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Abstract. This article is devoted to the proof of the hydrodynamic limit for
a discrete velocity Boltzmann equation before appearance of shocks in the limit
system.

1. Introduction

We consider the system of discrete velocity Boltzmann equations

(1.1) ∂tfi + vi∂xfi =
1
ε
Qi(f, f), for i = 1, . . . , N,

where

(1.2) Qi(f, f) =
∑
jkl

Sijkl(fkfl − fifj),

and N ≥ 3. Such systems have been extensively studied in the literature (see e.g.
Cabannes, Gatignol and Luo [11] or Platkwoski and Illner [24] and references therein)
because they offer a simplification and approximation of the Boltzmann equation
that shares remarkable similarities to the latter model. Nevertheless, these systems
are quite simpler than the Boltzmann equation and for instance their existence
theory is relatively well understood in both the cases of one dimension [1, 7, 19] as
well as in several space dimensions [8, 15]. Discrete velocity models present certain
pathologies in several space dimensions and we will refrain from working with them
here.

The parameter ε is called mean free path or Knudsen number and. under certain
conditions on the interaction coefficients Sijkl that will be precised later, the system
formally converges as ε→ 0 to equations,

(1.3)

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρE) = 0,

∂t(ρE) + ∂x(ρJ(u,E)) = 0,

The objective of this article is to establish the hydrodynamic limit from discrete
Boltzmann equations (1.1) to the gas dynamics system in the form (1.3) in the
regime where the solutions of (1.3) remain smooth.

It is well known that several models of fluid mechanics arise as limits of kinetic
equations in a variety of scalings. The best known examples are the compressible
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Euler equations and the incompressible Navier-Stokes equations that can be for-
mally derived from the Boltzmann equation, see e.g. the review article [16] . The
mathematical justification of such scaling limits tests the limits of modern theories of
weak solutions, with the most succesful example being the derivation of incompress-
ible Navier-Stokes equations from the Boltzmann equation, see [17] and references
therein. In the hyperbolic scaling, the Boltzmann equation leads to the system of
compressible Euler equations consisting of the balance of mass, momentum and en-
ergy. Due to difficulties with the theory of the Euler system, the validation of this
limit in full generality is currently an open problem, with partial results achieved ei-
ther when the limiting solution is smooth and the kinetic data are near a Maxwellian
[29] or for solutions of the Euler system containing non-interacting shocks [32].

A simpler paradigm for studying the hyperbolic scaling is offered by discrete ve-
locity problems (1.1). The formal limiting system then takes the form (1.3) which
has certain similarity with the usual compressible Euler system (but also the non-
physical feature that the pressure and heat flux depend on the velocity). The usual
approach for studying the Euler limit proceeds by studying spectral properties of
the linearized Boltzmann operator, see the analysis of Calfisch and Papanicolaou
[12] justifying the Euler limit from the Broadwell model to an isothermal Euler
system consisting of balance of mass and momentum, and also the asymptotic in
time convergence of (1.1) to global Maxwellians established in Kawashima [21]. We
note that an analysis of the linearized Boltzmann operator lies in the core of the
derivation of the Euler system from the Boltzmann equation for smooth solutions
and near Maxwellian data [29, 3]. The novelty of this article is that we will use an
energy method to establish this limit in the smooth regime, based on the natural
entropy of the system (1.1) and outlined below. Especially, we do not need any
regularity assumption on the kinetic functions at ε fixed. Convergence in L2 of the
initial values are sufficient to ensure the convergence up to the blowing-up time of
the limit equation.

The rigorous derivation of hydrodynamic (Euler) limits for weak solutions is far
less understood (even in one-space dimension), due to the the poor understanding of
the existence theory for weak solutions of hyperbolic conservation laws. Nevertheless,
there are available justifications of hydrodynamic limits from BGK-models to the
isothermal Euler sytem in Lagrangian [27, 26] or Eulerian coordinates [2, 4] via
compensated compactness. Moreover, the latest technology of the Bressan-Bianchini
interaction functionals has been applied to justify the hydrodynamic limit from
kinetic equations to systems of conservation laws [6]. All these analyses concern
kinetic models with BGK-type collision operators and their extension to Boltzmann
type collision operators appears nontrivial.

In this work, we establish the hydrodynamic limit using a relative entropy identity.
The relative entropy method was initially developed in the context of uniqueness and
stability for hyperbolic conservation laws by Dafermos [13] and DiPerna [14], and
in a context of hydrodynamics for stochastic particle systems by Yau [31] and Olla-
Varadhan-Yau [23]. It has been used in a variety of contexts to establish limits from
entropy dissipating solutions of one physical theory to entropy conserving solutions
of another. The reader is referred to [9, 10, 18, 20, 22, 25] for various applications.
The approach used here is closest to the spirit of the articles Berthelin-Vasseur [5]
and Tzavaras [28] concerning kinetic or relaxation limits for BGK-type of collision
operators. For a Boltzmann-type collision operator one needs an estimation of the
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entropy dissipation (from below) in terms of a norm measuring the distance between
the nonequilibrium kinetic density and the associated local Maxwellian. Villani in
his well known study of the Cercignani conjecture [30] has studied the extent of
validity of such inequalities in terms of the metric of the relative entropy. Instead, we
estimate from below the entropy dissipation via an alternate metric (see Proposition
4.1). In addition, we use certain structural properties pertaining to the system
(1.3) and due to the finite number of velocities. While the general form of the
relative entropy identity remains valid for the case of the Boltzmann equation the
latter two ingredients hinge on the fact that we deal with a discrete velocity model.
Interestingly the resulting convergence result applies to the full compressible Euler
system (1.3).

