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Abstract

We construct a variational approximation scheme for the equations of three
dimensional elastodynamics with polyconvex stored energy. The scheme is mo-
tivated by some recently discovered geometric identities (Qin [18]) for the null
Langangians (the determinant and cofactor matrix), and by an associated em-
bedding of the equations of elastodynamics into an enlarged system which is
endowed with a convex entropy. The scheme decreases the energy and its solv-
ability is reduced to the solution of a constrained convex minimization problem.
We prove that the approximating process admits regular weak solutions, which
in the limit produce a measure-valued solution for polyconvex elastodynamics
that satisfies the classical weak form of the geometric identities. This latter
property is related to the weak continuity properties of minors of Jacobian
matrices, here exploited in a time-dependent setting.

1 Introduction

The equations describing the evolution of a continuous medium with nonlinear elas-
tic response in referential description are
0%y

(1.1) S

= V- 5(Vy),

where y : Q x Rt — R? stands for the displacement and S for the Piola-Kirchoff
stress tensor. These equations may be expressed in the form of a system of conser-

vation laws

9 Fio = 22u;
(1.2) ot Oz ia=1,2,3.
9 =2 s (P
9t~ §goie
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where v; are the components of the velocity v = 0y, Fijo, = 0,%; are the compo-
nents of the deformation gradient F' = Vy, and we use summation convention over
repeated indices.

For a hyperelastic material S is expressed as the gradient of a stored energy
function o : Mat3*3 — [0, 00),

Oo

(1.3) S(F) = %

(F).

The principle of material frame indifference [23, 1] imposes on ¢ the requirement

that ¢ remain invariant under rigid rotations, or,
(1.4) o(OF) = o(F) for all orthogonal matrices O € O(3).

In continuum physics, weak solutions of a system of conservation laws are required

to satisfy entropy inequalities of the form
(1'5) O+ 0aqa <0

where 7, ¢ are related by a first order partial differential equation. Such inequalities
are a manifestation of irreversibility and as such originate from the second law of

thermodynamics. For the system of elastodynamics an important entropy pair is
1
(16) n= sl +o(F),  ga=—Sia(F)ui,

in which case inequality (1.5) expresses the dissipation of mechanical energy on
shocks.

Convexity of the stored energy function is incompatible with certain physical
requirements and is thus ruled out from the list of natural assumptions. It con-
flicts with the requirement that the energy increase without bound as det F — 0.
In addition, convexity of the energy together with the axiom of frame indifference
impose restrictions on the induced Cauchy stresses which rule out certain natu-
rally occurring states of stress (e.g. Coleman and Noll [5, Sec 8], Ciarlet [4, Sec
4.8]). While there has been substantial progress in handling lack of convexity in
elastostatics starting with the work of Ball [2], the analysis is far less developed
for elastodynamics: the reader is referred to Dafermos and Hrusa [6] for local ex-
istence of smooth solutions, to Klainerman and Sideris [15, 21] for long-time and
global existence of strong solutions for small initial data, and to Dafermos [7, 8] for

uniqueness of smooth solutions in the class of BV solutions with moderate shocks.



Further complications are presented to the theory of elastodynamics by the exis-
tence of (radially symmetric) cavitating solutions, which can actually decrease the
mechanical energy [16, 17]. The existence of global weak solutions is a completely
open problem, except in one-space dimension: in this case existence was proved
using compensated compactness for L data by DiPerna [12], proving a conjecture
of Tartar [22], and later in an L setting in [20].

The objective of this article is to provide a variational approximation scheme for
the equations of polyconvex elastodynamics, thus establishing a link between the
well developed theory of elastostatics and the equations of elastodynamics. For the
map F +— o(F) we employ the assumption of polyconvexity, familiar from the work
of Morrey and Ball on vectorial minimization problems. This assumption postulates

that o factorizes as
(1.7) o(F) = G(F,cof F,det F),

with G a strictly convex function of F', cof F' and det F' (cof F' is the matrix of the
cofactors of F'); this encompasses physically realistic models (e.g. [4] Sec 4.9, 4.10).
Our analysis is based on the observation of T. Qin [18] that smooth solutions of

(1.2) satisfy the additional conservation laws

o o
—det F = —— ((cof F)iqu;)
(1.8) ot ox

ad 0
a(COfF)kyy = @(GzykeaﬂvaﬂUz)

These identities are derivable directly from the first equation in (1.2); one may
then append (1.8) to (1.2) and view the resulting system in terms of new variables
(v,F,Z,w) with Z = cof FF and w = det F. The resulting system admits, for
a (strictly) polyconvex stored energy o, a (strictly) convex entropy and is thus
symmetrizable. We learned about (1.8) from C. Dafermos [8], who attributes them
to T. Qin [18] and to unpublished work of P. Lefloch; we thank one of the referees
for pointing out the latter work. In [8] the aforementioned enlarged system is used
to obtain local existence of classical solutions, and uniqueness of smooth solutions
within the class of entropy weak solutions. Furthermore, it is pointed out in [8] that
the relations (1.8) may be visualized as the counterparts in a Lagrangian description
of trivial conservation laws in the Eulerian description and that, as such, they are

geometric constraints that remain valid for weak solutions. Here we recover this



property directly (see lemma 5 below), and also show that the relations (1.8) are
stable under weak convergence (see remark after lemma 5).

