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Abstract

We devise Lyapunov functionals and prove uniform L! stability for one-dimensional semilinear
hyperbolic systems with quadratic nonlinear source terms. These systems encompass a class of
discrete velocity models for the Boltzmann equation. The Lyapunov functional is equivalent to
the L' distance between two weak solutions and non-increasing in time. They result from com-
putations of two point interactions in the phase space. For certain models with only transversal
collisional terms there exist generalizations for three and multi-point interactions.

1 Introduction

In this article we devise Lyapunov functionals and prove uniform L! stability for the Cauchy

problem for semilinear hyperbolic systems with quadratic source terms,

N

Oufi+vibafi =Y BI*fify
i (1.1)

fi(z,0) = fio(x)
This system encompasses certain one-space dimensional discrete velocity models in kinetic theory
of gases (see section 2). In this context, f;(z,t) stands for the number of particles moving with

velocity v;, i =1,..., N and (z,t) € R x Ry. The collision operator is of the general form

N
Qi(f)=D_ BI*fifx
k=1

and the system is assumed strictly hyperbolic: v; # v; for ¢ # j. Precise assumptions on the
interaction coefficients sz * will be placed in the sequel. We are interested in positive weak solutions
of (1.1) of class L.

The study of discrete velocity approximations of the Boltzmann collision operator goes back
to works of Carleman, Broadwell [10], Gatignol [15]. In the one-space dimensional context, there

exist a number of global existence results for small, [23], or large L'-data, [11, 25, 26], as well as
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studies concerning the asymptotic behavior, [1, 2], and uniform bounds for solutions emanating
from L' N L* data, [3], [2], and results for initial-boundary value problems [8]. For global existence
results in several space variables we refer to [4, 21, 18] and the survey article [19].

Bony [3, 6] introduced the following functional in the theory of discrete velocity models:
Q1) =3 [ [ (v = va)seny =)l im(e. Oll o Dy, (12)

where sgn(x) equals —1 for z < 0, 0 for z = 0 and +1 for > 0, to the study of one-dimensional
discrete velocity Boltzmann equations. Study of the evolution of @ leads to uniform integrability of
the transversal source terms in space-time, what plays a central role in the existence and asymptotic
analysis of [3]. A continuous version of Bony’s functional has been proposed by Cercignani [12, 14]
for the full Boltzmann equation with a truncated collision kernel. The functional Q measures the
potential interactions between particles with different velocities, and has some similarities with the
potential of interaction functional introduced by Glimm [16] to the study of quasilinear hyperbolic
systems. (It also has the important difference that Q is not positive).

The objective of the present work is to introduce a new functional measuring the L' distance
between two weak solutions f and f of (1.1). This functional reduces to the Bony functional
(1.2) when one of f or f is zero, and has certain analogies to the Liu-Yang functional [22] that
was recently devised for the stability of small BV solutions for systems of conservation laws (see
also Bressan-Liu-Yang [9], Hu-LeFloch [17]). The functional provides information regarding the
long-time response of solutions, and will be used, in particular, to establish uniform L'-stability
for solutions to (1.1) of small L'-mass. For the special case of the Broadwell system, there is an
alternative functional, consisting of only positive terms and accounting only for forward interactions
(see below), and the smallness assumption can be precisely quantified.

We proceed to explain the results. Consider first (1.1) under the structural hypotheses:
1. Bg k satisfy symmetry, sign and boundedness conditions:
Bi* = BN
B*<0 ifj=i ork=4, B*>0 ifj#i and k#i. (1.3)

|Bg k| < B*, for some positive constant B*.

2. The system is strictly hyperbolic,

v <vg < - < UN- (1.4)
3. Conservation of mass and momentum: There exist weights v; > 1, (¢ =1,---, N) such that
N . N .
Z uing =0, ZUiVing =0, for fixed j, k. (1.5)
i=1 i=1



4. Any existing quadratic interactions are assumed to satisfy:

if BZ“ < 0 then there is a sequence of indices ¢ = 41,43, . .., % so that
o (1.6)
B;’:jr’“l>0fork_1 r—1, B =0.

In section 2 we discuss how models of kinetic theory of gases fit into the above framework. For the
moment, note that (1.5) reflects conservation of mass and momentum and that certain non-strictly
hyperbolic models of kinetic theory can be accomodated by the above assumptions. This is due to
the presence of the weights v;; their role is discussed in section 2. Finally, the structural hypothesis
(1.6) is always satisfied for kinetic theory models.

To outline the approach, let £(¢) be the L!-distance between two solutions f and f,

_ Z/Rymum(x,t) — Fn(m,t)|da,

and let §; stand for
(Si(l‘,t) = Sgn(fi(wa t) - f_.z(w7 t))

A direct calculation (see Proposition 3.8) shows that the time derivative of £,

d,C t) / Zyé v; B <1 — —)lfn fn|(fn +f")

(1.7)
<00 [ 32 Ut Fullha + Fudde,

mnm;én

consists of two types of terms: (i) Terms accounting for interactions among particles moving with
the same velocity; these appear to the left of the inequality and turn out to be positive. Such a
property holds for the much simpler class of contractive relaxation systems (e.g. [20, 28]) and it is
remarkable that, due to the conservation laws in (1.5), it holds also for discrete Boltzmann type
operators. (ii) Terms that are due to interactions between transversally moving particles, which
contribute the term to the right of the inequality in (1.7).

To control the terms on the right, we introduce a quadratic functional Q4(t) of the form
-y /R /R (s80(Y — 2)) (Vm — V)l fin — Fonl @ ) (Fn + Fo)w, O) dady.  (L.8)

Q. accounts for the potential of (forward and backward) interactions of transversally moving par-
ticles between f or f and the difference |f — f|. A second calculation (Proposition 3.8) shows

dQq

(8) + chal£, F)(E) < Ol + Fllna (L(F. HO + Aal£, B, (L9)

where ¢, C are positive constants and

MNEDHG = Y / Vil s — (@) (fn + ) ()

m,n, m#n



MEDO = X [mBir (1= 52 - Bl + F)

m,n, m#n

Setting H(t) = L(t) + K Q4(t), we have the following theorem:

Theorem 1.1. Suppose the system (1.1) satisfies the assumptions (1.4) - (1.6) and let f,f €
C(Ry; (LY(R))N) be two mild solutions of (1.1) corresponding to initial data fo, fo > 0,

fo, fo € [(Z® N IYR)]™ such that || fol 11wy < 1 and ||foll 11y < 1.

