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Abstract. Mode coupling due to scattering by weak random inhomogeneities in waveguides leads to loss of coherence of
wave fields at long distances of propagation. This in turn leads to serious deterioration of coherent source localization methods,
such as matched field. We study with analysis and numerical simulations how such deterioration occurs, and introduce a novel
incoherent approach for long range source localization in random waveguides. It is based on a special form of transport theory
for the incoherent fluctuations of the wave field. We study theoretically the statistical stability of the method and illustrate its
performance with numerical simulations. We also show how it can be used to estimate the correlation function of the random
fluctuations of the wave speed.

1. Introduction. The problem of source localization with a remote array of sensors in a waveguide

has been the topic of many studies in underwater acoustics. The localization is often done with matched

field and related coherent methods [1, 18], that match the acoustic pressure p(t, ~x) received at the array

with its mathematical model, for hypothetical source locations in a search domain. Matched field methods

deal well with additive noise, but they are sensitive to inaccuracies in the model of p(t, ~x), due for example

to unknown perturbations in the waveguide geometry and the sound speed. Although such perturbations

are typically small [10], they can have a significant cumulative effect on sound transmission at long ranges

[10, 9, 14].

In this paper we study theoretically and numerically source localization in waveguides with random

inhomogeneities. In the absence of such inhomogeneities, energy propagates through guided wave modes

that do not interact with each other. Scattering by the random inhomogeneities induces mode coupling.

When the coupling effects are weak, they can be approximated via a first order perturbation analysis of the

eigenvalue problem for the modes [15]. Alternatively, the matched field algorithms can be improved with

some statistical signal processing that mitigates the effect of the inhomogeneities on the array data [19, 13].

We study source localization at very long ranges, where the cumulative effect of the random inhomo-

geneities is strong, and there is little coherence in the field p(t, ~x) received at the array. We show through

analysis and numerical simulations how coherent imaging methods fail to give useful results in such scat-

tering regimes, and introduce a novel incoherent source localization approach. The analysis is based on the

asymptotic theory of wave propagation in random waveguides developed in [14, 9, 12, 11]. The asymptotics

is in the amplitude scale ε ≪ 1 of the random fluctuations of the wave speed, and for very long distances of

propagation.

In general, the waveguide effect can be due to confining boundaries, or to the transverse sound speed

profile. We consider waveguides with confining horizontal planar boundaries, and assume for simplicity

random fluctuations of the sound speed in range and depth (cross-range), so that we can reduce the problem

to two dimensions. The general three dimensional problem does not introduce essential difficulties in the

analysis [14], but it is prohibitively expensive for the numerical simulations.

The wave propagation study in [14] is more comprehensive of phenomena associated with random fluc-

tuations of the sound speed in oceans, because it incorporates radiation in the ocean floor modeled as a half

space. It is complicated by the fact that aside from the discrete (trapped) modes, there is the continuum

(radiation) spectrum. However, it turns out that asymptotically, the statistical properties of the trapped

mode amplitudes can be described independently of the amplitudes of the radiation modes [14, section 3].

Since the behavior of source localization methods depends on the statistics of propagating trapped modes,

we expect that our analysis and results extend to the more general setup in [14].
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The paper is organized as follows. We begin in section 2 with the formulation of the source localization

problem in waveguides, and we describe three coherent source localization methods: synthetic back propaga-

tion of the time reversed array data in an unperturbed (deterministic) waveguide; matched field and coherent

interferometry. The numerical simulations in section 3 illustrate how these methods fail to localize sources at

long ranges in random waveguides. The remainder of the paper is concerned with a theoretical explanation

of the results in section 3, and with the formulation and analysis of a novel incoherent source localization

approach. The mathematical model of the array data is in section 4. We use this model in section 5 to obtain

a detailed theoretical explanation of the failure of coherent source localization methods. Section 6 introduces

our incoherent source localization approach, based on a special form of transport theory developed in [12, 11]

for the incoherent wave fluctuations. We study the statistical stability of our method with respect to the

realizations of the random medium, and illustrate its performance with numerical simulations. We also show

how it can be used to estimate the correlation function of the random fluctuations of the sound speed. We

end in section 7 with a summary.

2. Formulation of the source localization problem. We consider a two dimensional waveguide

with range axis denoted by z ∈ R and transverse (cross-range) coordinate x ∈ (0, X). The acoustic pressure

field p(t, ~x) satisfies the wave equation

∆p(t, ~x)− 1

c2(~x)

∂2p(t, ~x)

∂t2
= ∇ · ~F (t, ~x), (2.1)

for time t > 0 and ~x = (x, z). Here c(~x) is the sound speed and

~F (t, ~x) = f(t)δ(~x − ~x⋆)~ez (2.2)

models a point like source at ~x⋆, emitting a pulse f(t) in the range direction ~ez, toward the array. Before

the pulse emission, the medium is quiescent

p(t, ~x) ≡ 0, t ≤ 0. (2.3)

We assume as in [12, 11] pressure release boundary conditions at the top and bottom of the waveguide

p(t, ~x) = 0, x ∈ {0, X}. (2.4)

We could consider other conditions, such as ∂p/∂x = 0 at x = X , corresponding to a rigid bottom, but there

is no essential difference in the analysis.

Let us take the Fourier transform

p̂(ω, ~x) =

∫
eiωtp(t, ~x) dt (2.5)

and obtain from (2.1) the Helmholtz equation

∆p̂(ω, ~x) +
ω2

c2(~x)
p̂(ω, ~x) = f̂(ω)

∂

∂z
δ(~x − ~x⋆), (2.6)

with derivatives in the sense of distributions. In ideal waveguides, the sound speed varies only in the

transverse direction and energy is transmitted by independent guided modes, the orthogonal eigenfunctions

of the symmetric differential operator ∂2
x+ω2/c2(x). We consider waveguides with random inhomogeneities,

caused for example by internal waves, where c(~x) has an (x, z) dependent fluctuating part, with weak

amplitudes of the order 1%− 3%, as is typical in underwater acoustics [10, 9, 14]. Wave scattering in such

waveguides leads to mode coupling and loss of coherence of the acoustic pressure field, and impedes source

localization at long ranges.
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Fig. 2.1. Schematic of the source localization problem setup.

The schematic for the source localization problem is in Figure 2.1. We have an array A at very long

distance zA from the source, with receivers at transverse coordinates r. The receivers record the acoustic

pressure field p(t, r, zA) over some time window, and the problem is to estimate the location ~x⋆ of the source

from the array data.

Note that we use consistently a coordinate system with range origin at the source, so that ~x⋆ = (x⋆, 0).

The unknowns in the source localization problem are therefore x⋆ and zA.

2.1. Coherent source localization. We define here three coherent source localization functions.

Then, we illustrate in section 3 how they fail to give useful results because of strong cumulative scattering

in random waveguides, at long ranges. The detailed theoretical explanation is in section 5.

The first coherent source localization function is given by

I(~xs) =

∫
dω

2π

∑

r∈A

p̂ (ω, r, zA)Ĝo(ω, r, zA; ~x
s), (2.7)

where the bar denotes complex conjugation, and Ĝo(ω, x, z; ~x
s) is the Green’s function of Helmholtz’s equa-

tion in the unperturbed waveguide. Expression (2.7) models the time reversal of the pressure field p(t, r, zA)

recorded at the receivers, and its re-emission in the fictitious unperturbed waveguide, where we “observe”

the wave field at the search point ~xs, the hypothetical source location. If the array records up to time T ,

the Fourier coefficients of the time reversed p(T − t, r, zA) are p̂ (ω, r, zA)e
iωT . Functional (2.7) amounts to

observing the time reversed field at time lag T after its re-emission, when it is expected to refocus.

In the absence of the random fluctuations, I(~xs) = ITR
o (~xs), the time reversal function, which focuses

at ~xs = ~x⋆. In random waveguides, I(~xs) does not model the time reversal process, because the back

propagation is synthetic, via the unperturbed Green’s function Ĝo. Time reversal is an experiment where

the back propagation is done in the actual random waveguide, and focusing can be observed around ~x⋆ with

improved resolution and in a statistically stable manner, as proved in [12] and demonstrated experimentally in

[16]. Time reversal cannot be used for source localization, and back propagation in the fictitious unperturbed

waveguide does not work well, as we show in the next section.

Coherent interferometry (CINT) was introduced in [4, 5] for imaging in random, open environments. It

back propagates to ~xs cross correlations of the traces of the acoustic pressure at the array, instead of the traces

themselves as in I(~xs). The cross correlations are over suitable time and receiver offset windows, and they

introduce a statistical smoothing in the imaging process for achieving stability [6]. The optimal smoothing is

determined by two decoherence parameters intrinsic to the data: the decoherence length Xd and frequency

Ωd [5, 6]. The decoherence length is the receiver offset |r− r′| over which p̂(ω, r, zA) and p̂(ω, r′, zA) become

statistically uncorrelated. Similarly, Ωd is the frequency lag |ω − ω′| over which p̂(ω, r, zA) and p̂(ω′, r, zA)

become uncorrelated. It follows from [14, 9, 11] (see also lemmas 5.1 and 5.2) that in random waveguides,

at long source-array ranges, there is no decorrelation over the receiver offset,

E
{
p̂(ω, r, zA)p̂(ω, r

′, zA)
}
6≈ E {p̂(ω, r, zA)}E

{
p̂(ω, r′, zA)

}
, for all r, r′ ∈ (0, X),
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Fig. 3.1. Setup for the numerical simulations.

but there is rapid decorrelation over the frequency (Ωd is small). Thus, CINT reduces to back propagating

the cross correlation of the received traces across the array, over long time windows χ
Ωd
(t) of support Ω−1

d ,

ICINT (~xs) =

∫
dω

2π

∫
dω′

2π
χ̂

Ωd
(ω − ω′)

∑

r∈A

p̂(ω, r, zA)Ĝo(ω, r, zA; ~x
s)
∑

r′∈A

p̂ (ω′, r′, zA)Ĝo(ω
′, r′, zA; ~x

s). (2.8)

When we replace χ̂Ωd
/(2π) with the Dirac δ distribution, we ignore frequency correlations and we get

the conventional (Bartlett) matched field function

IMF (~xs) =

∫
dω

2π

∣∣∣∣∣
∑

r∈A

p̂ (ω, r, zA)Ĝo(ω, r, zA; ~x
s)

∣∣∣∣∣

2

. (2.9)

There are better matched field methods for source localization, that include some signal processing to mitigate

additive noise or mild clutter effects [1, 15]. Nevertheless, all these methods rely on a coherent p(t, r, zA),

and their behavior should be similar to (2.9) at long ranges from the source, where cumulative scattering by

the random inhomogeneities is strong.