It is worth remarking that there are different possible ways to enlarge the sys-
tem (1.2), in particular as regards the form of the momentum equation in the new
variables. An interesting possibility is suggested by the relationship - pursued in
section 2 - between the form of the geometric constraints (1.8) and the notion of
null-Lagrangians (Ball, Currie and Olver [3]). It suggests the embedding of the

equations of elastodynamics into the enlarged system

oG o4
atvi = 804 (@(Fa Za w)aEa (F)> = 8a(g’ia(Fa ZawaF))
O Fiq = 0qv;

(1.9)
01 Zky = Oal€ijreapy Fypvi)
Btw = aa((COfF)w’Ui).

for the augmented set of variables (v, F, Z,w) € R?2, where ®(F) = (F, cof F,det F)
is the vector of null-Lagrangians; the explicit form of g;o is given in (2.15). This
enlarged system is obtained in section 2 by appropriate modification of the fluxes
and has the important property that it is endowed with a strictly convex entropy for
any initial data. Moreover, if the data satisfy that (F, Z,w) = (F,cof F,det F) at
time ¢ = 0, then (F, Z,w) = (F, cof F,det F') thereafter (a property that is preserved
by the proposed approximation scheme). Since the first equation in (1.2) implies
that if F' is a gradient initially then it remains a gradient thereafter, the equations
of elastodynamics may be regarded as a special constrained evolution of (1.9).

We work with periodic solutions on the torus T® and develop a variational
approximation method inspired by the method of time discretization (Kinderlehrer
and Pedregal [13], Demoulini [9, 10]). The scheme is implicit-explicit (see (3.1)) and
makes efficient use of the null-Lagrangians and the interpretation of cof F' and det F'
as constraints propagated by the evolution. It leads to the following constrained

variational problem: given v°(x), F0(z), Z%(z), v’ (z),

(1.10) min/TS (%(v _ 02 4 G(F, Z,w)) iz



over the affine subspace

C:= {(U,F, Z,w) :I? — R* subject to the constraints
1
7 (
1
h

1
E(w —w®) dz = 9,((cof F);qv;) }

Fio — sz?)[) = aavia
(1.11)
(Ziy — Z3) = Oal€ijreapy Fiavi) s

The minimization problem is solvable in LP spaces and for each h > 0 provides a

map Sy, the solution operator of (3.5)-(3.8),
(v, F, Z,w) = Sp(v°, F°, cof F°, det F°)

which is well defined and decreases the energy (see lemmas 1 and 2).

The iterates of the map S, define approximate solutions (V*, F"*, Z", w") which
have a weak limit point (v, F, Z, w). The approximate solutions generate a measure-
valued solution of the equations of polyconvex elastodynamics. More precisely, the
weak limit (v, F, Z,w) satisfies a measure-valued version of the momentum equa-
tion, but Z = cof F' and w = det F' are weakly continuous and they satisfy the
classical weak form of equations (1.8) (see the main theorem). The preservation of
geometric constraints under weak convergence is an important feature of our anal-
ysis and represents a dynamic version of the known weak continuity properties of
determinants.

The fact that we obtain only a measure-valued solution is a shortcoming owing
to poor understanding of compactness properties for multi-dimensional conserva-
tion laws. Nevertheless, it is worth noticing that the approximating scheme (3.1)
has regular weak solutions that decrease the energy. Also in cases with better com-
pactness properties, such as the equations of nonlinear viscoelasticity, the method
of time-discretization produces classical weak solutions [10].

Another shortcoming is that we do not require det F* > 0 or that the map
y be injective, and strictly speaking y(¢,z) may not be interpreted as an elastic
motion. Both of these deficiencies can be overcome in the one-dimensional case:
using the method of compensated compactness [22], the one dimensional analogue
of the present approximation scheme yields regular weak solutions that dissipate all

convex entropies [11].



2 Null-Lagrangians and the symmetrization of three-
dimensional elastodynamics

Consider the system of three-dimensional elastodynamics (1.1) in the strictly poly-
convex case, i.e. when S is the gradient of a stored energy function ¢ : Mat3*3 —

[0, 00) which factorizes as a strictly convex function of the minors of F':
(2.1) o(F)=God(F),

with G : Mat®*3 x Mat3*3 x R — R strictly convex and

(2.2) O(F) = (F,cof F,det F).

