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Abstract. We study imaging of compactly supported scatterers buried deep in layered structures. The layering is unknown
and consists of strongly reflecting interfaces as well as weakly reflecting fine layers, which we model with random processes. We
consider wave scattering regimes where the unwanted echoes from the layers overwhelm the signal coming from the compact
scatterers that we wish to image. We enhance this signal with data filtering operators that tend to remove layering effects. We
study theoretically the layer annihilator filters using the O’Doherty Anstey (ODA) theory. It accounts for the random layering
by introducing pulse spreading and attenuation in the reflections from the deterministic interfaces. We present numerical
simulations in purely layered structures as well as in media with additional isotropic clutter.
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1. Introduction. Inverse wave scattering problems in heterogeneous media arise in many applications

such as ultrasonic nondestructive testing, seismic exploration, ground or foliage penetrating radar, etc. We

consider such an inverse problem for the acoustic wave equation, where the goal is to image scatterers of

compact and small support that are buried deep in a medium with layered structure. The setup is illustrated

in Figure 1.1. We probe the medium with a short pulse emitted from a source at ~xs and record the echoes

at receivers placed at ~xr, for r = 1, . . . , N . Let

A =
{
~xr = (xr, 0) ∈ Rd, xr ∈ Rd−1, r = 1, . . . , N

}
, d ≥ 2,

be the set of receiver locations, assumed sufficiently close together to behave as a collection of sensors that

form an array. Here we use a system of coordinates in dimension d ≥ 2, with the z axis normal to the layers,

and we suppose that the array is on the surface z = 0, in the set of diameter a, the array aperture.

The transducers located at ~xs ∈ A play the dual role of sources and receivers. Each receiver records the

time traces of the acoustic pressure P (t, ~xr) for time t in a recording window (t1, t2). The inverse problem

is to use these data for imaging scatterers buried in the layered medium that may be known partially or

not at all. By partial knowledge we mean that the large scale variations of the sound speed may be given

but not the fine scale ones. If the large scale features are not known, then they may be estimated from

the data, as well. This is the problem of velocity estimation that we consider here jointly with imaging

the compactly supported scatterers. The rapid fluctuations of the speed occur at a fine length scale ` that

is small in comparison to the central wavelength λo of the source excitation. Such fluctuations cannot be

estimated from the data and we use random processes to model the uncertainty about them. The medium

may also have some strong scattering layers at depths z = −Lj , for j = 1, 2, . . .M. The depth of these layers

is not known, although it can be estimated in principle from the echoes recorded at the array. In this paper

we are not concerned with finding the layers. We look instead at how to mitigate our lack of knowledge of

the layered structure in order to obtain good images of the small scatterers buried deep in the medium.

Imaging in smooth and known media is done efficiently with Kirchhoff migration and its variants used

in radar [13, 19], seismic imaging [4, 16, 5], etc. These methods form an image by migrating the data traces
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Fig. 1.1. Schematic of the setup for imaging scatterers buried in a layered medium with sound speed v(z). The array of
transducers sits on top of the medium. The source and receiver locations are denoted by xs and xr. The medium is finely
layered and it has some strong scattering interfaces at depths −Lj , for j = 1, 2, . . .

P (t, ~xr) to search locations ~ys in an image domain, using the travel time τ(~xr, ~ys, ~xs) from the source at ~xs

to the image point ~ys and then back to the array at receiver ~xr. The Kirchhoff migration function is

J KM(~ys) =
∑

~xr∈A

P
(
τ(~xr, ~ys, ~xs), ~xr

)
(1.1)

and its focusing properties are well understood [5] in known and smooth media, assuming that any two

points are connected by a single ray with travel time τ . The range resolution of J KM(~ys) is proportional to

the width of the pulse emitted from ~xs and the cross-range resolution is of order λoL/a, with L being the

depth at which the scatterer is located.

The layered medium considered in this paper consists of rapid fluctuations of the sound speed at the

sub-wavelength scale. These fluctuations are strong enough to create scattering that is visible in the data

traces in the form of long tailed, incoherent signals that are observed long before and long after the arrival

of the echoes from the scatterers that we wish to image. If we have separation of scales of the form

`� λo � L, (1.2)

and a broadband pulse, as assumed in this paper, then the data retains a coherent part. These are the echoes

from the small scatterers and the strong layers at z = −Lj , for j = 1, 2, . . .M and they are described by the

O’Doherty Anstey (ODA) theory [22, 1, 23, 18, 25]. ODA says that if we observe P (t, ~xr) in a time window

of width similar to that of the probing pulse, centered at the travel time computed in the smooth part of

the medium, for waves traveling between the array and the scatterers, we see a deterministic signal except

for a small random arrival time shift. Such pulse stabilization is special to layered media and it is because

of it that Kirchhoff migration could give useful results, in spite of the fine scale fluctuations. This has been

noted in [10, 6] in the context of imaging sources buried in finely layered media.

However, Kirchhoff migration may not give useful results in the case of scatterers buried in layered

media, due to layer scattering. The echoes from the layers typically overwhelm the coherent arrivals, the

signal, from the scatterers buried deep in the medium, and must be filtered from the data prior to imaging.

In this paper we introduce such filters, called layer annihilators, and show that they can improve significantly

the images.

The separation of the echoes due to the layered structure from those due to small diffractors has been

considered before in the geophysics literature [17, 20]. Examples are the so-called plane-wave destruction
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filters [17, 20, 21] designed to remove from the data a sequence of plane-like waves arriving from different

directions. The layer annihilators discussed in this paper use ideas from semblance velocity estimation

[15, 26]. They are based on the fact that the arrivals from the small scatterers and the arrivals from the

layers have a different signature in the time and source-receiver offset space.

Through analysis based on the ODA theory and through numerical simulations we show in this paper

that layer annihilators are very efficient SNR enhancement tools, provided that we know the smooth part

of the sound speed. If this is not known, we show that it can be estimated by coupling the imaging process

with an optimization scheme. The objective function measures the quality of the image as it is being formed

with migration of the filtered data with a trial background speed. The annihilation is effective when the

speed is right, and this is why we can estimate it directly by working with the image.

While all the theory in this paper assumes perfectly layered structures, we present numerical simulations

in media with additional, isotropic fluctuations, generated by weak and small inhomogeneities of diameter

comparable to λo. The cumulative effect of such inhomogeneities leads to significant loss of coherence of

the echoes coming from the deep scatterers and consequently to the degradation of resolution and reliability

of the Kirchhoff migration images, even after the layer annihilation process. The loss of coherence due to

scattering by the inhomogeneities is dealt with efficiently by the coherent interferometric (CINT) imaging

method introduced in [9, 8, 11].

CINT imaging can be viewed as a statistically smoothed migration method where the smoothing is

done by cross-correlating the data traces over well chosen space-time windows. The size of these windows

is determined by two key parameters that encode the clutter effects on the array data: the decoherence

length Xd and the decoherence frequency Ωd. These can be much smaller than the array aperture a and the

bandwidth B, respectively, and they can be estimated during the image formation process with the adaptive

CINT method introduced in [8]. The resolution and statistical stability analysis of CINT, with respect to

the realizations of the clutter (i.e., inhomogeneities), is given in [11]. It is shown there and in [9, 8] how the

smoothing is needed for statistical stability but also how it blurs the image by a factor inversely proportional

to Ωd in range and by a factor of λoL/Xd in cross-range. All the results in [9, 8, 11] are for isotropic clutter

in a uniform background. In this paper we have the fine layering in addition to the isotropic clutter and

show with numerical simulations how to use layer annihilators to enhance the SNR and therefore improve

the CINT images.

The paper is organized as follows: We begin in section 2 with the mathematical model for the acoustic

pressure recorded at the array. Then, we introduce and analyze in section 3 the filters that we call layer

annihilators. Imaging with these filters and the coupling with velocity estimation is discussed in section 4.

The numerical results are in section 5. We end with a summary and conclusions in section 6.

2. The forward model. The acoustic pressure P (t, ~x) and velocity ~u(t, ~x) satisfy the first order system

of partial differential equations

ρ
∂~u
∂t

(t, ~x) +∇P (t, ~x) = ~F(t, ~x),

1
V 2(~x)

∂P

∂t
(t, ~x) + ρ∇ · ~u(t, ~x) = 0, ~x ∈ Rd, t > 0, (2.1)
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where ρ is the medium density and V is the sound speed. The source is modeled by ~F(t, ~x) and it acts at

times t ≥ 0. The medium is quiescent prior to the source excitation

~u(t, ~x) = ~0, P (t, ~x) = 0, t < 0. (2.2)

We suppose for simplicity that the density ρ is constant, but its variations can be included in the analysis

as shown in [22, 1].

The sound speed V (~x) is modeled as

1
V 2(~x)

=
1

v2(z)
+ ν(~x), (2.3)

where ν(~x) is the reflectivity of the scatterers that we wish to image. We let S be the compact support

of ν(~x). We suppose that it lies at depth z = −L and that its diameter is small with respect to the array

aperture a. The background speed is denoted by v(z) and it has a smooth (or piecewise smooth) part c(z)

and a remaining rough part supported in the half space z < 0,

1
v2(z)

=

{
1

c2(z)

[
1 + σµ

(
z
`

) ]
−Lj < z < −Lj−1, j = 1, . . . ,M,

1
c2

o
z ≥ −L0 = 0.

(2.4)

The rough part consists of fine layering at scale `� λo and of strong scattering interfaces at depths z = −Lj ,

for j = 1, . . . ,M . These interfaces could be the result of jump discontinuities of c(z), or we could have sudden

blips∗ in v(z), due to large variations of c(z) over a few isolated intervals of order λo, as illustrated in Figure

1.1. We refer to Appendix A.4 for the details of our mathematical model of the scattering interfaces.

The fine layering is modeled in (2.4) with a random process written in scaled form as σµ (z/`). We let

µ be a dimensionless, zero-mean random function of dimensionless argument and we control the strength of

the fluctuations with the parameter σ. We consider strong fluctuations, with σ = O(1), and we impose the

constraint

σ |µ(z)| < 1 for all z < 0, (2.5)

so that the right hand side in (2.4) stays positive and bounded. See section 2.2 for details on the scaling and

the random function µ.

2.1. The scattered field. The pressure field P (t, ~xr) recorded at the receivers consists of two parts:

The direct arrival at time |~xr−~xs|/co from the source at ~xs, and the scattered field p(t, ~xr). The direct arrival

carries no information about the medium and it can be removed by tapering the data for t ≤ |~xr − ~xs|/co.
For time t less than the travel time τS from the source to S and back, p(t, ~xr) consists of the echoes

from the layers above the localized scatterers. These can be determined by solving the wave equation

ρ
∂~u
∂t

(t, ~x) +∇P (t, ~x) = ~F(t, ~x),

1
v2(z)

∂P

∂t
(t, ~x) + ρ∇ · ~u(t, ~x) = 0, ~x ∈ Rd, 0 < t < τS , (2.6)

∗The waves sample most efficiently the variations of the sound speed at scales similar to the wavelength. This is why isolated
changes (blips) of c(z) over intervals of length ∼ λo produce strong echoes.
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with initial conditions (2.2) and then removing the direct arrival. Here we used the causality of the wave

equation to ignore the reflectivity ν(~x) for t < τS .