3. Numerical simulations. We use numerical simulations to illustrate the performance of source lo-

calization methods in random waveguides. We simulate the array data p(t, r, zA) by solving the wave equation

as a first order velocity-pressure system with the finite element method given in [2], in two dimensions. The

setup is illustrated in Figure 3.1, with the source at (x⋆, 0), and the array A at range zA. We use two

perfectly matched layers (PML) to the left and right of the computational domain to model the unbounded

waveguide in z.

We take fluctuations of the sound speed of the form

c2o
c2(~x)

= 1 + εν(~x), (3.1)

with ν(~x) an isotropic, statistically homogeneous random process with mean zero and Gaussian correlation

E{ν(~x)ν(~x′)} =
1

2πℓ2
e−

|~x−~x′|2

2ℓ2 . (3.2)

We generate the process numerically using random Fourier series [8]. The correlation length is ℓ = 0.25m

and the perturbation parameter ε ranges between 1%− 3%. We choose a constant background speed co to

simplify the back propagation in the unperturbed waveguide, by computing explicitly Ĝo(ω, r, zA; ~x
s).

The range zA is long, of order ε−2, and the Fourier coefficients p̂(ω, r, zA) of the array data decorrelate

rapidly in frequency (Ωd = ε2Ω) as shown in [14, 9, 11]. To explore the effect of the bandwidth and central

frequency on source localization, we let the source excitation be a short pulse ϕ(t) (a sinc function, with

Fourier transform given by the indicator function of the frequency bandwidth), with bandwidth 1.5−4.5kHz

measured at 6dB. Then, we define f(t) as the signal with Fourier transform

f̂(ω) = f̂ ε(ω) = ϕ̂(ω)1[−B,B]

(
ω − ωo

εσ

)
, (3.3)
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Fig. 3.2. The trace of the acoustic pressure computed at the receiver location (r = X/2, zA) for (clockwise from top left):
ε = 0, ε = 1%, ε = 2% and ε = 3%.

Fig. 3.3. From left to right: I(~xs), IMF (~xs) and ICINT (~xs) for the source at x⋆ = X/4. Row one is for one realization
of the medium and row two for another. The results are for ε = 2%, central frequency 2.09kHz and bandwidth 0.375kHz.
The CINT images are computed with Ωd = 0.045kHz. The abscissa of the images is range scaled by λc and the ordinate is
cross-range scaled by λc.

where 1[−B,B] is the characteristic function of interval [−B,B]. That is, f̂ ε(ω) is the windowed ϕ̂(ω) in the

frequency interval |ω − ωo| ≤ εσB, for various choices of ωo in the band of ϕ̂, and σ ∈ [0, 2]. The scaled

bandwidth B is some O(1) factor of ωo. We refer to the case σ = 2 as narrow band, because the bandwidth

ε2B is of the same order as the decoherence frequency, and the support of the pulse f ε(t) is a time interval

of length similar to that of the travel time. Broad band signals with σ < 2 have a time support that is much

smaller than the travel time, and we can observe at the array the arrival of different waveguide modes.

All the lengths are scaled by the central wavelength λc = 0.5m of the pulse ϕ(t), computed with

co = 1.5km/s. The computational domain is the rectangle of transverse side length X = 20λc and range

length 500λc. The source is 4λc away from the left PML at either x⋆ = X/2 or x⋆ = X/4. The array is at

range zA = 494λc from the source, and its aperture A consists of various intervals in [0, X ].

The numerically simulated array data is the computed pressure p(t, r, zA) at receiver transverse coordi-

nates r distributed uniformly in A, at distance 0.095λc apart. We compute p(t, r, zA) in the time window

t ∈ (130, 333)ms, which contains the direct arrival at τ = zA/co = 164.7ms and the arrival of sufficiently

many other guided modes after that. The time sampling is at the rate of 15µs.

We show in Figure 3.2 the time trace of p(t, r = X/2, zA) for the source at x⋆ = X/2, and various

perturbation parameters ε. The picture on the top left is in the unperturbed waveguide (ε = 0). Since

the source emits a short pulse ϕ(t), we can clearly distinguish the arrival of the modes at the array. In the

perturbed waveguide, we note the significant effect on the traces of scattering by the random inhomogeneities,

specially in the cases ε = 2% and 3%. This is the regime we are interested in, where the random fluctuations

cause strong mode coupling and the array data is almost incoherent.
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(i)

(ii)

(iii)

(iv)

Fig. 3.4. Left column IMF (~xs) for two realizations of the random medium. Right column ICINT (~xs). The plots are for
x⋆ = X/4, ε = 2% in (i)-(iii) and ε = 3% in (iv). The central frequency is 2.69kHz in (i), 2.99kHz in (ii), 3.13kHz in (iii) and
2.09kHz in (iv). The bandwidth is 0.375kHz. The CINT images are computed with Ωd = 0.045kHz. The abscissa is range in
λc and the ordinate is cross-range in λc

3.1. Numerical results. We illustrate the performance of the three coherent imaging functions I(~xs),

IMF (~xs) and ICINT (~xs) in Figures 3.3 - 3.6. The source is at cross-range coordinate x⋆ = X/4 = 5λc.

All the methods work well for weak fluctuations ε ≤ 1%, so we do not show here the images. The results

in Figure 3.3 are for ε = 2%, central frequency ωo/(2π) = 2.09kHz and bandwidth εB/(2π) = 0.375kHz,

that is B ≈ 9ωo. We show the images for two realizations of the random medium. Both matched field and

CINT locate correctly the source and the images do not change significantly from one realization to another.

Function I(~xs) does not behave as well, and we start to see its statistical instability.
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(i)

(ii)

Fig. 3.5. Left column IMF (~xs) for two realizations of the random medium. Right column ICINT (~xs). We take x⋆ = X/4,
ε = 2%, central frequency 2.69kHz and 0.375kHz bandwidth. In (i) the aperture is A = [0, 12λc] and in (ii) A = [0, 8λc]. The
CINT images are computed with Ωd = 0.045kHz. The abscissa and ordinate are range and cross-range in λc.

Figure 3.4 illustrates how both matched field and CINT deteriorate as the data loses its coherence. The

progressive loss of coherence occurs as we increase the central frequency ωo and the scaled range Z = ε2zA.

In our case zA is fixed at 494λc, so we increase Z by increasing ε. We note in Figure 3.4 that matched

field and CINT locate correctly the source, in both realizations of the random medium, at ε = 2% and

ωo/(2π) = 2.69kHz (case (i)). However, as ωo increases, both methods deteriorate (cases (ii)-(iii)). Matched

field gives no range resolution and there are many spurious peaks. There are spurious peaks in the CINT

images too, although they have some range information. The results are even worse in case (iv), where we

increase ε to 3%.

The images in Figures 3.3 and 3.4 are at full aperture A = [0, X ]. The results are naturally worse for

partial apertures, as seen in Figure 3.5 for the same bandwidth as in case (i) in Figure 3.4, and partial

apertures A = [0, 12λc] and A = [0, 8λc], respectively.

Finally, we show in Figure 3.6 the images obtained with all three coherent source localization functions

for fluctuations ε = 2% and ε = 3%, full aperture, and the entire extra wide band of 1.5− 4.5kHz. We note

that the extra wide band does not help much in the source localization, specially at ε = 3%.

3.2. Summary of the results. The numerical results in Figures 3.3 - 3.6 show the progressive degra-

dation of the performance of coherent source localization methods in random waveguides. When wave

scattering is weak, the methods work well. As we increase ε (i.e., the scaled range Z) and the central fre-

quency ωo, the random inhomogeneities have a stronger and stronger cumulative effect, and the wave field

at the array loses its coherence. Consequently, none of the coherent methods work, although CINT appears

slightly better because it gives some range information. Nevertheless, the CINT range resolution is very

poor, over an interval of order 50λc, which is not centered at the correct range zA. We explain this behavior

with analysis, in section 5, where we show that wave scattering causes a strong dispersive effect that is not

accounted for in the back propagation in CINT.

In order to localize the source at very long ranges, with almost incoherent array data, we need to exploit

systematically the dispersive effect induced by the random inhomogeneities. This requires a mathematical

model, that allows us to cast the source localization problem as one of parameter estimation for the source

coordinates and possibly the statistics of the random fluctuations. Such a model was derived in [14, 9, 12, 11].
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(i)

(ii)

Fig. 3.6. From left to right: I(~xs), IMF (~xs) and ICINT (~xs) for the source at x⋆ = X/4, full aperture and the extra wide
band signal ϕ(t), with bandwidth 1.5− 4.5kHz. In (i) we show two realizations at ε = 2%. In (ii) we show two realizations at
ε = 3%. The CINT images are computed with Ωd = 0.09kHz. The abscissa and ordinate are range and cross range in λc.

We use it in section 6 to formulate and analyze our incoherent source localization method.

4. Mathematical model of the waveguide. In an ideal waveguide, the sound speed varies only in

the transverse direction and energy is transmitted by guided modes, the orthogonal eigenfunctions of the

symmetric differential operator ∂2
x + ω2/c2. Then, p̂(ω, ~x) is given by a mode expansion, using separation of

variables in (2.6).