Here the cofactor matrix cof F' and the determinant det F' are given by

1
(COfF)m = §€ijk€a,87Fj,8Fk'ya
(2.3) . .
det F = Eeijk€aB7EaFjﬂFk'y = g(COfF)iaFia-

First, we review the results on symmetrizing (1.2) with polyconvex energy [18, 8],
emphasizing the connection with null-Lagrangians. Restrict, for the present, to the
case of smooth maps y : © x R — R3. Recall that all the components of ®4(F)
n (2.2), for A=1,...,19, are null Lagrangians (see [3]), i.e. :

o (004

2.4 — | — =0.
(2.4 oo (5p(v0)) =0
The kinematic relations

Oy; 0y;
(2.5) Fi, = Wy; and wv; = %
imply that

OF; 0v;
2. = .
(2.6) ot oz
Therefore if we set
(2.7) E(t,x) = ®(F(t,x))

then (2.4) implies

o=4 994 v, o (0d4
(28) o~ 0Fn D oga = e (8Fm (F )”"')‘



A justification of this calculation for less regular y(¢, x) is given below in lemma 5.

Thus (1.1) can be embedded into the system of conservation laws:

o 9 (0G ,_ 004
(2.9) ?ﬁ”‘axa(aEA“”th(FO
g4 o [0d4
(2.10) at"axa<amauw”>‘

Here E = (F, Z,w) takes values in Mat3*3 x Mat3*3 x R and is treated as a new
dependent variable. (Since the components of F' constitute the first nine components
of =, equation (2.6) is included as the first part of (2.10).) Smooth evolutions of
the system (2.9)-(2.10) preserve the constraints 24 = ®4(F), and thus it can be
regarded as an enlargement of the original system (at least for such solutions). An
advantage of this formulation is that the enlarged system admits a strictly convex

entropy:
1
(2.11) n(v, F, Z,w) = S [vf* + G(F, Z, w).

Using the formulas on derivatives of determinants and cofactor matrices,

odet F
(2.12) ap — (cof Flia
(10}
O(cof F);
(2.13) -5%5E7529-::6Ukea575}7,
J

the enlarged system may be written in the explicit form

oG 994
0uvi = 00 s (FL20) S5 (F)) = 00 10l P, 2,03 )
0t Fiq = Oqv;

(2.14)
O1Zky = Oa€ijreasy Fjpui)
Oyw = 0, ((cofF)iaUz‘)

where g;,, are given by the explicit form

0G oG oG
L0y 0 0y
(2.15) gia(F, Z,w; F ) = OF.. + %eijkeaijﬁ + (COfF )m%

= DG(F,Z,w) o D®(FY).

We note that if (F, Z,w) = ®(F) initially then it remains so thereafter, and recall
the well known property of (1.2): if F' is a gradient initially then it remains a
gradient thereafter. In this sense the equations of elasticity (1.1) may be regarded

as a special evolution of (2.14).



3 The variational approximation scheme

In this section we introduce a variational approximation scheme for the equations of
elastodynamics. The general approach is inspired by the method of time discretiza-
tion [13, 9], but with some modifications: firstly, time-discretization is applied to
the enlarged system (2.9) - (2.10) and secondly an implicit-explicit scheme is now
employed (as in [10]). The scheme makes efficient use of the null-Lagrangians and
of the interpretation of cof F' and det F' as constraints propagated by the evolution.

Successive iterates are constructed by discretizing (2.9)-(2.10) as follows: given

the (J — 1)* iterates (v/~!,2771) the J¥ iterates are constructed by solving

v/ —v!™t 9 [(0G _,; 094,
= (e E) T
31 h Ox* \ 0= OF;q
( . ) (:*J _:J—I)A 9 8@14
——— = (F7=Yf ).
h oz \ OF; ¢

We also define a discretization of the energy by

(3.2) 5‘]:/9(%|UJ|2+G(EJ))d:I:.

Assumptions

To avoid inessential difficulties we will work with periodic boundary conditions,
i.e. the spatial domain € is taken to be the three dimensional torus T'. The indices
i,7,... generally run over 1,...3 while A, B,... runover 1,...,19. Also, we use the
notation LP = LP(T®) and L>®(LP) = L>°((0,T); LP (Tr?)). Write Q7 = [0, 7] x T3
and Qo = [0,00) x T and 52002 (0, 00) x 3. Finally, we work under the following

convexity and growth assumptions on G:

(H1) G € C?(Mat3*3 x Mat®*® x R; [0, 00)) is a strictly convex function i.e. 3y > 0
such that D?G >~ > 0.

(H2) G(F,Z,w) > c1|FP 4 c2|Z|?1+ c3|w|" — ¢4 where p € (4,00) and ¢, € [2,00)

are fixed.
(H3) G(F,Z,w) < c(|F|P +|Z|? + |w|" + 1) with p,q,r as in (H2).

(H4) |0pG|7-1 +]|02G|7~2 +]0,G|7~3 < C(|F|P+|Z|%+|w|"+1) with the exponents
p,q,r as in (H2).



The last condition ensures certain integrability properties for the functions g;q
defined in (3.9) (see lemmas 1 and 2) and guarantees their Young measure repre-
sentation. An example of a function satisfying (H1)-(H4) is G(F, Z,w) = a|F|® +
|F|? 4+ B|Z)? + | Z|* + w? for a, B non-negative.