Then, for an appropriate choice of K, the functional H(t) = L(t) + K Qq(t) is equivalent to the L'

distance between f and f and satisfies

dH(t)

T oM PO+ AL DE) <0, (1.10)

for some positive constant c. Moreover,

£ 8) = FC DI nwy < Cllfo() = fo()llrmys
where C is a positive constant independent of time t.

The theorem above is a statement on the asymptotic response of (1.1). (Note that, for quadratic
models (1.1), given L bounds it is easy to establish L!-stability estimates with a constant that
depends on time. L* bounds are available for data of class L' N L*, see [2], [4].) The func-
tional inequality (1.10) is valid for data of small initial L'-mass, while the functional #(t) has the

properties

1. H is equivalent to the L!-distance, i.e., for some constant Cy > 0,

I t) = FE @ < HE) < CollF(t) = FC D)
2. H is non-increasing in time t.

The functionals in (1.2), (1.8) account for both forward and backward interactions of transversally
moving particles. In this sense they are different from the Glimm functional or the Liu-Yang
functional, as the latter compute the potential of only forward interactions. The functional Q4(t)
is not positive, and thus not a Lyapunov functional itself.

For certain special systems, such as the Broadwell model

Oufr — Ouf1 = f3 — f1fs,
ofs =53~ i) (1.1)
Oifs +0ufs = f3 — fifs,



or models with transversal interactions (B = 0 for k,l with vy, = v;)), it is possible to define
alternative functionals, where the interaction potential is positive and accounts for only forward

interactions. For the Broadwell system, the interaction potential
0ut) = [ tea(Ch2+ 20+ fot W@ (51— Al +20f2 ~ Fal) ) dody
+ /R Loy (@Uf2 = Pol +1fs = Fal) @) (f1 + i + 22 + 22) (v) ) dady.

gives rise to a sharper Lyapunov inequality (see Section 3.2), and yields a uniform L!-stability
Theorem 3.11 where the smallness assumption on the data is quantified.

Finally, there exist some interesting models with wave speeds v; = v;(z,t). The linearization of
conservation laws leads for instance to such models in divergence form and an analog of the Glimm

functional is then constructed by Schatzman [24]. Consider

O fi + 0z (vi(=, 1) ;) = Qi(f), (1.12)
fi(2,0) = fio(w),
where Q;(f) = Zng(x,t)fjfk, i=1,---,N, and (1.12) is strictly hyperbolic in the sense that
vi(x,t) are real-\ig,clued C! functions satisfying vi(z,t) < v;(z,t) for all (z,t) € R x R} and i < j.
Analogous estimations are then established for (1.12) provided the source consists of only transversal
terms. In return, one can relax the assumptions on signs of the data and collision coefficients and

no conservation law is assumed for the source.

Theorem 1.2. Suppose that the coefficients in (1.12) satisfy hypotheses (3.39)-(3.40), and let
f, f € C(Ry; (LY (R))N) be two mild solutions corresponding to initial data

fo, fo € (L N LHY®R)]™ with follrry) < 1 and || follp ) < 1.
Then, f, f satisfy the inequalities (3.56)-(3.58) and
1FCt) = FC Ollmy < Clifo() = Fo)ll i my,

where C is a positive constant independent of time t.

The functionals @ and Q4 consist of sums of two-point distribution functions in the phase
space. For the system (1.12), we introduce in section 3.3 functionals consisting of three-point and
multi-point distribution functions (see (3.52), (3.53)) and obtain various Lyapunov inequalities.

This paper is organized as follows. In Section 2, we review the basics of a one-dimensional
discrete model for the Boltzmann equation and give an outline of the global existence theory
in L' N L*®. In Section 3, we explicitly construct the nonlinear functionals, study their time-
variation, and finally prove L' stability. This is done consecutively, first for general discrete velocity
models (1.1), then for the Broawell system (1.11), and finally for semilinear quadratic systems with

transversal terms (1.12).



2 Preliminaries
2.1 Discrete velocity Boltzmann equations

We present a review of the basics for discrete velocity Boltmann equations and refer to [10, 15,
11, 21, 19] and [2] for further details. The discretization of the velocity space in the kinetic theory
of gases allows to replace the Boltzmann equation by a system of semilinear hyperbolic equations.
There is a set of preselected velocities Vi,...,Vy € R3 and a set of admitted binary collisions
(k,1) — (i,4). The pre-collisional V4, V; and post-collisional velocities V;, V; satisfy microscopic

conservation laws of mass, momentum and energy,
Vit V;=Ve+V,

2 2 2 2 (2'1)
[Vil” + V317 = [Vi|” + Vi

The interaction coefficients Af} are positive constants measuring the relative strengths of the colli-
sions (k,1) — (3, 7); if a collision (k,l) — (4, j) does not occur one sets Afjl = 0. Typical assumptions

for the interaction coefficients are symmetry

Al = Alj = A3, (2.2)

and microreversibility (or detailed balance)
All = A (2.3)

The latter is sometimes relaxed to semi-detailed balance (see [15]) but we will not insist on that
here. The kinetic function f;(X,t) describes the density of particles at the point (X,¢) € R® x R

moving with velocity V; and is governed by the discrete velocity Boltzmann equation

Oufi +Vi-Vxfi=Y (Al fufi— AL fify), (2:4)

Jokl

fori=1,...,N.

Next, we briefly review some properties of the collision operator

Qi(f) =Y (Al fufi— Ajfifi), i=1,...,N.

Jkd

Let ¢ : R3 — R be any measurable function. Then we have

B <Z ¢<Vi)fi) +divy (Z W(Vi)fi) =Y (Vi) (A fufy — A fif)-

VLA



In view of (2.2) and (2.3) the right hand side may be rearranged as

3" Vi) (AR fif — AL fifi) = 42( V) = 6(Ve) — 6(V) ) (A% fufi — AL fit5)
1,4,k i,5,k,1
= 3 3 (8% + (%) — 4(Vi) — 600)) AL s (2.5)
,5,k,1
= 1 (90V) +6(V)) — 6(V) — 6(V)) AL (fufi — 1:Fy).
2,5,k,1

For the choice of ¢(V) equal to one of the collisional invariants 1, V1, V2 V3 or |V|? solutions of (2.4)
satisfy macroscopic conservation laws of mass, momentum and energy. Moreover, by multiplying

(2.4) by 1+ log fi, we have the H-theorem

o (Z fi 10gfi> +divx (Z Vifi 10gfi) > AH(log f:)(fufi — fifs)