We consider waveguides with weak random inhomogeneities, and model the sound speed as

c2o
c2(~x)

=

{
1 + εν(~x), z ∈

[
0, L/ε2

]
,

1, z ∈ (−∞, 0) ∪
(
L/ε2,∞

)
.

(4.1)

Here ε ≪ 1 is the perturbation parameter and ν(~x) is a bounded mean zero random process, stationary and

ergodic in z, with enough long range decorrelation∗, as stated in technical terms in [17, section 4.6.2]. We

write that the fluctuations are supported in the rectangle [0, X ] × [0, L/ε2] because we consider very long

(∼ ε−2) distances of propagation to get strong scattering effects. If we observe p(t, ~x) for time t ≤ τ/ε2, we

obtain by the causality of the wave equation that it is not influenced by the medium beyond range L/ε2, with

L ≈ coτ , so we may as well assume a uniform sound speed for z > L/ε2. The bound z = 0 on the support

of the fluctuations may be motivated by the forward scattering approximation. It is shown in [14, 9, 12, 11]

that the statistical coupling between the forward and backward going modes is negligible when the random

fluctuations are not too rough, that is if the autocorrelation of ν(~x) is smooth enough in z. Then, we can

neglect the waves scattered to the left of the source, as if we had an unperturbed medium for z < 0.

4.1. The pressure field in unperturbed waveguides. Note that in (4.1) we take a uniform back-

ground speed co to simplify the analysis and obtain frequency independent modes φj(x) in the unperturbed

∗This technical assumption is needed later to apply averaging methods for stochastic differential equations [11, chapter 6].
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waveguide

−d2φj(x)

dx2
= µjφj(x), x ∈ (0, X),

φj(0) = φj(X) = 0, j = 1, 2, . . . (4.2)

The theory can be carried out for variable backgrounds co = co(x) [14, 9] with some slight complications

induced by the frequency dependence of the eigenvalues and eigenfunctions of ∂2

∂x2 + ω2

c2o(x)
.

In the constant background case we have

φj(x) =

√
2

X
sin

(
πjx

X

)
, µj =

(
πj

X

)2

, j = 1, 2 . . . (4.3)

and the pressure field in the unperturbed waveguide is given by

po(t, ~x) =

∫
dω

2π
p̂o(ω, ~x)e

−iωt, (4.4)

with Fourier coefficients [11]

p̂o(ω, ~x) =
f̂(ω)

2



N(ω)∑

j=1

φj(x⋆)φj(x)e
iβj(ω)z +

∑

j>N(ω)

φj(x⋆)φj(x)e
−βj(ω)z


 (4.5)

and for z > 0. Here βj(ω) are the modal wavenumbers

βj(ω) =





√(
2π
λ

)2 − µj , j = 1, 2, . . .N(ω),

√
µj −

(
2π
λ

)2
, j > N(ω),

(4.6)

λ = 2πco/ω is the wavelength, and N(ω) =
⌊
2X
λ

⌋
is the number of propagating modes, defined as the largest

integer satisfying µN(ω) ≤ (2π/λ)
2
. The modes indexed by j > N(ω) are evanescent.

4.2. The pressure field in random waveguides. The Fourier coefficients p̂(ω, ~x) of the random

pressure field can be written as an expansion in the unperturbed eigenfunctions, with random amplitudes aj
and bj of the forward and backward propagating modes, and random amplitudes Ej of the evanescent modes

[11, section 20.2.1],

p̂(ω, ~x) = f̂(ω)





N(ω)∑

j=1

[
aj(ω, z)√
βj(ω)

φj(x)e
iβj(ω)z +

bj(ω, z)√
βj(ω)

φj(x)e
−iβj(ω)z

]
+
∑

j>N(ω)

Ej(ω, z)φj(x)



 . (4.7)

Here z > 0, and we now scale it as z  z/ε2 to get significant coupling of the modes by cumulative scattering

in the random medium over very long ranges.

After some algebraic manipulations detailed in [11, section 20.2.4], involving the projection of (2.6) on

φj(x), and expressing the evanescent amplitudes in terms of aj and bj , we obtain a system of differential

equations

∂

∂z

[
aε(ω, z)
bε(ω, z)

]
≈
{
1

ε
P

(
ω,

z

ε2

)
+ E

(
ω,

z

ε2

)}[
aε(ω, z)
bε(ω, z)

]
(4.8)

for the vector valued random processes

aε(ω, z) =
(
a1(ω, z/ε

2), . . . , aN(ω)(ω, z/ε
2)
)T

,

bε(ω, z) =
(
b1(ω, z/ε

2), . . . , bN(ω)(ω, z/ε
2)
)T

, (4.9)
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defined for z ≥ 0. The source at z = 0 gives

aj(ω, 0) = ao,j(ω;x⋆) =

√
βj(ω)

2
φj(x⋆), j = 1, . . . , N(ω), (4.10)

and the field is outgoing at the range limit L/ε2 of the fluctuations, bε(ω,L) = 0. The forward and backward

propagating mode amplitudes are coupled in (4.8) by

P(ω, z) =




P(a,a)(ω, z) −D(ω, z)P(a,a)(ω, z)

−D(ω, z)P(a,a)(ω, z) P(a,a)(ω, z)


 (4.11)

and

E(ω, z) =




E(a,a)(ω, z) −D(ω, z)E(a,a)(ω, z)

−D(ω, z)E(a,a)(ω, z) E(a,a)(ω, z)


 , (4.12)

where D(ω, z) = diag
(
e−2iβ1(ω)z , . . . e−2iβN(ω)(ω)z

)
. The N(ω)×N(ω) matrix P(a,a) in the leading coupling

term is given by

P
(a,a)
jl (ω, z) =

iω2

2c2o

Cjl(z)√
βj(ω)βl(ω)

ei[βl(ω)−βj(ω)]z, (4.13)

in terms of the random stationary processes

Cjl(z) =

∫ X

0

ν(x, z)φj(x)φl(x)dx, j, l = 1, 2, . . . (4.14)

The second order coupling in (4.8) is via the evanescent modes, through the matrix

E
(a,a)
jl (ω, z) =

iω4

4c4o

∑

l′>N(ω)

∫ ∞

−∞

ds
Cjl′ (z)Cll′(z + s)

βl′(ω)
√
βj(ω)βl(ω)

eiβl(ω)(z+s)−iβj(ω)z−βl′(ω)|s|. (4.15)

4.2.1. The forward scattering approximation. It follows from the diffusion approximation theorem

[11, section 6.5] applied to equations (4.8) that (aε(ω, z),bε(ω, z)) can be identified in the limit ε → 0 with

a diffusion process in C2N(ω), solving a system of linear stochastic differential equations [11, section 20.3].

Assuming a smooth correlation function of the random stationary processes (4.14) (i.e., z-autocorrelation of

ν(~x)), the coupling between the forward and backward propagating modes becomes negligible as ε → 0, and

we can make the forward scattering approximation [11, section 20.2.6]

∂

∂z
aε(ω, z) =

[
1

ε
P(a,a)

(
ω,

z

ε2

)
+ E(a,a)

(
ω,

z

ε2

)]
aε(ω, z), z > 0,

aε(ω, 0) = ao(ω;x⋆) =
(
ao,1(ω;x⋆), . . . ao,N(ω)(ω;x⋆)

)T
. (4.16)

Since the stochastic differential equations (4.16) are linear, we write

aε(ω, z) = T ε(ω, z)ao(ω;x⋆), (4.17)

using the random N(ω)×N(ω) transfer matrix T ε(ω, z), the fundamental solution of (4.16). It satisfies the

stochastic system of differential equations

∂

∂z
T ε(ω, z) =

[
1

ε
P(a,a)

(
ω,

z

ε2

)
+ E(a,a)

(
ω,

z

ε2

)]
T ε(ω, z), z > 0, (4.18)

and the initial condition

T ε(ω, 0) = I, (4.19)

with I the identity matrix.
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4.2.2. Mathematical model of the array data. Let (r, zA = Z/ε2) be the receiver coordinates,

with r taking values in the array aperture A ⊆ [0, X ]. The mathematical model of the array data is

pε(t, r, Z) =

∫
dωf̂ ε(ω)

4π

N(ω)∑

j,l=1

√
βl(ω)

βj(ω)
T ε
jl(ω,Z)φj(r)φl(x⋆)e

−iωt+iβj(ω)Z/ε2 , (4.20)

where pε(t, r, Z) = p(t, r, Z/ε2) and we renamed as f̂ ε(ω) the Fourier coefficients of the pulse. To study the

role of the bandwidth on the focusing and statistical stability of source localization, we scale the bandwidth

relative to ε at central frequency ωo, and define

f̂ ε(ω) =
1

εσ
f̂B

(
ω − ωo

εσ

)
, (4.21)

for σ ≤ 2. The Fourier transform f̂B of the base band pulse fB is supported in [−B,B], and the time support

of the source signal

f ε(t) =

∫
dω

2π
f̂ ε(ω)e−iωt = e−iωotfB(ε

σt) (4.22)

is ∼ ε−σ/B. As we mentioned in section 3, in the narrow band case (σ = 2) fε(t) is spread out over a long

time, comparable to the travel time ε−2Z/co. The support of f ε(t) is much smaller than the travel time in

broad band cases (σ < 2), so that we can distinguish at the array a train of pulses corresponding to arrivals

of different modes.

We restrict our study to σ ∈ (1, 2]. This choice is convenient in the analysis because we can freeze the

number of propagating modes in (4.20) to N(ωo), and obtain the simpler model

pε(t, r, Z) ≈ 1

4π

N(ωo)∑

j,l=1

√
βl(ωo)

βj(ωo)
φj(r)φl(x⋆)

∫
dω f̂ ε(ω)T ε

jl(ω,Z) e−iωt+iβj(ω)Z/ε2 , (4.23)

with phase given by

βj(ωo + εσh)
Z

ε2
≈ βj(ωo)

Z

ε2
+ hβ′

j(ωo)
Z

ε2−σ
. (4.24)

In the case σ = 1, the phase has the extra dispersive term h2/2β′′
j (ωo)Z. The ultra wide bandwidth case

σ < 1 is a bit more tedious to analyze, and it does not improve the images, as seen in Figure 3.6.