We remark that the analysis can be easily extended to the case of several space
dimensions under the structural hypothesis (H). One could similarly establish a
convergence result from a discrete velocity model equipped only with microscopic
conservation of mass and momentum to an isothermal Euler system by replacing
hypothesis (H) by the corresponding hypothesis that the collision kernel is two-
dimensional and is spanned by the two associated collisional invariants.

We begin in section 2 with a description of the model, an outline of the formal-
ism of its hydrodynamic limit and the statement of the main result Theorem 2.3.
In section 3 we develop links between the kinetic and the macroscopic entropies
and prove certain structural properties of the limit system, the entropy consistency
property and hyperbolicity. Section 4 contains the key estimation of the entropy
dissipation (Proposition 4.1), and section 5 contains the derivation of the relative
entropy identity and the conclusion of the proof of Theorem 2.3.

2. Description of the model and statement of results

The interaction coefficients Sijkl entering the definition of the collision operator
(1.2) are assumed to satisfy the properties of symmetry and microreversibility,

(2.4) Sijkl = Sjikl, Sijkl = Sijlk,

(2.5) Sijkl = Sklij ,

and to describe the probability of the elastic collision (i, j) → (k, l) conserving the
microscopic mass, momentum and energy

(2.6) vk + vl = vi + vj , v2
k + v2

l = v2
i + v2

j if Sijkl 6= 0.

For any f ∈ RN , we have from (2.6):

(2.7)
∑
i

Qi = 0,
∑
i

viQi = 0,
∑
i

v2
iQi = 0 ,

which entail conservation laws for the total mass, momentum and energy. Consider
the collision matrix B ∈ {−1, 0, 1}N2×N given by:

Bij,i = Bij,j = −Bij,k = −Bij,l = 1 if Sijkl 6= 0,
Bij,k = 0 everywhere else.

Note that (2.7) implies that (1, · · ·, 1), (v1, · · ·, vN ) and (v2
1, · · ·, v2

N ) are in the kernel
of B. We pose the additional hypothesis:

(H) N(B) = span
{

(1, · · ·, 1), (v1, · · ·, vN ), (v2
1, · · ·, v2

N )
}

and dimN(B) = 3 .
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This implies that the only conserved quantities are precisely the mass, momentum
and energy and that the model does not have any extraneous conservation laws.
Finally, we define the entropy of f via the usual relation

H(f) =
N∑
i=1

fi ln fi

For any C1 function F : D → R defined on a convex set D ⊂ Rk, we define the
associated relative function:

F (U1|U2) = F (U1)− F (U2)− F ′(U2)(U1 − U2).

We also set
s(y) = y ln y ,

and use in the sequel the following notations:

a ∗ b = a1b1 + a2b2 + a3b3 a, b ∈ R3,

f · g =
N∑
i=1

figi f, g ∈ RN ,

|f | =
N∑
i=1

|fi| f ∈ RN ,

Pf =
N∑
i=1

(1, vi, v2
i )fi f ∈ RN ,

|Pf | =
2∑

β=0

N∑
i=1

∣∣∣vβi fi∣∣∣ f ∈ RN .

Our first lemma concerns tha structure of Maxwellians associated to discrete
velocity Boltzmann equations:

Lemma 2.1. A vector (M1, · · · ,MN ) ∈ (R+)N verifies Q(M,M) = 0 if and only if
there exists a, b, c ∈ R such that

Mi = ea+bvi+cv
2
i for any 1 ≤ i ≤ N.

Setting ψ(b, c) =
∑N

i=1 e
bvi+cv

2
i , we express the Maxwellians in the form

Mi = ρ
ebvi+cv

2
i∑N

i=1 e
bvi+cv2i

and note the relations

(2.8) ρ =
N∑
i=1

Mi = eaψ(b, c),
N∑
i=1

viMi = ρ
∂bψ

ψ
(b, c),

N∑
i=1

v2
iMi = ρ

∂cψ

ψ
(b, c).

For a given Maxwellian M , we define

(ρ, ρu, ρE) = PM,
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that is to say

ρ =
N∑
i=1

Mi =
N∑
i=1

ea+bvi+cv
2
i = eaψ(b, c),

ρu =
N∑
i=1

viMi =
N∑
i=1

vie
a+bvi+cv

2
i = ρ

∂bψ

ψ
(b, c),

ρE =
N∑
i=1

v2
iMi =

N∑
i=1

v2
i e
a+bvi+cv

2
i = ρ

∂cψ

ψ
(b, c).

We notice that
u = ∂b(lnψ), E = ∂c(lnψ),

and then we denote U the set of admissible value of (u,E), that is:

U = {(∂b(lnψ), ∂c(lnψ)) | b, c ∈ R}.

