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Constantine M. Dafermos has done extensive research at the interface of partial differential

equations and continuum physics. He is a world leader in nonlinear hyperbolic conservation

laws, where he introduced several fundamental methods in the subject including the methods of

relative entropy, generalized characteristics, and wave-front tracking, as well as the entropy rate

criterion for the selection of admissible wave fans. He has also made fundamental contributions

on the mathematical theory of the equations of thermomechanics as it pertains in modeling

and analysis of materials with memory, thermoelasticity, and thermoviscoelasticity. His work

is distinctly characterized by an understanding of the fundamental issues of continuum physics

and their role in developing new techniques of mathematical analysis.

1 Biographic Remarks

Constantine M. Dafermos was born in Athens in 1941. He received a Diploma in Civil

Engineering from the National Technical University of Athens in 1964 and a Ph.D. in Mechanics

from the Johns Hopkins University in 1967. He was a postdoctoral fellow in the Department

of Mechanics of Johns Hopkins in 1967–68 and was appointed as an Assistant Professor in

the Department of Theoretical and Applied Mechanics of Cornell University from 1968–71. In

1971, he was appointed as an Associate Professor in the Division of Applied Mathematics at

Brown University, where he spent his entire career, first as an Associate Professor (1971–76),
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then as a Professor (1976–87), and finally as the Alumni-Alumnae University Professor (1987–

Present). To his students, postdocs, and friends, his name has become synonymous with the

Division of Applied Mathematics of Brown University. He has served in the Editorial Boards

of 14 professional journals and has held Honorary Doctorates from several institutions. He was

elected a Correspondent Member of the Academy of Athens (1988–) and an Honorary Professor

of Academia Sinica (2004–). He was awarded the SIAM W.T. and Idalia Reid Prize in 2000 for

his broad contribution in the area of differential equations and control theory, and the Cataldo e

Angiola Agostinelli Prize from the Accademia dei Lincei in 2011 for his work on the foundations

of Mechanics and on rigorous methods of Mathematical Analysis. He was elected to be a Fellow

of the American Academy of Arts and Sciences in 2001 and a Foreign Member of the Accademia

Nazionale dei Lincei in 2011.

This article aims at presenting some contributions of Professor Dafermos to the subject of

conservation laws and the equations of thermomechanics. It is not intended as a comprehensive

review of his work, and the choice of topics naturally reflects the views of the authors. We

have chosen to neglect a lot of the technically impressive work and focused on bringing up some

of the core ideas that have staying power. Our hope is that the selected topics will pinpoint

the fundamental link between Mechanics and Analysis that is so characteristic of Constantine’s

work.

2 Hyperbolic Conservation Laws

Hyperbolic systems of conservation laws are first-order quasilinear systems in d-space di-

mensions of the form

∂tU +
∑

α

∂αFα(U) = 0 , (1)

describing the evolution of U : R
d × R+ → R

n, where the state vector U takes values in R
n

and the fluxes Fα : R
n → R

n, α = 1, · · · , d, are smooth maps. Hyperbolicity means that, for

all U ∈ R
n and ν ∈ Sd−1, the n × n matrix

Λ(U, ν) :=
∑

α

να∇Fα(U) (2)

has n real eigenvalues λ1(U, ν) ≤ · · · ≤ λn(U, ν) and complete sets of right
{

ri(U, ν)
}

i=1,···,n

and left
{

li(U, ν)
}

i=1,···,n
eigenvectors.

Several systems of continuum physics share this basic structure with prime examples:

the equations of compressible gas dynamics and the equations of elasticity. Accordingly, the

mathematical study of (1) has been developed in intimate linkage with the subject of mechanics,

and has influenced the development of efficient computational schemes. Due to the nonlinear

nature of the wave speeds, weak waves can become steeper and break down in finite time, with

shock waves emerging as a result of compressive effects. The class of classical solutions is thus

inadequate for studying well-posedness beyond the time of shock wave formation, and global

solutions have to be understood in a weak sense.