The main theorem has two parts, concerning, respectively, the solvability and
the convergence of the discretization scheme (3.1). In the following it is assumed
that we have Cauchy data (y(0),9;y(0)) € WP x L2 for (1.1) with the property
that if F(0) = Vy(0) then (F(0),cof F(0),det F(0)) € LP x L% x L"; this triple,
together with v® = 9,y(0), shall be taken as the zeroth iterate (v°, FO, Z% w®) for
the process.

Main theorem The discretization (3.1) can be solved, for all h > 0, by a constrained
minimization method, and has the property that the energy (3.2) is decreasing in J.
As h — 0 the approximations generate a measure-valued solution to (2.9)-(2.10) for
which the momentum equation (2.9) is satisfied in a measure-valued sense, but the
constraint equation (2.10) is satisfied in the classical weak sense. To be precise,

there exists
(v,2) = (v, F, Zw) € L®(L?) @ L*(LP) @ L*(LY) & L*(L")

and a Young measure (Vy4)eteQo Such that fori=1,...3

(3.3) - /gb(O,x)vi(O,:c) dw+/vi3tq5 dxdt = /(V,gm)aaqb dxdt
and for A=1,...19
A
(3.4) - / $(0,2)E4(0, z)dz + / 240, pdzdt = / (g%(F)vi>6a¢da:dt

for all smooth ¢, compactly supported in time. Furthermore, there exists a map vy,
with space and time derivatives F,v respectively, such that (1.1) is satisfied in the
measure-valued sense.

The theorem is proved in several steps. First, we show that the scheme is well
defined and that it decreases the total energy. The discretization (3.1) is written in

an explicit form: the J iterates are given by

W",27) = (", F7, 27, w’) = () (v, F°, 2° u")

T



(0, F%, Z% w%) is as above and S is the solution operator (v°, F% Z% w®)

(v, F, Z,w) defined by the equations

1
(3.5) = (vi = v}) = Oagia (F, Z,w; F°)
(3.6) L (Fia — FL) = vy
1 0 0
(3.7) 7 (Zky = Ziy) = Oalijieapy Fjpvi)
1
(3.8) E(w —w?) = 9, ((cof F);0;)

The right hand side of (3.5) is

0G 0G 0G
. ;70 _ 0 0y .
(39) gm(F, Z,w; F ) = oF., + —BZ]W eijkea,@"/Fjﬂ + (COfF )za%

= DG(F,Z,w) o D®(F).

The solvability and properties of the map S;, are discussed in lemmas 1 and 2.
Throughout this discussion we use the notation (v, F, Z,w) for the iterates of the

map.

Lemma 1 Given (v°, F°, Z% w®) € L? x LP x L9 x L" there exists (v, F,Z, w) €

L? x LP x L1 x L™ which minimizes the functional
1
Q. F.Z.w) = [ 5lv= o + GF Zw)

on the weakly closed affine subspace C defined by the weak form of equations (3.6),
(3.7), (3.8), i.e. the set C C L? x LP x LY x L" of (v, F,Z,w) such that for all
¢ € C®(T3):

/q&%(Fm —FY) dr = —/viam dx
(310) /¢%(Zk7 — Zl(c)'y> dxr = _/eijkﬁaﬂ'yF]O,gUi 8a¢ dx
/d)%(w —w®) do = — /(cofFO)mvi 0a ¢ dx .

The minimizer satisfies the Euler-Lagrange equation (3.5) in the sense of distribu-

tions, i.e.

(3.11) /qﬁ%(vi — vy dz = — /gm(F, Z,w; F*)0,¢ dx

10



for all smooth ¢. Furthermore the constraints

00Zpi =0
(3.12)
a,BFz'a - 8041?1',3 =0

are preserved by the map Sy,. In fact if F is a gradient then so is F, and thus we

can assert the existence of a WP function y : T3 — R3 such that Oay; = Fjq.

Proof of lemma 1. The subset C of the reflexive Banach space L? x LP x L x L"
is weakly closed and the functional @Q is co-ercive, weakly lower semicontinuous and
not identically equal to +o00, so it admits a minimizer. We now derive the Euler-
Lagrange equation, giving sufficient detail to see where the growth conditions (H4)
are used. For i = 1,2,3 let ¢; : TI* — R3 be a smooth function and consider the

variation generated by this,
€(6vi, 6 Fja, 0 Zpy, 6w) = €(i, hOais h(€ijheasrFyp0adi), h(cof Fipdati)).

Such variations automatically satisfy (3.10). The fact that (v, F, Z, w) is minimizing

implies that
Q(e) = Q(vi + €04, Fia + €hdati, Ziy + €hOa(€ijkeapy Fysdi), w + €hdg(cof Fipé;))
> Q(v, F, Z,w) = Q(0).