The hydrodynamic limit system can be written formally as

(2.9)

 ∂t
∑

iMi + ∂x
∑

i viMi = 0,
∂t
∑

i viMi + ∂x
∑

i v
2
iMi = 0,

∂t
∑

i v
2
iMi + ∂x

∑
i v

3
iMi = 0,

which leads to

(2.10)

 ∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρE) = 0,
∂t(ρE) + ∂x(ρJ) = 0,

where we set

(2.11) J(u,E) =
∂bcψ

ψ
.

The flux J = J(u,E) is well defined thanks to the following lemma.

Lemma 2.2. The function lnψ is smooth and strictly convex and so the map: T :
(b, c)→ (u,E) defined by

T (b, c) = ∇(b,c) lnψ(b, c)

is a C1 diffeomorphism from R2 to U .

We introduce also the entropy of the system:

η(ρ, ρu, ρE) = H(M) =
N∑
i=1

Mi lnMi.

Conversely, for any U = (ρ, ρu, ρE) with ρ > 0 and (u,E) ∈ U , we define

M(U) = (Mi(U))i=1,··· ,N = (ea+bvi+cv
2
i )i=1,··· ,N

with ρ, u,E and a, b, c related as in Lemma 2.1.

The article is devoted to the proof of the following theorem:



6 F. BERTHELIN, A.E. TZAVARAS, AND A. VASSEUR

Theorem 2.3. Let (ρ0, u0, E0), be a Lipshitzian function on R with values in R+×U
such that U0 = (ρ0, ρ0u0, ρ0E0) and η(ρ0, ρ0u0, ρ0E0) lie altogether in L1(R) and
∂xU0 ∈ L2(R)∩L∞(R). Then, there exists a maximal time T ∗ such that the solution
(ρ, ρu, ρE) to the limit system (2.10) with initial values (ρ0, u0, E0) stays Lipshitzian
on [0, T ∗)× R. Denote M the Maxwellian associated to (ρ, ρu, ρE). Consider f0

ε ∈
(L1(R))N such that each component is nonnegative and verifying H(f0

ε ) bounded in
L1(R). We denote fε the solution of (1.1) with initial value f0

ε . If f0
ε converges

strongly to M0, Maxwellian associated to (ρ0, u0, E0) in the sense that∫
R
H(f0

ε |M
0)(x) dx →

ε→0
0,

then fε converges strongly to M in the sense that for any T < T ∗:

sup
0≤t≤T

∫
R
H(fε|M)(t, x) dx →

ε→0
0,

where

H(f |g) =
∑
i

fi ln(fi/gi)− (fi − gi) ≥ 0.

The proof is based on the results of Tzavaras [28] and Berthelin-Vasseur[5] on the
relative entropy method, and on an estimation of the entropy-dissipation developed
in section 4.

3. Preliminaries

In this section, we gather certain structural properties of the model (1.1) and
its hydrodynamic limit. Especially, we introduce a link between kinetic relative
entropies and macroscopic ones, we show that the system is hyperbolic, entropy
consistent and obtain properties on the domain U .

First, we prove Lemma 2.1 and Lemma 2.2.
Proof of Lemma 2.1. If Q(M,M) = 0 then in particular

D[M ] =
N∑
i=1

ln(Mi)Qi(M) =
1
4

∑
ijkl

Sijkl[ln(MkMl)− ln(MiMj)](MkMl−MiMj) = 0.

But each terms of the last sum is nonnegative so, for any i, j, k, l such that Sijkl 6= 0,
we have MkMl = MiMj which means:

lnMk + lnMl = lnMi + lnMj .

This implies that lnM = (lnMi)i=1,··· ,N lies in N(B). Hypothesis (H) implies that
there exists (a, b, c) such that

lnMi = a+ bvi + cv2
i for any 1 ≤ i ≤ N.

Conversely, note that if lnM is given by such a formula, then MkMl = MiMj for
any ijkl verifying Sijkl 6= 0 and Q(M,M) = 0 as well.



FROM DISCRETE BOLTZMANN TO GAS DYNAMICS 7

To show the second part of the statement. Note that from the definition of ψ we

have ea =
ρ

ψ
, that is to say e−a =

ψ

ρ
. Noting that

∂bψ =
N∑
i=1

vie
bvi+cv

2
i = e−a

N∑
i=1

viMi,

∂cψ =
N∑
i=1

v2
i e
bvi+cv

2
i = e−a

N∑
i=1

v2
iMi,

gives the result.
We list the useful formulas

N∑
i=1

ebvi+cv
2
i = ψ(b, c),

N∑
i=1

vie
bvi+cv

2
i = ψ(b, c)u,(3.12)

N∑
i=1

v2
i e
bvi+cv

2
i = ψ(b, c)E.

Proof of Lemma 2.2. The matrix of the second derivatives of lnψ is:
1
ψ2

(
ψ∂bbψ − (∂bψ)2 ψ∂bcψ − ∂bψ∂cψ
ψ∂bcψ − ∂bψ∂cψ ψ∂ccψ − (∂cψ)2

)
which can be rewritten

1
ψ


N∑
i=1

(vi − u)2ebvi+cv
2
i

N∑
i=1

(vi − u)(v2
i − E)ebvi+cv

2
i

N∑
i=1

(vi − u)(v2
i − E)ebvi+cv

2
i

N∑
i=1

(v2
i − E)2ebvi+cv

2
i

 .