For t > τS the scattered field contains the echoes pS(t, ~xr) from the reflectivity ν(~x). We model them

with the Born approximation

pS(t, ~xr) ≈ −
∫
S
d~y ν(~y)

∂2P i(t, ~y)
∂t2

?t G(t, ~xr, ~y), (2.7)

where ?t denotes time convolution and G is the causal Green’s function of the wave equation in the layered

medium,

1
v2(z)

∂2G(t, ~x, ~y)
∂t2

−∆G(t, ~x, ~y) = δ(~x− ~y)δ(t),

G(t, ~x, ~y) = 0 for t < 0. (2.8)

In (2.8) we denote by P i(t, ~x) the “incident” pressure field, i.e. the field in the layered medium without the

reflectivity. This satisfies equation (2.6) for all times t > 0 or, equivalently, it satisfies

1
v2(z)

∂2P i(t, ~x)
∂t2

−∆P i(t, ~x) = −∇ · ~F(t, ~x), t > 0,

P i(t, ~x) = 0 for t < 0. (2.9)

Note the similarity of equations (2.8) and (2.9). They both have as a source term a distribution supported

at a point (at ~xs in (2.9) and at ~y ∈ S in (2.8)). This observation and (2.7) allow us to reduce the calculation

of the scattered field to solving a generic problem for the pressure in a purely layered medium and for a

point source excitation. We study this generic problem in detail in Appendix A. The resulting mathematical

model of the scattered pressure field recorded at the array is presented in section 2.3.

2.2. Scaling. Let us consider the following model for the source excitation

~F(t, ~x) = δ(~x− ~xs)
(

Fε(t)
f ε(t)

)
, (2.10)

where

f ε(t) = ε
d−1
2 f

(
t

ε

)
, Fε(t) = ε

d−1
2 F

(
t

ε

)
(2.11)

and ε � 1. Here f is the pulse shape emitted upwards and F ∈ Rd−1 is the pulse in the remaining d − 1

cross-range directions. The small parameter ε in the arguments in (2.11) comes from scaling the width of

the pulse by the much longer travel time τS of the waves from the source to the scatterers in S and back.

Since the problem is linear we can control the amplitude of the echoes with the amplitude of the source. We

take the latter equal to ε
d−1
2 to obtain O(1) echoes at the array.

In the frequency domain we have

f̂ ε
(ω
ε

)
=
∫
dt f ε(t)ei ω

ε t = ε
d+1
2

∫
dt

ε
f

(
t

ε

)
eiω t

ε = ε
d+1
2 f̂(ω) (2.12)

and similar for F̂ε
(

ω
ε

)
. Thus, assuming baseband pulses f̂(ω) and F̂(ω) with support in an O(1) interval cen-

tered at ωo, we see that the scaling in (2.10) implies having O(1/ε) frequencies in the analysis. Equivalently,

the wavelengths are ∼ ε while L = O(1).
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The random process µ that models the fluctuations of v(z) has mean zero, is statistically homogeneous

and lacks long range correlations

C(z) = E {µ(0)µ(z)} → 0, as |z| → ∞, (2.13)

where the decay is sufficiently fast for C(z) to be integrable over the real line. We assume further the

normalization

C(0) = 1,
∫ ∞

−∞
C(z)dz = 1, (2.14)

which implies ∫ ∞

−∞
E
{
µ(0)µ

(z
`

)}
dz = `. (2.15)

Thus, we call ` the correlation length of the speed fluctuations. The intensity of the fluctuations is

E

{[
σµ
(z
`

)]2}
= σ2, (2.16)

and we control it by adjusting the dimensionless parameter σ.

Following [22], we refer to the scaling in this paper as a high-frequency, white noise regime,

L

λo
� 1,

λo

`
� 1, σ = O(1). (2.17)

which arises in applications of exploration seismology [27], where λo ∼ 100m, L = 5− 15km and ` = 2− 3m.

The regime (2.17) considers strong fluctuations (σ ∼ 1), but since λo � `, the waves do not interact strongly

with the small scales and the fluctuations average out over distances of order λ0. It takes long distances of

propagation (L� λo) for the scattering to build up and become an important factor in the problem.

We realize the regime (2.17) by taking

`

λo
∼ λo

L
∼ ε� 1, σ = 1, Lj − Lj−1 = O(1), j = 1, 2 . . . (2.18)

and we remark that we call it high frequency because the wavelengths are small in comparison with the large

scale variations of the medium (i.e., L and Lj −Lj−1, for j = 1, 2, . . .). It is however a low frequency regime

with respect to the small scale (λo � `), and the effect of the random fluctuations takes the canonical form

of white noise in the limit ε→ 0, independent of the details of the random model µ [22, 1].

Let us note that there are other interesting scaling regimes where scattering is significant and the analysis

can be carried out [22]. For example, the theory extends almost identically to the weakly heterogeneous regime

` ∼ λo � L = O(1), σ � 1, (2.19)

except for some subtle differences [22]. In the scaling (2.19) the waves sample more efficiently the small

scales, since ` ∼ λo, and the asymptotic theory results depend on the specific autocorrelation function of the

random fluctuations [22]. In our regime the waves cannot see the small scales in detail, because λo � `, and

this is why the theory is not sensitive to the precise structure of the random function µ.
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Fig. 2.1. Examples of coherent paths from the source at ~xs to a receiver at ~xr. Left: Path between the layers without
“seeing” the scatterer at ~y. Right: Path through the scatterer at ~y.

The remaining scales are the array aperture a and the diameter b of the support S of the reflectivity ν.

We assume that a is much larger than λo and independent of ε,

λo � a ≤ L, (2.20)

and that b satisfies

λo ≤ b� a. (2.21)

While b can be much larger than λo, it should be much smaller than a so that the layer annihilator filters

can make a robust differentiation between the layer echoes and the coherent arrivals from S.

2.3. The multiple scattering series. We show in Appendix A that the pressure field at the surface

z = 0 has the following multiple scattering series representation

p(t, ~x) = D(t,h) =
∑
P

ΦP

[
t− τP (h)

ε
− δτP (h),h

]
+N (t,h). (2.22)

Here ~x = (x, 0) ∈ A is an arbitrary receiver location and

h = x− xs (2.23)

is the source-receiver offset. Since the source is fixed at ~xs, we can parametrize the data by the offset h

and denote it from now on by D(t,h). We also assume for convenience in the analysis that the separation

between the receivers is small enough to allow us to view the array as a continuum aperture. This means

that h varies continuously in a compact set of diameter a, the array aperture.

Data D(t,h) consists of an incoherent “noisy” part N and a coherent part. The incoherent part is due

to scattering by the random medium between the strong layers. The coherent part is written in (2.22) as a

sum of arrivals of pulses of shape ΦP along the multiple scattering paths P. These paths are transmitted

through the random medium and they involve scattering in S and/or at the layers z = −Lj , for j = 1, . . . ,M .

See Figure 2.1 for an illustration of coherent paths P. It follows from Appendix A that these paths obey

Snell’s laws [14] at the scattering interfaces and they pass through the random slabs −Lj < z < −Lj−1, for

j = 1, . . .M , according to Fermat’s principle [14].
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The transmission of the waves through the random slabs is described in the asymptotic limit ε → 0

by the ODA theory. This says that as the pressure waves P (t, ~x) propagate through the random medium,

they maintain a coherent front PODA(t, ~x) that is similar to the field in the smooth medium, except for two

facts: (1) The travel time has a small random shift εδτ and (2) The pulse shape is broadened due to the

convolution with a Gaussian kernel. This kernel accounts for the diffusion of energy from the coherent part

of P to the incoherent one, and it is due to the multiple scattering in the finely layered structure.

The theory (see Appendix A and [22, 1, 23, 18, 25]) says that the amplitude of the incoherent events

N (t,h) is smaller than the amplitude of the coherent ones, by a factor of O(ε1/2). The amplitude of

the coherent events varies by path. The variations are due to geometrical spreading, the reflection and

transmission coefficients at the scattering interfaces and the ODA pulse broadening in the random medium.

The amplitudes and the time shifts εδτP (h) change slowly with the offset h. The fast variation of D(t,h)

with the offset is due to the O(1/ε) argument of ΦP in (2.22). This is the key observation used in section

3 to design layer annihilators for enhancement of the coherent arrivals along paths P~y through points ~y in

the support S of the reflectivity that we wish to image. Such signal enhancement is crucial for successful

imaging of scatterers buried deep in the layered structure, as illustrated next.

2.3.1. An illustration. For the purpose of illustration, let us consider the following simplification of

our problem: Suppose that the source at ~xs has directivity along the z axis, (i.e., Fε = 0 in (2.10)) and

that the smooth background has constant speed c(z) = co. Then, let us observe the pressure field P (t, ~x),

for times t < 2L1/co, so that we can ignore the scattering interface at z = −L1. If there were no random

fluctuations, the pressure field would be

Po(t, ~x) = − ∂

∂z

[
f ε (t− τ(~x, ~xs))

4π|~x− ~xs|

]
, ~x = (x, z) ∈ R3. (2.24)

We would observe the emitted pulse f centered at travel time τ(~x, ~xs) = |~x − ~xs|/co, and the amplitude

change due to geometrical spreading. The ODA theory says that the transmitted field through the random

medium is given by [22, 1, 23, 18, 25]

PODA(t, ~x) ≈ − ∂

∂z

[(
f ε ?t KODA

)
(t− τ(~x, ~xs)− εδτ(~x, ~xs))
4π|~x− ~xs|

]
. (2.25)

We have pulse spreading due to the convolution of f ε with the Gaussian kernel

KODA(t) =
sin θ(~x)√
2πtps(z)

e
− t2 sin2 θ(~x)

2t2ps(z) , sin θ(~x) =
|z|

|~x− ~xs|
, (2.26)

and a random arrival time shift εδτ(~x, ~xs). The spread is proportional to tps(z), a parameter with units of

time that depends on the correlation function C(z) of the random medium and the depth z, and it is more

pronounced for waves propagating at shallow angles θ(~x). The time shift δτ(~x, ~xs) is given by

δτ(~x, ~xs) =
tps(z)

sin θ(~x)
W (z)√
|z|

, (2.27)

in terms of the standard Brownian motion W (z).
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Fig. 2.2. Left: The sound speed v(z) as a function of depth measured in central wavelengths. Right: The transmitted
pressure field for different depths traveled in the random medium. The depth for each trace is measured in central wavelengths.