1,7,k,1
- % Y Alj(log fi + log f; — log fi. = log fi)(fufi — fif;)
2,9,k,1
=13 attos () (- <o 26)
4 ©,9,k,0 f’fJ

We consider now the description of one dimensional motions of a dilute gas. Let D € R? be the

direction of motion and consider the ansatz
fi(X,t)=fi(D-X,t), z=D-X
Then f(z,t) satisfies a system of the form

Oufi +vidafi =Y AR (fufi — fifi), (2.7)

gkl

where the projected velocities v; = V; - D satisfy microscopic conservation of mass and momentum
v; +vj = vk + vy, (2.8)

but not, in general, microscopic conservation of energy. In view of (2.8), f satisfies macroscopic

conservations of mass and momentum (in the direction of motion)

Oy fit+0:Y vifi=0,
Oy vifi+0:» vifi=0,
and the H-theorem

0, filog fi+0x Y vifilog fi + i > Alflog (%) (frfi— fifj) =0. (2.10)
i i i3,k +J

7



From the viewpoint that the one-dimensional model (2.7) describes a one-dimensional motion
of a three-dimensional discrete velocity model (2.4), the one-dimensional model does not have to
satisfy conservation of energy and the system does not need to be strictly hyperbolic - even if the
original system has distinct velocities. The loss of strict hyperbolicity causes various difficulties
with the types of estimates pursued here. Following Beale [2], we wish to reduce the system by
combining the densities f; and f; for which the projected velocities v; and vy coincide, v; = vy.

The equations for f;, fi read

Ofi +videfi = Qi(f)=>_ AR (fufi - £if;) (2.11)
Jikesd

Oufy +vibafy = Qu(f)= Y, Abh(fuwfr — fufy) (2.12)
3R

We place structural hypotheses on the system so that, when for two indices 7 and i’ the projected
velocities coincide v; = vy, we can identify the corresponding collision operators Q;(f) = Qi (f) so
that the equations (2.11) and (2.12) coincide. This dictates certain restrictions on the interaction
coefficients Ag, see [2] for the precise hypotheses. Then, if the initial data are the same for particles
moving with the same velocities, then we can identify the densities f; and f; and replace them by
one equation that is counted v; times (where v; is the number of projected velocities that coincide
with the velocity v;). The system (2.7) can be put into the form of (1.1)

N

Oufi+vidafi =Y BI*fify (2.13)

Jrk=1

with

N 1 N 1 X

kl kl kl kl
Y ALY ata LY At

j=1 m,n=1 m,n=1
and d; is the Kronecker symbol. It is clear that (1.4) and (1.4) are satisfied. Hypothesis (1.5)
reflects in this setting the conservation laws of mass and momentum. Most of the usual examples
of discrete kinetic theory fit under the above framework.

Next we consider hypothesis (1.6). For a kinetic theory model quadratic terms arise as follows:

o If ij > 0 with ¢ # j then there is a collision (j,j) — (4,%’). For a nontrivial collision, (2.8)

implies that either v; < v; =v; < vy or vy <vj; =v; < ;.

e If B < 0 then there is a collision (i,i) — (j,7’). For a nontrivial collision, (2.8) implies

v; # v; and, if we denote by v; the smallest outgoing speed, v; < v; = v; < vjr.

Suppose now that Bf’ < 0 and set ¢; = 4. Then there is a nontrivial collision (i1,%1) — (%2, /)

with v;, <w;; <w;,. Consider the equation for the balance of f;,. There, the interaction coefficient



B:;ill > 0. If Bf;i2 = 0 then we are finished here, (1.6) is justified. If not, then szm < 0 and there
is a nontrivial collision (i2,72) — (i3,43') With vs; < vi, < vi,,. We consider the equation for the
balance of f;;, note that B::ﬁ" > 0 and repeat the previous step. Since the velocities v;, are strictly
decreasing in each step, the process necessarily terminates and (1.6) is justified.

A well studied paradigm of a one-dimensional discrete velocity model is the one proposed by
Broadwell [10]. The Broadwell model describes particles moving with a set of six velocities and

colliding with equal probabilities. It reads

O +0uSi = ST I 4 I ) — I AT
Oufy —oufy = ST Iy + 15 I) ~ FT A
O + S = ST+ A1) — I3 fa
Oufy — 0y = ST hr + 5 0) — F s
Ouff + 0.5 = ST IT + I 1)~ S I
Oufy — 0.5 = ST I+ 1)~ S Iy

where fli, f2i and f?:—L are densities of particles moving with velocities 1 in the direction of the
x,1y, and z axes respectively. One then considers one-dimensional motions of particles, depending
on z but independent of the y and z coordinates, and under the ansatz f, = f; = f5 = f3. If
we set

= fo=fs Bi=fh =f=f5 =f,
then (2.14) reduces to the one-dimensional system
Oufr = Oufr = 3 — fifs,

oufs = —5 (3 - fife),
Bifs + 0ufs = f3 — fifs.

It is easy to check that the one-dimensional Broadwell model is of the general form of the system

(1.1) and satisfies (1.4)-(1.6).

2.2 Existence theory

Next we discuss the existence theory for the Cauchy problem of (1.1). There are two venues for

defining weak solutions of (1.1). First, using the notion of mild solution:

Definition 2.3. f = (f1,---, f~) € C([0,T); (LY(R))N) is a mild solution of (1.1) with data
fo € (L*R)N if Qi(f) € LY(R x [0,T]) and for t € [0,T] and a.e x € R, f(x,t) satisfies the

integral equation,

fi(3,8) = fio(wi — vit) + /0 Qi(f) (@ = vilt — 7, 7)dr, (2.14)

9



fori=1,-.-- N.
A second possibility is to define f as a weak solution:

Definition 2.4. f = (f1,---,fn) € C([0,T]; (LY(R))N) is a weak solution of (1.1) with data
fo € (LY(R)YN if Qi(f) € LY(R x [0,T]) and for any test function o € C(R x [0,00)) we have

/ fi 8t<p+vz(9mg0 da:dt-l-/fzo o(z,0)dx = / Qi(f)pdzdt (2.15)
fori=1--- N.
In fact, for solutions f of class C([0, T]; (LY(R))™) with Q;(f) € L*(R x [0,T]) the two notions

of solution are equivalent. Obviously, a mild solution is also a weak solution. To see that a weak

solution is also a mild solution, rewrite first (2.15) in the equivalent form

/ fi(y + vir, 7) (8, 7)dydr + / fio(y)(y, 0)dy = — / Qi(f)(y + vir, 7 pdydr

where ¢(z,t) = ¢¥(z — v;it,t). Fix t > 0, § € (0,¢) and take the test function ¥(y,7) = a(y)bs(7)
where a € C°(R) and bs € C°([0,00)) is selected so that it takes the value 1 on [0,t— §], decreases
linearly on (¢ — 4, t), and takes the value 0 on (¢,00). Taking the limit § — 0, we deduce

/fz y + vit, t)a(y)dy — /sz dy:/R/OtQi(f)(y+vir,T)a(y)dey,

from where (2.14) follows.