Although the array has finitely many receivers, we assume from now on that their spacing hr is small, so

that the sums
∑

r∈A appearing in the expression of the imaging functions approximate the scaled integrals

h−1
r

∫
A
dr. Since the integrands involve the eigenfunctions φj(r), the continuum aperture approximation

made in this paper is valid for receiver spacings hr that are small enough to capture the oscillations of the

highest frequency modes used in the imaging functions. A complete analysis of the role played by the density

of the array sensors in the imaging process involves SNR issues. It is expected that denser arrays give better

results in the presence of additive, ambient noise. In this paper we do not consider such SNR analysis, and

concentrate solely on the random medium effects on the imaging process.

5. Coherent source localization methods. We give here a detailed analysis of the deterioration of

the coherent source localization methods illustrated with numerical simulations in section 3.1. The analysis

uses data model (4.23) to estimate the mean and variance of the source localization functions in the asymp-

totic limit ε → 0. The mean shows how the images are expected to focus. The variance determines the

statistical stability of the methods with respect to the realizations of the fluctuations of the wave speed.
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5.1. Back propagation in homogeneous waveguides. The Green’s function of Helmholtz’s equa-

tion in the unperturbed waveguide, for a hypothetical source at ~xs = (xs, zs), is given by

Ĝo(ω, x, z; ~x
s) ≈ 1

2

N(ω)∑

j=1

φj(x
s)φj(x)e

iβj(ω)(z−zs) (5.1)

at large z − zs, where the evanescent modes can be neglected. The source localization function follows from

(2.7), in the continuum aperture approximation, after scaling with the distance between the receivers,

I(~xs) =

∫
dω

2π

∫

A

dr p̂ (ω, r, zA)Ĝo(ω, r, zA; ~x
s)

≈ 1

2

N(ω0)∑

j=1

φj(x
s)

∫
dω

2π
eiβj(ω)(zA−zs)

∫

A

dr φj(r)p̂ (ω, r, zA). (5.2)

5.1.1. Unperturbed waveguides. When the waveguide is indeed homogeneous, p̂ is the same as p̂o
given by (4.5), and I(~xs) becomes the time reversal function

ITR
o (~xs) ≈ 1

4

N(ωo)∑

j=1,l

Mjl φj(x⋆)φl(x
s)

∫
dω

2π
f̂ ε(ω)eiβl(ω)Zs/ε2−iβj(ω)Z/ε2 . (5.3)

Here we recalled the long range scaling zA = Z/ε2 and let zA − zs = Zs/ε2, with Zs of order one. We also

introduced matrix

Mjl =

∫

A

φj(r)φl(r)dr, (5.4)

depending on the aperture A. In the ideal full aperture case, M is the identity by the orthonormality of the

eigenfunctions φj(x). For partial apertures, with A proper subsets of [0, X ], M couples the modes in (5.3).

Naturally, the best source localization is for a full aperture,

ITR
o (~xs) ≈ 1

4

N(ωo)∑

j=1

φj(x⋆)φj(x
s)

∫
dω

2πεσ
f̂B

(
ω − ωo

εσ

)
eiβj(ω)(Zs−Z)/ε2

≈ 1

4

N(ωo)∑

j=1

φj(x⋆)φj(x
s)eiβj(ωo)(Z

s−Z)/ε2fB
(
β′
j(ωo)(Z

s − Z)/ε2−σ
)
. (5.5)

We show in Appendix A that ITR
o (~xs) focuses at ~x⋆ = (x⋆, 0). Because of the O(1) support of the carrier

pulse fB, each term in (5.5) peaks at search ranges zs satisfying |zs| = |Z − Zs|/ε2 ≤ O(ε−σλo). However,

ITR
o has much better range resolution, due to the rapid phase in (5.5) and the summation over the modes.

Explicitly, we show in Appendix A that for a large enough number N(ωo) of modes,

ITR
o (xs = x⋆, z

s) ≈ 1

4

N(ωo)∑

j=1

φ2
j(x⋆)e

iβj(ωo)(Z
s−Z)/ε2fB

(
β′
j(ωo)(Z

s − Z)/ε2−σ
)

focuses with range resolution O(λo). Furthermore,

ITR
o (xs, zs = 0) ≈ fB(0)

2λo
sinc

[
2π(xs − x⋆)

λo

]
, (5.6)

has cross-range resolution (distance from the peak to the first zero) equal to the diffraction limit λo/2.
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5.1.2. Random waveguides. As noted in section 2.1, (5.2) is not the same as time reversal in random

waveguides, because the back propagation is synthetic, via the unperturbed Green’s function Ĝo. Time

reversal works well in random waveguides [12, 16], but it cannot be used for source localization. Moreover,

the back propagation in the fictitious unperturbed waveguide does not work well, as illustrated in section

3.1, and as follows from the analysis below.

Let us present for simplicity only the full aperture case. The results are worse for partial apertures, as

seen in Figure 3.5. Using model (4.23) in (5.2), we get

I(~xs) ≈ 1

4

N(ωo)∑

j,l=1

√
βl(ωo)

βj(ωo)
φj(x

s)φl(x⋆)

∫
dh

2π
f̂B(h)T ε

jl(ωo + εσh, Z)eiβj(ωo+εσh) (Zs−Z)

ε2 . (5.7)

This is a randomly fluctuating function, with modes coupled by the transfer matrix T ε
jl, and we estimate its

expectation and variance for ε ≪ 1 and σ ∈ (1, 2). The statistical stability is worse in the narrow band case

σ = 2.

5.1.3. The statistical mean. To estimate E {I(~xs)}, we recall the relevant results from [11, section

20.3], summarized in the following lemma:

Lemma 5.1. In the asymptotic limit ε → 0, the expectation of the transfer matrix is given by

lim
ε→0

E
{
T ε
jl(ω,Z)

}
= δjl e

−Dj(ω)Z+iOj(ω)Z , (5.8)

where δjl is the Kronecker delta symbol and Dj(ω), Oj(ω) are parameters dependent on the frequency and

correlation function of the fluctuations. Explicitly,

Dj(ω) =
[
Γ
(1)
jj (ω)− Γ

(c)
jj (ω)

]
/2, Oj(ω) = Γ

(s)
jj (ω)/2 + κj(ω), (5.9)

where

Γ
(c)
jl (ω) =

ω4

4c4oβj(ω)βl(ω)

∫ ∞

−∞

cos [(βj(ω)− βl(ω)) z]E {Cjl(0)Cjl(z)} dz, j 6= l,

Γ
(c)
jj (ω) = −

N(ω)∑

l′ 6=j,l′=1

Γ
(c)
jl′ (ω), (5.10)

Γ
(s)
jl (ω) =

ω4

4c4oβj(ω)βl(ω)
2

∫ ∞

0

sin [(βj(ω)− βl(ω)) z]E {Cjl(0)Cjl(z)} dz, j 6= l,

Γ
(s)
jj (ω) = −

N(ω)∑

l′ 6=j,l′=1

Γ
(s)
jl′ (ω), (5.11)

Γ
(1)
jl (ω) =

ω4

4c4oβj(ω)βl(ω)

∫ ∞

−∞

E {Cjj(0)Cll(z)} dz, for all j, l, (5.12)

κj(ω) =
∑

l′>N(ω)

ω4

4c4oβj(ω)βl′(ω)

∫ ∞

−∞

E {Cjl′ (0)Cjl′ (z)} cos (βj(ω)z) e
−βl′(ω)|z|dz, (5.13)

and j, l = 1, . . . , N(ω).

Note that coefficients Γ
(c)
jl (ω) are nonnegative for j 6= l by Bochner’s theorem, because they are propor-

tional to the power spectral densities of the stationary random process Cjl(z) given by (4.14). Therefore,

Γ
(c)
jj (ω) < 0. Similarly, Γ

(1)
jj (ω) are nonnegative since they are proportional to the power spectral densities

of Cjj(z) evaluated at zero dual argument to z. Thus, Dj(ω) > 0 and the expectation in (5.9) decays expo-

nentially with Z and ω. This decay means that the wave field loses rapidly its coherence, and the energy is
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Fig. 5.1. E {I(xs, 0)} for the source at x⋆ = X/2 = 10λc and various ǫ.

transferred to the random (incoherent) fluctuations. Coefficients Oj(ω) account for the dispersive effect of

the random medium on the mean field. Dispersion is induced by coupling of the propagating modes (Γ
(s)
jl (ω))

and by coupling with the evanescent modes (κj(ω)).

The expectation of (5.7) becomes

E {I(~xs)} ≈ 1

4

N(ωo)∑

j=1

φj(x
s)φj(x⋆)e

−[Dj(ωo)−iOj(ωo)]Z+iβj(ωo)
(Zs−Z)

ε2 fB
(
β′
j(ωo)(Z

s − Z)/ε2−σ
)
. (5.14)

It is similar to (5.5), except for the exponential damping and the oscillations caused by the random medium.

This does not affect the range focus, which is almost the same as in section 5.1. We plot† in Figure 5.1

E {I(xs, 0)}, and note that it peaks at x⋆, but the peak value decreases rapidly (exponentially) as we increase

ε, that is as we increase Z. The exponential decay of E {I(~x⋆)} is also captured by the upper bound

|E {I(~x⋆)}| ≤
|fB(0)|

4
e−Dmin(ωo)Z

N(ωo)∑

j=1

φ2
j (x⋆) ≈

C|fB(0)|
λo

e−Dmin(ωo)Z , (5.15)

where C is an O(1) constant, and Dmin(ωo) = minj=1,...N(ωo) Dj(ωo).