To secure uniqueness within a class of weak solutions, admissibility criteria are adopted

with the aim to disqualify spurious solutions. The second law of thermodynamics suggests
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the so called entropy admissibility criterion, namely requiring solutions to satisfy the entropy

inequalities of the form:

∂tη(U) +
∑

α

∂α qα(U) ≤ 0 , (3)

where the entropy η : R
n → R is a smooth convex function, i.e., ∇2η(U) ≥ 0, and q =

(q1, · · · , qd) : R
n → R

d is the associated entropy flux. Any Lipschitz solution of (1) is postulated

to be admissible and to satisfy (3) as an equality. This is consistent with the mechanical idea

that smooth processes must be time-reversible, and that (3) imposes restrictions only on non-

smooth processes which are deemed irreversible. This is the case if and only if the entropy and

entropy flux functions satisfy the equations

∇qα = ∇η · ∇Fα , α = 1, · · · , d , (4)

or, in turn, if η satisfies the compatibility restrictions

∇2η∇Fα = (∇Fα)⊤ ∇2η , α = 1, · · · , d . (5)

These are n(n−1)
2 d equations and thus, except for the cases n = 2, d = 1 and n = 1 with any d,

system (5) is overdetermined and the existence of entropies is the exception rather than the rule.

However, systems of thermomechanics are naturally equipped with (usually) one entropy and

thus fit under this framework. For the systems of isentropic gas dynamics and for the equations

of elasticity, equation (3) expresses the dissipation of the mechanical energy on shocks.

A natural function class for seeking weak solutions is the class of functions of bounded

variation (BV, for short), whose distributional derivatives are locally finite Borel measures.

This constitutes a very general class of functions where the Gauss-Green theorem holds. At the

level of models in continuum physics, the equations in (1) naturally arise in their integral form

∫

Ω

U(x, t) dx −

∫

Ω

U(x, τ)dx +

∫ t

τ

∫

∂Ω

∑

α

ναFα(x, s)dσds = 0 , ∀Ω , ∀τ < t, (6)

expressing the evolution of the vector of conserved quantities U on any control volume Ω through

the action of the boundary fluxes Fα (and possibly production terms that are neglected here).

The class of BV functions gives meaning to the equivalence of expressions (6) and (1), and is a

natural class for considering the evolution of shock fronts. The reader is referred to [17, Ch. I]

for a presentation of the mathematical underpinnings of continuum physics and the regularity

classes where the formal calculations used in deriving the equations of thermomechanics acquire

mathematical precision.

3 The Second Law of Thermodynamics and Stability

In the 1960s–70s, there was a concerted effort to develop a rational theory of Continuum

Mechanics and to systematize the models of thermomechanics using deductive reasoning and

starting from general mechanical principles, such as the second law of thermodynamics (in the

form of the Clausius-Duhem inequality), the principle of frame indifference, and the effect of

material symmetries, [38]. It was noted that, in certain cases, the Clausius-Duhem inequality

induces Lyapunov stability of equilibrium processes in a variety of materials. By contrast,
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in other situations, still consistent with the second law of thermodynamics, instabilities are

observed, as for instance in phase transitions.

An efficient mathematical object for analyzing stability among thermomechanical theories

and/or stability in the dynamical sense is what is presently called relative entropy, introduced

in the works of Dafermos [13] and DiPerna [22]. This may be most easily explained in the

framework of (1). Let U(x, t) be a weak entropy solution in BV satisfying (1) and (3) in the

sense of distributions, and let Ū(x, t) be a Lipschitz solution of (1) satisfying (3) as an equality.

In order to compare the distance among two solutions to that of the initial and other data of

the problem, the quantities

relative entropy: η(U |Ū) = η(U) − η(Ū) − ∇η(Ū) · (U − Ū), (7)

relative entropy flux: qα(U |Ū) = qα(U) − qα(Ū ) −∇η(Ū ) ·
(

Fα(U) − Fα(Ū)
)

(8)

are introduced. When η is strictly convex, the relative entropy provides some notion of the

distance between the two solutions. A computation using (1), (3) and (5) gives

∂tη(U |Ū) + divq(U |Ū) ≤ −
∑

α

∇2η(Ū)∂αŪ ·
[

Fα(U) − Fα(Ū) −∇Fα(Ū)(U − Ū)
]

. (9)

Inequality (9) serves as a starting point in order to compare the distance between the two

solutions. A typical result reads:

Theorem 1 Let U be an entropy weak solution, and let Ū be a Lipschitz solution of

(1) defined for t ∈ [0, T ). Suppose that both solutions lie in a convex, compact set D in the

state space. If system (1) is endowed with a strictly convex entropy η, then the following local

stability estimate holds:
∫

|x|<r

|U(x, t) − Ū(x, t)|2dx ≤ aebt

∫

|x|<r+kt

|U0(x) − Ū0(x)|2dx

for any r > 0 and t ∈ [0, T ), with constants a and k depending on D and b also depending on

the Lipschitz norm of Ū .