Indeed, we have

ψ∂bbψ − (∂bψ)2 = ψ
N∑
i=1

v2
i e
bvi+cv

2
i − ψu

N∑
i=1

vie
bvi+cv

2
i

(3.12)
= ψ

N∑
i=1

(vi − u)2ebvi+cv
2
i ,

ψ∂bcψ − (∂bψ)(∂cψ) = ψ

N∑
i=1

v3
i e
bvi+cv

2
i −

N∑
i=1

vie
bvi+cv

2
i

N∑
i=1

v2
i e
bvi+cv

2
i

(3.12)
= ψ

N∑
i=1

v3
i e
bvi+cv

2
i − ψ2uE

(3.12)
= ψ

N∑
i=1

(vi − u)(v2
i − E)ebvi+cv

2
i ,

and similarly for the last entry of the matrix.
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The trace of this matrix is positive. Its determinant is also positive as can be seen
by applying the Cauchy-Schwarz inequality,[

N∑
i=1

(vi − u)(v2
i − E)ebvi+cv

2
i

]2

≤
( N∑
i=1

(vi − u)2ebvi+cv
2
i

)( N∑
i=1

(v2
i − E)2ebvi+cv

2
i

)
If the determinant is equal to 0 then equality holds in the Cauchy-Schwarz inequality
which, in turn, implies that the vectors (1, ..., 1), (v1, ..., vN ) and (v2

1, ...v
2
N ) are

linearly dependent. The latter is ruled out by hypothesis (H), and thus the matrix
of the second derivatives of lnψ is strictly positive, and lnψ is strictly convex. The
mapping T is a C1,1 diffeomorphism from R2 to U .

We prove now the following lemma related to relative quantities.

Lemma 3.1. Let F : D → R be a C2 function on a convex set D ⊂ Rk. The function
F is convex on D if and only if the associated relative function is nonnegative on
D ×D.

Proof. For any U1, U2 ∈ V we have:

F (U1|U2) =
∫ 1

0

∫ 1

0
F ′′(U1 + st(U2 − U1)) : [(U1 − U2)⊗ (U1 − U2)]t ds dt.

Hence, if F is convex then F ′′ is positive and so F (U1|U2) is nonnegative. Conversely,
for |U1 − U2| small, we have:

F (U1|U2) = F ′′(U2) : [(U1 − U2)⊗ (U1 − U2)] + o(|U1 − U2|2).

Then, if F (·|·) is nonnegative everywhere, then F ′′(U2) is a nonnegative matrix for
any U2 and F is convex.

In particular, s′(y) = 1 + ln y leads to the usual relation:

s(y|z) = y ln
y

z
− (y − z) ≥ 0,

since s is convex.

Let us show now the following lemma which gives the link between the relative
entropy at the kinetic level and at the macroscopic level.

Lemma 3.2. For any U = (ρ, ρu, ρE) with ρ > 0 and (u,E) ∈ U , we set

M(U) = (Mi(U))i=1,··· ,N = (ea+bvi+cv
2
i )i=1,··· ,N

with ρ, u,E and a, b, c related as in Lemma 2.1. We then have

i) PM(U) = U,

ii) η(U) = H(M(U)) = inf
Pf=U

H(f),

and

iii)
∂η

∂U
(U) ∗ w =

∂H
∂f

(M(U)) · f,

for any w ∈ R3 and any f ∈ RN such that w = Pf .
Especially

iv) η(U |U) = H(M(U)|M(U)),
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and
v) η(U |U) ≤ H(f |M(U)),

for any Pf = U .

Proof. i) We have

PM(U) =
N∑
i=1

(1, vi, v2
i )Mi(U) =

N∑
i=1

(1, vi, v2
i )e

a+bvi+cv
2
i = (ρ, ρu, ρE) = U.

ii) By definition, we have

η(U) = H(M(U)) =
N∑
i=1

s(Mi(U)).

For any f such that Pf = U , we have

0 ≤ H(f |M(U)) = H(f)−H(M(U))− ∂fH(M(U)) · (f −M(U))

= H(f)−H(M(U))−
N∑
i=1

(1 + lnMi(U))(fi −Mi(U)),

with
N∑
i=1

(1 + lnMi(U))(fi −Mi(U)) = (1 + a, b, c) ∗ P (f −M(U)) = 0

since P (f −M(U)) = U − PM(U) = 0. Hence:

H(f) ≥ H(M(U)) for any Pf = U,

which gives the result.
iii) By differentiation of U = PM(U) with respect to U , we get, with P linear,

Id = P
∂M

∂U
.

We denote

eβ = P
∂M

∂Uβ
.

Let f ∈ RN and w ∈ R3 such that w = Pf . Decomposing w on the basis (eβ) we
have:

Pf = w =
3∑

β=1

wβeβ =
3∑

β=1

wβP
∂M

∂Uβ
,

and so

P

f − 3∑
β=1

wβ
∂M

∂Uβ

 = 0.