5.1.4. The variance. Now, let us compute the variance

V (~x⋆) = E
{
|I(~x⋆)|2

}
− |E {I(~x⋆)}|2

at the peak ~xs = ~x⋆ of E{I(~xs)}. It is given by

V (~x⋆) ≈
1

16

N(ωo)∑

j,l,j′,l′=1

√
βl(ωo)βl′(ωo)

βj(ωo)βj′ (ωo)
φj(x⋆)φl(x⋆)φj′ (x⋆)φl′(x⋆)

∫
dh

2π

∫
dh′

2π
f̂B(h)f̂B(h

′)×
[
E
{
T ε
jl(ωo + εσh, Z)T ε

j′l′(ωo + εσh′, Z)
}
− E

{
T ε
jl(ωo + εσh, Z)

}
E
{
T ε
j′l′(ωo + εσh′, Z)

}]
, (5.16)

so we need two frequency second moments of the transfer matrix in the limit ε → 0. They are given in [11,

Proposition 20.7] and we repeat them in the next lemma:

Lemma 5.2. The transfer matrix decorrelates rapidly in frequency

E
{
T ε
jl(ω,Z)T ε

j′l′(ω
′, Z)

}
≈ E

{
T ε
jl(ω,Z)

}
E
{
T ε
j′l′(ω

′, Z)
}
, for |ω − ω′|/ωo > O(ε2). (5.17)

†The plots are for the setup described in section 3, with the source at x⋆ = X/2. The central frequency is at 2.09kHz and
the unscaled bandwidth is 0.375kHz. Note that zA is fixed at 494λc, and therefore a larger ε amounts to a larger scaled Z.
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At two nearby frequencies,

lim
ε→0

E
{
T ε
jl(ω,Z)T ε

j′l′(ω − ε2h, Z)
}
= δjj′δll′

∫
W(l)

j (ω, τ, Z)eih[τ−β′
j(ω)Z]dτ +

(1− δjj′ ) δjlδj′l′e
−
[
Dj(ω)+Dj′ (ω)−Γ

(1)

jj′
(ω)

]
Z+i[Oj(ω)−Oj′ (ω)]Z , (5.18)

where the Wigner transform
{
W(l)

j (ω, τ, z)
}
j=1,...N(ω)

solves the system of transport equations

[
∂

∂z
+ β′

j(ω)
∂

∂τ

]
W(l)

j (ω, τ, z) =
∑

n6=j

Γ
(c)
jn (ω)

[
W(l)

n (ω, τ, z)−W(l)
j (ω, τ, z)

]
, (5.19)

for z > 0, with initial condition W(l)
j (ω, τ, 0) = δ(τ)δjl. These solutions are measures,

W(l)
j (ω, τ, Z) = δjl e

Γ
(c)
ll

(ω)Zδ (τ − β′
l(ω)Z) +W

(l)
j (ω, τ, Z), (5.20)

with a Dirac mass at j = l, and continuous density W
(l)
j (ω, τ, Z).

Because of the O(ε2) decoherence frequency, we can restrict the support of the integrals in (5.16) to

|h− h′| ≤ ε2−σΩ ≪ B, and obtain after changing variables

h+ h′

2
 h, h− h′  ε2−σh̃,

that

V (~x⋆) ≈
ε2−σ

4

N(ωo)∑

j,l,j′,l′=1

√
βl(ωo)βl′(ωo)

βj(ωo)βj(ωo)
φj(x⋆)φl(x⋆)φj′ (x⋆)φl′ (x⋆)

∫ B

−B

dh

2π

∣∣∣f̂B(h)
∣∣∣
2

∫ Ω

−Ω

dh̃

2π

[
E
{
T ε
jl

(
ωo + εσh+ ε2h̃/2, Z

)
T ε
j′l′

(
ωo + εσh− ε2h̃/2, Z

)}
−

E
{
T ε
jl

(
ωo + εσh+ ε2h̃/2, Z

)}
E
{
T ε
j′l′

(
ωo + εσh− ε2h̃/2, Z

)}]
.

Here we assumed a smooth pulse to make the approximation f̂B(h±ε2−σh̃/2) ≈ f̂B(h). The variance follows

from Lemmas 5.1 and 5.2, and the continuity in frequency of coefficients (5.9)-(5.13)

V (~x⋆) ≈
ε2−σ‖fB‖2

4

N(ωo)∑

j,l=1

βl(ωo)

βj(ωo)
φ2
j(x⋆)φ

2
l (x⋆)W

(l)
j (ωo, β

′
j(ωo)Z,Z) +

ε2−σΩ‖fB‖2
4π

N(ωo)∑

j,j′=1

φ2
j (x⋆)φ

2
j′ (x⋆)

{[
(1− δjj′ )e

Γ
(1)

jj′
(ωo)Z − 1

]
×

e−[Dj(ωo)+Dj′ (ωo)−iOj(ωo)+iOj′ (ωo)]Z + δjj′e
Γ
(c)
jj (ωo)Z

}
, (5.21)

where

‖fB‖2 =

∫
dh

2π

∣∣∣f̂B(h)
∣∣∣
2

=

∫
dt |fB(t)|2 .

Note that the second sum in (5.21) is exponentially decaying and negligible at large Z, so we can write

V (~x⋆) ≈ ε2−σ‖fB‖2F(ωo, Z, x⋆), (5.22)

where

F(ωo, Z, x⋆) =
1

4

N(ωo)∑

j,l=1

βl(ωo)

βj(ωo)
φ2
j (x⋆)φ

2
l (x⋆)W

(l)
j (ωo, β

′
j(ωo)Z,Z). (5.23)
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5.1.5. Statistical stability. Let us use (5.15) to bound the relative standard deviation

√
V (~x⋆)

|E {I(~x⋆)}|
≥ C(ωo)ε

1− σ
2 eDmin(ωo)ZF1/2(ωo, Z, x⋆), (5.24)

where C(ωo) is an O(1) coefficient that does not depend on Z. We show below that for long enough ranges,

F = O [1/(ZN(ωo))], so the bound in (5.24) becomes

√
V (~x⋆)

|E {I(~x⋆)}|
& O

[
ε1−

σ
2 eDmin(ωo)Z

√
N(ωo)Z

]
. (5.25)

This illustrates how the bandwidth εσB, the number N(ωo) of propagating modes, the central frequency

ωo and the scaled range Z affect the stability of the imaging function. For a fixed central frequency and

range, the stability improves in deeper waveguides that support more propagating modes, and for broad

band pulses. However, the improvement is marginal since the relative standard deviation is likely to remain

large due to the exponential factor eDmin(ωo)Z . As we increase Z and ωo (i.e., Dmin(ωo)) the method becomes

statistically unstable, as illustrated in Figures 3.3 and 3.6.

Long range estimation of F : Let us recall from [11, section 20.6.2] that the matrix Γ(c)(ωo) =(
Γ
(c)
jl (ωo)

)
in the right hand side of (5.19) is negative semidefinite, with null space in the span of (1, 1, . . . , 1)T .

Its largest eigenvalue that is less than zero is denoted by −1/Le, where Le is called the equipartition distance,

because it quantifies the range scale over which the entries in the matrix exponential

Ujl(ωo, Z) =
{
eΓ

(c)(ωo)Z
}
jl
= lim

ε→0
E
{
T ε
jl(ωo, Z)T ε

jl(ωo, Z)
}
=

∫
dτ W(l)

j (ω, τ, Z) (5.26)

tend to the limit uniform‡ distribution

sup
j,l

∣∣∣∣Ujl(ωo, Z)− 1

N(ωo)

∣∣∣∣ ≤ O
(
e−Z/Le

)
. (5.27)

We are interested in the limit of W(l)
j (ωo, τ, Z), whose Fourier transform Ŵ(l)

j (ωo, h, Z) satisfies

Ŵ(l)
j (ωo, h, Z) =

{
exp

[(
ihB′(ωo) + Γ(c)(ωo)

)
Z
]}

jl
, (5.28)

for B′(ωo) = diag
(
β′
1(ωo), . . . β

′
N(ωo)

(ωo)
)
. It is estimated in [11, section 20.6.2], and the convergence is at

the same rate as in (5.27). The continuum density tends to a Gaussian profile

W
(l)
j (ωo, τ, Z) ≈ 1

N(ωo)

1√
2πσ2

e(ωo)Z
e
− (τ−β′(ωo)Z)2

2σ2
e(ωo)Z , Z ≫ Le, (5.29)

traveling at mean group velocity

β′(ωo) =
1

N(ωo)

N(ωo)∑

j=1

β′
j(ωo) (5.30)

and of variance σ2
e(ωo)Z, estimated in [11, section 20.6.2] to be of the order

σ2
e(ωo) ≈

2Le

N(ωo)

N(ωo)∑

j=1

[
β′
j(ωo)− β′(ωo)

]2
. (5.31)

‡The long range limit of vector (U1,l, . . . UN,l)
T in (5.26) is in span{(1, 1, . . . , 1)T }, the null space of Γ(c) and the normal-

ization constant 1/N comes from the fact that T ε(ωo, Z) is a unitary matrix so the energy is conserved [11, section 20.2.6].
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Thus,

F(ωo, Z, x⋆) ≈
[
2πσ2

e(ωo)
]−1/2

4N(ωo)Z1/2

N(ωo)∑

j,l=1

βl(ωo)

βj(ωo)
φ2
j(x⋆)φ

2
l (x⋆)e

−
(β′

j(ωo)−β′(ωo))2

2σ2
e(ωo)

Z
,

with decoupled sums over j and l. Assuming a large N = N(ωo), we get

N∑

l=1

βl(ωo)φ
2
l (x⋆) ≈

8π

λ2
oN

N∑

l=1

√
1− l2

N2
sin2

(
l

N

2πx⋆

λo

)
≈ 8π

λ2
o

∫ 1

0

dξ
√
1− ξ2 sin2

(
ξ
2πx⋆

λo

)
,

which is O(1). The sum over j is

N∑

l=1

φ2
j (x⋆)

βj(ωo)
e
−

(β′
j(ωo)−β′(ωo))2

2σ2
e(ωo)

Z ≈ 2

π

∫ 1

0

dξ
sin2

(
ξ 2πx⋆

λo

)

√
1− ξ2

e
− Z

2σ2
e(ωo)

[
1
co

/
√

1−ξ2−β′(ωo)
]2
, (5.32)

and since Z/σ2
e(ωo) ∼ Z/Le ≫ 1, we have a Laplace type integral [3, section 6.4], that can be estimated in

the vicinity of ξ satisfying

1

co
/
√
1− ξ2 = β′(ωo) =

1

N

N∑

j=1

1

co
/

√
1− j2

N2
≈ π

2co
.

