materials with internal variables.

Viscosity and heat conduction are one of the possible ways for prescribing dissipative mecha-
nisms. Complementary descriptions of dissipation are supplied by the theory of simple materials
with fading memory, [Co], and the theory of materials with internal state variables, [CG]. The
class of materials with internal state variables is a subclass of the simple materials with fading
memory, which is appealing in its simplicity and encompasses some interesting models (like the
ideal gas with vibrational relaxation).

For materials with internal variables, the thermomechanical process is described by a vector
function (y(z,t),6(z,t),a(x,t)), where y is the motion, # the temperature, and the internal

vector-variable « evolves according to the differential law
(2.9) o = F(u,0,a).

In rough terms, such models have fading memory when the differential system (2.9) is exponen-
tially dissipative.

The independent variables of the constitutive theory are u, #, the internal variable vector «
and the temperature gradient g. The remaining thermomechanical variables are determined by

constitutive relations of the general form

(210) ¢:\P(u,0,g,a), n:H(uaeagaa)a T:S(uaeag’a)a q:Q(’U/,H,g,OZ)-

Note that while (2.10) satisfies the principle of equipresence, the differential constraint (2.9) does
not. In fact, (2.9) is not viewed here as a constitutive relation but rather as defining the class of
admissible processes. This simplifies somewhat the reduction process, while it is compatible with
all the specific examples considered later. We refer to [CG] for the analysis of the case that F
also depends on g.

Consistency with the Clausius-Duhem inequality is tested against all admissible processes,
that is all smooth processes that are compatible with the differential constraint (2.9). A count
of equations and unknowns indicates that all admissible processes can be realized, by externally
regulating f and r so as to fulfill the balance of momentum and energy. Then (2.8), (2.9) and
(2.10) imply that

Q

(2.11) (po¥u — S)i+ po(Tg + H)O + po¥y § + po¥a - F(u,0,0) - 79 <0

holds for all admissible processes. Since the local values of u, 8, «, g, 8;, u; and g; can be assigned
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independently, the constitutive relations have the reduced form

P = V(u,b,a)
ov
T=8= Poa—
u
(2.12) o
T T
q=Q(u,0,9,q)
subject to the constraint
ov 1
(2.13) ~%a - F(u,0,0) + EQ(H’ 0,9,a)g >0 for all u,0, g, .

It follows from (2.13) that

o

(2.14) -

- F(u,0,a) >0  for all u,0, .

If @ is given by a Fourier law for heat conduction, @ = k(u, 0, a)g, then (2.13) is equivalent to
asserting (2.14) and k > 0.

The thermomechanical process (y(z,t),8(z,t), a(z,t)) is described by (2.2-2.4) supplemented
with (2.9) and the constitutive relations (2.12-2.14). For Fourier heat conduction, this reads

Ou—0,v=20
8t (pOU) - BmS(u, 05 a) = pOf
1
Or(po5v* + poF(u, 6, ) — 0(S(u, 0, )v) = 0y (kbz) + pofv + po
O = F(u, 0, a)

(2.15)

where ¥ = ¥ + @H. For smooth processes, a direct computation yields the identity

kem - 1 ke% poT
(216) pOatH(uaga a) - <7>$ - —pog\Ifa . F(U,g, a) + ? + 7

which captures the dissipative structure of a heat conducting thermoelastic material with internal

variables.

2.c The connection with relaxation approximations.
Theories with internal variables provide a natural framework to consider the structure of re-
laxation approximations to conservation laws, from the continuum thermomechanics perspective.

Consider a theory with one scalar internal variable a evolving according to the differential law

(2.17) oo = —Aa — h(u,8)),
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where A > 0 is a parameter. The law is of exponential dissipative type with relaxation time % and
the equilibrium states are described by a., = h(u,§). The internal variable theory is completed
with constitutive relations for the free energy, stress and entropy, and (for simplicity) with a

Fourier law for the heat flux,
(2.18) P =9(u,b,a), n=Hwu,0,a), 7=5Su,0,a), Q==*ku,b,a)g.

They are required to comply with (2.12-2.14), with F' = —A(a— h(u, 8)), so that the internal vari-
able theory is consistent with the second law of thermodynamics. Accordingly, smooth processes
satisfy the dissipation estimate (2.16) and the function —H (u, 6, @) provides, in the terminology
of [CLL], a (possibly not convex) ”entropy” function for the emerging relaxation process. In the
sequel, we explore the relations between the thermomechanical model corresponding to A > 0
with the model emerging in the small-relaxation time limit A — oo.

In the limit A — oo, it is expected that the internal variable o will tend to its equilibrium value
Qeq = h(u,0) and the corresponding constitutive relations, (2.18) with a = @y = h(u, ), become
the constitutive relations for thermoelastic conductors of heat. The correspondence between
equilibrium and relaxation system has been extensively studied in the mechanics literature, c.f.
[GWS, FM, Su] and references therein; the issue is also relevant in the design of relaxation schemes
for the equations of gas dynamics [CP].