We show in Figure 2.2 the pressure field computed with numerical simulations in two dimensions. The

numerical method and setup are described in section 5. We plot on the left the sound speed v(z) which

fluctuates at length scale ` = 0.1λo around the constant value co = 3km/s. On the right we show the

transmitted pressure field to five different depths ranging from 14λo to 68λo. The ODA formula (2.25)

describes the coherent fronts but not the incoherent long tail or coda. The theory [22, 1, 23, 18, 25] says

that the amplitude of the coda is smaller then the coherent front, by a factor of O(ε1/2). This is what we

see approximately in Figure 2.2.

In imaging we do not observe the transmitted field plotted in Figure 2.2. The array of sensors sits at

the top surface z = 0 and it records the scattered pressure field. We show in Figure 2.3 the pressure at

the array, for the numerical simulation setup shown on the left of the figure (see section 5 for details). We

have a cluster of three small scatterers buried deep in the layered structure, below some strong scattering

interfaces. Note the two strong coherent arrivals of the waves scattered by the top interfaces. Ahead of

these arrivals we observe the incoherent signal due to the scattering by the fine layers. This signal is weak,

consistent with the theory which says that the incoherent amplitudes are smaller than the coherent ones by

a factor of O(ε1/2). The echoes from the small scatterers buried deep in the medium are also weak and they

cannot be distinguished in Figure 2.3 from the echoes due to the layers. This is a serious issue. It says that

unless we can filter the data to enhance the signal from the small scatterers, with respect to the echoes from

the layers, we cannot image the scatterers.

3. Layer annihilators. In this section we define and analyze data filtering operators called layer

annihilators, which we propose for SNR enhancement. The performance of these filters depends on the

background speed c(z) and on us knowing it or not. The easiest and most favorable case is that of a

homogeneous background, considered in section 3.1. The general case is discussed in section 3.2.

3.1. Homogeneous background. We begin by analyzing the arrival times of the coherent events in

the series (2.22). The paths P that do not involve scattering in S can be classified as the “primary paths”

Pj , that involve a single scattering at an interface z = −Lj , for j = 1, . . . ,M and the “multiple paths” that

are scattered more than once by the interfaces. See Figure 3.1 for an illustration of these paths. The red

line is for a primary path, the blue line is for a multiple path and the green line is for a path P~y scattered
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h

Fig. 3.1. Illustration of a primary path (red), a multiple path (blue) and a path through a point scatterer (green). At
background speed co the multiple path maps exactly to a primary reflection at a ghost interface drawn with dotted line.

at a point ~y in S.

The travel time along paths Pj is (see Appendix A.6)

τPj
(h) = T (h, Lj) =

√
h2 + 4L2

j

co
, (3.1)

where we let h = |h|. Consider next a multiple path P. Each reflection in P satisfies Snell’s law, as shown

in Appendix A. It also follows from Appendix A that the transmission through the random medium and

through the interfaces does not bend the coherent paths, because the background speed is constant. This

implies, after a straightforward geometrical argument, that any multiple path P has the same length as a

primary path, reflected at a ghost layer z = −Lghost,

τP (h) = T (h, Lghost). (3.2)

See Figure 3.1 for an illustration, where the multiple path shown in blue is mapped to the primary path

(blue dotted line) reflected at the ghost layer shown with the black dotted line.

The arrival times along paths P~y, for ~y = (y,−L) ∈ S have a different dependence on the offset. Take

for example the path that scatters at ~y, but involves no reflection by the layered structure (like the green

path in Figure 3.1). The arrival time along P~y is

τP~y
(h) =

1
co

(√
|xs − y|2 + L2 +

√
|xs + h− y|2 + L2

)
= T (h, η(h)) (3.3)
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and using the monotonicity in the second argument of (3.1), we can always equate it to the arrival time

T (h, η(h)) of a primary from depth −η(h). However, unlike Lghost in (3.2), this depth depends on the offset

η(h) =
{
L2

2
+

(xs − y) · (xs + h− y)
2

+
1
2
[(
|xs − y|2 + L2

) (
|xs + h− y|2 + L2

)] 1
2

} 1
2

. (3.4)

It is only in the case of ~y below the midpoint between the source and receiver (i.e. y = xs + h/2) that

η(h) is independent of h. Considering that the source is fixed in our data acquisition setup, this is a special

situation that can arise for at most one offset h.

The layer annihilators are data filtering operators intended to suppress all coherent arrivals at times

T (h, z), for arbitrary depths z < 0. We study theoretically and numerically two such annihilators. Since the

background speed co may not be known, we define them at a trial speed c̃o. We then show in section 4 how

to use the annihilators for imaging and velocity estimation.

Definition 3.1. Consider a trial c̃o of the true background speed and define function

Tc̃o
(h, z) =

√
h2 + 4z2

c̃o
(3.5)

and its inverse

ζc̃o
(h, t) = −

√
c̃2ot

2 − h2

2
, (3.6)

where

Tc̃o (h, ζc̃o(h, t)) = t, ζc̃o (h, Tc̃o(h, z)) = z. (3.7)

We propose as a layer annihilator the data filtering operator Qc̃o

[Qc̃oD] (t,h) =
[
d

dh
D (Tc̃o(h, z),h)

]
z=ζc̃o (h,t)

. (3.8)

This definition involves three steps: (1) The mapping of the data from the time and offset space (t, h) to

the time and depth space (t, z), via function Tc̃o(h, z). This is called normal move-out in the geophysics

literature [17, 4]. (2) Annihilation via the derivative with respect to h. The derivative is expected to be small

if we have indeed echoes at times T (h, z), for some z, because the normal move-out eliminates by subtraction

the strong variation of ΦP in h (see (2.22)). (3) The return to the (t, h) space with the inverse function ζc̃o .

We have the following result:

Lemma 3.2. The operator Qc̃o is a layer annihilator, in the sense that it suppresses the echoes from the

layered structure if c̃o = co +O(ε). The operator does not suppress the echoes from the compactly supported

reflectivity, for any trial speed.

Proof: The result follows easily from the discussion at the beginning of this section. The goal of the

annihilator is to suppress the coherent paths that involve scattering by the layered structure. According to

(3.1) and (3.2), the arrival time along these paths is of the form Tco(h, LP ), for some layer at a depth −LP ,

ΦP

[
t− τP (h)

ε
− δτP (h),h

]
= ΦP

[
t− Tco

(h, LP )
ε

− δτP (h),h
]
.

11



After normal move-out, we get

ΦP

[
Tc̃o

(h, z)− Tco
(h, LP )

ε
− δτP (h),h

]
,

with z to be mapped later to time t, using ζc̃o(h, t). Now take the derivative with respect to h = |h| and let

eh be the unit vector in the direction of h. We have{
1
ε

d

dh
[Tc̃o(h, z)− Tco(h, LP )]− eh · ∇δτP (h)

}
∂

∂t
ΦP

[
Tc̃o

(h, z)− τP (h)
ε

− δτP (h),h
]

+

eh · ∇hΦP

[
Tc̃o

(h, z)− τP (h)
ε

− δτP (h),h
]
, (3.9)

where we denote by ∂
∂tΦP the derivative of ΦP with respect to the first argument and by ∇hΦP the gradient

with respect to the second argument. Recall from section 2.3 and Appendix A.6 that ΦP (·,h) and δτP (h)

vary slowly in h. The leading term in (3.9) is

1
ε

d

dh
[Tc̃o(h, z)− Tco(h, LP )]

∂

∂t
ΦP

[
Tc̃o(h, z)− τP (h)

ε
− δτP (h),h

]
=

1
ε

[
h

c̃2oTc̃o
(h, z)

− h

c2oτP (h)

]
∂

∂t
ΦP

[
Tc̃o

(h, z)− τP (h)
ε

− δτP (h),h
]

and after mapping z = ζc̃o(h, t), it becomes

1
ε

[
h

c̃2ot
− h

c2oτP (h)

]
∂

∂t
ΦP

[
t− τP (h)

ε
− δτP (h),h

]
.

Since ΦP has O(1) support, the leading order term can be observed at times t = τP (h) +O(ε),(
1/c̃2o − 1/c20

ε

)
h

τP (h)
∂

∂t
ΦP

[
t− τP (h)

ε
− δτP (h),h

]
+O(1)

and then, only if |c̃o − co| > O(ε).

Let us consider next the coherent arrivals along paths P~y scattered at points ~y ∈ S. We focus attention

on the “stronger” paths† that involve no scattering in the layered structure. Using a calculation similar to

the above, we get

d

dh
ΦP~y

[
Tc̃o(h, z)− τP~y

(h)

ε
− δτP~y

(h),h

]∣∣∣∣∣
z=ζc̃o (h,t)

=
1
ε

[
h

c̃2ot
− h

c2oτP~y
(h)

]
∂

∂t
ΦP~y

[
t− τP~y

(h)

ε
− δτP~y

(h),h

]

+
2

εc2oτP~y
(h)

eh · ∇η2(h)
∂

∂t
ΦP~y

[
t− τP~y

(h)

ε
− δτP (h),h

]
+ · · ·

Here we used equation (3.3) for τP~y
(h) and we wrote explicitly the O(1/ε) terms. The first term vanishes as

before at the correct speed, but the second term is O (1/ε) independent of c̃o (recall (3.4)). �

The annihilator introduced in Definition 3.1 works well in ideal situations for perfectly layered structures.

This is seen clearly in the numerical simulations presented in section 5. We also study there the more

†These paths are “stronger” than those that scatter in the layered medium because: (1) Each scattering at an interface
reduces the amplitude of the echoes by multiplication with the reflection coefficient. (2) The longer the path is, the more it is
affected by geometrical spreading and the ODA diffusion kernel due to the random medium.
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complicated problem of a layered structure with additional isotropic fluctuations of the sound speed, due

to small inhomogeneities. In that case, Definition 3.1 is not the best choice of an annihilator because the

derivative over the offset h can amplify significantly the correlated “noise” due to the isotropic clutter. We

propose the following alternative:

Definition 3.3. Consider a trial speed c̃o, and let Tc̃o and ζc̃o be as in Definition 3.1. Let also

h′ = h + ξeh be offsets collinear with h = heh, for ξ belonging to an interval I(h) of length |I(h)|, limited

by the constraint ~xs + (h′, 0) ∈ A. The filtering operator is given by

[Qc̃o
D] (t,h) =

{
D (Tc̃o(h, z),h)− 1

|I(h)|

∫
I(h)

D (Tc̃o(h+ ξ, z), (h+ ξ)eh) dξ

}
z=ζc̃o (h,t)

. (3.10)

The first and last steps involved in (3.10) are the same as in Definition 3.1. It is the annihilation step

that is different. Instead of taking derivatives with respect to the offset as in (3.8), we subtract the average

of the traces with respect to the offset, after the normal move-out.