The article of Dafermos [13] articulates the intimate relation of the method with the second

law of thermodynamics. It is in fact stated at the level of the thermomechanical theory of

thermoelastic nonconductors of heat and the mechanical ramifications of the methodology and

connections of stability and various thermodynamic quantities are pointed out. The article of

DiPerna [22] studies the relative dissipation measure ∂tη(U |Ū) + divq(U |Ū) between two weak

solutions with regard to the question of uniqueness. The relative entropy provides a natural

tool for studying limits from one thermomechanical theory to another at least in the realm

of smooth processes. It has been applied in various directions, e.g. for asymptotic stability

problems in conservation laws [6, 7], for relaxation or kinetic limits [1, 40], or for comparing

entropic measure-valued solutions and strong solutions for conservation laws [3].

The preceding work rests on convexity of the entropy. This assumption is not natural in

several systems of thermomechanics. For example, for the equations of elasticity, the stored

energy needs to be invariant under rotations and the mechanical energy cannot be convex.

Hyperbolicity of the elasticity system stipulates that the stored energy be rank-one convex.

This degeneracy is associated to the existence of multiple zero characteristic speeds and also

appears for the system of magnetohydrodynamics.
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The presence of zero characteristic speeds of high-multiplicity is associated to constraints

that get propagated by the evolution, the so called involutions. Dafermos [14] proposed a theory

for hyperbolic conservation laws with involutions suitable for handling such situations. Assume

that the fluxes in (1) satisfy the equations:

AαFβ(U) + AβFα(U) = 0 (10)

for given matrices Aα ∈ M
k×N , α = 1, · · · , d. That implies the constraint

∑

β

Aβ∂βU = 0 (11)

propagates from the initial data to the solution. Such constraints are called involutions. In

applications, equation (11) stands for the constraint of being a gradient in the context of

elasticity, while it is the divergence free conditions for the magnetic field and the electric field

(in vacuum) in the context of Maxwell’s equations.

It can be checked that (11) has the following implications:

(a) For shock solutions, the amplitudes of the shocks are restricted to satisfy
∑

β

νβAβ [U ] = N(ν)[U ] = 0

that is the jumps lie at the kernel of the matrix

N(n) :=
∑

β

νβAβ .

(b) It can be directly checked that

N(ν)
∑

α

να∇Fα(U) = N(ν)Λ(U, ν) = 0.

This implies in particular that any characteristic eigenvector rj(U, ν) associated to a

nonzero eigenvalue lies in the kernel of N(ν).

Dafermos introduced the cone of amplitudes

K =
{

V ∈ RN : N(ν)V = 0 for some ν ∈ Sd−1
}

(12)

and proved the following theorem.

Theorem 2 Consider system (1) and (10) with the initial data satisfying the constraint

equation (11). For U and Ū as in Theorem 1, if the entropy η is strictly convex on the directions

V ∈ K, the weak and strong solution satisfy the stability estimate:
∫

Rd

|U(x, t) − Ū(x, t)|2 dx ≤ aebt

∫

Rd

|U0(x) − Ū0(x)|2 dx for t ∈ [0, T ).

For the equations of elasticity, the assumption of strict convexity of the entropy in the

directions of the cone of amplitudes is equivalent to rank-one convexity of the elastic stored

energy. Theorem 2 thus provides a weak-strong stability framework for smooth solutions of

the elasticity system. The structure of the equations of thermomechanics has been a central

interest of Dafermos and the interested reader may consult his book [17, Ch. V] for further

information on the topic and for an account of the theory of conservation laws with contingent

entropy pairs.
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4 Wave Fan Admissibility Criteria

The Riemann problem for hyperbolic systems of conservation laws in one space dimension,

∂tU + ∂xF (U) = 0 , (13)

U(x, 0) =







Ul, x < 0,

Ur, x > 0,
(14)

plays an important role in the theory of conservation laws. It is the building block for applying

the Glimm scheme [24], and it describes both the local and asymptotic behavior of general BV

solutions.

Solutions of (13)–(14) are sought as functions U = U
(

x
t

)

of the self-similar variable ξ = x
t

and generated by solving the boundary value problem:

−ξU ′(ξ) + F (U(ξ))′ = 0 , (15)

U(−∞) = Ul , U(∞) = Ur . (16)

For a solution U(ξ) in BV of (15), the regularity of the function U of bounded variation and

the Volpert chain rule imply that the domain (−∞,∞) can be decomposed into the union of

three disjoint sets S, C, and W :

(i) C is a maximal open set in R where the measure U ′ vanishes; on each connected

component of C, U stays constant;

(ii) S is the (at most countable) set of points of jump discontinuity and, on each point

ξ ∈ S, U satisfies the Rankine-Hugoniot jump conditions

F (U(ξ+)) − F (U(ξ−)) = ξ[U(ξ+) − U(ξ−)] ;

(iii) W is the set of points of continuity of U that lie in the support of the measure U ′.