The general question is: Given a differential law like (2.17), derive conditions on the consti-
tutive functions ¥, S and H so that they are achieved from a theory of materials with internal
variables consistent with the second law of thermodynamics. Here, we break down the question
as follows. Assume that one of the constitutive variables of the internal variable theory is com-
pletely specified. The goal is to derive conditions on the functional form so that it is achieved
from an internal variable theory consistent with the second law of thermodynamics, and also to
derive the form of the remaining constitutive functions. (For instance, suppose that experimental
measurements on one variable are available and ask whether these measurements fit under a the-
ory with internal variables.) We pursue two such instances, prescribed distribution of stress and
prescribed distribution of internal energy. Then, in Sections 2d and 2e, we derive constitutive
relations for two special theories, pertaining to relaxation of stress and relaxation of internal
energy respectively. The formal limit of both is the theory of thermoelastic conductors of heat

and they are equipped with ”entropy” functions for the relaxation process.

i. Prescribed distribution of stress
Suppose we are given a stress distribution S(u, 8, &) and ask if the distribution can be achieved

from a theory with internal variables. The question becomes to investigate if there is a free energy
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function ¥(u, 0, @) such that
ov 1
a— = —S(’U/, 0, Cl)
(2.19) . o Po
subject to %(a — h(u,0)) >0 for all u,0, .

Note that (2.19) implies in particular that ¥ satisfies

o¥ > () for a > h(u, )

e 2
(2.20) 9% =0 for & = g = h(u,0)
9% <0 for a < h(u,8),

and that, since solutions of (2.19); are given by

(2.21) P 0,0) = G0,0) + [ " $(¢.0,0) de,
0

the inequality (2.19) is satisfied if and only if there is a function G(@, ) such that

(2.22) (Ga(e, Q) + / " Su(6.6,0) d{) (a - h(u,e)) >0 for all u,0, .

We emphasize that solving (2.22) is equivalent to deciding whether the given model with internal
variables is consistent with the second law of thermodynamics, and that, for (2.22) to admit
solutions, conditions must be imposed on the functions S and h. For instance, (2.20) implies the

necessary condition

(2.23) G0, h(u,0)) = — /0 ¥ 8 (6.0, h(u, 0)) de

If a solution G of (2.22) can be found, the associated free energy function is given by (2.22).
Note that the free energy is only achieved within adding an arbitrary function of 8. This is not
surprising; the requirement of achieving a prescribed distribution of stress does not constraint

the purely thermal aspects of the constitutive theory even at equilibrium.

1. Prescribed distribution of internal energy
Consider next the case that the internal energy distribution E(u, 6, «) is prescribed. Then we

ask whether there is a free energy function ¥(u, 6, ) such that
U
v — 08— = E(u,0, )
00
(2.24) P
subject to 8—(04 — h(u,8) >0 for all u,0, a.
¢!
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The solution of (2.24), is calculated by

o1
(2.25) U(u,0,0) = OF (u,a) — 0 / 250, 0)dc.
1

where F' is an arbitrary function. Then inequality (2.24), is satisfied if and only if there is a

function F'(u, ) such that

(2.26) O(Fa(u,a) - / ’ C—12Ea (4, ¢, @) dC) (a — h(u,o)) >0 for all u,0, .
1

Again solving (2.26) is equivalent to deciding whether the given model with internal variables is

consistent with the second law of thermodynamics, and (2.26) implies the necessary condition

“1
(2.27) F,(u,a) = /1 ?Ea(u, ¢,a)d¢ for o = aeq = h(u,0)

Once again, if a solution F' of (2.26) can be found the free energy function is given by (2.25), and

the procedure will select F' within adding an arbitrary function of w.

2.d A hierarchy of models with stress relaxation.

Consider next a special case, where the given stress distribution is
(2.28) S(u,0,0) = f(u,0) + .

This case is completely solvable. Indeed, (2.22) becomes to find a function G(0,«) such that
J(0,a) := —Gy(0, o) satisfies

(2.29) (u —7(0, a)) (a - h(u,@)) >0 forall u,0,aq.

Lemma 2.1. Given h(u,0), (2.29) is satisfied if and only if h(u,0) is strictly decreasing in u,

§(0, ) is strictly decreasing in o, and j = h™! is the inverse function of h for 0 fized,

(2.30) j(0,h(u,0)) =u, h(j(6,0),0)=a.