This gives the existence of g such that:

f =
3∑

β=1

wβ
∂M

∂Uβ
+ g

Pg = 0.
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But
∂η

∂Uβ
=
∂H
∂f

(M(U)) · ∂M
∂Uβ

,

Hence:

∂η

∂U
∗ w =

3∑
β=1

∂η

∂Uβ
wβ =

3∑
β=1

wβ
∂H
∂f

(M(U)) · ∂M
∂Uβ

=
∂H
∂f

(M(U)) · (f − g).

We conclude with the argument that
∂H
∂f

(M(U)) ⊥ N(P ).

This comes from the fact that

η(U) = min
Pf=U

H(f) = H(M(U))

(see [28, Proposition 2.1]).
iv) We have

η(U |U) = η(U)− η(U)− ∂Uη(U) ∗ (U − U)
= H(M(U))−H(M(U))− ∂fH(M(U)) · (M(U)−M(U))

= H(M(U)|M(U))

using iii) with w = U − U and f = M(U)−M(U).
v) For f such that U = Pf , we have

η(U |U) = H(M(U))−H(M(U))− ∂fH(M(U)) · (M(U)−M(U))

≤ H(f)−H(M(U))− ∂fH(M(U)) · (M(U)−M(U))

≤ H(f |M(U))− ∂fH(M(U)) · (M(U)− f).

Now

∂fH(M(U)) · g =
N∑
i=1

(1 + lnMi(U))gi =
N∑
i=1

(1 + a+ bvi + cv2
i )gi = 0

whenever Pg = 0. Since P (M(U)− f) = 0, we conclude.

We can now show the main proposition of this section.

Proposition 3.3. The system (1.3) is hyperbolic, admissible (in the sense of Berthelin-
Vasseur [5]), i.e. there exists C > 0 such that

|A(U |U)| ≤ Cη(U |U) for any ρ > 0, (u,E) ∈ U ,

η is a convex entropy and

η(U |U) = H(M(U)|M(U)) = s(ρ|ρ) + ρ lnψ((b, c)|(b, c))

for any U,U with ρ, u,E and a, b, c related as in Lemma 2.1. Finally, there exists a
constant C > 0 such that

|u|+ |E| ≤ C for any (u,E) ∈ U .
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Proof. Let us first check that η is an entropy of the limit system with entropy flux
N∑
i=1

viMi(U) lnMi(U). Indeed

∂t

N∑
i=1

Mi lnMi + ∂x

N∑
i=1

viMi lnMi

=
N∑
i=1

(1 + lnMi)(∂tMi + vi∂xMi)

=
N∑
i=1

(1 + a+ bvi + cv2
i )(∂tMi + vi∂xMi)

= (1 + a)

(
∂t

N∑
i=1

Mi + ∂x

N∑
i=1

viMi

)
+ b

(
∂t

N∑
i=1

viMi + ∂x

N∑
i=1

v2
iMi

)

+c

(
∂t

N∑
i=1

v2
iMi + ∂x

N∑
i=1

v3
iMi

)
= 0.

Let us now calculate H(M |M) for two Maxwellians M,M . We set

lnMi = a+ bvi + cv2
i

lnM i = a+ bvi + cv2
i .

Then,

H(M |M) = H(M)−H(M)− ∂fH(M) · (M −M)

=
N∑
i=1

Mi lnMi −
N∑
i=1

Mi lnM i −
N∑
i=1

(1 + lnM i) · (Mi −M i)

=
N∑
i=1

Mi(lnMi − lnM i)−
N∑
i=1

(Mi −M i)

= (a− a)
N∑
i=1

Mi + (b− b)
N∑
i=1

viMi + (c− c)
N∑
i=1

v2
iMi −

N∑
i=1

(Mi −M i)

= (a− a)ρ+ (b− b)ρu+ (c− c)ρE − (ρ− ρ)

= ρ(ln(ρ/ψ)− ln(ρ/ψ)) + (b− b)ρu+ (c− c)ρE − (ρ− ρ)

= s(ρ|ρ) + ρ
[
lnψ − lnψ − ∂b(lnψ)(b− b)− ∂c(lnψ)(c− c)

]
= s(ρ|ρ) + ρ(lnψ)((b, c)|(b, c)).

The function s and (− lnψ) are convex, and thus, thanks to Lemma 3.1,

H(M |M) ≥ 0 for any M,M.

Lemma 3.2 gives that the relative entropy of η is nonnegative, and thanks to Lemma
3.1 again, we conclude that η is convex. Hence, the limit system is hyperbolic.
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Note that for any (u,E) ∈ U , since

u =

N∑
i=1

viMi

N∑
i=1

Mi

, E =

N∑
i=1

v2
iMi

N∑
i=1

Mi

,

we have
|u| ≤ sup

i=1,··· ,N
|vi|, |E| ≤ sup

i=1,··· ,N
|v2
i |.

Hence U is bounded in R2. Let us write the limit system as

∂tU + ∂xA(U) = 0,

where
A(ρ, ρu, ρE) = (ρu, ρE, ρJ(u,E)).