Now consider lim,_,o(Q(e) — Q(0))/¢; we claim that this limit exists and is equal to
(3.13) P = /¢i(vi —0}) dx + h/aa¢i9ia(Fa Z,w; F°) da.

To see this consider the difference between P and (Q(e) — Q(0))/e; applying the

mean value theorem we are led to consider the expression
(314) /aa¢i (gza(F + 6*5F7 Z + 6*5Za w + 6*(5?1}, FO) - gia(Fa Z,w; FO))a

for €, = e«(x) € [0,€¢]. To apply the dominated convergence theorem consider the
integrability properties of g;,. For p’ = z% the dual exponent of p, hypothesis (H4)
implies that

P

p 3
/ oG |»-1 » | OG |»-1 20 |OG |p-1
P < FO|p-1 FOp=1| =
|gza| - C(‘ 8Fia + | ! 6Zk7 + | |P ow )
_b_ _b_ _b_
(3.15) < c’ |F0‘p—|- 0G |1 0G |r—2 % p—3
OFra 7, ow

< C"(|F°P + |FIP +|Z|7 + |w|" + 1)

11



and thus |gia(F 4 €,0F, Z + €,0Z, w + €,6w; FO)|P" is dominated by a fixed integrable
function, independent of ¢ for € less than some ¢g.

Thus to conclude, consider a sequence ¢; — 0; the integrand of equation (3.14)
has limit zero almost everywhere so the dominated convergence theorem ensures
that the integral has limit zero so that the quantity in (3.13) must therefore be zero
by the minimizing property. This implies the weak form of (3.5). O

Lemma 2 Write © = (v, F, Z,w) and define n(v,F, Z,w) = %|v|2 + G(F, Z,w),
then if G is strictly convex as in hypothesis (H1) there exists ¢ > 0 such that

/{n(@) +¢|® — ®°|2} dr < /{n(eo)} dz.

Corollary 3 The iterates ©7 = (v/, F7, Z7 w’) satisfy the energy dissipation in-
equality, for J > 1,

1

(3.16) -

(n(®J> _ n(@]—l)) —a, (gia(FJ,ZJ7wJ;FJ—1)U;I> <0

in the sense of distributions. There exists a number E, determined by the initial

data, such that

o0
(3.17) sgp(|v‘]|%(2im + /G(EJ) dz) + Y (jv’ - UH@(Z + |87 - EH@?&) <E.
J=0

Proof of lemma 2. Use the formula

n(©) — n(®°) — Dp(e)(© — 68°) =
1 1
_/ / (1= $)D%(0 — 7(1 — $)(© — 9))(0 — ©°,0 — B dsdr.
0 0

Notice that, at least formally for the moment,

1 1

=Dn(©)(6 = 6°) = - (1u(v = ") +np(F = F*) +12(Z = 2°) 4w — "))
o oG o, oG 0.y, 0G oy .
= v;0abia + OF, O i + 8Zk78a (eaﬂ’YeZJij,@vl) + w aa((COfF )zavz)

(where all the derivatives of G are evaluated at F, Z, w)

oG G oG

an a7 .J FO a fFO i ali
oF. + 8Zk76ag762]k ip Tt 9w (CO ) )6 v
= viaagia + Jia Oa Vi

= aa(gia(Fa Z,w; FO)UZ')

= Uiaagia + (

12



so that the integral of the first order term vanishes under periodic boundary condi-
tions, and strict convexity of G implies the stated result.

To validate the above identities for solutions with the regularity of lemma 1, note
that (3.5) and (3.6) imply that 9,g:i € L? and d,v; € LP. By Poincare’s inequality
v; € WHP and from (3.15) we have g;, € L?". We then employ the following product
rule which follows from a density argument: let p > 1 and ¢,r > p’ the dual exponent
of p. (Here g, need not necessarily be as in the hypothesis (H2).) If f € WP is a

scalar valued function and h € LY is a vector valued function with divh € L, then
div(fh) = fdivh+ Vf-h

Use of the product rule, (2.4) and the regularity of the iterates: v; € W2, g;, € LV
and 0, gia € L? validates the third and fifth equalities and completes the proof. O

4 Proof of the main theorem.

We now study the behavior of the discretization (3.1) as the time step h — 0.
We use the notation Qr = [0,7] x T and let QOO,E)OO be as in section 3. Let
v/ and 27 = (F‘],Z‘],w‘]), defined on the torus T3, be the iterates constructed
from the minimization process, J = 0,1,2,.... The iterates F"/ are gradients, so we
construct functions y” : T — R3 such that 8ay;-] = FZ{! By selecting the integration
constants appropriately (and choosing y~! by extrapolation), the iterates y” satisfy

the identities
L J—1 J
(1) 7 =y’ =

Construct the time-continuous, piecewise linear interpolates V? =" given by

(suppressing the explicit dependence on z of the iterates)

Vh(t) = ixj(t) (' + w(v,} 7 h)
J=1

(4.2) i) = (F", Z", W) (1)

- 1 t=h(J=1) _; _;_
:ZXJ(t)<:‘J 1+ (h )(:J_:J 1)),
J=1

13



and the piecewise constant interpolates v”, ¢* by

v(E) =X ()’
(4.3) J=1

o0

ht) = (f* 2" wh) () = Y X ()E7,

J=1

where 7 is the characteristic function of the interval I; := [(J — 1)k, Jh). Finally,

construct the piecewise linear approximation of the motion

_ t—h(J—1 _
(4.4 vi) = 3 @+ D )
J=1
and note the identities
(4.5) oYl =of,  OuYP=Fl.