Proof. Suppose (2.29) is satisfied and let 6 be fixed. If the graphs of the functions a = h(u, )
and v = j(0,«) do not coincide in the o — u plane then (2.29) is clearly violated. Since each
function describes the same graph viewed from a different axis, either h is strictly decreasing in u
or h is strictly increasing in u. Checking directly we see that if h is strictly increasing in u, then
(2.29) is violated. We conclude that h is strictly decreasing in u, and j is the inverse function of

h and is strictly decreasing in a.
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Conversely, if h and j are as in the statement of the lemma, then

(u = j(0, @) (e = h(u, 0)) = (45(6, h(u,0)) = j(0, @) (e = h(u,0)) = 0
since j is decreasing in «. O

In the sequel, we assume the slightly stronger condition h,(u,f) < 0 and note that the asso-

ciated G is given by the formula

@ ]
G(o,a)z—/o j(e,odc—/l 5(2) dz

where s is an arbitrary function of #. The constitutive functions of the internal variable theory

read

= po¥(u,0,a) = — 1(0,¢)d z)dz + au
po = po¥(,0,0) == [ i cc/ + +/f£,
(2.31) T=5S,0,a) = f(u,0) + «

ponzpoH(u,e,a)z/o 308, 0)dC + 5(6) /fe€9

In turn, the internal energy is determined by

poe = poE(u,0,a) = po(V + 0H)(u, b, )

2.32 o ? *
(232 = /0 (6o — 3)(6,)d¢ + (05(6) ~ /1 5(2) dz) + ou + /0 (£ = 010) (& 0)de .

As an application, we consider a model for a viscoelastic material where the total stress 7 is
decomposed into a viscoelastic part, evolving according to stress relaxation, and a viscous part

with Newtonian viscosity,
T=0+pvg, =0
8t(0 - f(uao)) = _>‘(U - g(uao)) .

The viscoelastic part of the stress may be put into the integral form,

(2.33)

t

(2.34) o(11) = f(u,0) (1) + / 269 (g(u, 8) — f(u,0))(,5) ds,

—0o0

of a Maxwell type viscoelastic fluid with memory. The function f(u, ) describes the instantaneous
elastic stress-strain response, while g(u, 8) describes the equilibrium stress-strain response.

The inviscid version of (2.33) is formulated in the context of internal variables by setting
o= f(u,0)+

(2.35)
O = —Aa — h(u, ) with h(u,0) := g(u,0) — f(u,0),
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which fits under the previously discussed framework. The model is achieved from a theory
consistent with the second law of thermodynamics if and only if the functions f and g satisfy

(9 — f)(u,0) is strictly decreasing in u. Henceforth, we focus on functions satisfying

(2.36) Gu ('U', 9) < fu (U'a 0)

while the free energy 1 and entropy 7 are determined by (2.31) for « = o — f(u, 8).
The thermomechanical process (y(z,t),0(z,t),o(z,t)), associated to the material model (2.33),
is described by the system of equations
Ou—0zv=0
P00 — 020 = (pvg)s + pof
(2.37) 1,
O (ipov + poe) — 0z (0v) = (pvgv) g + (k0z)z + pofv + por

0(0 = f(u,0)) = —\(o — g(u,0))

where the internal energy is determined by (2.32),
(238) Po€ = POE(Ua 93 o — f(u7 0)) = Po (\IJ + HH) (U, 0’ o — f(u’ 0)) .

A direct computation using (2.37), in conjunction with (2.17), (2.28) and (2.31), shows that

the thermomechanical process is equipped with the dissipation estimate

k0 1 _
i (1,0 1000) - (%), AL =300 w00
k02 2
(2.39) +9—;+’%x+%,

which, in view of (2.36) and (2.29), implies that smooth processes satisfy the Clausius-Duhem
inequality, for all values of A > 0 and pu, & > 0, and yields an estimate for the amount of
dissipation.

The stress relaxation model (2.37) gives rise to a hierarchy of thermomechanical theories as
the parameters describing the viscosity p and heat-conductivity & tend to zero, and to a second
hierarchy of theories as the relaxation parameter A tends to infinity. In the limit A — oo, one
formally obtains the theory of thermoviscoelasticity. As both A — oo and p and/or k tend to zero
one can obtain a variety of thermomechanical theories. Along all these limiting processes (2.39)
holds, and any limiting non-smooth processes inherit the limiting form of the entropy dissipation

estimate (2.39).
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We close by considering the case of isothermal motions, that is processes along which 6 = 6,

is kept constant and () = 0. The process is described now by equations,
Ou—0zv=0

(2.40) podiv — 0z0 = (vz)z + pof
O(o — f(u,00)) = —A(o — g(u, b)),

that are pertinent to a purely mechanical process. From a mechanical viewpoint, isothermal
processes are attained by externally controlling the radiation heat transfer r so that 8 = 6y and

@ = 0. The balance of energy and the entropy production equations imply

0 (5000 + oW (u, 0,0 — f(w,00)) ) — (o)

(2.41)
Fd A=A o, )@= hwBo))| = (uev)e + pofv
The theory emerging in the zero-viscosity u — 0 is described by
O:u—0zv =20
(2.42) poOiv — 00 = po f