First note that the two first component of A are linear in U , so the associated relative
quantity are 0. For the third one we calculate:

A3(U |U) = ρJ((u,E)|(u,E)).

Thanks to the Taylor expansion, since J ∈ C2 and U is bounded, there exists a
constant C > 0 such that for any (u,E) ∈ U , we have

J((u,E)|(u,E)) ≤ C(|u− u|2 + |E − E|2).

We also have

η(U |U) ≥ ρ(lnψ)((b, c)|(b, c)) ≥ cρ(|u− u|2 + |E − E|2),

with c > 0 thanks to the strict convexity of lnψ and the boundedness of U . Hence

|A(U |U)| ≤ C

c
η(U |U) for any ρ > 0, (u,E) ∈ U ,

which means that the system is admissible.

4. Estimation of the dissipation

This section is dedicated to the estimation of the dissipation

(4.13) D(f) =
1
4

∑
ijkl

Sijkl ln
(
fkfl
fifj

)
(fkfl − fifj) ≥ 0

via the proposition:

Proposition 4.1. There exists a constant C such that for any f ∈ RN we have

(4.14)
N∑
i=1

|fi −Mi| ≤ C
√
D(f),

where M = M(Pf) is the associated Maxwellian.

We first prove three lemmas.
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Lemma 4.2. Let 0 < α < β. For any f ∈ RN , we set ρ =
N∑
i=1

fi, and M = M(Pf).

There exists Cαβ such that for any f ∈ RN , if 0 < αρ ≤ fi ≤ βρ for any i, then

(4.15) D(f) ≥ Cαβ
N∑
i=1

|fi −Mi|2.

Proof. SinceD(f/ρ) = D(f)/ρ2 and
N∑
i=1

∣∣∣∣fiρ −Mi(P
(
f

ρ

)
)
∣∣∣∣2 =

N∑
i=1

∣∣∣∣fiρ − Mi(Pf)
ρ

∣∣∣∣2 =

1
ρ2

N∑
i=1

|fi −Mi|2, we can assume that ρ = 1.

From
∣∣ln A

B

∣∣ ≤ max
(

1
A ,

1
B

)
|A−B| with A = fifj and B = fkfl, we get D(f) ≥ D(f)

with

D(f) =
α2

4

∑
ijkl

Sijkl (ln fk + ln fl − ln fi − ln fj)
2 .

Since the kernel of D(f) is V = vect
(
(1, · · · , 1), (v1, · · · , vN ), (v2

1, · · · , v2
N )
)

from
property (H), denoting by P the linear projection from RN onto V , there exists C
such that

D(f) ≥ C
∑
i

| ln fi − P(ln fi)|2.

Now, since exp(P(ln f)) = M(exp(P(ln f))), we have

f −M(f) = exp(ln f)− exp(P(ln f)) +M(exp(P(ln f)))−M(exp(ln f))
= (Id−M) ◦ exp(ln f)− (Id−M) ◦ exp(P ln f).

Using that exp is lipschitz on every ]−∞, R] and that P ln f do not goes to −∞, there
exists Kαβ > 0 such that (Id −M) ◦ exp is lipschitz on ln[α, β] and on ln(P[α, β]).
Thus

|fi −Mi(f)| ≤ Kαβ| ln fi − P ln fi|
and therefore

D(f) ≥ C

K2
αβ

∑
i

|fi −Mi|2.

Lemma 4.3. There exists γ1, C1 such that for any f ∈ RN , setting ρ =
N∑
i=1

fi, if

there exists i0 such that fi0 ≤ γ1ρ, then

(4.16) D(f) ≥ C1ρ
2.

Proof. Since D(f/ρ) = D(f)/ρ2, we may assume with no loss of generality that
ρ = 1.
The proof proceeds by contradiction. Let us assume that for any γ,C, there exists
f and i0 such that fi0 ≤ γρ and D(f) ≤ C. From Proposition 3.3, U is bounded,

that is to say (u =
N∑
i=1

vifi, E =
N∑
i=1

|vi|2fi) is bounded. Thus there exists γ such

that 0 < γ < Mi for any i.
With this γ, for any n ∈ N∗, taking C = 1/n, there exists fn and i0(n) such that
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fni0(n) ≤ γ and D(fn) ≤ 1/n. Since i0(n) takes finitely many values, we can extract
a subsequence such that i0(n) remains constant. For this index i0, we have for a
subsequence fni0 → fi0 ∈ [0, γ], and extracting successively further subsequences,
fnj → fj ∈ [0, 1] for all other j. Now D(fn) → 0 gives D(f) = 0, and Lemma 2.1
implies that f = M and then γ < Mi0 = fi0 which is a contradiction.

By similar arguments, we also prove that

Lemma 4.4. There exists γ2, C2 such that for any f ∈ RN , setting ρ =
N∑
i=1

fi, if

there exists i0 such that fi0 ≥ γ2ρ, then

(4.17) D(f) ≥ C2ρ
2.

Based on these three properties, we can now show the Proposition 4.1.

Proof of Proposition 4.1. Let ε > 0 and set I =
∑N

i=1 |fi −Mi|. If ρ < ε then
I ≤ 2ε.