We state the main global existence result for (1.1).

Theorem 2.5. [2, 3] Suppose that (1.1) satisfies the hypotheses (1.4)-(1.6) and let fo > 0 with
foe (L' R)NLY (R))N. There exists a unique, nonnegative mild solution f of (1.1) with

f e (0, T]; (L'R)N) N (L=(R x [0, 7)Y

for any T >0, and Qi(f) € L'(R xRy)), i =1,...,N. Moreover, if fo is of class C', then f is
of class C in (z,t).

Variants of this theorem are proved by Tartar [26], Beale [2] and Bony [3]. The reader is also
referred to [23, 25, 11, 21, 6, 7] for further existence and asymptotic behavior results.

Outline of the proof. It is instructive to outline the proof of Theorem 2.5 following the ideas of
[3]. One starts with estimates for C' solutions, in terms of the L'-norm p := [ > ;vifoj(z)dz of
the data.

Step 1. One first shows using Proposition 3.6 and (3.12) that the transversal terms satisfy the
L'-bound

/‘00/‘ Fn(@,t) fo(z, t)dadt < Cu? < oo, for m # n. (2.16)
0 R

10



Step 2. Next, it is shown that
ng #0 implies/ / ff(x,t)dwdt <Cp+p?) < oo (2.17)
o Jr

Suppose that B # 0 with i # j. Then B’ > 0. Consider the balance equation for f;. If B¥ = 0
then then by integrating in space-time we conclude (2.17). If B#% < 0 then using (1.6) we again
conclude (2.17).

Step 3. The previous steps indicate that Q;(f) € L'([0,00) x R). Bony [3] uses this fact to
establish that solutions f are in L*°, with an explicit bound depending on the L'-mass of the
data. We refer to [3] for the proof of the estimate. Once these estimates are established for
smooth solutions, the existence of mild solutions for data fo € L' N L*® follows by a standard
density argument. Uniqueness for mild solutions of class L is trivial. As weak and mild solutions
coincide, uniqueness is inherited for the class of bounded weak solutions. [l

Since (1.1) has quadratic nonlinearities it is easy to see that

1£Cot) = FC ) < lfo— follzrwy €™

where M depends on max, || fx(,t)||eo(Rx(0,¢))- Thus the L*°-bounds imply L!-stability with a
constant depending exponentially in time.
The estimates (2.16)-(2.17) give also information on asymptotic behaviour. By integrating (1.1),

we write

fily +vit, 1) = fio(y) + /0 Qi(f)(y + vis, s)ds (2.18)

If we formally set Fioo(y) := fio(y) + [y Qi(f)(y + vis, s)ds, then

1i(- + vit,£) — Frooll 1y < / /R 1Qi(F)|(y + vis, s)dyds — 0

as t — oo and thus f;(z,t) = Fieo(z — v;t) in L!(R) and a.e. Hence, the leading term in the
asymptotic response of f; is a traveling wave. If the collision model contains the quadratic inter-
action (i,7) — (j,j') then the coefficient B¥ < 0 and (2.17) implies that [;° [ ffdzdt < co and
Fio(y) = 0 a.e. In other words, the leading traveling wave in the asymptotic behavior of a field

which self-interacts is trivial. We refer to [2, 4, 5, 26, 27] for further results on asymptotic behavior.

3 Lyapunov functionals and uniform L' stability estimates

In this section, we construct nonlinear functionals which are equivalent to the L' distance and non-
increasing in time. We begin in Section 3.1 with a general discrete velocity Boltzmann equation.
Then, in Section 3.2, we specialize to the well-known Broadwell model. In this case, the proposed

functional contains only the forward interaction potential and is thus in closer analogy to the

11



spirit of the Glimm and Liu-Yang functionals. In Section 3.3, we take up systems that only have
transversal source terms. We allow then for solutions that may be negative and calculate two-point,

three-point or multi-point interactions and establish more complicated Lyapunov type functionals.

3.1 General discrete velocity Boltzmann equations

We first consider the Cauchy problem for the discrete velocity Boltzmann equation

Ocfi +vibafi =Y Bl fifu, (3.1)

ak
i =1,..., N, under the hypotheses (1.4), (1.4) and (1.5). Using the fact that 1 and v; are collisional

invariants, it follows from (1.5) that

N N
y (Z Vn fn) + 8, (Z Unln fn> =0, (3.2)
Oy (Z(Um — Un)ljmfm> + Oy (Z U (Um, — ’Un)l/mfm> =0. (3.3)
m=1

m=1

Motivated by (3.2) and (3.3), Bony’s functional for (3.1) is defined by

Q(t) = Z/R/ngn(y—x)(vm — V) imn fa(@, £) fuly, t)dydzz,
= Z [/R/R]lz<y(vm—vn)l/mz/nfm(m,t)fn(%t)dydx

- / / ]1:1:>y('Um - 'Un)Vmanm(w7 t)fn(yat)dydx]
RJR
— I+II (3.4)

From the conservation of mass and the positivity of solutions, it easily follows that
2
12(0) < 2( max v, — va]) (/ > v fom(@)dz) < co. (3.5)
m,n R ™

We note that for m,n such that m > n, I and II denote respectively the forward and backward
interaction potentials between the waves traveling with speeds v,, and v,,. By the choice of the
weight v, — v,, this functional can be negative. For notational simplicity, we suppress from now

on the t dependence and write

f@,t) = f(z),  Qulf)(z,t) = Qn(=).

Define the instantaneous interaction production A(f) by

ApB= /R Vit fon (%) i (2)d, (3.6)

m,n, m>n

The following Proposition shows uniform integrability of the transversal terms of the source.