0t (a — f(u, 90)) = —Ao — g(u,6p)).
It is known that stress relaxation equation exerts a subtle dissipative effect on smooth processes,
and as a result the system admits smooth solutions for initial data close to equilibrium. By
contrast, for data away from equilibrium shock waves can develop in finite time, e.g [Daj]. The

inviscid theory inherits the dissipative structure

at(%Povz + po ¥ (u, 0,0 — f(uaeo))> — 0z(ov)
(2.43)

+ A(u — h™* (8o, @) (@ — h(u, 6)) < pofuv
a=oc— f(u,00)
with equality for the case of smooth isothermal processes.
In the limit A — oo, the internal variable theory (2.42) yields the equations of one-dimensional

isothermal elasticity,

Ou — O0zv=0
(2.44)
p06tv - awg(ua 90) = pOf’

a strictly hyperbolic system when g, > 0. If f, > g, the internal variable theory is consistent
with the Clausius-Duhem inequality. (It is remarkable that this is precisely the subcharacteristic
condition for the associated relaxation process, i.e consistency with the second law of thermody-

namics implies, in this context, the subcharacteristic condition). The function

(2.45) po(u, 0, 0) = — /0 B (0, C)dC + au + /0 F(€,60)de

provides an ”entropy” function for the associated relaxation process, which is convex in (u, a) if
—0,h710,f > 1 for all u and «.
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2.e A model with relaxation of internal energy.
Next, we consider a model of relaxation of internal energy. The total internal energy is assumed

to be decomposed into two parts

E(u,0,a) = E(u,0) + «
(2.46) O = =N — h(u,0)).

The part £(u, #) is called active-mode energy while « is called vibrational energy. In this model the
variable « is an internal variable and thus @ > 0. It evolves according to the differential law (2.46),
which is of exponentially dissipative type with relaxation time % and equilibria a.q = h(u,8).
(See Coquel-Perthame [CP] for a model with analogous features).

From part (ii) of Section 2.c, we see that (2.46) can be achieved by an internal variable theory
compatible with the Clausius-Duhem inequality if and only if there is a function F'(u,«) such

that 1 — F,(u, @) =: K(u,a) satisfies

(2.47) (% — K(u, a)) (a — h(u, 0)) >0 forallwu,b,a.
We set 8 = 3, H(u, 3) = h(u, 0) and recast (2.47) to the form
(2.48) (ﬂ — K(u, a)) (a — H(u, ﬂ)) >0 for all u,a, (.

Lemma 2.1 implies that (2.48) is solvable iff H is strictly decreasing as a function of 8, or
equivalently h is strictly increasing as a function of 6.
In the sequel, we assume the condition hg(u,0) > 0 and define the function K (u,«a) as the

inverse function of H for w fixed, or equivalently by

1
(2.49) K(u,h(u,0)) = i
Then (2.47) is satisfied and F is given by
(2.50) Fu,a) = a— / K (u, 2)dz — ()
1

where ¢(u) is an arbitrary function.

The constitutive functions of the internal variable theory are

«a 0
P =U(u,b,a) = —9/ K(u,z)dz — 0p(u) —9/ C—125(u, Q)d¢+

1 1
(2.51) %T:%S(uﬁ,a :—9/ K, (u,z)dz — 0¢,(u /CQ (u,¢)d¢

n=H(u,0,a) = /Kuz)dz+¢ /Cz (u, Q)d¢ + 5(’“9)
e=E(u,0,a) =E&(u,0) + a
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while the equations describing the relaxation process are

Ou— 0zv=0

po0tv — 0,5 (u,0,a) = po f
(2.52) 1 )
O (—pov + po(E(u,0) + a)) — 0:(S(u, 0, a)v) = (kbz)z + pofv + por

2
O = —A(a — h(u,0))

When hg(u,@) > 0 this model is consistent with the Clausius-Duhem inequality and, by (2.16),

it satisfies the dissipation estimate

(2.53) po0¢H (u,0,a) — (%)w = po)\(% — K(u, a)) (oz - h(u,9)) + ];i} + % .

3. RELAXATION OF A VISCOELASTIC MODEL TO
THE EQUATIONS OF ISOTHERMAL ELASTODYNAMICS

In this section, we address the problem of constructing weak solutions of the equations of

isothermal elasticity with g, > 0,

Ou — Ozv =0

(3:1) Opv — Opg(u) =0,

as € — 0 limits of the relaxation system

Oiu—0,v=20
(32) 8,51) — 8x0' =0

00~ Fu) = ——(7 — g(w) .

The model (3.2) is suggested as an approximating model for the equations of isothermal elasto-
dynamics in [FM] and is a semilinear version of the isothermal viscoelasticity model (2.42).

We work under the standing hypotheses g(0) = 0 and 0 < g, < E, in which case (3.2) admits
globally defined smooth solutions, if the initial data are smooth. The hypothesis g, < F can be
motivated in two ways: First, it guarantees that the internal variable theory described by (3.2)
is consistent with the Clausius-Duhem inequality (see Sec. 2). Second, it is motivated by the
analog of the Champan-Enskog expansion for the relaxation process.