We omit the analysis of (3.10) because it is very similar to that in Lemma 3.2. We find that the

annihilation of the coherent, strong layer echoes occurs for both small and large interval lengths |I(h)|.
In the numerical simulations in section 5.2.4 we implement Definition 3.3 using the longest intervals I(h),

consistent with the constraint ~xs + (h′, 0) ∈ A, to average out the isotropic clutter effects. However, the

choice of I(h) affects significantly the influence of Qc̃o on the incoherent field N (t,h), which is backscattered

by the randomly layered medium. The annihilation of N (t,h) is studied in [7] and it is shown there that

|I(h)| must be O(λo) for the annihilation to be effective.

3.2. Variable background. Definitions 3.1 and 3.3 extend to the case of variable backgrounds in an

obvious manner. Instead of (3.5) we take Tc̃(h, z) to be the travel time of a primary reflection at depth z < 0

in the medium with trial speed c̃(z). This follows from Appendix A,

Tc̃(h, z) = 2
∫ 0

−|z|

√
1− c̃2(s)K2

c̃

c̃(s)
ds+ hKc̃ (3.11)

with horizontal slowness Kc̃ given by equation

h

2
= Kc̃

∫ 0

−|z|

c̃(s)√
1− c̃2(s)K2

c̃

ds. (3.12)

Note that because the right hand side is monotonically increasing with Kc̃, we have a unique slowness

satisfying condition (3.12) and therefore, a unique Tc̃(h, z) for each z. Furthermore, Tc̃(h, z) increases

monotonically ‡ with |z|, so the inverse function ζc̃(t, h) satisfying

Tc̃ (h, ζc̃(h, t)) = t, ζc̃ (h, Tc̃(h, z)) = z, (3.13)

is also uniquely defined.

The annihilator operators are as in Definitions 3.1 and 3.3, with Tc̃(h, z) used for the normal move-out

and ζc̃(t, h) for the mapping between depths z and time t. The performance of the annihilators is expected

‡It follows from (3.11) and (3.12) that ∂Tc̃/∂|z| = 2/c̃(z)
q

1− c̃2(z)K2
c̃ > 0, with z = −|z|.
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to be worse than in the homogeneous case, because the multiple paths do not map exactly to primaries from

ghost layers (i.e. Lghost independent of h) at the correct speed. The degradation in performance depends

on how much c(z) varies along the multiple paths and on the depth where the stronger variations occur.

We show with numerical simulations in section 5 that when the variations of c(z) are not too large, the

annihilation of the multiples is almost as good as in the homogeneous case.

4. Imaging and velocity estimation. We now use the layer annihilators for imaging the compactly

supported reflectivity and for velocity estimation. We begin in section 4.1 with migration type imaging.

Then, we discuss coherent interferometric (CINT) imaging in section 4.3.

4.1. Migration imaging with layer annihilators. Under the idealization of a continuum array

aperture, we define the migration imaging function with the annihilated data§

J (~ys; c̃) =
∫
A
dh [Qc̃D] (τ(~xs, ~ys, (xs + h, 0)),h). (4.1)

Here Qc̃ is one of the annihilators introduced in section 3 for a trial speed c̃(z), and τ(~xs, ~ys, ~xs + (h, 0)) is

the travel time computed at the trial speed between the source at ~xs = (xs, 0), the image point at ~ys and

the receiver at (xs + h, 0).

As we have seen in section 3, the layer annihilators suppress the echoes from the layers above the

reflectivity support S if the trial speed c̃(z) is close to the true one. Take for example the annihilator in

Definition 3.1 and use equations (3.11) and (3.12) to deduce that the primary arrival times satisfy

d

dh
Tc̃(h, z) = Kc̃, (4.2)

with horizontal slowness Kc̃ given by (3.12) or, equivalently, by

Kc̃ = Kc̃ [Tc̃(h, z)] . (4.3)

The map Kc̃ cannot be written explicitly in general, unless we are in the homogeneous case c̃(z) = c̃o, where

Kc̃o =
h

c̃o
√
h2 + 4z2

=
h

c̃2oTc̃o
(h, z)

= Kc̃o
[Tc̃o

(h, z)] . (4.4)

It is nevertheless unambiguously defined, as explained in section 3.2.

We have from (2.22), (4.1)-(4.3) and Definition 3.1 that

J (~ys; c̃) =
∑
P

∫
A

dh
ε

{
Kc̃ [τ(~xs, ~ys, (xs + h, 0))]− d

dh
τP (h)

}
∂

∂t
ΦP

[
τ(~xs, ~ys, (xs + h, 0))

ε

−τP (h)
ε

− δτP (h),h
]

+ · · · (4.5)

where we denote by the dots the lower order terms. We have computed already the derivatives

d

dh
τPj

(h) =
d

dh
Tc(h, Lj) = Kc

[
τPj

(h)
]
, (4.6)

§The continuum approximation made in (4.1) is to be understood in practice as having a very dense array of sensors. This
is in fact required in Definition 3.1 to approximate derivatives in offset. Definition 3.3 makes sense for receivers that are further
apart, as well, in which case the integral over h in (4.1) should be replaced by a sum over the receivers.
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for the primary paths Pj . For the other paths we write

d

dh
τP (h) = Kc [τP (h)] + ψP (h), P 6= Pj , j = 1, . . .M, (4.7)

where the remainder ψP (h) may be O(1), independent of the trial speed c̃.

Remark 4.1. In the most favorable case c(z) = co, the remainder ψP (h) vanishes for all paths that

do not scatter in the reflectivity support S, when c̃ = co. However, the remainder does not vanish for paths

P~y that involve scattering at points ~y in the reflectivity support S (see Lemma 3.2). In the general case of

variable c(z), the remainder ψP (h) does not vanish for the multiple paths. However, it can be small if the

variations of c(z) are not too significant, as illustrated with numerical simulations in section 5.

Returning to equation (4.5), and using (4.6), we obtain

J (~ys; c̃) =
∑
P

∫
A

dh
ε
{Kc̃ [τ(~xs, ~ys, (xs + h, 0))]−Kc [τP(h)] + ψP (h)}

∂

∂t
ΦP

[
τ(~xs, ~ys, (xs + h, 0))

ε
− τP (h)

ε
− δτP (h),h

]
+ · · · (4.8)

Since ΦP has O(1) support, we get a large O(1/ε) contribution at the image point ~ys if there is a path P
for which

τ(~xs, ~ys, (xs + h, 0)) = τP (h) +O(ε).

Each such path is weighted in (4.8) by the amplitude

Kc̃ [τ(~xs, ~ys, (xs + h, 0))]−Kc [τP(h)] + ψP (h) ≈ Kc̃ [τP(h)]−Kc [τP(h)] + ψP (h).

The first two terms in the right hand side are the horizontal slownesses at speeds c̃ and c, respectively.

They cancel each other when the trial speed is right and then, the image is determined by the paths with

remainder ψP = O(1). As stated in Remark 4.1, all paths that scatter at the reflectivity in S have large

remainder. We have now shown the main result:

Proposition 4.2. Assuming a homogeneous background co and a trial speed c̃o = co + O(ε), the

migration imaging function (4.1) peaks in the support S of the reflectivity and not at the layers above it. If

the trial speed c̃o is not close to co, the top layers in the structure obscure the reflectivity. If the background is

not homogeneous, but the trial speed is right, the annihilator obscures partially the top layers by eliminating

the contribution of the primary paths Pj in the image.

4.2. Algorithm for imaging and velocity estimation with layer annihilators. Using Proposition

4.2 we can formulate the following algorithm for imaging jointly with velocity estimation:

1. Choose a trial speed c̃(z).

2. Form the image (4.1) at points ~ys in the search domain Ss, using the data filtered by the layer

annihilator Qc̃. The search domain is assumed to contain S, the unknown support of the reflectivity.

3. Compute the objective function

F(c̃) =
|J (~ys; c̃)|L1(Ss)

max
~ys∈Ss

|J (~ys; c̃)|
. (4.9)
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4. Adjust the speed c̃ using optimization over a compact set C of admissible speeds

min
c̃∈C

F(c̃). (4.10)

This algorithm returns a speed c̃(z) that produces an image of small spatial support, as measured by the

sparsity promoting L1 norm in the objective function (4.9). It is expected to work well when imaging

scatterers of small support S, because the images at incorrect speeds are dominated by the top layers, which

involve more pixels in the image than those contained in S.

Remark 4.3. We can simplify the optimization by taking the L2 norm in (4.9) and replacing the division

by the maximum of J with an equality constraint. The L1 norm should be better in theory for getting a shaper

image, but we have not seen a significant difference in our numerical simulations.

Remark 4.4. As an alternative algorithm for velocity estimation, we can seek c̃(z) as the minimizer of

the L2 norm of the annihilated data traces∫
A
dh
∫
dt |[Qc̃D] (t,h)|2 . (4.11)

In practice, this should work best with the annihilator in Definition 3.3, because the simple subtraction of the

average of the traces after move-out gives an approximate monotone behavior of (4.11) with respect to the

error in the speed. The offset derivatives appearing in Definition 3.1 may lead to unpredictable behavior of

the energy function (4.11) in the presence of instrument or clutter noise.

4.3. CINT imaging with layer annihilators. Coherent interferometric imaging (CINT) was intro-

duced in [9] for mitigating the correlated “noise” due to clutter in the medium. It involves a statistical

smoothing process that takes cross-correlations of the data traces over carefully chosen windows. The CINT

imaging function with unfiltered data is

J CINT(~ys; c̃) =
∫
dω

∫
A
dh
∫
dω̃ χ̂t (ω̃; Ωd)

∫
dh̃ χ̂

h

(ω
ε
h̃;κ−1

d

)
D̂

(
ω

ε
+
ω̃

2ε
,h +

h̃
2

)
D̂

(
ω

ε
− ω̃

2ε
,h− h̃

2

)

exp
[
−i
(
ω

ε
+
ω̃

2ε

)
τ
(
~xs, ~ys, (xs + h + h̃/2, 0)

)
+ i

(
ω

ε
− ω̃

2ε

)
τ
(
~xs, ~ys, (xs + h− h̃/2, 0)

)]
.

Here we denote by D̂ the Fourier transform of the data with respect to time and we scale the frequency by

1/ε, as explained in section 2.2. We use the window χ̂t(·,Ωd) to restrict the scaled frequency offset ω̃ by

Ωd, and we limit |h̃| ≤ ε
ωκd

with the window χ̂
h

(
ω
ε ·;κ

−1
d

)
. The bar in J CINT(~ys) stands for the complex

conjugate of D̂.