12



Proposition 3.6. [3] Assume that (3.1) satisfies (1.4)-(1.5), and let f be a solution emanating

from the initial datum fo. Then Q(t) is non-increasing in time t, i.e.,

190 < _a2a ()0

where v2 = min (v, — v,)?.
m#n

Proof. We consider I in (3.4). Recall that

atfm(w) + Uma:cfm(w) = Qm(w)a (37)
O fn(y) + vn0y fn(y) = Qn(y)- (3.8)

Then (3.7) and (3.8) give

0 Loy fm (@)1 (®) ) + (s + 000y) (Do fon(2) (1))

(3.9)
+ (vm — vn)0(x — y) fm(2) fu(y) = Dpcy (Qm(w)fn(y) + fm(x)Qn(y))

and in turn
at (]la:<y Z(vm - Un)Vmanm(x)fn(y)) (vma + vn < <y Z — Un Vmanm( )fn(y))
+ Z = 0n)*Vitn8(2 = y) fin (@) ()

= ]lav<y Z - 'Un UmVn (Qm( )fn(y) + fm(m)Qn(y)) =0
(3.10)

where we have used that, from (1.5),
Z UmQm(z) =0, val/QO =0. (3.11)

Integrating (3.10) over R x R, we have

dt [Z// a<y(Um — Vn)VmVn fm (@) fn(y dydl‘] = Z/ 1) Vmn fm (2) fn(z)dz

The term II is treated in the same way and gives

dt[ Z// y<z(Vm — Un)VmVn fm () fn(y dydac]: Z/ m — Un) VmVn fin () fr () d.

Combining the above, we obtain the desired result. ([l

Remark 3.7. By Proposition 3.6 and (3.5) that the transversal terms are integrable in space-time,
that is, for m # n,

/ / UmVn fm (2, t) fo(z, t)dzdt < C||fo||%1(R) < 0o, for some C > 0. (3.12)
0 —o0

13



Next, we study the L! stability of mild solutions. Let f and f be two solutions corresponding

to initial data fo(x) and fo(x) respectively. Define the nonlinear functionals

f0 = 3 / Vinl () — Fon()\dz,

Qu(t) = Z / / &N (Y — 2)(Um — V)l fon (@) — Fn(@)|(a®) + Fo(w)) dexdy,
HE) = L)+ KQult),

where the positive constant K > 0 is later appropriately selected. £(t) measures the L' distance
between f and f, while Q4(t) is a generalization of the Bony functional Q(t). Qq4(t) measures the
(forward and backward) interaction potentials between f and |f — f| and between f and |f — f|.
We study the time-variation of these nonlinear functionals. In the calculations there will enter the

analogs of the instantaneous interaction production A(f)(t) that take the form

MDD = Y / Vil fn — Fonl (@) (fn + ) (),

m,n, m#n
_ Om
MEDO= Y [ B (1- 5—)|fn—fn|(fn+fn)
m,n m;én n

All these functionals are positive and their role will be clarified in the sequel.

Proposition 3.8. Assume that (3.1) satisfies (1.4) - (1.5). Let f and f be two solutions of (3.1)
corresponding to initial data fo and fo with ||fol| nm *ll foll i®) < 1. Then, for an appropriate
choice of K, the functional H(t) is equivalent to the L' distance between f and f and satisfies

dﬁ( ) + AL(f, f)(t) < CiA4(f, f)(t)

+ caha(f, )(t) Co (1l + 1 lLrw)) AL, F)(®)

MO < —ents P (313)

de(t)
dt

IN

VAN

where C1, Ca, ca and c3 are positive constants which are independent of time t.

Proof. We consider the time-evolution of each functional separately. Let f and f be C! solutions
of compact support corresponding to compactly supported C! data fo(x) and fo(z) respectively.

The case of L' solutions will follow by a standard density argument.

Step1. Computation of d . Note that f and f satisfy

Ofi+vibefi = Qi (3.14)
Ol fi = fil + zvil fi = fil = (Qi — Qu)d (3.15)

14



where we use the notation
6z(x7t) = Sgn(.fi(x)t) - ﬁ(ib, t)) :
We decompose the terms due to transversal interactions from the terms due to self-interactions,
Qi = Z Bzmnfmfn + Zannfr% )
m#n n

and use (1.4) to write

(Qi—Qi)di= Y. B"m—|fm fm|(fn+fn+ZB""—|fn Fal(fa+fn)- (3.16)

m,n,m#n

We note the identity

ZzuiB?"g—"|fn Pl Fo)

= Z Vann fnl(fn+fn +ZVann|fn fnl(fn+fn)
bt 5. i i (3.17)
= > v VB S fo = al (fo+ o) = > B fa = fal(fa + fa)
1,n,1#n n 4, i#n
di
= % B (5 1) o= Fallh+ ) <0
1,n,1#n
which follows from conservation of mass (1.5); in the form v, By"™ = —3_, ., v;Bl'", and the fact
that BI'™ > 0 for ¢ # n.
From (3.15) - (3.17) we obtain
d; - -
Zyz|fz fil + 0z ZVzUszz fil + Z Vann< - 5_) |fr = fal(fa + fn)
% n,i, n#£i (318)
—Z Z Vzan_|fm fml(fn+fn)
i m,n,m#n
and, in turn,
dL(t _
PO 4 hth, PO < Cuats, 1)) (3.19)

for some positive constant C'.
Step2. Calculation of dgddt(t) . From (3.14) and (3.15), we obtain

O (Locylfm = Fnl (@) fa(w) ) + (00z + 0,0 (Locylfm = Fnl(@) 1))
+ (Wn = v2)3(2 = 9)|fn = Fl (@) fa () (3.20)
= Locy [(@m — Q) (@)0m(2) fa(y) + | fim — Fonl (2)Qn(v)]

15



and

0 Y- (0m — va)vmllocy|fon = Fl (@) (o + £2)0)

m,n

+ 3 (om = i (D + 020, (Qaculfn = Tl @)+ F) )

+ Z Um — Un)zl/m’/nfs(x - y)lfm - fm|($)(fn + fn)(y)

= ]11:<y Z ) VmVn (Qm — Qm) (€)0m () (fr + fn)(y)

+ ]19:<y Z Um — Un)VmVn|fm - fm|(x) (Qn(y) + Qn(y))

The last term in (3.21) vanishes, due to the conservation of mass and momentum (3.11).