In the Chapman-Enskog expansion one seeks to identify the effective response of the relaxation
process as it approaches the surface of local equilibria. It is postulated that the relaxing variable
¢ can be described in an asymptotic expansion that involves only the local macroscopic values

u®, v® and their derivatives, i.e.



16 ATHANASIOS TZAVARAS

(3.3) of = g(u®) + eS(uf, v, u,vs,...) + O(e?)

To calculate the form of S, we use (3.2),
dyuf — 9y =0
(3.4) Opv® — 0,g(u) = 8, + O(e?)
Oi(g(u®) — Buf) + O(e) = =S + O(e) ,

whence we obtain
(3.5) S =[E — gu(u®)]vg + O(e),

and we conclude that the effective equations describing the process are
Osu® — 0yv° =0

3.6
(3.6) Opv® — 0pg(u®) = 0, ([E — gu(u®)|v) + O(e?).

This is a stable parabolic system provided the condition g, < F is satisfied.
According to Section 2.d, when g, < E the system (3.2) describes a theory with internal
variables that is consistent with the second law of thermodynamics. Smooth solutions (u, v, o)

satisfy the energy dissipation identity

37 6 (%qﬂ (0 — Eu)) — 8y(ow) + %(u —h @) a—h@)| =0
where
(3.8) T (u,q) = —/Oa h_l(C)dC+au+/0u Eede,

h(u) = g(u) — Eu, h(0) = 0, and A~ is the inverse function of h. The function ¥ provides an
"entropy” function for the associated relaxation process, which is convex in (u, @) if —9,h~10, f >
1 for all v and «.

Henceforth, we assume the initial data (ug, v, 0¢) are smooth (of compact support or decaying

fast at infinity) and the function g(u) € C? satisfies
(h) 0<y<gu(u) <T<E,

for some positive constants y and I'. It is easy to check that (3.2) admits global smooth solutions,
and we proceed to study the ¢ — 0 relaxation process. Equation (3.7) provides uniform stability

in L? for the relaxation process.
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Lemma 3.1. Under hypothesis (h),
(3.9) /(u2+v2+0 )dx + C// oc—g da:dt<C/(u§+v§+a§)dx
R

for some C independent of € and t.

Proof. From (3.8) we have

(3.10)

where k(o) = —%a — h~!(a). Hypothesis (h) implies

Y <d_’§_ Ju < r
BB S da = B(E-g0) = BE-T)

and thus there is a constant C, depending only on «, I' and E, so that

(3.11) é((a — Eu)? 4+ 0”) < ¥(u,0 — Bu) < C((0 — Eu)® + ¢°)
Furthermore, since —-£h~1(a) = g > +, we have
(3.12) (u = (@) (@~ h(w) > (@~ h())?

The result now follows from (3.7), upon using (3.11) and (3.12). O

The following lemma indicates that, under (h), the dissipative strength of the present relaxation
process is comparable to that of viscosity approximations. In preparation, note that solutions of
(3.12) satisfy

Osu—0zv=20
Opv — wg(u) (0 - g(u)) = S(E'Uacx - Utt)

i.e. (3.2) is equivalent to approximation of (3.1) via a wave equation.

(3.13)

Lemma 3.2. Suppose the initial data satisfy

/vo +ug +ogdz < O(1),
(a) -
g2 /Rugx + 5, +op dz < O(1).

Under hypothesis (h), solutions (u,v,0) of (3.2) satisfy the € independent estimates

(3.14) / /u +v2 + o2dzdt < O(1).
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Proof. We multiply (3.13); by g(u) and (3.13)2 by v. Adding and rearranging the terms we
obtain the energy identity

(3.15) Bt(%vz + W (u) + evvy) — 05 (vg(u)) + e(BvZ — v}) = €0y (Bovy)

where the stored energy function W (u) is given by

(3.16) W (u) = /0 " ge)de.

The problem is that the term Fv2 — v2 is not positive definite. To compensate for that, we

first multiply (3.13)2 by v; to obtain

1 1
Utz — GuUg Uy = €|:(Evtvm)z - at(EE’Ui + 5”1&2)]

and, in turn
(3.17) €20, (E’Uﬁ + vf) + (202 — 2gyugv;) = 2620, (Bvvy) -

Using once again (3.13)5 and the identity a;b; — atb, = 0¢(azb) — 0,(ath), we have

gutiy = ug0;(v + evy) — eBuaUay
= [utﬁw(v + evy) + 04 (ux(v + Evt)) — Oy (ut(v + afvt))] - 5(%(%Eui) ,

which in turn yields
(3.18) 528t(%E2ui — %Evi) — 0 (Bug (v + evy)) + e(Bgyul — Ev2) = —0, (But(v + evt)) .