We get that (5.32) is O(Z−1/2) and thus F = O [1/(ZN(ωo))].

5.2. Matched field and coherent interferometry. The CINT function follows from (2.8)

ICINT (~xs) =

∫
dω

2π

∫
dω′

2π
χ̂

Ω

(
ω − ω′

ε2

)∫

A

dr p̂(ω, r, zA)Ĝo(ω, r, zA; ~x
s)

∫

A

dr′ p̂ (ω′, r′, zA)Ĝo(ω
′, r′, zA; ~x

s). (5.33)

Since the decoherence frequency is Ωd = ε2Ω, it back propagates cross correlations of the received traces

over long time windows χ
Ω
(ε2t), of support (ε2Ω)−1. The conventional (Bartlett) matched field function is

IMF (~xs) =

∫
dω

2π

∣∣∣∣
∫

A

dr p̂ (ω, r, zA)Ĝo(ω, r, zA; ~x
s)

∣∣∣∣
2

. (5.34)

Now, let us compute the statistical mean of (5.33) and (5.34), to understand how CINT and matched field

are expected to focus.

5.2.1. The statistical mean. Substituting (4.23) and (5.1) in (5.33)-(5.34), and setting zA = Z/ε2

and zA − zs = Zs/ε2, we get

E
{
ICINT (~xs)

}
=

1

4

N(ωo)∑

j,l,j′,l′=1

√
βl(ωo)βl′(ωo)

βj(ωo)βj′ (ωo)
φl(x⋆)φl′(x⋆)φj(x

s)φj′ (x
s)

∫
dh

2π

∫
dh′

2π
f̂B(h) f̂B(h

′)×

χ̂
Ω

(
h− h′

ε2−σ

)
E
{
T ε
jl(ωo + εσh, Z)T ε

j′l′(ωo + εσh′, Z)
}
ei[βj(ωo+εσh)−βj′ (ωo+εσh′)] (Z−Zs)

ε2 (5.35)

for the CINT function and

E
{
IMF (~xs)

}
=

1

4

N(ωo)∑

j,l,j′,l′=1

√
βl(ωo)βl′(ωo)

βj(ωo)βj′(ωo)
φl(x⋆)φl′ (x⋆)φj(x

s)φj′ (x
s)

∫
dh

2π

∣∣∣f̂B(h)
∣∣∣
2

×

E
{
T ε
jl(ωo + εσh, Z)T ε

j′l′(ωo + εσh, Z)
}
ei[βj(ωo+εσh)−βj′(ωo+εσh)] (Z−Zs)

ε2 (5.36)
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for matched field. This is in the best possible case of full aperture, and for σ ∈ (1, 2). The results are worse

for partial apertures, as illustrated in Figure 3.5.

To estimate (5.35), let us change variables

h+ h′

2
 h, h− h′  ε2−σh̃.

We obtain from Lemma 5.2 that

E
{
ICINT (~xs)

}
≈ ε2−σ‖fB‖2

4

N(ωo)∑

j,l=1

βl(ωo)

βj(ωo)
φ2
l (x⋆)φ

2
j (x

s)

∫
dτW

(l)
j (ωo, τ, Z)χΩ

(
β′
j(ωo)Z

s − τ
)
, (5.37)

where we neglect the terms that decay exponentially in Z, and let f̂B(h ± ε2−σh̃/2) ≈ f̂B(h). Now, recall

that χ̂Ω(h) is supported in the frequency interval [−Ω,Ω], which means that χΩ(t) has time support ∼ 1/Ω.

Assuming Ω ≫ 1, so that ε2−σΩ ≪ B, we get

E
{
ICINT (~xs)

}
≈ ε2−σ‖fB‖2

4

N(ωo)∑

j,l=1

βl(ωo)

βj(ωo)
φ2
l (x⋆)φ

2
j (x

s)W
(l)
j (ωo, β

′
j(ωo)Z

s, Z). (5.38)

Similarly, we estimate the expectation of the matched field function (5.36)

E
{
IMF (~xs)

}
≈ ‖fB‖2

4

N(ωo)∑

j,l=1

βl(ωo)

βj(ωo)
φ2
l (x⋆)φ

2
j (x

s)U
(l)
j (ωo, Z), (5.39)

with U
(l)
j (ωo, Z) given by (5.26).

5.3. Conclusions. Although the mean CINT and matched field functions do not decay exponentially

in Z and/or ωo, as was the case with E{I(~xs)}, they are not useful in localizing the source because they

do not focus at ~x⋆. The matched field function (5.39) does not have any range information and it does not

focus in the transverse direction. Indeed, recalling (5.27), we get that as Z/Le grows,

E
{
IMF (~xs)

}
→ ‖fB‖2

4N(ωo)

N(ωo)∑

l=1

βl(ωo)φ
2
l (x⋆)

N(ωo)∑

j=1

φ2
j (x

s)

βl(ωo)
, (5.40)

and there is no focusing in xs. That is to say, the function does not exhibit a peak at xs ≈ x⋆. Returning

to the results in Figure 3.4, we note that while IMF (~xs) localizes the source in case (i), where Z ≈ Le, it

gives no range or cross-range information in case (iv), where Z ≈ 2.2Le. This is what our analysis predicts.

The CINT function does not focus any better in the transverse direction, but it has some range informa-

tion through the evaluation of W
(l)
j (ωo, τ, Z) at τ = β′

j(ωo)Z
s. However, due to the dispersion induced by

the random medium, W
(l)
j (ωo, τ, Z) peaks far away from τ = β′

j(ωo)Z. This means that each term in (5.38)

peaks at a different Zs, and the range support of E
{
ICINT (~xs)

}
is spread out, as in case (iv) in Figure

3.4. Explicitly, as Z/Le grows, the peak of W
(l)
j (ωo, τ, Z) approaches τ = β′(ωo)Z, and the j term in (5.38)

gives a large contribution at range

Zs(j) =
β′(ωo)

β′
j(ωo)

Z.

The range support of (5.38) is then between Zs(1) and Zs(N(ωo)), which is a large interval.

To calculate the variance of ICINT and IMF , we need the fourth order multi frequency moments of

T ε
jl(ω,Z), which are given in the next section and in Appendix C. However, since we have already shown

that the mean CINT and matched field functions do not focus at the source, there is no point in analyzing

their statistical stability.
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6. Incoherent source localization. We introduce in this section an incoherent source localization

method. As we have learned from the analysis in section 5, the mean field E {p̂(ω, r, zA)} decays exponentially
in Z = ε2zA, signaling the rapid loss of coherence of the pressure field recorded at the array. We have also

seen that expectations of cross-correlations of the traces persist at long ranges, and this is why we use them

to obtain a statistically stable source localization. Matched field and CINT work with cross-correlations as

well, but they do not focus because the cross-correlations back propagated with the Green’s function Ĝo do

not add coherently. We estimate instead the source location by minimizing a certain misfit function.

If we took frequency correlations into account, like in CINT, we would work with

F(ωo, t, r, r
′) =

∫

|ω−ωo|≤εσB

dω

2π
ε2
∫

dh

2π
p̂(ω, r, zA)p̂(ω − ε2h, r′, zA)e

−iht ≈
∫

|ω−ωo|≤εσB

dω

2π
ε2 ×

∫
dh

2π
e−iht E

{
p̂(ω, r, zA)p̂(ω − ε2h, r′, zA)

}
, (6.1)

for receiver transverse coordinates r, r′ ∈ A, and for broad band pulses with σ < 2. Otherwise, we would

work with the cross-correlations

ε−2

∫
dtF(ωo, t, r, r

′) =

∫

|ω−ωo|≤εσB

dω

2π
p̂(ω, r, zA)p̂(ω, r

′, zA) ≈
∫

|ω−ωo|≤εσB

dω

2π
E
{
p̂(ω, r, zA)p̂(ω, r

′, zA)
}
,

(6.2)

like in matched field. The integrands in (6.1) and (6.2) decorrelate over ω offsets that exceed O(ε2) [11,

Section 20.6], and this is why we can approximate the integrals over the broad band by their statistical

expectation. We give more details in section 6.1.2, where we also show that the self-averaging does not hold

for narrow band pulses with bandwidth ε2B.

Now, let us use Lemma 5.2 to compute the expectations in (6.1) and (6.2). We obtain after calculations

that are similar to those in section 5.2.1 that

F(ωo, t, r, r
′) ≈ ε2−σ‖fB‖2

4

N(ωo)∑

j,l=1

βl(ωo)

βj(ωo)
φ2
l (x⋆)φj(r)φj(r

′)W(l)
j (ωo, t, Z), (6.3)

and

∫
dtF(ωo, t, r, r

′) ≈ ε2−σ‖fB‖2
4

N(ωo)∑

j,l=1

βl(ωo)

βj(ωo)
φ2
l (x⋆)φj(r)φj(r

′)

∫
dtW(l)

j (ωo, t, Z). (6.4)

The approximation assumes a long enough range to neglect the exponentially decaying terms in the second

moments in Lemma 5.2, and a bandwidth εσB with σ ∈ (1, 2).