On each point of W , U(ξ) coincides with a rarefaction wave.

The traditional approach for constructing the Riemann problem solutions proceeds by

constructing the wave curves associated to each characteristic family, employing admissibility

criteria to select the admissible shocks. Effective admissibility criteria for the selection of

admissible shocks were proposed by Lax [31] for genuinely nonlinear wave speeds and by Liu

[33, 34] when the wave speeds lose genuine nonlinearity in finitely many points, and serve to

provide a unique solution of (13) for waves of moderate strength.

Dafermos pursued the idea of testing the admissibility of solutions at the level of the entire

wave fan. He proposed two specific criteria of that character, the viscous wave fan admissibility

criterion in [11] and the entropy rate admissibility criterion in [10], and tested their results

against the results of the Lax, Liu, and entropy criteria.

According to the viscous wave fan admissibility criterion, admissible solutions emerge as

ε → 0 limits of the elliptic regularization to the Riemann problem (15):

−ξU ′
ε + F (Uε)

′ = εU ′′
ε , ξ ∈ (−∞,∞) ,

U(−∞) = Ul , U(∞) = Ur .
(17)
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The analytical task when applying this methodology lies in obtaining uniform BV-bounds for

solutions of (17) and analyzing the structure of the limiting solution. By its very nature, the

limiting process captures the entire admissible wave fan simultaneously. This approach was first

tested for hyperbolic systems of two conservation laws with large Riemann data in [11, 19], for

non-strictly hyperbolic systems in [30], and for hyperbolic-elliptic systems exhibiting change of

phase in [36]. This method produced the first complete existence theory for the Riemann prob-

lem (for moderate waves) requiring only strict hyperbolicity but with no further assumptions

on the wave speeds (cf. [39]). We refer the reader to [17, Sec 9.8] for the construction of the

wave fan curves as limits of viscous wave fans, and to [2] for the corresponding construction via

viscous limits. Composite shock and boundary layer waves that appear in boundary Riemann

problems are also captured via viscous wave fans (cf. [29] and [8]).

We next discuss the implications of applying the entropy admissibility criterion (3) with

a designated entropy pair (η(U), q(U)) on the selection of admissible wave fans. The entropy

η(U) can always be normalized so that η(Ul) = η(Ur) = 0. Let U be a BV solution of the

Riemann problem (15)–(16). The entropy admissibility takes the form

−ξη(U)′ + q(U)′ = −µ ≤ 0 , (18)

Using (4) and the Volpert chain rule, one can check that the dissipation measure µ is supported

on the set of points of jump discontinuity S and that, for each ξ ∈ S,

−ξ
[

η(U(ξ+) − η(U(ξ−))
]

+
[

q(U(ξ+) − q(U(ξ−))
]

≤ 0 .

In addition, from (18), one obtains

∫ ∞

−∞

η
(

U(ξ)
)

dξ + q(Ur) − q(Ul) = PU , (19)

where

PU :=
∑

ξ∈S

[

q(U(ξ+) − q(U(ξ−))
]

− ξ
[

η(U(ξ+) − η(U(ξ−))
]

(20)

is the total entropy dissipation of the wave fan associated to U .

The entropy rate admissibility criterion [10] stipulates that the wave fan U
(

x
t

)

is admissible

if it achieves maximal rate of dissipation relative to all wave fans V
(

x
t

)

with the same end-states

U(±∞) = V (±∞), that is,

d+

dt

∫

R

η
(

U(
x

t
)
)

dx ≤
d+

dt

∫

R

η
(

V (
x

t
)
)

dx at t = 0.

Using
d+

dt

∫

R

η
(

U(
x

t
)
)

dx
∣

∣

∣

t=0
=

∫ ∞

−∞

η(U(ξ))dξ

and (19), the entropy rate criterion may be equivalently expressed as minimizing the total

entropy dissipation PV defined in (20) over all wave fans V (ξ) with V (±∞) = U(±∞).