Adding (3.15), (3.17) and (3.18), we arrive at
at(%(v + vy — eBug)? + %sz(vf + Ev?) + W(u)) — Oz (vg(u))

+ 6[’0,52 — 2g,Up Vs + Eguui] = e2(Evvg),

(3.19)

Under (h), the third term in (3.19) is positive definite
(3.20) E[Utz — 2gyug vt + Eguui] > egu(E — gu)ui > 0.
Therefore, we conclude

1 1
/R 5(1} + vy — eBug)? + 552(1)? + Ev?) + W (u)dz

t
(3.21) +5/ /gu(E—gu)uidmdt
0o JR

1 1
< / §(vo + €00y — €Bugg)? + 552(a§z + Ev,) + W (ug)dz < O(1)
R
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and, due to (h) and (a),
t
e [ ] 9ulB - gunddsit <o)
0o JR

In turn, (3.17) and (3.15) imply
¢
s/ /aidzvdtg o(1)
o Jr

t
g/ /ugdmdtg o(1)
0 JR

We come next to the convergence Theorem.

and (3.14) follows. OJ

Theorem 3.3. Let g € C? satisfy the subcharacteristic condition (h) and

(hy) g"(ug) =0 and g"(u) # 0 for u # u,
(hz) g//’ g/// c L2 N Loo.

Let (u®,v%,0%) be a family of smooth solutions of (3.2) on R X [0,T] emanating from smooth

initial data subject to the bounds (a). Then, along a subsequence if necessary,
(3.22) u® > u, v°—>wv, ae (z,t) and in LY (R x (0,T)), forp < 2,

and (u,v) is a weak solution of (3.1).

Proof. Let 7n(u,v), ¢(u,v) be an entropy pair for the equations of isothermal elasticity. Using
(3.13) we obtain

(3'23) atn(usa UE) + 8$‘](ueav5) = nvaz(g - g(u))
)7 g(u)
£7

= 8x(7lv(0 - g(u))) - (nvugéux + nvvs%vx
=5 +1

If the approximating solutions satisfy the uniform L bound,
(H) lu®] + [0 < C,

then, by (3.9) and (3.14), the term I lies in a compact of H~!, the term I is uniformly bounded
in L', and the sum I; + I, is uniformly bounded in W~1*°. One concludes using the framework

of compensated compactness, Tartar [Ta], and the lemma of Murat [M]

(3.24) Am(uf,v) + 0yq(u,v°) lies in a compact of Hj,..
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Then, from DiPerna [Dp], we obtain, along a subsequence, u® — u and v* — v a.e. (z,t).
In the present case estimate (H) is not available and the natural stability framework is in L2,
1 t
(3.25) /R 5112 + W(u)dz + 5/0 /Rguui + vidzdT < O(1).

Convergence of viscosity approximations to the equations of elastodynamics in the natural energy
framework are carried out in Lin [Ln], Shearer [Sh] (for full viscosity matrices) and Serre-Shearer
[SSh] (for the physical viscosity matrix). In [Sh, SSh] two classes of entropies with controlled
growth at infinity are constructed and used to show that the support of the (generalized) Young
measure is a point mass. We conclude the convergence proof using the results of these works.
Under (3.9), (3.25) and (k) one easily proves (3.24) for entropy pairs 7, ¢ satisfying the growth

restrictions

1
M, ¢ Nvs Novs Mou/gu € L

It follows from [Sh, Lemmas 2, 3] and [SSh, Lemma 3, Sec 5] that the above class contains
sufficient entropies to allow the reduction of the generalized Young measures to point masses and
show strong convergence in L} _ for p < 2. The hypotheses (hy — k) reflect the assumptions of
the main Theorem in [SSh]. O

Remark. 1t is of interest to consider whether the solution (u,v) of (3.1) in Theorem 3.3 satisfies

the energy dissipation inequality

(3.26) Bt(%'zﬁ + W(u)) — 5 (g(u)v) <0, inD.
To this end note that, if

(3.27) ut —u, v*—=ov inLZ (Rx(0,T))),
and the data satisfy

(b)  u§ = ug, v5 —wy in L2, e*(uf,)? + 2 (v5,)2 + e%(05,)2 = 0 in L', ase — 0,

then (3.19) yields, for ¢ a positive test function with compact support in [0,T) x R,
T 1 € € £\2 1 2(, €2 2
—/0 /R(Pt[i(v +evi —eBul)” + 56 (vi® + Eve”) + W(us)] — 0z (v g(u®)) dxdt

T
te / / o [vi? — 2guuvf + Egyus?] dzdt
0 R

1 1
~ [ ele 0505+ 05, — eBuiL) + 52 (05,7 + B, + W) da

R
T
= —82/ /(pw(Eva;) dzdt .
o Jr
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In turn, (3.22), (3.27), (a) and (b) imply

T
—/0 /Rgot [%’Uz + W(u)] — pzvg(u) dedt < /Rgo(z,O) [%v% + W(uo)] dz ,

that is (3.26) is derived. However, alluding to (3.22), we see that (3.27) is not validated within
the framework of Theorem 3.3; that is concentrations in the L? norm cannot be excluded by the

L? theory of approximate solutions for (3.1). That obstructs the derivation of (3.26).