Equations (6.3) and (6.4) show how the cross-correlations of the data traces carry information about the

source location. The cross-range x⋆ appears the same way in (6.3) and (6.4), in the argument of φ2
l . The

scaled range Z is in the Wigner transform. Because the time integral of the Wigner transform approaches

1/N(ωo) as the range grows, as shown in (5.27), the cross-correlations (6.2) are not useful for determining

the source range. The range Z determines the time peak location of W(l)
j (ωo, t, Z), and this is why we can

estimate it from the cross-corelations (6.1).

The source localization described below is in two steps: First, we show in section 6.1 how to determine

the range Z and the correlation function of the random fluctuations of the wave speed, using the cross-

corelations (6.3). Then, we show in section 6.2 how to estimate the source cross-range x⋆. Because the use

of frequency correlations does not give additional information about x⋆, we estimate the cross-range with

the simpler function (6.4). We study with theory and numerical simulations the estimation functions, and

show that the cross-range localization requires that Z be at most ∼ Le. The range estimation can be carried

out for much larger distances of propagation. We also study the statistical stability of the estimation, which
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requires fourth order multi-frequency moments of the transfer matrix, computed in Appendix C in the limit

ε → 0.

6.1. Range estimation. The information about the scaled range Z is encoded in the cross-correlations

F(ωo, t, r, r
′) in a complicated way, via the Wigner transform W(l)

j (ωo, t, Z). To untangle it, we use the

receiver coordinates and project F(ωo, t, r, r
′) on the waveguide modes

∫

A

dr φj(r)

∫

A

dr′ φj(r
′)F(ωo, t, r, r

′) =

∫

|ω−ωo|≤εσB

dω

2π
ε2
∫

dh

2π
P̂j(ω, zA)P̂j(ω − ε2h, zA)e

−iht, (6.5)

where

P̂j(ω, zA) =

∫

A

dr p̂(ω, r, zA)φj(r). (6.6)

Recalling the theoretical model (6.3), and assuming for a moment the ideal case of a full aperture

A = [0, X ], we obtain by the orthogonality of the eigenfunctions that

∫

A

dr φj(r)

∫

A

dr′ φj(r
′)F(ωo, t, r, r

′) ≈ ε2−σ‖fB‖2
4

N(ωo)∑

l=1

βl(ωo)

βj(ωo)
φ2
l (x⋆)W(l)

j (ωo, t, Z). (6.7)

The range Z could be determined from (6.7), if we knew the transport speed. In weak random media, the

transport speed is close to β′
j(ωo), and Z can be estimated from the maxima over the search ranges Zs of the

migrated projected cross-correlations (6.7) with travel times β′
j(ωo)Z

s. We are interested in strong random

media, where the transport speed is different than β′
j(ωo), and must be estimated as we search for range Z.

Our estimation is based on the “dispersion function”

R(ζ, j) =

∫

A

dr φj(r)

∫

A

dr′ φj(r
′)F(ωo, t = β′

j(ωo)ζ, r, r
′), (6.8)

where ζ is the scaled range at which we migrate approximately the cross-correlations with the incorrect speed

β′
j(ωo). Therefore, R(ζ, j) peaks at ζ = ζj , which in general is not equal to Z. The algorithm described

below estimates Z by comparing the dispersion function R(ζ, j) with its theoretical model RM (ζ, j;Zs), for

a hypothetical source at search range Zs. More specifically, it approximates Z by the minimizer over all Zs

of an objective function that measures the misfit between R(ζ, j) and RM (ζ, j;Zs). The transport speed is

computed using the transport equations stated in Lemma 5.2, assuming a known correlation function C of

the fluctuations of the wave speed. In fact, we solve these equations to compute the Wigner transform that

enters the theoretical model RM (ζ, j;Zs). If the correlation function C is not known, it can be estimated

from the misfit between R(ζ, j) and RM (ζ, j;Zs), as well.

To state the algorithm, we need the following proposition proved in Appendix B. It applies to broad and

narrow band pulses, and to partial apertures, where there is additional mode coupling due to the integrals

Mjq =

∫

A

dr φj(r)φq(r).

Proposition 6.1. The theoretical expected model of (6.8) is given by

E {R(ζ, j)} ≈ ε2−σ‖fB‖2
4

N(ωo)∑

q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x⋆)W(l)

q (ωo, β
′
j(ωo)ζ, Z) (6.9)

in the broad band case σ ∈ (1, 2). In narrow band σ = 2, we have at long ranges

E {R(ζ, j)} ≈ 1

4

N(ωo)∑

q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x⋆)

∫
dτW(l)

q (ωo, β
′
j(ωo)ζ − τ, Z)×

∫
dt̃

B

π
sinc

(
Bt̃
)
fB(τ + t̃/2)fB(τ − t̃/2). (6.10)
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6.1.1. The estimation algorithm. We now introduce an algorithm that estimates the scaled range

source Z based on the dispersive effect induced by the random medium.

Algorithm 6.2. This algorithm assumes a known correlation function of the random fluctuations, so

that we can compute the matrix Γ(c)(ωo). It also assumes a fixed bandwidth ω ∈ [ωo − εσB,ωo + εσB] of the

pulse f ε(t). The estimation involves three steps:

Step 1. Given the array data, compute R(ζ, j) using (6.8), for modes j = 1, 2, . . . , N(ωo) and ζ in a search

interval that includes its peaks ζj.

Step 2. Determine the set S of modes for which

|R(ζj , j)| = max
ζ

|R(ζ, j)| > δ, (6.11)

with δ a user defined tolerance.

Step 3. Estimate Z by Z⋆, the minimizer of the objective function

O(Zs) =
∑

j∈S

∫
dζ

∣∣∣∣∣
R(ζ, j)

R(ζj , j)
− RM (ζ, j;Zs)

RM (ζMj , j;Zs)

∣∣∣∣∣

2

, (6.12)

where RM (ζ, j;Zs) is the model of the expectation of (6.8) for a hypothetical source at range zs = zA−Zs/ε2

from the array, and ζMj is its peak. The integral in (6.12) extends over the search domain.

Proposition 6.1 shows that in theory, all the range information is in W(l)
q , which we approximate by

taking the inverse Fourier transform of the matrix exponential (5.28). Since we do not know the source

cross-range, we cannot define RM by (6.9) or (6.10). Instead, we replace in these formulas φ2
l (x⋆) by the

constant 2/X , and get

RM (ζ, j;Zs) =
ε2−σ‖fB‖2

2X

N(ωo)∑

q,l=1

M2
jq

βl(ωo)

βq(ωo)
W(l)

q (ωo, β
′
j(ωo)ζ, Z

s) (6.13)

in broad band, and

RM (ζ, j;Zs) =
1

2X

N(ωo)∑

q,l=1

M2
jq

βl(ωo)

βq(ωo)

∫
dτW(l)

q (ωo, β
′
j(ωo)ζ − τ, Zs)×

∫
dt̃

B

π
sinc

(
Bt̃
)
fB(τ + t̃/2)fB(τ − t̃/2) (6.14)

in narrow band. This should have minimal effect on the range estimation, which is based on the variation

of R(ζ, j) in ζ. The cross-range x⋆ affects the actual peak value R(ζj , j), which is why we normalize R in

the objective function. We also filter out the modes for which |R(ζj , j)| is below the threshold δ.

Algorithm 6.2 assumes that we know the correlation function

C(x, x′, z − z′) = E {ν(x, z)ν(x′, z′)}

of the fluctuations. When we do not know C, but have apriori information about how to model it, we can

estimate it together with the source range.

Algorithm 6.3. This algorithm is based on the apriori model

CM (x − x′, z − z′;αs, ℓs) = αsΘ [(x− x′, z − z′)/ℓs] (6.15)
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of C, where Θ is a given function of O(1) support. It is parametrized by the search amplitude αs and the

search correlation length ℓs.

Steps 1 and 2 are identical to those in Algorithm 6.2.

Step 3. Estimate Z = Z⋆ and the correlation function C ≈ CM (x − x′, z − z′;α⋆, ℓ⋆), where (Z⋆, α⋆, ℓ⋆) is

the minimizer of

O(Zs, αs, ℓs) =
∑

j∈S

∫
dζ

∣∣∣∣∣
R(ζ, j)

R(ζj , j)
− RM (ζ, j;Zs, αs, ℓs)

RM (ζMj , j;Zs, αs, ℓs)

∣∣∣∣∣

2

. (6.16)

Here RM (ζ, j;Zs, αs, ℓs) is the model of the expectation of (6.8) for a hypothetical source at range zs =

zA − Zs/ε2, and for fluctuations with correlation function (6.15).

The essential assumption in this algorithm is the model of the correlation function of the fluctuations

ν(~x), which are supposed in (6.15) isotropic and stationary in range and cross-range. In principle, the

algorithm could handle fluctuations that are anisotropic and not stationary in cross-range, so that CM

depends on more than two parameters. We do not have such results. In any case, it is expected that the

more parameters there are in the model, the more difficult the estimation.

An essential question that arises is how sensitive is the estimation to the accuracy of the model (6.15).

Our numerical experiments suggest that the range estimation is not too sensitive to the model CM . For

example, in a simulation with ε = 3%, central frequency 2.39kHz and bandwidth 0.375kHz, Algorithm 6.3

returned essentially the same source range Z⋆ ≈ Z for three models of CM . The first is Gaussian

CM (x− x′, z − z′;αs, ℓs) = αse
− |~x−~x′|2

2(ℓs)2 , (6.17)

like the one used in the simulations of the array data. The second model is exponential

CM (x− x′, z − z′;αs, ℓs) = αse−
|~x−~x′|

ℓs , (6.18)

and the third is

CM (x− x′, z − z′;αs, ℓs) = αs

(
1 +

|~x− ~x′|
ℓs

)
e−

|~x−~x′|
ℓs . (6.19)

We note that, at high spatial frequencies, the Fourier transform (power spectral density) of (6.19) has power

law behavior typical of multiscale random media.