CINT images by migrating the cross-correlations of the data with the travel times computed in the

smooth medium with speed c̃(z). The support Ωd and κ−1
d of the windows χ̂t and χ̂

h
must be chosen

carefully to get good results. To see this, we note that straightforward calculations (see [8, 11]) let us rewrite

J CINT(~ys; c̃) ≈
∫
A
dh
∫
dω

∫
dK

∫
dtW (ω,K, t,h)χt

(
τ(~xs, ~ys, (xs + h, 0))− t

ε
; Ω−1

d

)
χ

h
(∇hτ(~xs, ~ys, (xs + h, 0))−K;κd) , (4.12)

in terms of the Wigner transform of the data

W (ω,K, t,h) =
∫
dt̃

∫
dh̃ D̂

(
ω

ε
+
ω̃

2ε
,h +

h̃
2

)
D̂

(
ω

ε
− ω̃

2ε
,h− h̃

2

)
ei ω

ε (t̃−h̃·K). (4.13)
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Note how the windows χt and χ
h

are used in (4.12) for smoothing the Wigner transform. Such smoothing

is essential for getting statistically stable results, that are independent of the realization of the clutter [11].

CINT is a trade-off between smoothing for stability and minimizing the image blur. The range blur is inverse

proportional to Ωd, and the cross-range blur is proportional to κd, the support of window χ
h
. The parameter

Ωd is the decoherence frequency and κd is the uncertainty in the horizontal slowness. They both depend on

the statistics of the random medium, that is typically unknown. However, we can determine them adaptively,

with optimization of the image that they produce, as shown in [8].

The results in [8] apply to a smooth medium cluttered by small inhomogeneities. In this paper we have

the additional layered structure that creates strong echoes at the array and we enhance the SNR by replacing

the data in (4.12) with the filtered data [Qc̃D] (t,h). The velocity estimation can then be done jointly with

CINT imaging, by using an algorithm analogous with that in section 4.1.

Remark 4.5. The ODA theory used in this paper says that simple migration of the annihilated data

should give very good results in layered media. This is an asymptotic result in the limit ε → 0. In practice

we find that migration images can be noisy and that they can be improved with adaptive CINT, as noted in

[10] and section 5. The use of CINT simplifies in layered media because there is no spatial decoherence in

the data, i.e., no uncertainty over the horizontal slowness. It is only the smoothing over arrival times that

affects the results, and even this smoothing is not dramatic. The adaptive algorithm returns an O(1) value

of Ωd, which makes the range resolution of order ε, as in ideal migration. In layered media with additional

fluctuations of the speed due to small, isotropic inhomogeneities, smoothing over the horizontal slowness is

typically needed.

5. Numerical simulations. We present numerical simulations for migration and CINT imaging in

layered media. We show by comparison with the simpler problem of imaging sources that SNR is a serious

issue when imaging scatterers buried deep in layered structures. We then illustrate the SNR improvement

with the layer annihilators.

The array data is generated by solving (2.1) in two dimensions, with the mixed finite element method

described in [2, 3]. The infinite extent of the medium is modeled numerically with a perfectly matched

absorbing layer surrounding the computational domain.

cr
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20

80

d

d

Fig. 5.1. Setup for numerical simulations with sources buried in a finely layered structure. The units are in carrier
wavelengths λo and the distance d between the scatterers is 4. The perfectly matched layer surrounding the domain is shown
in pink.

5.1. Sources buried in finely layered structures. The setup for the simulations with sources buried

in layered media is shown in Figure 5.1. We use an array of 41 receivers at distance λo/2 apart from each
17



other. The sources are at depth L ∼ 78λo. The sound speed is plotted on the left in Figure 2.2. It fluctuates

around the constant value co = 3km/s. The source has directivity along the z axis and it emits the pulse

f(t) given by the derivative of a Gaussian. While everything is scaled in terms of the central wavelength,

we choose for illustration numbers that are typical in exploration geophysics. We let ωo/(2π) = 30Hz be the

central frequency so that λo = 100m and L = 7.8km. The bandwidth is B = 20− 40Hz (measured at 6dB)

and the correlation length is ` = 10m.

We show in Figure 5.2 the data traces for one and four sources buried in the layered medium. The time

axis is scaled by the pulse width, which is 0.02s in our simulations. The cross-range is scaled by the central

wavelength. We note in Figure 5.2 the strong coherent arrivals of the signals from the sources and the trail

of weaker incoherent echoes from the finely layered structure. The Kirchhoff migration and CINT images

with these data are shown in Figure 5.3. Although in theory migration should work well, we see how the

smoothing in CINT improves the images, especially in the case of four sources.
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Fig. 5.2. Traces recorded at the array for a single source (top) and four sources (bottom). The pulse width is 0.02s.

5.2. Scatterers buried in finely layered structures. We present numerical simulations for layered

media with constant and variable background speeds. We also consider media with isotropic clutter in

addition to the layered structure.

5.2.1. Simulations for a constant background speed. Consider first the simulation with setup

shown in Figure 2.3. The source is now at the center point in the array and it emits the same pulse as before,

with central frequency ωo/(2π) = 30Hz and bandwidth 20 − 40Hz. The array has 81 receivers distributed

uniformly over the aperture a = 40λo. The sound speed v(z) is as in Figure 2.3. It has a constant part

co = 3km/s, rapid fluctuations with correlation length ` = 0.02λo = 2m, and five strong blips (interfaces)

separated by distance 10λo = 1km. The reflectivity ν(~x) is supported on three soft acoustic scatterers (i.e.,

pressure is zero at their boundary) that are disks of radius λo. They are at depth L ∼ 60λo = 6km and at

distance 2.5λo = 250m apart. Note that the setup is in agreement with assumption (2.18) of separation of
18
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Fig. 5.3. Top: images with the traces in Figure 5.2 top for a single source. Bottom: images with the traces in Figure 5.2
bottom for four point sources. Left column: Kirchhoff migration. Right column: CINT. The correct location of the source is
shown in each figure with a green dot.
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Fig. 5.4. Images with the traces in Figure 2.3. Kirchhoff migration is on the left and CINT on the right. The small
scatterers are indicated with circles and they are invisible in both images. Both range and cross-range are scaled by λo.

scales, for ε = 0.02, because

`

λo
= 0.02 ∼ λo

L
= 0.017.

The change in v(z) at the interfaces is close to 100% and the rapid fluctuations have an amplitude of 10%.

The data traces are shown in Figure 2.3. The reflectivity is masked be the layered structure above it

and it cannot be seen with migration or CINT (Figure 5.4).

The results improve dramatically when imaging with filtered data [QcoD](t, h) at the true speed co, as

shown in Figure 5.5. The annihilators in Definitions 3.1 and 3.3 give similar results in this case, so we show

only the plots for the first one. Note that the scatterers are too close together to be resolved by migration

or CINT. The images could be improved in principle, if we had more data (more source locations), using

optimal subspace projections as in [12]. We will consider such improvements in a separate publication.

In Figure 5.6 we illustrate the estimation of the background speed c̃o using the layer annihilators. We

form the image with migration of the filtered data [Qc̃oD](t, h) and we plot its L2 norm computed in the

same domain as in Figures 5.4-5.5. The maximum of the image is kept constant during the optimization.
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Fig. 5.5. Images with filtered data [QcoD](t, h). Migration is on the left and CINT on the right.
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Fig. 5.6. Plot of the L2 norm of the image normalized by its maximum, as a function of the trial speed c̃o.

Note the monotone behavior of the objective function near the optimum c̃o = co. The decrease noted at the

ends of the trial speed interval is to be discarded as it is due to c̃o being so wrong that the image peaks are

pushed outside the image domain fixed in the optimization.

5.2.2. Simulations for a variable background speed. In the next simulation we consider the

variable background speed shown in Figure 5.7 on the left. All other parameters are the same as in section

5.2.2. We compute the travel times Tc(h, z) by essentially solving equations (3.11)-(3.12). The actual

implementation uses the MATLAB Toolbox Fast Marching [24], which computes the viscosity solution of

the eikonal equation using level sets and the fast marching algorithm.

We plot on the right in Figure 5.7 the traces before and after annihilation. Note the emergence of the

echoes from the small scatterers after the annihilation. The images with the annihilated data are similar to

those in Figure 5.5 so we do not include them in the paper.

Let us take now a finely layered medium with the speed as in Figure 5.7 but without the five strong

blips. The traces and the Kirchhoff migration image are shown in Figure 5.8 on the left. We see that the

SNR problem persists even in the absence of the strong interfaces. The echoes due to the layered structure

are now just the incoherent ones denoted by N (t,h) in equation (2.22). We did not present in this paper any

theory for the annihilation of such incoherent echoes. This is done in a different publication [7]. However,

we illustrate with numerical results on the right in Figure 5.8 the SNR enhancement and the significant

improvement of the migration image obtained with layer annihilation.
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Fig. 5.8. Left: Traces and Kirchhoff migration image without annihilation. Right: Annihilated traces and the resulting
migration image. The speed v(z) is as in Figure 5.7, but without the five strong scattering interfaces.

5.2.3. Simulations for media with discontinuous background speeds. We illustrate here the

performance of the layer annihilators in the case of background speeds c(z) with jump discontinuities. We

show in Figures 5.9-5.10 the results of two simulations. The sound speed v(z) is plotted on the left and

the traces before and after annihilation are shown on the right. The filters Qc are defined at the true mean

speed. The coherent echoes from the reflectors that we wish to image are seen clearly in the filtered traces

in Figures 5.9-5.10, but not in the raw, measured traces.

5.2.4. Simulations for layered media with additional isotropic clutter. In our last simulation

we return to the setup considered in section 5.2.1 and add isotropic clutter to the medium. This is modeled

with a random process generated with random Fourier series. We take a Gaussian correlation function, with

correlation length equal to λo. The standard deviation of the isotropic fluctuations of the sound speed is 3%.

We show in Figure 5.11 the traces before and after filtering with the annihilators Qco given by Definitions

3.1 and 3.3. We plot for comparison the traces for both 3% and 1% standard deviation of the isotropic clutter.

We note that the first choice does not work well, in the sense that it magnifies the effect of the isotropic
21
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Fig. 5.9. Left: Sound speed v(z). Right: Traces before (top) and after (bottom) annihilation.
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Fig. 5.10. Left: Sound speed v(z). Right: Traces before (top) and after (bottom) annihilation.

clutter at the early times. This is due to the offset derivative in Definition 3.1. The layer annihilator given

by Definition 3.3 works much better, as seen in the bottom plots of Figure 5.11. The emergence of the echoes

from the small scatterers is seen more clearly in the weaker clutter (bottom right plot in Figure 5.11).