For ρ ≥ ε, we select γ1, γ2 as in Lemmas 4.3 and 4.4 and distinguish three
possibilities: either (i) γ1ρ < fi < γ2ρ for all indices i, or (ii) there exists i0 so that
fi0 > γ2ρ, or finally (iii) there is i0 such that fi0 < γ1ρ. In each case I is estimated
as follows:

N∑
i=1

|fi −Mi| ≤
N∑
i=1

|fi −Mi|1Iρ≤ε +
N∑
i=1

|fi −Mi|1Iρ≥ε

≤ 2ε+
N∑
i=1

|fi −Mi|1I∃i0;fi0
≤γ1ρ1Iρ≥ε

+
N∑
i=1

|fi −Mi|1I∃i0;fi0
≥γ2ρ1Iρ≥ε

+
N∑
i=1

|fi −Mi|1I∀i;γ1ρ≤fi≤γ2ρ1Iρ≥ε

≤ 2ε+ 2ρ1I∃i0;fi0
≤γ1ρ + 2ρ1I∃i0;fi0

≥γ2ρ

+
√∑

i

|fi −Mi|21I∀i;γ1ρ≤fi≤γ2ρ1Iρ≥ε
√
N

≤ 2ε+ 2

√
D(f)
C1

+ 2

√
D(f)
C2

+

√
ND(f)
Cγ1γ2

Finally, we take ε→ 0.

5. Hydrodynamic limit

In this section, we prove Theorem 2.3. We denote by fε the solution of (1.1), by

Uε = (ρε, ρεuε, ρεEε) = Pfε =
N∑
i=1

(1, vi, v2
i )(fε)i, by Mε = M(Uε), by U the smooth

solution to the limit system and by M = M(U) the associated Maxwellian.
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Multiplying (1.1) by ln(fε)i and summing in i gives

(5.18) ∂t

N∑
i=1

(fε)i ln(fε)i + ∂x

N∑
i=1

vi(fε)i ln(fε)i +
D(fε)
ε

= 0.

Thanks to Proposition 3.3, we have:

(5.19) ∂t

N∑
i=1

M i lnM i + ∂x

N∑
i=1

viM i lnM i = 0.

We can now study the evolution of the relative entropy between fε and M :

∂tH(fε|M) + ∂x

N∑
i=1

vis((fε)i|M i)

= ∂t

N∑
i=1

s((fε)i|M i) + ∂x

N∑
i=1

vis((fε)i|M i)

= ∂t

N∑
i=1

(fε)i ln(fε)i + ∂x

N∑
i=1

vi(fε)i ln(fε)i

−∂t
N∑
i=1

M i lnM i − ∂x
N∑
i=1

viM i lnM i

−∂t
N∑
i=1

(1 + lnM i)((fε)i −M i)− ∂x
N∑
i=1

vi(1 + lnM i)((fε)i −M i).

Since
N∑
i=1

(1 + lnM i)((fε)i −M i) = ∂fH(M) · (fε −M),

and using the notation V : RN → RN defined by:

V fi = vifi 1 ≤ i ≤ N,

we also have

N∑
i=1

vi(1 + lnM i)((fε)i −M i) = ∂fH(M) · (V fε − VM).

Combining this with (5.18) and (5.19) , we get

∂tH(fε|M) + ∂x

N∑
i=1

vis((fε)i|M i) +
D(fε)
ε

= −∂t
(
∂fH(M) · (fε −M)

)
− ∂x

(
∂fH(M) · (V fε − VM)

)
.
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Using Lemma 3.2, we get

∂tH(fε|M) + ∂x

N∑
i=1

vis((fε)i|M i) +
D(fε)
ε

(5.20)

= −∂t
(
∂Uη(U) ∗ P (fε −M)

)
− ∂x

(
∂Uη(U) ∗ P (V fε − VM)

)
= −∂t(∂Uη(U)) ∗ P (fε −M)− ∂Uη(U) ∗ ∂t(P (fε −M))
−∂x(∂Uη(U)) ∗ P (V fε − VM)− ∂Uη(U) ∗ ∂x(P (V fε − VM)).

For k = 0, 1, 2, multiplying (1.1) by vki , summing over i and using (2.7), we have

∂t

N∑
i=1

vki (fε)i + ∂x

N∑
i=1

vk+1
i (fε)i = 0,

that is to say

(5.21) ∂tPfε + ∂xP (V fε) = 0.

Furthermore,

∂t

N∑
i=1

vkiM i + ∂x

N∑
i=1

vk+1
i M i = 0,

that is to say

(5.22) ∂tP (M) + ∂xP (VM) = 0.