To estimate the first term in the right hand side of (3.21), we note that, from (3.16),

Z(w —v)viv;(Qi — Qi)d: = Z(
+ Z(

and that, as in (3.17) but using now both conservations of mass and momentum in (1.5),

— vj)Viv; Z an—|fm Fml(fn + fn)

mnm;én

- vj)viv; Z Bnn_|fn Fal(fr + fn),

Zv — v V,V]ZB —|fn Fal(fn + fn)

%

= % o B (5 1) U= Fallha + o)

1,n, 1£N

Note that B > 0 for i # n and that (— - 1) < 0. We can now estimate (3.21) as

- < L becy 3 (0m = nlemtnl - fm|(x><fn+fn>(y>da:dy)+vad<f,f>(t)

< /R /R Tecy 0 + 7)) S0 = 00)int[(@m = Q) @)
< Collf + Fllnw (8o DO + AalF HB)-

We conclude, by using similar estimations for the remaining part of Q4(¢), that

dQg(t)
dt

where v2 = min (v, — v,)%
m#n

Step 8. Calculation of ‘m(t By the definition of #(t),

Z/ il fim(2) —

@) 14 Kon =) [~ in5al) +

16

+2030a(f, N)®) < Co(IIfllr + [1fllnr @) AS @),

fn(y))dy

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



- K(vn —vm) /Oo Vn(fn(y)+fn(y))dy dz.

Therefore, if
KC3([1flrry + 1 F11 1 my) < 1 (3.26)

where C3 := maxy, n, Vp|VUm — Vg, then there exists M > 0 such that
1
27 L) = H(t) < ML(),

and H(t) is equivalent to the L!-distance L(t).
On the other hand, from (3.19) and (3.25), we have
dH(t) dL(t)

_ de(t)
dt O dt +K dt

< (-1+KG(Ifllnm + 1fllnw) ) A HE)
+<— 202K + KCo (|| fllawy + |1fll ) + 01)Ad(f, N

N

(3.27)
If the L' mass of the two solutions is sufficiently small,
(TIPSR — L S (3.29
v .
then K can be selected in the nonempty interval
C 1
! (3.29)

= <K< = .
202 — (I1fll ) + 1 F1 21 (m)) max{Ca, Cs}(|[fllorm) + [ fllz1(w))

Then (3.26) is fulfilled and there exists a (possibly small) positive constant cg so that, for the above

choice of K,
dH(t) -

o = —csA(f, f)(t).

From Proposition 3.8, we obtain L! stability of mild solutions.
Proof of Theorem 1.1
Let fék) and fék) be Cl-approximations of two given initial data fo, fo € L' such that

FB g0, P S f i LY(R) ask — oo

Then we can construct C' solutions f*)(z,t) and f*)(x,t) corresponding to two smooth initial

data fék) and fék) respectively. It follows that f* is Cauchy in L' and

F®)(z,t) = f(z,t), FP(z,t) = f(z,t) in LY(R) as k — oco.

17



Define
H(t) = H[f("t)7f_('7t)] = klggo,}l[f(k)(7t)7 f(k)(at)]

Then by the two key-properties of H(t), we have
||f(’“)(.,t) — f(k)(-,t)HLl(R) < C||fék)(-) - fék)(')llLl(R), for some constant C' > 0.
Letting kK — oo, we have

1f(t) = FC Ol < Cllfo(-) = fo)lliw)-

3.2 The one-dimensional Broadwell model

Next, we consider the one-dimensional Broadwell model (1.11). In this case, a variant of Qg4(t)
can be defined using only the forward part of the interaction potential. This is in accord with the
approach of the Glimm potential, and in contrast to the interaction potential used in the previous
subsection for general discrete velocity Boltzmann models.

Let f and f be two solutions of (1.11) which for the time are taken to be C!. We use the
notation f(z), f(y) for the evaluation of f at the points (z,?), (y,t) respectively; the ¢t dependence

is mostly suppressed. From (1.11), we derive the conservations for the partial masses,

9:(2f2 + f3)(2) + Oz f3(x) = 0. (3.30)
O (f1+2f2)(y) — 9y f1(y) =0, (3.31)

In the sequel, we define a potential of interaction functional Q(¢) in the form

0) = [ Loy RAala) + Fa@)ll o) + 2a(w)ldud,

The definition is motivated in the following lemma, which appears in Tartar [27] and is there

attributed to Varadhan.

Proposition 3.9. Along solutions f of (1.11), we have

%ﬁt) - _2/% (f1f3+f1f2 +f2f3)(w,t) de.

Proof. We multiply (3.30) by (f1 + 2f2)(y) and (3.31) by (2f2 + f3)(z). Adding and multiplying
the resulting identity by 1,,, we arrive at the identity

0 (F1+2£2)(0) 2F2 + £2)(@) Loy
+div(ey [ (£5() (1 +20)(0), ~(f2 + ) (@) 1(1) ) Locy

18



+3(z = 9) (fo(@) (f1 + 2£2) () + AW)2F2 + fo)()) =

The last term is positive and provides some decay by dispersion. Integrating the above equation

over R?, we obtain

%it) = —2/R[f1(w)f3(:c) + fi(z) fo(z) + fo(z) f3(z)]dz.

Next, we define certain nonlinear functionals:

L(t) = /R<|f1—f1|+4|f2—f2|+|f3—f3|)(~’0)dfﬂ,

0ut) = [ tea(C2+ 200+ fot W)@(fi— il +20fo— Fl) ) dody
+/ z<y 2|f2—f2|+|f3—f3|)(w)(f1+f1+2f2+2f2)(y))d$dy,

H(t) = L(t)+ KQa(t),

where K is positive constant to be determined later. We also define the instantaneous interaction

productions as follows.

AU D) = M D) + Aalf, 1)) (3.32)
INTEE /R (2- 30 - 245 ) 1960 - 2l@)lfate) + aleda, (333
/ Zlfm 2) = Fnl@)| 3 () + Fo(@))da (3.34)

n#m

The above functionals are all positive and for positive L!-solutions #(t) is equivalent to the L' dis-
tance between f and f. Furthermore, £(t) denotes the weighted L' distance while Q,4(t) represents
the potential of interaction between particles.

Next, we study the time-evolution of £ and Q4.