The approximates (V?, F* Z" Wh) and (v", f*, 2", w") are uniformly bounded
in L®(L?) @ L®(LP) ® L®(L9) @& L*>®(L"). Therefore, there exists a subsequence in
h and limit points ¥ : Qe — R3 and (v, E) : Qoo — R?? with
(16) y € Whe(L?) N LO(WHP),

4.6
(1,Z) = (v, F, Z,w) € L(I2) & L(I) & L(19) & L°(I)

for all T > 0, and such that along the said subsequence
) Yh oy strongly in L7 .(Tr?) and a.e.
4.7

(Vh7 vhv Eha fh) — (Uv v, Ea E)

weakx in L2 (R; [L?)2 & [LP @ L @ L")?(Tr?)), and

loc
(4'8) Uy = atyia Fio = 0ay;-

Weak limits of the geometric constraints

As mentioned previously a crucial point is the preservation of the geometric
constraints (2.10) under weak convergence. It is well known that cof Vy and det Vy
satisfy weak continuity properties in functional spaces ([2], [4]). The next lemma
is a modest extension of these weak continuity properties to the case of functions

having regularity typical for solutions of wave equations:
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Lemma 4 (Weak continuity of minors in 3+1 dimensions) Let y" be a se-
quence bounded in the space W1°([0,00); L2(T3)) N L*®([0, 00), WLP(T?)), such
that (y", cof ™, det F™), converges in the weakx topology on W1 (L2)NL>® (W 1P) x
L®(L9) x L*®(L") to (y,Z,w). If p > 2,q > 1% and q > % then Z = cof F and
w = detF.

Proof of lemma 4. The proposed weakx convergence hinges on the fact that the
present assumptions on y™ allow us to write cofactor and determinant as divergences
of bilinear quantities in which one of the factors converges strongly. To see this, recall
that since y™ converges weakly in Wli’f(Qoo) it converges strongly in L] .(Q«) for

r < 4 by Rellich’s theorem. Therefore:

1 1
(4.9) (cof F™)iq = ieijkeaﬂvaﬂng = 56,3 (eijkfaﬂvy?FgLy)

1
— 536 (fijkeaﬁvijkv) = (cof F)ia

where the second and last equalities follow from [2, Lemma 6.1] since p > 2, while
the convergence, in the sense of distributions follows since F* — F weakx in

L>*(LP) and p > 2 > %, the dual exponent to 4. Similarly,

1 1
det F" = —(cof F");o F}}, = =04 (y?(cofF")m)
(4.10) S 3
— §8a (yi(cofF)m) = det F

where the second and last equalities follow from [2, Lemma 6.1] since p > 2 and
q> p%l while the convergence, in the sense of distributions, follows since cof F* —
cof F' weakx in L*°(L?) and ¢ > %, the dual exponent to 4. These distributional
limits are the same as the weakx limits. O

Notice that if for example p > 4,q > 2 then ¢ > 1% and q > %, so that the
result applies, and in particular it applies to the present situation with p, g, as in
(H2).

Resuming now the proof of our main theorem, it is necessary to show that the
evolution of cof F* and det F” preserves the relations (2.10). First, we give a direct

proof that the constraint equations (2.10) hold for maps y with fairly weak regularity:

Lemma 5 (Validation of weak formulation of geometric constraints (1.8))

Let y be a measurable function [0,00) x T* — R* with regularity as in (4.6) with

15



p > 4. Introduce (v, F,cof F,detF) defined as in (2.3), (2.5). Then the equations
(1.8) hold in the sense of distributions.

Proof of lemma 5. Let y € W1([0,00); L?) N L*®([0,00); WP). Extend y to a
function defined for all ¢ by putting y(¢,z) = y(0,z) for {¢ < 0}. Convolution with
a function pe(H)IT2_; pe(z;), with p. = e *p(Z) where p € C§°(R) is positive and of
integral one, gives a sequence of y¢ € C*°(Q ) such that for any s < oo and for all
T>0

lyi = ytllos((—1,73522) + 1Y = Ylls (-1, 7;W10) = O-

Set v =y, F = Vy, v = y; and F¢ = Vy*. Then since the cofactor matrix is
bilinear in the components of F, we have that cof F¢ converges to cof F' in L*(LP/2).