Before the annihilation we can image only the top two strong scattering interfaces (left plot in Figure

5.12). After the annihilation, we can image below these interfaces. However, we still have to deal with the

loss of coherence of the echoes due to scattering by the isotropic clutter. This makes the migration image

speckled and difficult to interpret, as seen in the middle plot in Figure 5.12. The speckles are suppressed in the

CINT image (right plot in Figure 5.12) because of the statistical smoothing induced by the cross-correlation

of the annihilated traces in appropriately sized time and offset windows (see section 4 and [9, 8, 11]). The

CINT image in Figure 5.12 is obtained with the decoherence frequency Ωd = 3% of the bandwidth and

decoherence length Xd = 15.9λ. We note that the image peaks at the small scatterers and slightly behind

them. This is because of the strong interface that lies just below the small scatterers (see Figure 2.3). The

layer annihilator is not designed to suppress the echoes that have been multiply scattered between the small

scatterers and the interfaces. These are coherent echoes that are not eliminated by the statistical smoothing

in CINT either, and this is why we see their effect in the image. We expect that the result can be improved

if we had more data (more source locations), using optimal subspace projections as in [12]. We will consider

such improvements in a separate publication.

6. Summary and conclusions. The focus of this paper is on the use of data filtering operators, called

layer annihilators, for imaging small scatterers buried deep in layered deterministic and random structures.

The annihilators are designed to suppress the echoes from the layered structure and enhance the signals from
22
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Fig. 5.12. Left: Migration image with the raw traces shown on the top in Figure 5.11.Middle: Migration with the
annihilated traces shown on the bottom left in Figure 5.11. Right: CINT image with the annihilated traces shown on the
bottom left in Figure 5.11.

the compact scatterers that we wish to image. We have shown analytically and with numerical simulations

that the layer annihilators can improve significantly the images if we know the smooth part of the sound

speed in the medium. This determines the kinematics (i.e., the travel times) of the data that we record with

an array of sensors placed at the top of the layered structure.

If we compute travel times with the wrong background speed, then the annihilators do not suppress the

echoes from the layer structure and the resulting images are bad. This is why we can also use the annihilators

for velocity estimation. We have indicated briefly how to do velocity estimation jointly with imaging. This

is done by optimizing an objective function that measures the quality of the image as it is being formed with

data filtered with a trial background speed.

We note that the imaging methods discussed in this paper do not require any knowledge of the rough

part of the background speed. This rough part may be due to strongly scattering interfaces or to fine layering

at the sub-wavelength scale, which we model with random processes. We may also have additional isotropic

clutter due to the presence of small inhomogeneities in the medium. We have shown that we can mitigate lack
23



of knowledge of the rough part of the sound speed for the purpose of imaging, using: (1) Layer annihilators

for enhancement of the signals from the compact scatterer to be imaged, and (2) Coherent interferometry

(CINT) for stabilization of the images with a statistical smoothing process that involves cross-correlations

of the annihilated data traces over carefully chosen time and source-receiver offset windows.

The analysis in this paper is concerned with the annihilation of the echoes coming from strongly scattering

interfaces in the medium. These echoes dominate the coherent part of the wavefield as described by the

O’Doherty Anstey theory. However, the numerical simulations indicate that the incoherent field that is

backscattered by the random medium is annihilated as well. The analysis of this surprising phenomenon

requires a deeper understanding of reflected signals from the fine layering, beyond the ODA theory [22]. It

is presented in [7].
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Appendix A. Derivation of the scattering series. We derive here the multiple scattering series

(2.22) for the data recorded at the array. As explained in section 2.1, when using the Born approximation

for scattering by the reflectivity ν(~x) supported in S, we can reduce the problem to that of waves in purely

layered media, for a point source excitation. Specifically, the pressure field P (t, ~x) observed at the array for

time t < τS , the travel time from the source at ~xs to the reflectivity support S and back, satisfies the initial

value problem

ρ
∂~u
∂t

(t, ~x) +∇P (t, ~x) = ~F(t, ~x),

1
v2(z)

∂P

∂t
(t, ~x) + ρ∇ · ~u(t, ~x) = 0, ~x ∈ Rd, t > 0, (A.1)

~u(t, ~x) = ~0, P (t, ~x) = 0, t < 0.

The incident field P i(t, ~y) on the reflectivity (see (2.7)) is also given by the solution of (A.1), evaluated at

points ~y ∈ S. Finally, equation (2.8) for the Green’s function appearing in (2.7) is very similar to (A.1).

Once we solve (A.1), we can deduce easily the result for G(t, ~x, ~y) and consequently, the series (2.22).

A.1. The plane wave decomposition. It is convenient to analyze (A.1) in the phase space

P̂
(ω
ε
,K, z

)
=
∫
dt

∫
dxP (t,x, z)ei ω

ε (t−K·x),

~̂u
(ω
ε
,K, z

)
=
∫
dt

∫
dx ~u(t,x, z)ei ω

ε (t−K·x), ~u = (u, u). (A.2)

Here we Fourier transform P and ~u with respect to time t and the cross-range variables x ∈ Rd−1, where

~x = (x, z). We scale the frequencies by 1/ε, as explained in section 2.2 and we let the dual variable to x in

the plane wave decomposition be the slowness vector (with units of time over length) K ∈ Rd−1.
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Let us eliminate û from the Fourier transformed equations (A.1), and obtain for each random slab

iω

ε

[
|K|2 − 1

v2(z)

]
P̂ + ρ

∂û

∂z
= 0,

− iω
ε
ρû+

∂P̂

∂z
= 0, −Lj < z < −Lj−1, j = 1, . . .M. (A.3)

This is a one-dimensional wave equation for plane waves propagating in the direction of K at speed

v(z)/
√

1− v2(z)|K|2. At z = 0 we have the jump conditions

P̂
(ω
ε
,K, 0+

)
− P̂

(ω
ε
,K, 0−

)
= ε

d+1
2 f̂(ω)e−i ω

ε K·xs ,

û
(ω
ε
,K, 0+

)
− û

(ω
ε
,K, 0−

)
=
ε

d+1
2 K · F̂(ω)

ρ
e−i ω

ε K·xs , (A.4)

due to the source excitation (2.10) at ~xs = (xs, 0). The scattering interfaces at z = −Lj , for j = 1, . . .M ,

are modeled later using transmission and reflection coefficients.

A.2. The up and down going waves. To study scattering in the layered medium, we decompose

the wave field into up and down going waves. The decomposition is done separately in each random slab

−Lj < z < −Lj−1 and then, the fields are mapped between the slabs via scattering operators at the

separation interfaces z = −Lj , for j = 1, . . . ,M .

For the slab −Lj < z < −Lj−1 we write

P̂
(ω
ε
,K, z

)
=

√
γ(K, z)

2

[
α̂ε(ω,K, z)ei ω

ε τj(K,z) − β̂ε(ω,K, z)e−i ω
ε τj(K,z)

]
,

û
(ω
ε
,K, z

)
=

1
2
√
γ(K, z)

[
α̂ε(ω,K, z)ei ω

ε τj(K,z) + β̂ε(ω,K, z)e−i ω
ε τj(K,z)

]
, (A.5)

where αε and βε are the amplitudes of the up and down going waves. These amplitudes are random variables,

but the remaining coefficients in (A.5) are deterministic. Explicitly,

γ(K, z) =
ρc(z)√

1− c2(z)K2
, (A.6)

is the acoustic impedance of the plane waves propagating in the direction of K, in the smooth background,

at speed c(z)/
√

1− c2(z)K2, with K = |K|. The exponents in (A.5) are the travel times computed in the

smooth medium, relative to the top of the slab

τj(K, z) =
∫ z

−Lj−1

√
1− c2(s)K2

c(s)
ds. (A.7)

Substituting (A.5) in (A.3), we obtain a coupled system of stochastic differential equations for αε and

βε. We write these equations using the matrix valued propagator Pε
j(ω,K, z), satisfying

∂Pε
j

∂z
=
[
iω

ε
µ
( z
ε2

) γ(K, z)
2ρc2(z)

Hε
j +

∂

∂z
ln
√
γ(K, z)Mε

j

]
Pε

j

Pε
j = I, at z = −L+

j (A.8)

with

Hε
j =

(
1 −e−2i ω

ε τj(K,z)

e2i ω
ε τj(K,z) −1

)
and Mε

j =
(

0 e−2i ω
ε τj(K,z)

e2i ω
ε τj(K,z) 0

)
.
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The propagator Pε
j(ω,K, z) maps the amplitudes at the bottom of the slab z = −L+

j to the amplitudes at

an arbitrary depth z in the slab,(
α̂ε(ω,K, z)
β̂ε(ω,K, z)

)
= Pε

j(ω,K, z)
(
α̂ε(ω,K,−L+

j )
β̂ε(ω,K,−L+

j )

)
. (A.9)

The boundary conditions at z = −L+
j are not known apriori, and they are to be determined recursively, as

we explain in the following sections. We do know, however, the boundary conditions at the surface z = 0,

where the source and the array are

αε(ω,K, 0+) = αε(ω,K, 0−) +
ε

d+1
2 e−i ω

ε K·xs√
γ(K, 0)

[
f̂(ω) +

γ(K, 0)
ρ

K · F̂(ω)
]
, (A.10)

βε(ω,K, 0−) =
ε

d+1
2 e−i ω

ε K·xs√
γ(K, 0)

[
f̂(ω)− γ(K, 0)

ρ
K · F̂(ω)

]
. (A.11)

These equations follow from (A.4), (A.5) and identity

βε(ω,K, 0+) = 0, (A.12)

which says that there are no down going waves above the source in the homogeneous half space z > 0.

We refer to

βε(ω,K, 0−) =
ε

d+1
2 ϕ̂(ω,K)√
γ(K, 0)

e−i ω
ε K·xs , ϕ̂(ω,K) = f̂(ω)− γ(K, 0)

ρ
K · F̂(ω) (A.13)

as the amplitude of the incident waves impinging on the layered medium. The up going wave amplitude

αε(ω,K, 0+) consists of two parts: The direct arrival, which we remove from the data and the scattered part

αε(ω,K, 0−) = Rε(ω,K)βε(ω,K, 0−), (A.14)

where Rε(ω,K) is the reflection coefficient of the layered medium below the surface z = 0. The pressure

field scattered by the layered structure is obtained by Fourier synthesis,

p(t, ~x) =
ε

d+1
2

2

∫
dω

2πε

∫
dK

( ω

2πε

)d−1

ϕ̂(ω,K)Rε(ω,K)e−i ω
ε t+i ω

ε K·(x−xs), ~x = (x, 0). (A.15)

It remains to write in the next sections the reflection coefficient Rε(ω,K) in terms of the propagators Pε
j of

the random slabs and the scattering operators at the interfaces z = −Lj , for j = 1, . . . ,M .