Obviously, the criterion is more stringent than the second law of thermodynamics, as it

requires that entropy dissipates at the maximum rate that is consistent with the conservation

laws (15). It is well known that, for scalar (but nonconvex) conservation laws, the entropy
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criterion should be stipulated for all convex entropies in order to guarantee that shocks satisfy

the Oleinik-E condition. By contrast, stipulating the entropy rate criterion for the entropy

η(u) = 1
2u2 is equivalent to demanding the Oleinik E-condition at shocks [10]. For hyper-

bolic systems of conservation laws, wave fans of moderate strength satisfying the entropy rate

criterion consist of shocks that satisfy the Liu shock conditions, [16]. The criterion has been dis-

cussed for adiabatic (nonisentropic) gas dynamics [28] and for problems of phase transitions [25,

26]. Apart from the fascinating issues raised with regard to the second law of thermodynamics,

the entropy rate criterion offers an intriguing connection between the hyperbolic theory and the

calculus of variations. Indeed, Dafermos [18] employed this procedure to obtain an alternative

method for constructing the wave fans of the Riemann problem.

5 Generalized Characteristics

For smooth solutions to nonlinear hyperbolic equations, characteristics provide one of the

principal tools of the classical theory for the study of analytical and geometric properties of

solutions, since characteristics are carriers of waves of various types. However, as described

earlier, solutions in general become discontinuous no matter how smooth the initial data func-

tions are. Developing a theory of generalized characteristics as an efficient tool for the study of

properties of discontinuous solutions is another fundamental contribution Dafermos has made;

see [12, 15, 17] and the references cited therein.

Consider the one-dimensional strictly hyperbolic system

∂tU + ∂xF (U) = 0, U ∈ R
n. (21)

Let λ1(U) < λ2(U) < · · · < λn(U) be the distinct eigenvalues.

In the classical theory, an i-characteristic, i = 1, 2, · · · , n, of (21), associated with a classical

solution U(x, t), is a C1-function x = ξ(t) that is an integral curve of the ordinary differential

equation:
dx

dt
= λi(U(x, t)). (22)

The existence-uniqueness theory for ordinary differential equations (22) implies that, for any

fixed point (x̄, t̄) in the domain of a classical solution of (21), there exists a unique characteristic

x = ξ(t) of each characteristic family passing through (x̄, t̄).

For a discontinuous weak solution U(x, t) in L∞ of (21), the generalized i-characteristics of

(21), associated with the solution U(x, t), are defined in analogy to the classical case, as integral

curves of (22) in the sense of Filippov [23]. More precisely, a generalized i-characteristic of (21),

associated with the solution U(x, t), on the time interval [t1, t2] ⊂ [0,∞), is a Lipschitz function

ξ : [t1, t2] → (−∞,∞) which satisfies the differential inclusion:

ξ̇(t) ∈ Λi(ξ(t), t), a.e. on [t1, t2], (23)

where

Λi(x̄, t̄) :=
⋂

ε>0

[

essinf
[x̄−ε,x̄+ε]

λi(U(x, t̄)), esssup
[x̄−ε,x̄+ε]

λi(U(x, t̄))
]

. (24)



No.1 G.Q. Chen &A.E. Tzavaras: ON CONTRIBUTIONS OF CONSTANTINE M. DAFERMOS 11

The standard properties of solutions of differential inclusions immediately imply that,

through any fixed point (x̄, t̄) ∈ (−∞,∞) × [0,∞), there are two generalized i-characteristics,

associated with U and defined on [0,∞), the minimal ξ−(·) and the maximal ξ+(·), with

ξ−(·) ≤ ξ+(·) for t ∈ [0,∞).

The funnel-shaped region confined between the graphs of ξ−(·) and ξ+(·) comprises the set of

points (x, t) that may be connected to (x̄, t̄) by a generalized i-characteristic associated with U .

In addition to classical i-characteristics, i-shocks that satisfy the Lax entropy condition

are obvious examples of generalized i-characteristics. In fact, as shown by Dafermos [15], these

are the only possibilities when the weak solution U is in BV .

Furthermore, assume that the i-characteristic family for (21) is genuinely nonlinear and the

oscillation of U ∈ BV is sufficiently small, Dafermos in [15] proved that, the minimal and the

maximal backward i-characteristics, emanating from any point (x̄, t̄) of the upper half-plane,

are shock free.

The method of generalized characteristics can be used to establish regularity and asymp-

totic behavior properties of BV solutions of genuinely nonlinear 2 × 2 systems of conservation

laws, see [20, 37] and Chapter 12 in [17].