The approximates y¢, v¢, F'¢ satisfy the identities

1
(4.11) Op(cof F) iy = S€ijheapy0:95(Fiay5) = Oa(€ijreapy Fiav)
1
(4.12) Oi(det F€) = 8t8a(§(cofF€)myf) = On((cof F€)invy)

and the convergence is strong enough to take the limit and obtain the same identities

for y, v, F since p > 4. O
As a consequence, y(t, ) constructed in (4.6) will satisfy the kinematic constraint
equations (1.8).

Remark. The equations (1.8) are stable in the regularity framework (4.6) under the
weak convergence (4.7). Consider the equation for the evolution of cof F' expressed

along the approximate solution Y”. Due to lemma 5 we have the identity

1
(4.13) Op(cof ")y = S €iji€apy0108(Figyj) = Ou(€ijheapy Fipvy)

Using (4.9) and (4.7) we pass the first two terms to the weak limit; the third term
converges to the right weak limit because of lemma 5 and (4.6), thus producing the
equation (4.11). A similar observation holds for the equation for the evolution of

det F'. Here the approximates satisfy
1
(4.14) Oy(det Fy = ataa(g(coth)inh) = Oa((cof F™);qul)

which are again weakly stable under the convergence (4.7) (due to (4.9) and (4.10)).

The following lemma, which is central to the argument, concerns the behavior

of the weak limits Z and w.
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Lemma 6 (Recovery of minors and determinants in the limit)
Let the piecewise linear approximates (Fh(t,:c),Zh(t,:c),Wh(t,:c)) be defined as in
(4.2), then

(4.15) (2" — cof(FM) — 0
(4.16) O (Wh — det(F") — 0

in the sense of distributions on Qs as h — 0.

Proof. From (3.7) and (4.13) we have

Zk’y ZX J€ijk€apyF ]ﬂ IUJ)

8t(COth)k7 = 8a (ZX (t)eijkeang]hﬁv;]).
J

Subtracting these two formulae gives:

t—h(J—1 B
4(Zft — (cof F") Z X Gzﬂcfaﬂv#(lf T FT)p0]).

Notice that |(t — h(J —1))x”7(¢)/h| < 1. Now let ¢ € C§°(Qoo) and define

I, = / / B(t,x)0;(Z" — cof F) dxdt
o Jao

then using corollary 3 we can estimate

|Iy| < C[EJ: (/(th) sup|V¢Idt)2]; [Z}:h(/w [(F7 — F771) 50 | dﬂ”)Q]

Hh @

NI

< BN 20ll13, )
In a similar way we can compute
(4.17) (W — det F") = =0, (>_ x” (t)(cof F" — cof F~1)jq07).
J
Now for t € [h(J —1),hJ)
(cof F" — cof F771);,(2)

_t=h(J-1)
- 2h

= Seijucos [P (L, () + fly(t — m)6F), (1)

€ijk€apy [(F FJ I)Fk'y + FJ I(F];I’Y o FIQIV_I)]'
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where we used the equations (4.2), (4.3), the notation

op() = 3 =Dy P
J

and the formula

FMt) =) X/ (OF/ 7 4+ 6F" = f(t — h) + 6F™(1).
J

Now, as above, let ¢ € C§°(Qw) and define

Ty _/ /gbtx O (W — det F1) dadt.

To explain how these terms are estimated, drop the superscripts h, and notice that
|0F(t)] < |F(t)| + |f(t — h)|. Also notice that corollary 3 implies that 5F/h% is
bounded in L2d.1: 4 in terms of the initial data. We estimate the terms in Jy first for

p = 6
| / / (6F)FoV o dodt| = | / / (6F)2(SF) /2 FoV o dad
< [ 1R 1 6T Pl g oVl 5,
< 1@, 1N (IF@lg, + 176~ Wlgg )

X |llez V2o(t, @) rg dt

<CE3/2h1/4||(5F)/h1/2||1/2 WIVeblas ey

For p > 4, 0F € Lloc(QOO) N L*°(LP) so, since 6F — 0 in L?iacdt’ interpolation implies
that 6F — 0 in L} .(Qoo) and then Holder’s inequality gives (4.16).

The limiting weak equation

Let (V" 2") and (v",£") be the interpolates as given in (4.2) and (4.3). The
discrete equations (3.10)-(3.11) take the weak form

418 /d) Bt ) BtZ,W BtWh) dxdt
_/8a¢ (Uzh(t)a ea,é"yeijkf;'lﬁ(t - h)vzha (COffh(t - ))zav ( )) dzdt
(4.19) /¢atv;.h dzdt = — /(Baqb) gia ("5 f"(t = h)) dwdt

with EF = (F* Z" W") and ¢" = (f", 2", w") (the explicit dependence on (¢,z) is

suppressed except when evaluation is at (¢t — h) rather than at ¢).
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The sequences (V' Z");50, (v",£")50 are bounded in L®(L? x LP x L4 x L")

and have the properties

(120) IVF =My, =0 IF =My —0 forp<p
| 12" —2"lg =0 forg<q |W'-w'lg -0 forr<r

This is a consequence of corollary 3, which implies for instance that

1
Fh — R 200y < h2 / F/ — F/124z)>
|| l2(Qu0) (; o [2dz )

and the stated result follows by interpolation, due to the uniform bound of the
iterates F/ in L>(LP). The rest of the statements are proved similarly.