Similar to (A.15), we obtain by Fourier synthesis the incident field P i(t, ~y) at a point ~y in the support

S of the reflectivity (recall Born formula (2.7)). The layered medium appears in P i(t, ~y) in the form of

transmission coefficient T ε(ω,K) between z = 0 and z = −L, where ~y = (y,−L). This transmission

coefficient is also determined by the propagators Pε
j of the random slabs and the scattering operators at the

interfaces z = −Lj , for j = 1, . . . ,M , as we show in the following sections.

A.3. The transmission and reflection coefficients in the random slabs. It follows easily from

equations (A.8) (see [22]) that the propagators Pε
j(ω,K, z) are of the form

Pε
j =

(
ζε
j ηε

j

ηε
j ζε

j

)
, (A.16)

26



Fig. A.1. Schematic of transmission and reflection by an imaginary random slab in the interval (−Lj , z), with homoge-
neous half spaces above and below it. We show on the left the illumination of the slab from above. The illumination from below
the slab is shown on the right.

where ζε
j (ω,K, z) and ηε

j(ω,K, z) are complex valued fields satisfying

det Pε
j(ω,K, z) =

∣∣ζε
j (ω,K, z)

∣∣2 − ∣∣ηε
j(ω,K, z)

∣∣2 = 1, −Lj < z < −Lj−1. (A.17)

The bar stands for complex conjugate.

It is not convenient to work directly with the entries of Pε
j , so we introduce instead the “transmission”

and “reflection” coefficients T ε
j (ω,K, z) and Rε

j(ω,K, z),

Pε
j(ω,K, z)

(
0

T ε
j (ω,K, z)

)
=
(
Rε

j(ω,K, z)
1

)
. (A.18)

This definition can be understood as follows: Imagine that we had a random slab in the interval (−Lj , z) and

homogeneous half spaces above and below it, as shown in Figure A.1. Then, if we sent a down going wave

of amplitude 1 at z, we would observe a down going transmitted field T ε
j (ω,K, z) at −Lj and a reflected,

up going field of amplitude Rε
j(ω,K, z) at z. There would be no up going field at −Lj , because there is no

scattering below the imaginary slab.

Equations (A.16) and (A.18) give T ε
j (ω,K, z) = 1

ζε
j (ω,K,z)

, Rε
j(ω,K, z) =

ηε
j(ω,K,z)

ζε
j (ω,K,z)

and by (A.17), we

have the conservation of energy identity∣∣T ε
j (ω,K, z)

∣∣2 +
∣∣Rε

j(ω,K, z)
∣∣2 = 1. (A.19)

This holds for any z in the interval (−Lj ,−Lj−1), and j = 1, . . . ,M .

We can also define the analogous coefficients T̃ ε
j (ω,K, z) and R̃ε

j(ω,K, z), corresponding to illuminating

the imaginary random slab from below (see Figure A.1),

Pε
j(ω,K, z)

(
1

R̃ε
j(ω,K, z)

)
=
(
T̃ ε

j (ω,K, z)
0

)
. (A.20)

These coefficients are given by T̃ ε
j (ω,K, z) = T ε

j (ω,K) and R̃ε
j(ω,K, z) = −ηε

j(ω,K,z)

ζε
j (ω,K,z)

. They also satisfy the

energy conservation identity ∣∣∣T̃ ε
j (ω,K, z)

∣∣∣2 +
∣∣∣R̃ε

j(ω,K, z)
∣∣∣2 = 1. (A.21)
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The random transmission and reflection coefficients are completely understood, in the sense of their

statistical distribution, in the limit ε→ 0 [22, 1]. In this paper we need just a few facts about the moments

of these coefficients, which we quote from [22, 1]:

(1) The transmission and reflection coefficients of different random slabs (i.e., for different indices j) are

statistically independent.

(2) Let z be fixed and consider Ulq(ω,K, z) =
[
T ε

j (ω,K, z)
]l [

Rε
j(ω,K, z)

]q
, for arbitrary and nonnegative

integers l, q. We have

E
{
Ulq(ω,K, z)Ul′q′(ω′,K ′, z)

}
→ 0, (A.22)

if q 6= q′ or if q = q′ ≥ 1 and |ω − ω′| > O(ε), or |K −K ′| > O(ε). A similar result holds for R̃ε
j(ω,K, z)

replacing Rε
j(ω,K, z).

(3) The multi frequency and slowness moments of the transmission coefficients do not vanish

E

∏
q≥1

T ε
j (ωq,Kq, z)

→ E

∏
q≥1

TODA
j (ωq,Kq, z)

 , (A.23)

and converge to the moments of the ODA kernel

TODA
j (ω,K, z) = exp

{
−ω

2l

8

∫ z

−Lj

ds

c2(s)[1− c2(s)K2]
+ i

ω
√
l

2

∫ z

−Lj

dW (s+ Lj)
c(s)

√
1− c2(s)K2

}
(A.24)

Here W is standard Brownian motion and l = `/ε2 = O(1) is the rescaled correlation length.

A.4. The strong scattering interfaces. We model scattering at the interfaces −Lj with propagators

Lj that map the up and down going waves below the interface to those above it.

If the interface is due to a jump discontinuity of c(z) at −Lj we have(
α̂ε(ω,K,−L+

j )ei ω
ε τj(K,−Lj)

β̂ε(ω,K,−L+
j )e−i ω

ε τj(K,−Lj)

)
= Lj(ω,K)

(
α̂ε(ω,K,−L−j )
β̂ε(ω,K,−L−j )

)
, (A.25)

where we use τj(K,−Lj) in the left hand side to increment the travel times (A.7) that start from zero in

each random slab. The entries in Lj are given by [22]

Lj =


1
2

(
c+

j

c−j
+

c−j

c+
j

)
− 1

2

(
c+

j

c−j
− c−j

c+
j

)
− 1

2

(
c+

j

c−j
− c−j

c+
j

)
1
2

(
c+

j

c−j
+

c−j

c+
j

)
 , c±j =

c(−L±j )√
1− c2(−L±j )K2

, (A.26)

and we can define, as in section A.3, the transmission and reflection coefficients

Lj

(
0
Tj

)
=
(
Rj

1

)
, Lj

(
1
R̃j

)
=
(
T̃j

0

)
(A.27)

corresponding to illuminations from above and below the interface. The satisfy the identities

T̃j = Tj , R̃j = −Rj , T 2
j +R2

j = 1. (A.28)
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An alternative model of a strong scattering interface at −Lj is given by a sudden blip of c(z) over a

depth interval −Lj −O(λo) ≤ z ≤ −Lj . We can model such a blip as a perturbation of a constant speed

c(z) = c(−L+
j )
[
1 + σjχ

(
z + Lj

ε

)]
, −εdχ ≤ z + Lj ≤ 0, (A.29)

using a window function χ(ξ) supported in the O(1) interval ξ ∈ [−dχ, 0]. We normalize χ to have maximum

value one and we let σj = O(1) be the relative amplitude of the perturbation in (A.29).

If χ were the indicator function of the interval [−dχ, 0], the propagator Lj would be

Lj =


1
2

(
c+

j

c−j
+

c−j

c+
j

)
− 1

2

(
c+

j

c−j
− c−j

c+
j

)
− 1

2

(
c+

j

c−j
− c−j

c+
j

)
1
2

(
c+

j

c−j
+

c−j

c+
j

)

(
eiωdχ/c−j 0

0 e−iωdχ/c−j

)
1
2

(
c−j

c+
j

+
c+

j

c−j

)
− 1

2

(
c−j

c+
j

− c+
j

c−j

)
− 1

2

(
c−j

c+
j

− c+
j

c−j

)
1
2

(
c−j

c+
j

+
c+

j

c−j

)
 .

Here c±j are as in equation (A.26), with c(−L−j ) = c(−L+
j )(1 + σj) and Lj is determined by the product of

two matrices of the form (A.26), accounting for the jump discontinuities at −Lj and −Lj − εdχ. The travel

time −εdχ/c
−
j , over the support εdχ of the perturbation of c, appears in Lj , as well. It is easy to check that

this complex valued propagator satisfies the analogue of conditions (A.16), (A.17). The transmission and

reflection coefficients are defined just as in (A.27), and they satisfy the energy conservation identity

|Tj |2 + |Rj |2 = 1,

which is a consequence of det Lj = 1.

In the case of a smooth χ, we can obtain the propagator Lj from equation (A.8), as follows. Let

z = −Lj + εξ, with ξ ∈ [−dχ, 0], and write the analogue of (A.8) for the propagator Pε
j (ξ),

∂Pε
j

∂ξ
=

[
iωµj

(
ξ

ε

)
γj(K, ξ)

2ρc2j (K, ξ)
Hj +

∂

∂ξ
ln
√
γj(K, ξ) Mj

]
Pε

j

Pε
j = I, at ξ = −dχ. (A.30)

Here we use the short notation

µj

(
ξ

ε

)
= µ

(
−Lj

ε2
+
ξ

ε

)
, γj(K, ξ) = ρcj(K, ξ), cj(K, ξ) =

c(−L+
j )[1 + σjχ(ξ)]√

1− c2(−L+
j )[1 + σjχ(ξ)]2K2

,

and we define the matrices

Hj =

(
1 −e−

2iωξ
cj(K,ξ)

e
2iωξ

cj(K,ξ) −1

)
, Mj =

(
0 e

− 2iωξ
cj(K,ξ)

e
2iωξ

cj(K,ξ) 0

)
.

The propagator Lj is given by the limit ε→ 0 of the solution of (A.30), evaluated at ξ = 0. The limit follows

from a well known averaging theorem (see [22, section 6.4.1]), and we obtain that

Lj = Pj(0), (A.31)

where

∂Pj

∂ξ
=

∂

∂ξ
ln
√
γj(K, ξ) MjPj

Pj = I, at ξ = −dχ. (A.32)
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Finally, we define the transmission and reflection coefficients just as in (A.27) and check that they satisfy

the energy conservation identity |Tj |2 + |Rj |2 = 1.

A.5. The scattering series. Let us call −L the maximum depth of propagation of the waves in a

bounded and fixed time window. Then, we can use the causality of the wave equation to set the speed c(z)

to the constant value c(−L), for z ≤ −L. Let us also denote by Rε(ω,K) and T ε(ω,K) the reflection and

transmission coefficients of the layered medium in the interval (0,−L), at scaled frequency ω and slowness

K, with K = |K|. We obtain by iterating equations (A.9) and (A.25) that(
Rε(ω,K)

1

)
= Pε

1(ω,K,−L1) diag
(
e−i ω

ε τ1(K,−L1), ei ω
ε τ1(K,−L1)

)
L1Pε

2(ω,K,−L2) · · ·

diag
(
e−i ω

ε τM (K,−LM ), ei ω
ε τM (K,−LM )

)
LMPε

M+1(ω,K,−L)
(

0
T ε(ω,K)

)
. (A.33)

Here we assume that there are M strong scattering interfaces above z = −L and, due to the perfect matching

at z = −L, we have no up going wave coming from the homogeneous half space z < −L.