4. RELAXATION TO SYMMETRIC HYPERBOLIC SYSTEMS

Consider the symmetric hyperbolic system

d
(4.1) Opu+ Y 0y Fj(u)=0, z€R%1>0,
i=1
where u(z, t) takes values in R" and F}(u) = VFj(u) are symmetric nxn matrices for j = 1,...,d.

Symmetric hyperbolic systems admit the special entropy entropy-flux pairs, Lax [Lal,

(42) M) = g lol? Qju) = u Fy(w) — g;(u),

where g; is a potential for F; satisfying F;(u) = g;(u).

1. Relazation in one space dimension

We take up first the one-dimensional case,
(4.3) Ou+ 0, F(u) =0,

and consider the semilinear relaxation approximation for (4.1), suggested in Jin-Xin [JX] for

constructing relaxing schemes for conservation laws,

ou+0w=0

(4.4) O + Adyu =~ (v~ F(u)

where A is a positive definite symmetric n X n matrix. This approximation can be written in the

form of regularization by wave equations
(4.5) Opu + O F(u) = e(Augy — uger)
We prove that, under the subcharacteristic condition

(S) A—F'(u)>>vI for some v > 0,



22 ATHANASIOS TZAVARAS

the relaxation system (4.4) (or (4.5)) satisfies a strong dissipation estimate, similar to the one
induced by viscosity approximations. This follows from two estimates: First, taking the inner

product of (4.5) with u we obtain
1
(4.6) 8t(§|u|2 +eu- ut> + 0,9(u) + 5(um - Auy — |ut|2> = €0, (u- Au,),

where Q(u) = u - F(u) — g(u) with F(u) = ¢’(u). Second, taking the inner product with u; we

obtain, after rearranging the terms,

1 2, 1 2 /
(4.7) O <§s|ut| + €Uz Aum) + <|ut| +up - F (u)uw) = O (euy - Auy)
Combining (4.6) with (4.7) and using the symmetry of F’(u) and A, we deduce

1 1
3t (§|u + Sut|2 + 552‘%‘2 + 52Um . Aum) + aEQ(u) + 5|Ut + F'(u)ux|2
+ euy - (A - }711(’11,)2)11I =0y (g'u, - Aug + 252ut . A’U,m)

(4.8)

In summary:

Proposition 4.1. Under Hypothesis (S), smooth solutions of (4.4) (or (4.5)), that decay fast at
infinity, satisfy

1 1 ¢
/ §|u + eug|? + 552|ut|2 + 2ug - Aug dz + / / elut + F(u)z|* + ev|ug |*dzdr
(49) R 0 JR

< /R %|u0 — evog|® + %€2|’00z|2 + 2ugy - Augy dz
Remarks.

a/. Condition (S) and a condition that is equivalent to (Sz), below, are derived in [JX] by
calculating an effective equation for the relaxation process using the formalism of the Chapman-
Enskog expansion.

b/. By placing assumptions on the data, (4.9) yields control of £'/2

t
/ / ey [2dadr < O(1).
0 R

In turn, use of (4.7), together with condition (S) and the bound A < NT for the matrix A, leads

Ug,

to control of e1/2u,,

¢ t
/ / e|lug|?dzdr < / / e|F' (u)ug [*dzdr + O(1) < O(1).
o JR 0o JR
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c/. If u* — u boundedly a.e. and the initial data satisfy
u§ o in L2, e(u5,)? +e2(05,)? >0 in L,
then (4.8) implies that u satisfies the entropy inequality
(4.10) 6t%|u\2 +0,Q(u) <0, inD.

d/. Proposition 4.1 provides a simple proof for the convergence of the relaxation system
Ut +v; =0
(410 v+ a’ug = —%(f(U) — )
where u,v € R, to the scalar conservation law

(4.12) ur + f(w)e =0,

under the hypotheses for the data (suppressing the e-dependence):
[uo| + |vo| < O(1),

4.13
(4.13) / ul +v2 +eud, + e, <O(1).
R

Under the subcharacteristic condition |f’| < a, solutions (u,v) of (4.11) satisfy the uniform
L*°-bound |[u¢| < C, [CLL, N4], and, from (4.9) and (4.7),

t
(4.14) s/ / w2 +udzdt < O(1).
o JR
Let 1, ¢ be an entropy pair for the scalar conservation law. From (4.5) we obtain
(4.15) Oim(u) + 0pq(u) = €0,n (wW)ug — £0ym' (w)ur — en” (w)uZ + en’ (u)u?

The control of the dissipation measure and convergence to (4.12) follows from the argument of
Tartar [Ta].