There exists a subsequence of (V?, =) and (v", £") converging to the same weak
limit (v, Z) = (v, F, Z,w). This generates a Young measure v € P(R'*3 x B), where
B is the target space

B =R x Mat®*® x Mat®*3 x R.

To be precise, v is a probability measure on the product space of R'*3 with target
space B, such that its projection on the R'*? is the Lebesgue measure £'72 and
its disintegration measure v, € P(B), the space of probability measures on B. It
is customary to view v as a (weakly measurable) map v : (t,x) — 14, where for
a.e. (t,) € Qo , Utz € P(B); this map is usually an element in a space of type
LP(R'F3, C,), with C, a subset of continuous functions of some polynomial growth.

In the present context, the Young measure will represent the weak limits of all

functions 1 with polynomial growth at infinity of the type
]
(4.21) W, F, Z,w) < c<|v|2 +|FP + 2|7 + |w|T) for any 6 < 1,

as |v], |F|, |Z|, lw| — co. Next, we show that both sequences (V" =) and (v",£")
admit the same Young measure representation. This is a typical property of time
discretizations (see [13, 10]); in the present case technical difficulties arise from the
diverse growth rates at infinity. Let ¥ be any function satisfying the global Lipschitz
condition

W}(UvF’Zaw) —lﬁ(@,F,ZA,ﬁ)H <

-1 -1 o1

1 P A q A
c(w§|v—?§|+w P F—F|+w1d \Z—Z|+wT|w—ﬁJ|)
for some p < p, ¢ < q, ¥ < r, where

w= o>+ 62+ |FIP +|F|P + |Z|9+ | Z|9 + |w|" + @] +1
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accounts for the growth of the Lipshitz constant at infinity. This class contains all
C' functions that together with their derivatives behave like polynomials of growth

as in (4.22). If ¢ is a test function and % as above then (4.21) implies that
(4.22) Kyl = ‘ / [Y(VIER) —p(uh, eM)] ¢ d:z:dt‘ -0
Qr
and thus the LP-weak limits coincide and the two sequences generate the same Young
measure. (To see that, note that Ky is majorized by terms of the type

p—1 5
‘/Q W7 |FP = P19 dxdt‘ < ||¢’||L°;mdt(/Q " dxdt)” IE" — f4),5
T T

dxdt

which converge to zero as h — 0 by (4.21) and the uniform bounds.) A similar
property holds for the sequences (v",£&"),~o and (vh(- — h), & (- — h))h>0: they
satisfy the same estimate as in (4.21) thus generating the same weak limits for
functions 1/ as above.

We now take the limit » — 0% in (4.20) to obtain a measure-valued weak form
of the elasticity equations (1.1). The growth conditions on G (see hypothesis (H4)
and (3.15)) ensure L' precompactness of the quantities g;o(&"(t), f2(t — h)) and

Gia(EM(1), F(1)). Notice that, by (3.9) and (3.15),

|gia(F7 Z,U},F) _gia(F; Z,U),F)‘
<‘5‘_G oG
— 107 ow

T p=2 F\P—2 n

<c|(FP+121 + [wl +1)7 + (IF| +|FI)" | [P = |

|17 — FI+ |5 | (171 + 1E1) 1 F - 1

From the property ||f"(-) — f"(- = h)||s(qs) = o(h) for p < p, we conclude that

/Q (gia (€2 (), F(t = 1)) — gia€"(8), FH(6))) dudt — 0

and thus they admit the same Young measure representation. We then obtain a

weak measure-valued form of (2.9) by taking the limit in (4.20):
(4.23) —/v8t¢ dmdt+/v($,0)q§(x,0) dx = —/8aq§(u,gia) dzxdt.

Also consider the Young measure p generated by (F"),.q alone: this is a
marginal of v. The weak continuity of determinant and cofactor implies these func-

tions commute with the Young measure: by the notation introduced in (2.2),

(I>(</1t,m,)\F>) = <Ht,ac7q)()\F)> = <Vt,ac7 ()‘Fv)‘Zv)‘w» = (F7 Zaw)(tax) a.e.
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Here the notation (Ap, Az, Ay) is being used for the variables with respect to which
the integrals over the Young measure are carried out. The limit function is E =
(F,Z,w) = ®(F) = (F,cof F,det F).

In summary, we constructed a function y : (0,00) x T3 — R3
(4.24) y € WH([0, T); L?) N L=([0, T; W'P),

such that iy = v, Vyy = F, cof (Vyy) = Z, det (V,y) = w and they satisfy (2.6),
the measure-valued form (4.24) and the weak form of the additional conservation

laws (1.8) by lemmas 4,5 and 6 as asserted in the main theorem.
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