Equations (A.33) define implicitly Rε and T ε. We invert them next to obtain the scattering series. Note

that from now on we use the following simplified notation:

αε,+
j = αε

j(ω,K,−L+
j ), βε,+

j = βε
j(ω,K,−L+

j ),

and similar for z = −L−j . We also let T ε
j = T ε

j (ω,K,−Lj−1), Rε
j = Rε

j(ω,K,−Lj−1) and τj = τj(K,−Lj).

A.5.1. The series for Rε. Let us begin with equation (A.9). We have(
αε,−

j−1

βε,−
j−1

)
= Pε

j

(
αε,+

j

βε,+
j

)
= αε,+

j Pε
j

(
1
R̃ε

j

)
+

(βε,+
j − R̃ε

jα
ε,+
j )

T ε
j

Pε
j

(
0
T ε

j

)
and from definitions (A.18) and (A.20), we get(

αε,−
j−1

βε,−
j−1

)
= αε,+

j

(
T̃ ε

j −Rε
jR̃

ε
j/T

ε
j

−R̃ε
j/T

ε
j

)
+ βε,+

j

(
Rε

j/T
ε
j

1/T ε
j

)
, (A.34)

for j = 1, . . . ,M + 1. Similarly, we obtain from (A.25) that at z = −Lj(
αε,+

j ei ω
ε τj

βε,+
j e−i ω

ε τj

)
= αε,−

j

(
T̃j −RjR̃j/Tj

−R̃j/Tj

)
+ βε,−

j

(
Rj/Tj

1/Tj

)
, (A.35)

for j = 1, . . . ,M . The boundary conditions are

αε,−
0 = Rε, βε,−

0 = 1, αε,+
M+1 = 0, βε,+

M+1 = T ε (A.36)

and we set LM+1 = L.

Let us start from the bottom in (A.34)-(A.36),

T ε = βε,−
M T ε

M+1,
αε,−

M

βε,−
M

= Rε
M+1 (A.37)

and use (A.37) in (A.35) for j = M to get

αε,+
M

βε,+
M

= e−2i ω
ε τM

(
αε,−

M (T̃M −RM R̃M/TM ) + βε,−
M RM/TM

βε,−
M /TM − αε,−

M R̃M/TM

)
= e−2i ω

ε τM

(
RM +

Rε
M+1TM T̃M

1− R̃MRε
M+1

)
.
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Fig. A.2. Diagram of the first few terms in the series (A.38) on the left and series (A.41) on the right.

Since the reflection coefficients are less than one in magnitude, we obtain

αε,+
M

βε,+
M

= e−2i ω
ε τM

[
RM +Rε

M+1TM T̃M

∞∑
q=0

(
R̃MRε

M+1

)q
]
. (A.38)

This series says that, as indicated in the diagram in Figure A.2, the reflected field at −L+
M consists of: (1) The

direct reflection at the interface z = −LM (RM in (A.38)), (2) The transmission through the interface and

the reflection by the medium below, followed by another transmission from below the interface (TMRε
M+1T̃M

in (A.38)). (3) Multiple iterations of the latter. Due to reflections at −LM , we have multiple illuminations

of the medium below z = −LM . These are the terms TM

(
R̃MRε

M+1

)q

Rε
M+1T̃M , for q > 0 in (A.38).

The series for
αε,−

M−1

βε,−
M−1

is obtained in an analogous manner,

αε,−
M−1

βε,−
M−1

= Rε
M +

αε,+
M

βε,+
M

T ε
M T̃ ε

M

∞∑
q=0

(
R̃ε

M

αε,+
M

βε,+
M

)q

.

Iterating for all indices j, we obtain the full scattering series

αε,+
j

βε,+
j

= e−2i ω
ε τj

[
Rj +

αε,−
j

βε,−
j

Tj T̃j

∞∑
q=0

(
R̃j

αε,−
j

βε,−
j

)q]
, (A.39)

where j = 1, . . . ,M . At j = M we have (A.37) and

αε,−
j−1

βε,−
j−1

= Rε
j +

αε,+
j

βε,+
j

T ε
j T̃

ε
j

∞∑
q=0

(
R̃ε

j

αε,+
j

βε,+
j

)q

, j = 1, . . .M. (A.40)

Finally, (A.36) gives Rε = αε,−
0

βε,−
0

.

A.5.2. The series for T ε. The derivation of the series for T ε is analogous to that for Rε. We state

here directly the result: For j = 1, . . .M , we have

βε,+
j = βε,−

j−1T
ε
j

∞∑
q=0

(
R̃ε

j

αε,+
j

βε,+
j

)q

, (A.41)

and

βε,−
j = βε,+

j e−i ω
ε τjTj

∞∑
q=0

(
R̃j

αε,−
j

βε,−
j

)q

. (A.42)
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The first terms in (A.41) and (A.42) are the direct transmission through the j-th random slab and interface,

respectively. The series arise because of the multiple illuminations of the slab and interface, due to the

reflection by the layered structure below −Lj . See for example the diagram in Figure A.2 for series (A.41).

At z = 0 we have the initial condition (A.13) and T ε = βε,+
M+1.

A.6. The scattered pressure field. Assume first times t < τS , so that all the echoes at the array are

due to the layered structure. The pressure field at the receivers is given by (A.15), in terms of the reflection

coefficient Rε defined by the scattering series derived in section A.5.1. The series involves random reflection

and transmission coefficients T ε
j and Rε

j , with moments given in section A.3, in the asymptotic limit ε→ 0.

Note in particular statements (A.22) and (A.23). They say that when computing the expectation of

p(t, ~x), we can drop all terms in Rε that involve reflections by the random slabs and replace the transmission

coefficients T ε
j by the ODA kernels TODA

j . That is, we can write

E {p(t, ~x)} ≈ E {pODA(t, ~x)} , (A.43)

where ~x = (x, 0),

pODA(t, ~x) =
ε

d+1
2

2

∫
dω

2πε

∫
dK

( ω

2πε

)d−1

ϕ̂(ω,K)RODA(ω,K)e−i ω
ε t+i ω

ε K·(x−xs), (A.44)

and RODA = αODA,−
0

βODA,−
0

is determined recursively from

αODA,+
j

βODA,+
j

= e−2i ω
ε τj

[
Rj +

αODA,−
j

βODA,−
j

Tj T̃j

∞∑
q=0

(
R̃j

αODA,−
j

βODA,−
j

)q]
,

αODA,−
j−1

βODA,−
j−1

=
αODA,+

j

βODA,+
j

[
TODA

j

]2
, j = 1, . . . ,M, (A.45)

αODA,−
M

βODA,−
M

= 0.

Furthermore, due to the rapid decorrelation of the reflection coefficients Rε
j over frequencies and slownesses

K, we get from (A.15) and (A.22) that

E
{
|p(t, ~x)|2

}
= E

{
|pODA(t, ~x)|2

}
+O(ε). (A.46)

The ODA field (A.44) describes the coherent echoes recorded at the array. They are due to scattering by

the strong interfaces at z = −Lj , for j = 1, . . . ,M but not to scattering in the random medium. Scattering

in the random medium produces what we call the incoherent field. It has zero expectation and O(ε) variance

(see the second term in A.46). The coherent field pODA(t, ~x) consists of a series of coherent arrivals along

scattering paths that we denote in short by P. Each such arrival can be analyzed with the method of

stationary phase [5].

Take for example the shortest path P, corresponding to a single reflection at −L1 and assume for the

purpose of illustration that c(z) = co and d = 3. We have

pODA

P
(t, ~x) =

ε2

2

∫
dω

2πε

∫
dK

( ω

2πε

)2

ϕ̂(ω,K)R1 [TODA
1 (ω,K)|2 e−i ω

ε (t+2τ1)+i ω
ε K·(x−xs),
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Fig. A.3. Diagram of Snell’s law for reflection at z = −L1.

with kernel TODA
1 (ω,K) given by (A.24), for j = 1 and z = 0. The travel time is

τ1 = −L1

√
1− c2oK

2

co

and

TODA
1 (ω,K) = exp

{
− ω2lL1

8c2o(1− c2oK
2)

+ i
ω
√
l

2co
√

1− c2oK
2
W (L1)

}
.

The leading term in the integral over K comes from the neighborhood of the stationary point

K =
h

co
√
|h|2 + 4L2

1

, K = |K| = cos θ1
co

.

This corresponds to waves propagating along a straight path from the array to the interface at −L1 and

back. The reflection at −L1 obeys Snell’s law, as indicated in Figure A.3. A straightforward application of

stationary phase gives

pODA

P
(t, ~x) =

ε

4π
√
h2 + 4L2

1

∫
dω

2π

(
−iω

ε

sin θ1
co

)(
f̂(ω)− h · F̂(ω)

2L1

)
R1e

−
ω2t2ps
sin2 θ1

+2i
ωtps
sin θ1

W (L1)√
L1

−i ω
ε

 
t−
√

|h|2+4L2
1

co

!
.

This result is similar to (2.25). It says that the coherent echo along path P looks as if we had a homogeneous

medium, except for: (1) The pulse spread controlled by parameter

tps =
√
lL1

2co

with units of time, and (2) The random arrival shift εδτP , with

δτP =
2tps

sin θ1
W (L1)√

L1

.

Obviously, the above illustration extends to all the coherent paths and to variable, but smooth c(z).

Consistent with the notation in (2.22), we denote the pulse shape for each coherent arrival by

ΦP

[
t− τP (h)− εδτP (h)

ε
,h
]
.

We use the second argument to point out that ΦP changes with h. This is a slow change due to geometrical

spreading and the convolution with the ODA kernel. The rapid variation with h is due to the travel time

τP (h) in the first argument of ΦP .

Finally, let us point out that the results in this section extend obviously to the echoes from the reflectivity

support S, using the series derived in section A.5.2 for T ε and the Born approximation.
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[24] Gabriel Peyré, MATLAB Toolbox Fast Marching. Software download from MATLAB Central.

http://www.mathworks.com/matlabcentral/.
[25] K. Sølna and G. Papanicolaou, Ray theory for a locally layered random medium, Waves Random Media, (2000).
[26] W. Symes, All stationary points of differential semblance are asymptotic global minimizers: Layered acoustics, Stanford

Exploration Project, (1999), pp. 71–92. Report 100.
[27] B. White, P. Sheng, and B. Nair, Localization and backscattering spectrum of seismic waves in stratified lithology,

Geophysics, (1990), pp. 1158–1165.

34