The detailed theory of generalized characteristics and its further applications to the study

of analytical and geometric properties of the solutions in BV can be found in Dafermos [12, 15,

17] and the references cited therein.

6 Wave Front Tracking

It is well-known that, when the initial data function is a step function, a local solution of

the Cauchy problem of one-dimensional hyperbolic conservation laws can be constructed as a

superposition of solutions of the Riemann problem. In general, the solution of the Riemann

problem may consist of constant states separated by shocks, contact discontinuities, and/or

rarefaction waves. However, for the scalar case, if the scalar flux function is piecewise linear,

then the constant states of the solution of the Riemann problem are separated exclusively by

shocks and/or contact discontinuities. Based on this observation, Dafermos in [9] developed an

analytical method, the method of wave front tracking, to construct entropy solutions for scalar

conservation laws:

∂tu + ∂xf(u) = 0, u|t=0 = u0 (25)

with initial data u0 of locally bounded variation.

Roughly speaking, front tracking consists in making a step function approximation to the

initial data and a piecewise linear approximation to the flux function. The approximate initial

data function defines a series of Riemann problems, one at each step, which can be easily solved.

Since the solutions have finite speed of propagation, they are independent of each other until

waves from neighboring cells interact. Front tracking then resolves this interaction in order to

propagate the solution to larger times for the continuous and piecewise linear flux functions.

More precisely, the method of wave front tracking developed in Dafermos [9] consists of the

following four steps:

(i) Approximate f by a continuous, piecewise linear flux function fε;
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(ii) Approximate initial data u0 by a piecewise constant function uδ
0;

(iii) Solve the initial value problem

∂tu + ∂xfε(u) = 0, u|t=0 = uδ
0 (26)

exactly to obtain the solution uε,δ;

(iv) As fε and uδ
0 approach f and u0, respectively, the approximate solutions uε,δ converge

to u, the entropy solution of the Cauchy problem (25), almost everywhere as ε, δ → 0.

Since uδ
0 is a piecewise constant function with a finite number of discontinuities, the solution

initially consists of a number of non-interacting solutions of Riemann problems. Each solution

is a piecewise constant function with discontinuities traveling at constant speed. Hence, at some

later time t1 > 0, two discontinuities from the neighboring Riemann problems interact.

For t ≥ t1, the solution can be constructed by solving the Cauchy problem for the same

equation with initial data uε,δ(x, t1) that of the same type of function as uδ
0(x). This can be

achieved by solving the Riemann problems at the discontinuities of uε,δ(x, t1) as we did initially,

so that the solution can be extended up to the next interaction at t2. It is clear that we can

continue this process for any number of interactions occurring at times tn with

0 < t1 ≤ t2 ≤ t3 ≤ · · · ≤ tn ≤ · · · .

However, we cannot a priori be sure that lim tn = ∞, or in other words, that we can extend the

solution up to any predetermined time. One would envisage that the number of discontinuities

might grow for each interaction and that their number increases without bound at some finite

time. Fortunately, this does not happen for the scalar case with convex/concave flux function,

which guarantees the existence of a global approximate solution uε,δ(x, t) satisfying the entropy

condition for (25) for fixed ε > 0 and δ > 0. The function uε,δ(x, t) is a piecewise constant

function of x for each t and takes values in a finite set. Moreover, there are only a finite

number of interactions between the discontinuities (i.e., wave fronts) of uε,δ. Furthermore, the

total variations of the approximate solutions uε,δ(x, t) are uniformly bounded with respect to

ε, δ > 0, which yields (iv).

The analytical idea of front-tracking introduced in Dafermos [9] has been further developed

for scalar conservation laws and applied for various numerical methods; see Holden-Risebro [27].

The method of wave front tracking was extended to genuinely nonlinear systems of two

conservation laws by DiPerna [21] and then to genuinely nonlinear systems of any size, in-

dependently, by Bressan [4] and Risebro [35]. The method of wave front tracking has been

also further developed to construct the standard Riemann semigroups, which has played an

important role in establishing the uniqueness and L1-stability of entropy solutions in BV for

hyperbolic conservation laws. For more details, see Bressan [5] and Dafermos [17].

7 A Monumental Book

The book “Hyperbolic Conservation Laws in Continuum Physics” [17] is a comprehensive

treatise which elucidates Dafermos’ view of the linkage between Continuum Mechanics and

Conservation Laws. In its three editions, the book has kept up to date with the most recent

developments on the subject of Conservation Laws and is a definitive work that will be referred

to by future generations of scientists.
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