Lemma 3.10. Let f and f be two solutions of (1.11) corresponding to initial data fO and fO with
[|£°+ f°|| < 2. Then K can be selected so that the functionals satisfy the Lyapunov type estimates:

%it) < =5 D)+ Aalf, F)(B),
dz_t(ﬂ < —CIA(f, F)(®),

where Cq is a positive constant independent of time t.
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Proof. First, we derive the equations for the differences |f;(x,t) — fi(z,t)|, 1 <4 < 3, in the form

O~ Al =0l ~ il = 1= Fll o+ o)~ 1~ AT
__|f3_f|f1+f1

3t|f2—f2|=—%|fz—f2|(fz+fz)+—|f1 fiftss
gy i

s — Bl +0ulfs il = 2o~ Bl + o) - B - 21D
_|f3_f|f1+f1

Step 1. We consider the functionals separately. From (3.35) we have

(9t<|f1 — fil +4|fo— fol +1fs — f3|) + 8 (|f3 — f3| — | f1 — fl)

+(2- g_; - —)|f2 Fol(fa+ fo)
1)
(25—2———1)|f h |f3+f3 (25————1)|f fs |fl+f1
By the definitions of £, A; and A4, we have
L
ddy(tt) <A (f’ /|f1 fil(f3 + f3) + | fs — fsl(f1 + f1) de

(3.35)

(3.36)

(3.37)

Step 2. By a direct yet cumbersome calculation, we obtain from (3.30), (3.31) and (3.35) the

identity

dQa(t)
a _2/

[t (S0 -1) (4 R = Bl + o)(o) dady

=

3
Z |fm - f_m|($) (Z(fn+fn)($)) dx

n#m

L 5—(y> )f3+f3(y)|f1 RIG)s + Fo) ) dady
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520 =) s+ AL = Al o+ ) o) oy
-2@) EHE w1 - Al@ 6+ ) dody
- 2@) (o + W@ - A+ 2)0) dody

(
(
(
b [ e (B 1) L @l - A+ A6 drdy
(
(
(

@) =1) (f+ F@)fa— Flle) (fo+ 2)o) dody
2w~ 20)) L wls - A0+ £ sy
3 3

20) - 5 W) (h+ I = Bl + 7)) dedy
3 3

IN
|

3
2 /R S fm = Fonl (@) (Z(fn+fn)(x))

n#m

(11 + Allow + 2112+ Pllow) /R (fs + F) @)1 — fil(@)de

+
+ Qe+ fellow + s+ fllow) /R(fl + f1)(@)|f3 — f3l(z)dz
< (=2+|If + FIDAalS, @)

Step 3. By the definition of H, we have

dH(t) dC(t) - dQu(t)

K
dt +

T T at dt ) )
< A @)+ [T+ K(=24||f + FIDIAG(F, £)(@)-

Since ||f + f|| < 2, we can choose K sufficiently large so that

1+ K(=2+]||f+fll) <0

We then have
MY < _enis, o),

where C1 is a positive constant independent of time ¢. (I
Proceeding as in the proof of Theorem 1.1, we have from Lemma 3.10 the following L' stability

estimate.

Theorem 3.11. Let f and f be two mild solutions of (1.11) subject to the hypotheses of Lemma
3.10. Then we have the uniform L' stability estimate

/R(|f1—f1|+4|f2—f2|+|f3—f3|)(~’07t)dwﬁ CA(|f?—ﬁ|+4|fg—J@|+|f:§)—f??|)($)dw

where C' is a constant independent of time t.
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3.3 Systems with transversal source terms

In this subsection, we consider the semilinear hyperbolic system

Oufi + O: (il t)fs) = Y BI*(z,t)fif (3.38)
Jik, i#k

fi(z,0) = fio(z),

(z,t) e Rx Ry, ¢ =1,---,N. We do not assume any conservation laws and any nonnegativity
for the initial data but only the transversality of the source. We also admit variable wave speeds
v; = vi(x,t) and variable interaction coefficients Bg = Bg *(x,t). The assumptions (1.4)-(1.6) are

replaced by
1. The interaction coefficients Bg * are bounded and only transversal terms enter the interaction:

|ng(x,t)| < B*, for some constantB*,

(3.39)
B =0, forallik.
2. The wave speeds are globally separated,
'Ul(w7t) < 122($,t) <---< UN($7t) >
with v, :=min sup (v;(z,t) —vj(z,t)) > 0. (3.40)

>J zeR,t>0

Throughout, we suppress the t-dependence and write f(z) = f(z,t), vi(x) = vi(z,t) and so on.

The equation for |f;| is

il fil + Bu (il fil) = Qi(f) = Qi(f)senfs = Y BI*f; fusgnfi. (3.41)
j#k

Define the nonlinear functionals

LA)O =Y [ nlatide = £l (3.42)
oNH=3 /R /R Loy fn(2, )|y, 8)| dadly (3.43)
F(f)(H) = L()(®) + M), (3.44)

and the instanteneous interaction production

AHB=Y /R s t)| ol D) (3.45)

m>n

We study the evolution of these functionals for data fo with sufficiently small L'-norm.
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Proposition 3.12. Let (8.38) satisfy the structural hypotheses (3.39)-(3.40) and f be a mild solu-
tion. Then
(i) f satisfies the inequalities

O <onw, D oaw) <oamLe)

where b is a (generic) constant depending on B* and N.

(ii) There exist constants M (large) and € (small) so that if fo satisfies

L(0) = |lfollrm) <€, and F(0)= L(0) +MQ(0) <k, (3.46)
then
C;i(L + MQ)(t) < —bA(t), L(t) <e. (3.47)
Proof. It follows from (3.41) that L(t) satisfies
dL(t)
o < bA(t). (3.48)

Consider now Q(t). The equations for f,,(z) and f,(y) read

04l fm| (%) + O (vml fiml)(x) = > BIF(f; fr) (x)sgnfm (), (3.49)
7.k
04 fal () + By (vnl fal) () = D BIF(£5 £5) (v)sensfa(y) (3.50)
7.k

If we multiply (3.49) by |fn(v)|, (3.50) by |fm(z)|, add the identities, and multiply the result by

1<y, we obtain

0r (To<y (@) faW)]) + iV ey (0 (@), 00 (1)) Loy | Fmn(@) 1 ()]
+8(y = ) (v (@) = 00 ()| @) | £ )]
< bl (fn IECIAC |+|fm(w)2|fj(y)fk(y)|>
>k >k

This identity is integrated over R? and we add the contributions for the velocities with m > n. We

then obtain
d Q(t)

==+ uA(t) < BAR)L(E) (3.51)

Note that (3.48) and (3.51) give

‘”;E) (jt(L+MQ) ()(b—M(v*—bL(t))).

Select now € < gz and M > 4b - and let fo satisfy (3.46). For the solution f define

T :=sup{L(s) < e for s € (0,¢)}
t>0
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Clearly, T' > 0. Moreover, for ¢t € (0,T) we have L(t) < € and v, — bL(t) > % . This implies that
F satisfies the differential inequality

P < o),

and that for ¢ € [0, T
L(t) < <L+MQ) (t) < (L+MQ)(0) <e.