It gives

∂tH(fε|M) + ∂x

N∑
i=1

vis((fε)i|M i) +
D(fε)
ε

= −∂2
UUη(U)∂t(U) ∗ P (fε −M)− ∂2

UUη(U)∂x(U) ∗ P (V fε − VM)
= ∂2

UUη(U)A′(U)∂x(U) ∗ P (fε −M)− ∂2
UUη(U)∂x(U) ∗ P (V fε − VM)

= ∂2
UUη(U)∂x(U) ∗

(
A′(U)(Uε − U)− P (V fε − VM)

)
= ∂2

UUη(U)∂x(U) ∗
(
A′(U)(Uε − U)− P (V fε − VMε)− P (VMε − VM)

)
,

where we used the fact that, since η(U) is an entropy for (2.10), the flux A(U)
satisfies (∂uuη)A′ = (A′)T∂uuη. Now

P (VMε − VM) =
N∑
i=1

(1, vi, v2
i )vi((Mε)i −M i) = A(Uε)−A(M),

therefore

(5.23)
∂tH(fε|M) + ∂x

N∑
i=1

vis((fε)i|M i) +
D(fε)
ε

= −∂2
UUη(U)∂x(U) ∗

(
A(Uε|U) + P (V fε − VMε)

)
.
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We exploit this evolution equation in order to get the bound. First we want to
bound D(fε) with respect to ε. Integrating (5.20) with respect to (t, x) gives∫

R
H(fε|M)(t, x) dx−

∫
R
H(f0

ε |M
0)(x) dx+

∫ t

0

∫
R

D(fε)
ε

dx ds

= −
∫

R
∂Uη(U) ∗ P (fε −M) dx+

∫
R
∂Uη(U) ∗ P (f0

ε −M0) dx.

For every T < T ∗, there exists CT such that |∂Uη(U)|(t, x) ≤ CT for any x ∈ R,
0 ≤ t ≤ T . Thus we have∫ t

0

∫
R

D(fε)
ε

dx ds ≤
∫

R
H(f0

ε |M
0)(x) dx+ CT

∫
R
|P (fε −M)|+ |P (f0

ε −M0)| dx.

Integrating (5.21) and (5.22) with respect to (t, x) gives in particular∫
R
|fε(t, x)| dx =

∫
R
fε(t, x) dx =

∫
R
f0
ε (x) dx,

and ∫
R
|M(t, x)| dx =

∫
R
M(t, x) dx =

∫
R
M

0(x) dx.

Thus ∫
R
|P (fε −M)| dx.

≤ (1 + sup
i=1,··· ,N

|vi|+ sup
i=1,··· ,N

|v2
i |)
(∫

R
f0
ε (x) dx+

∫
R
M

0(x) dx
)
,

and

(5.24)
∫ t

0

∫
R
D(fε) dx ds ≤ C0

T ε, for 0 ≤ t ≤ T,

with

C0
T = sup

ε

(∫
R
H(f0

ε |M
0)(x) dx

)
+ 4CT max(1, sup

i=1,··· ,N
|v2
i |) sup

ε

(∫
R
f0
ε (x) dx+

∫
R
M

0(x) dx
)
.

We turn now to the estimation of H(fε|M) with respect to ε. For every T < T ∗,
there exists C̃T such that

|∂2
UUη(U)|(t, x) ≤ C̃T , |∂xU |(t, x) ≤ C̃T ,

for any x ∈ R, 0 ≤ t ≤ T and

(5.25)
∫ T

0

∫
R
|∂xU |2(s, x) dx ds ≤ C̃T .

Then integrating (5.23) with respect to (t, x) gives∫
R
H(fε|M)(t, x) dx−

∫
R
H(f0

ε |M
0)(x) dx+

∫ t

0

∫
R

D(fε)
ε

dx ds

= −
∫ t

0

∫
R
∂2
UUη(U)∂x(U) ∗

(
A(Uε|U) + P (V fε − VMε)

)
dx ds.
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Thanks to Proposition 3.3 and Lemma 3.2, we get

|A(Uε|U)| ≤ C1η(Uε|U) ≤ C1H(fε|M).

Thanks to Proposition 4.1, we get

|PV (fε −Mε)|2 ≤ C2

(
N∑
i=1

|(fε)i − (Mε)i|

)2

= C2|fε −Mε|2 ≤ C3D(fε).

Thus, it gives∫
R
H(fε|M)(t, x) dx

≤
∫

R
H(f0

ε |M
0)(x) dx+ (C̃T )2C1

∫ t

0

∫
R
H(fε|M)(s, x) dx ds

+
(∫ t

0

∫
R
|∂2
UUη(U)∂x(U)|2 dx ds

)1/2(∫ t

0

∫
R
|PV (fε −Mε)|2 dx ds

)1/2

≤
∫

R
H(f0

ε |M
0)(x) dx+ C̃2

TC1

∫ t

0

∫
R
H(fε|M)(s, x) dx ds

+C̃3/2
T C

1/2
3

(∫ t

0

∫
R
D(fε)(s, x) dx ds

)1/2

≤
∫

R
H(f0

ε |M
0)(x) dx+ C̃2

TC1

∫ t

0

∫
R
H(fε|M)(s, x) dx ds+ C̃

3/2
T C

1/2
3

√
C0
T ε

using (5.24). Setting wε(t) =
∫

RH(fε|M)(t, x) dx, it writes

wε(t) ≤ wε(0) + C4

∫ t

0
wε(s) ds+ C5

√
ε.

Using Gronwall’s lemma, we get

sup
0≤t≤T

∫
R
H(fε|M)(t, x) dx ≤

(∫
R
H(f0

ε |M
0) dx+ C5

√
ε

)
eC4T .
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