11. The multi-dimensional case

Consider the relaxation approximations for (4.1) in the multi-dimensional case, [JX],

d
Osu + Zaxjvj =0
(4.16) j=1

1
Oy + AiOg,u = ——(v; — Fi(u)), i=1,...,d,
€
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where u,vy,...,vy take values in R" and A4;, 1 = 1,...,d are positive definite and symmetric

n X n matrices. Again this may be written as approximation by wave equations

d d
(4.17) O+ > 00, Fi(u) = e Ajug,o, — ) -
j=1 =
The same steps as in the one-dimensional case yield the identity

d d
1 1
at(§\u +eu|? + §€2|ut|2 +23 .Ajuwj) + ) 0:,Q5(u)
=1

=1

d d d
(4.18) +elus+ > 00, Fy(w)* + e[z g, - Astig, — | S Fl(w)ug, 2]
j=1 i=1 i=1
d
Zam] eu - Ajug, + 2e%u; - A; uxj).
j=1
The natural dissipation condition is, for some v; > 0,7 =1,...,d,
(Sa) Za A@—\ZF’ )&i] >Zw\& , for&y,...,64 € R"

Proposition 4.2. Under Hypothesis (Sg), smooth solutions of (4.16), that decay fast at infinity,
satisfy

d
1 1
/d §|u + eug|* + Eez\ut\z + €2 Z“wj - Ajug; dr
R ;
Jj=1

t d d
(4.19) + / /d €3 |ug — Z Ajug,q,|* +¢€ Z Vilug, |*dzdr
0o Jr - :
Jj=1 =

1
g/ ~|u(0) + eus(0)]? + 62|ut |2+€2E Ug, (0) - Ajug, (0) dz
R4 2

5. SYSTEMS EQUIPPED WITH A STRICTLY CONVEX ENTROPY

It is well known that hyperbolic systems equipped with a strictly convex entropy are sym-
metrizable, Friedrichs-Lax [FL], and through a change of the dependent variable can be put into

the form,

(5.1) 8,G(v) + 9, F(v) = 0
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with F’(u) symmetric, G'(u) symmetric and positive definite, of the class of systems suggested
by Godunov [Go]. Next, we pursue the analog of Proposition 4.1 for the case of symmetrizable
systems. We only present the one-dimensional case; the multi-dimensional case is an easy gener-
alization. Although the estimate is motivated by the results of Section 4 and the symmetrizability
properties of systems equipped with a strictly convex entropy, a direct derivation is presented, as
most systems in applications do not come naturally in their symmetric form.

We consider the hyperbolic system
(5.2) Ou+ 0, F(u)y=0, z€R,t>0,

where u(z,t) takes values in R". We assume that (5.2) is equipped with the entropy entropy-flux

pair n(u), g(u), with n(u) strictly convex. Consider the approximation of (5.2) by wave equation,
(5.3) O+ 0. F(u) = e(Augy — ugt) ,

where A is a positive definite symmetric n X n matrix; this is equivalent to the relaxation system
(4.4). In the sequel we use the notation 7, := V1, 1y, for the Hessian of 7, and I for the n x n

identity matrix. We prove.
Proposition 5.1. Assume that (5.2) is equipped with a strictly convex entropy n(u) that satisfies,
for some a > 0,

(H) Nuu (U) <al,

and that the positive definite, symmetric matriz A satisfies

(S %(ATM (@) + Tuu (W) A) — aF'T (w)F'(u) > v

Then smooth solutions of (5.3), that decay fast at infinity satisfy the dissipation estimate

1 t
/Rn(u +eug) + §s2a|ut|2 + 2auy - Aug dz + /0 /R e3aluy — Auge|? + ev|ug > dzdr
(5.4)

< / n(uo + eus(0)) + c2|ug (0)|* 4 e2uge - Augg dz
R

where ¢ is a constant independent of €.

Proof. The system (5.3) has the following estimates: Taking the inner product with wu;, we
obtain as in (4.7),

1 1
(5.5) O <§6|’U,t|2 + e Auw> + <|ut|2 + uy - F’(u)um) = Oy (euy - Auy)
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Next, taking the inner product with 7, we arrive at

(5'6) 0y (77(“) +ENy - ut) + qu(u) + s(nuuuw - Aug — uy - nuuut) = 6395(% . A'u'x) >

We multiply (5.5) by 2ae, add (5.6), and use the identity

1 s
n(u + eus) = n(u) + eny (u) - ug + euy - (/ / Nuw (U + ST’u,t)deS) EUL
o Jo

to obtain, after some rearrangements of terms,

1 Lops 1
O (n(u + euy) + €%uy - [iaI — / / N (U + ET’U,t)deS] up + 552a|ut|2 + 2auy - Auz)
0o Jo

B0 L auq(u) + eur - (of — mua)ue + eatug + F'(wugl? + eus - (uud — oF " FYu,

=0z (Enu - Aug + 2820y - Auz) .
In view of (H),
1 1 S
Up - [—aI —/ / N (U +£Tut)d7ds]ut >0,
2 0o Jo
and (5.4) follows from (H) and (S’). O
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