We conclude that T' = oo and the inequalities follow. [l

From the perspective of kinetic theory, (3.51) is interpreted as describing the evolution of a
two-point distribution function. Analogous differential inequalities appear for the three-point or
multi-point distribution functions. For a triplet of wave speeds vy > v, > v, define the triple
interaction potential

Ts(t):= ) / w<yly<z| fil (2, £)| fm| (4, 1) | f| (2, £) ddydz . (3.52)
k,m,n, k>m>n

More generally, for an n-tuple index (k1,- -, kn) with (k1 > k2 > -+ > ky), we define the multiple
interaction potential M™(t) by

= D / ) Hﬂw@H)Hlfk (i, )| day . (3.53)

k1>..>kn
The evolution of T3 and M,, obeys respectively
d
DT3(t) + As(t) < AW (1)
. (3.54)
T Mn(t) + An(t) < bA(E) L™ L(¢)
where A(t) and L(t) as before, b dependes on B, and N, while A,(t) is given by

Z Z/ (vx; (25) ”kj+1(xj+1))(H]1mi<mi+1)(fxfj(ifj) I 1fe(z ) Hd:cz

3.55

We outline the proof of the first inequality in (3.54). Using (3.41) at three distinct points z,y, z,

one obtains

(0 + Bovr() + 8,0m(y) + Bz (2) ) (I54(@)| W1 fn(2)])
= <Qk($)|fm(y)fn(z)| + Qm(y)lfk(x)fn(z)l + Qn(z)lfk(x)fm(y)l)

whence

(0 + 8201 (@) + 8, (v) + 0:00(2) ) (Lo Ly<sl @ Fmn W)l £ (2)])
+((01(@) = v ()3 = ) Ty<s + Om(B) — 0n(2))8 — oy ) 1@ | (@)1 £a(2)]
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We sum over the contributions of all velocities vy > v, > v, and integrate over R3 to arrive at

3
det(t) ) / (v (Y) — vm(Y)|Fi(y) fm (V)| fn(2) |dyd2
E>m>n Y Y<Z
5[ ) o@D ) o0
= > Qr(@)| fn(¥) fn(2)]| + Q@) Fr(x) Fn (2)| + Qn(2)| fi(2) fin(v)| dzdydz

k>m>n {z<y}n{y<=z}

< bA()(L(2))?

The second inequality in (3.54) follows from a similar though lengthier computation.

Consider now f, f two mild solutions and define the nonlinear functionals:

£ = 3 / (@) — Fon(@)lde,

Qu(t) = 2 /{ <}|fm— Fonl @) (1l 1Fl) @) + (o] 4 [ Fonl) @)1 fr — Fol (w) iy,

m>n _
H(t) = L(t)+ MiQa(t) + M2(Q(t) + Q1))
where Q(t), Q(t) are the interaction potenials for f and f as in Proposition 3.12, and M;, M are

constants to be selected later.

Proposition 3.13. Let (3.38) satisfy (3.39)-(3.40), and let f, f be two mild solutions emanating
from data fo, fo. Then
(i) f, f satisfy the differential inequalities

O <y aatsr, D),
10.0) dt ) 7 7 (3.56)
2+ v (£, D) < bAa(f, HE) (LA + L)) + L) (ADE + AN W)
where b depends on By and N, A is defined in (3.45), and A4 is given by
Aa(F, H)E) = ) /lek(w) = fr(@)I(1fil(z) + | fil (z))dz (3.57)

(i) There are choices of the parameters € (small) and My, Ms (large) such that if the data are
selected to satisfy || follr1w) + || follrmy < € < 1, then we have

dH(t)

2+ S0, D)) + e (AN B + A B) <0, (3.58)

for some constant ¢ > 0.
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Proof. Recall that

Ol fmn = Frnl + 0 (vm (@) fn — Fl) = D Bu [(Fx = fi) fr + (fi = ) i) Sm = R (3.59)

kAL
Ol ful + 0y (va ()| fal) = Y BY frfisgn(fn) = Qu(f)(v), (3.60)
k£l
O ful + Oy(vn(y) | ful) = Zle.fkfngn(fn) = Qn(H)(). (3.61)
kAL
We have
Z/ (z,t)dz < bA(S, F)(t). (3.62)
N . Qa(t) . . )
ext, consider TR From (3.59), (3.60) and (3.61), we obtain the identity

(0 + 02vm(@) + 8,00(v) ) (Lol fm = Fanl @)1l + 1) @)
+(m(®) = 0n ()0 = )| fmn = Fl @) (ol + | Fal) )
= Locy (Bm(@)(1fal + 1 TaD @) + | = Fonl (@) (@n () + On(1) )

and from here

G L 1 3 (= Fnl @1l + 1D ) + Ul + (@) — Fol)) dndy

m>n

+ [ @) = 0a(@) (1m = Fl@ Ul +15:D(E) + (ol + F) (@) = Fol@)) o

m>n

= 3 [ e (Rl + 1Fa0) + U = Fnl@)(@() + @) W)

m>n

+ (Qm(F) + Q) @) fn = Fal (4) + (|l + |F]) () Rn(y) ) dody
< bAa(f, £)(8) (L(t) + L(2)) + bL(E) (A(t) + A(t))
where we used the notation L(t) = L(f)(t), O(t) = Q(f)(t) and A(t) = A(f)(¢).
Hence, Qg4 obeys the differential inequality

% +v,Ag < bAg(L + L) + bL(A + A). (3.63)

Combining with (3.62), we obtain

d _ _
= (z M Qd) + My (vx — b(L + L))Ag < bAg + MybL(A + ). (3.64)

Proposition 3.12 yields
d _ _ .
2 (9+Q) +u.(A+h) <HAL+AL) (3.65)
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and that there exists a threshold €y such that for € < ¢y and for || fo||z1, ||fol|z: sufficiently small
we have (L+ M Q)(t) and (L + M Q)(t) are decreasing in time and L(t), L(t) < e. From (3.64) and
(3.65) we deduce

i(ﬁ + M1Qq + M2(Q + Q)) + My (ve —b(L + L))Ag + Ma(vs — b(L + L)) (A + A)

dt - A (3.66)
< bA4(L+ L)+ MibL(A+A).

Since L + L < 2¢, by selecting ¢ even smaller (if necessary) and M, M, sufficiently large we have

d N\ )
Z(£+ 104+ M2(Q+ Q) + S Aa+e(A+A) <0

for some constant ¢ > 0. Il
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