With the Gaussian model we obtained

α⋆ ≈ (2πℓ2)−1 = 2.55m−2 and ℓ⋆ ≈ ℓ = 0.25m,

as expected from (3.2). Naturally, the algorithm returned different parameters α⋆ and ℓ⋆ with the second

and third models, but they all satisfied the normalization relation

∫
d~x CM (~x) ≈

∫
d~x C(~x) = 1.

This is not surprising, as it is not the correlation function per say that appears in the transport equations,

but integrals of it multiplied by the waveguide modes and slowly oscillating cosine functions, as seen from

Lemmas 5.1 and 5.2.
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6.1.2. Statistical stability. To estimate the variance of the range estimation function (6.8), we need

the fourth order moments of T ε(ω,Z) at nearby frequencies. The transfer matrix decorrelates at frequency

offsets that exceed O(ε2) [11], so we need to consider only O(ε2) frequency shifts. We derive all these

moments in Appendix C, but we use only those for a subset of indexes, relevant to the variance calculation

at full aperture. The variance at partial aperture follows similarly, and we do not include it here to simplify

the exposition.

The model of the estimation function (6.8) at full aperture is

R(ζ, j) ≈ ε2−σ

4

∫ B

−B

dh

2π

∫ Ω

−Ω

dω̃

2π
f̂B

(
h+

ε2−σω̃

2

)
f̂B

(
h− ε2−σω̃

2

)N(ωo)∑

l,l′=1

√
βl(ωo)βl′(ωo)

βj(ωo)βj′ (ωo)
×

φl(x⋆)φl′(x⋆)T
ε
jl

(
ω + εσh+

ε2

2
ω̃, Z

)
T ε
jl′

(
ωo + εσh− ε2

2
ω̃, Z

)
eiω̃(Z−ζ)β′

j(ωo) (6.20)

and its variance

V (ζ, j) = E
{
|R(ζ, j)|2

}
− |E {R(ζ, j)}|2

is estimated in the following proposition, proved in Appendix D.

Proposition 6.4. The variance V (ζ, j) of the estimation function at full aperture satisfies

V (ζ, j)

|E {R(ζj , j)} |
∼ ε2Ω

εσB
, (6.21)

where ζj is the peak of |E {R(ζ, j)} |. Since ε2Ω is the decoherence frequency of T ε(ω,Z) and εσB is the

bandwidth of the pulse f̂ ε, this implies that the estimation function is statistically stable in the vicinity of its

peak in broad band, where εσB ≫ ε2Ω. The function is not stable in narrow band regimes.

The proposition says that even though it may appear from the mean field model computed in Proposition

6.1 that we can estimate the range in narrow band, the estimation will not be reliable, because the range

estimation function R(ζ, j) changes unpredictably with the realization of the random medium. We need a

broad band regime in order to obtain statistically stable results. This conclusion is validated by extensive

numerical simulations.

6.1.3. Numerical results. We present here numerical range estimation results, in the setup described

in section 3. The unknown source is at location ~x⋆ = (5λc, 0), at unscaled range zA = 494λc from the array.

We begin in Figure 6.1 with results at full aperture, ε = 3%, central frequency 2.09kHz and bandwidth

0.375kHz. This is the case considered in plot (iv) of Figure 3.4, where matched field and CINT do not work.

We show in the top left plot in Figure 6.1 how the amplitude of R(ζj , j) varies with j and indicate the

threshold value δ = 0.2 used in our estimation. The set S contains the mode indexes j with peak amplitudes

above this threshold. The middle picture in the top row is a plot of R(ζ, j)/R(ζj , j), for j ∈ S. This is

computed from the array data and enters the objective function at Step 3 of the estimation algorithm. The

abscissa in the plot is ζ/ε2 in units of λc. The ordinate is the mode index in S. Note how the dispersion

effects induced by the random medium causes R(ζ, j) to peak at different ranges than the true one, indicated

by the vertical black line.

The right picture in the top row of Figure 6.1 shows RM (ζ, j;Z⋆, α⋆, ℓ⋆)/RM (ζMj , j;Z⋆, α⋆, ℓ⋆), for j ∈ S
and the optimal parameters returned by the algorithm. The optimization is done with the MATLAB function

fmincon. Compare this picture with the ones in the bottom row, where we fix two parameters at the optimal

values, but vary the third one. In the left picture we set Zs−Z⋆ = 20ε2λc, and note the resulting range shift.

In the middle picture, we set ℓs = ℓ⋆/2 and see a different dispersive behavior (the peaks have a different
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Fig. 6.1. Range estimation results for ε = 3%, central frequency 2.09kHz and bandwidth 0.375kHz. Top row:Left: R(ζj , j)
and the threshold δ = 0.2 for determining the set S of indexes. Middle: R(ζ, j). Right: RM (ζ, j;Z⋆, α⋆, ℓ⋆). Bottom row:

RM (ζ, j;Zs, αs, ℓs) for optimal Zs, αs, ℓs, unless specified otherwise. Left: Zs = Z⋆ − 20ε2λc. Middle: ℓs = ℓs/2. Right:
αs = 1.34α⋆

Fig. 6.2. Cross-sections of the range estimation objective function O(Zs, αs, ℓs). In each plot we fix two parameters at
the optimal values and display the variation in the third parameter. The true value of the parameters is indicated in red. The
results are at full aperture. Top row: two realizations at ε = 2%, central frequency 2.69kHz and bandwidth 0.375kHz. Bottom

row: two realizations at ε = 3%, central frequency 2.09kHz and bandwidth 0.375kHz.

distribution around the true range value). The right picture is for αs = 1.34α⋆ and shows again a different

dispersive behavior.

In Figure 6.2 we show cross-sections of the objective function O(Zs, αs, ℓs) for two realizations of the

randommedium, and at full aperture. The top row is for ε = 2%, at central frequency 2.69kHz and bandwidth

0.375kHz, which is the case in plot (i) of Figure 3.4, where both matched field and CINT work. The bottom

row is for ε = 3%, at central frequency 2.09kHz and bandwidth 0.375kHz, which is the same as in plot (iv)

24



Fig. 6.3. Cross-sections of the range estimation objective function O(Zs, αs, ℓs). The results are at partial aperture, at
ε = 2%, central frequency 2.69kHz and bandwidth 0.45kHz. Top row: two realizations at A = [0, 8λc]. Bottom row: two
realizations at A = [0, 4λc].

of Figure 3.4, where matched field and CINT do not work. Figure 6.2 illustrates that the objective function

has a clear minimum around the true value of the parameter indicated in red. The figure also shows that

the results are essentially the same in the two realizations of the medium, as stated in Proposition 6.4.

Figure 6.3 shows cross-sections of the objective function O(Zs, αs, ℓs) at partial aperture. Here ε = 2%,

the central frequency is 2.69kHz and the bandwidth is 0.45kHz. The top row is for 40% aperture A = [0, 8λc]

and the bottom row is for 20% aperture A = [0, 4λc]. The analogue plots for the medium with ε = 3% and

central frequency 2.09kHz are in Figure 6.4. The results are almost the same as in Figure 6.2, except for the

bottom left picture where the estimated αs is slightly off.

6.2. Cross-range estimation. Since the cross-range information appears the same way in the cross-

correlations of the array data traces, whether we exploit frequency correlation or not, we base the estimation

on the simpler model (6.4). Specifically, we work with
∫
dtF(ωo, t, r, r

′) and use the receiver coordinates to

define the cross-range estimation function

X (j) =

∫
dt

∫

A

dr φj(r)

∫

A

dr′ φj(r
′)F(ωo, t, r, r

′) = ε2
∫

|ω−ωo|≤εσB

dω

2π
P̂j(ω, zA)P̂j(ω, zA), (6.22)

with P̂j defined by (6.6). The estimate of x⋆ is the minimizer over xs of an objective function that measures

the misfit between X (j) and its model XM (j;xs), for a hypothetical source at ~xs = (xs, Z⋆). Here Z⋆ is the

range estimate obtained as explained in the previous section.

The model is

XM (j;xs) =
ε2−σ

4

N(ωo)∑

q,l,q′,l′=1

MjqMjq′

√
βl(ωo)β′

l(ωo)

βq(ωo)βq′ (ωo)
φl(x

s)φl′ (x
s)

∫ B

−B

dh

2π
|f̂B(h)|2 ×

ei
Z⋆

ε2
[βq(ωo+εσh)−βq′(ωo+εσh)]E

{
T ε
ql(ωo + εσh, Z⋆)T ε

q′l′(ωo + εσh, Z⋆)
}
, (6.23)
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Fig. 6.4. Cross-sections of the range estimation objective function O(Zs, αs, ℓs).The results are at partial aperture, at
ε = 3%, central frequency 2.69kHz and bandwidth 0.45kHz. Top row: two realizations at A = [0, 8λc]. Bottom row: two
realizations at A = [0, 4λc].

where by Lemma 5.2,

E
{
T ε
ql(ω,Z

⋆)T ε
q′l′(ω,Z

⋆)
}
≈ (1−δqq′)δqlδq′l′e

−
[
Dq(ω)+Dq′ (ω)−Γ

(1)

qq′
(ω)

]
Z⋆+i[Oq(ω)−Oq′ (ω)]Z⋆

+ δqq′δll′Uql(ω,Z
⋆),

with Uql(ω,Z
⋆) =

∫
dtW(l)

q (ω, t, Z⋆) given by (5.26). Equation (6.23) becomes

XM (j;xs) ≈ ε2−σ

4

∫ B

−B

dh

2π
|f̂B(h)|2





N(ωo)∑

q,q′=1

(1− δqq′ )MjqMjq′φq(x
s)φq′ (x

s)ei
Z⋆

ε2
[βq(ωo+εσh)−βq′ (ωo+εσh)]

e
−
[
Dq(ωo)+Dq′ (ωo)−Γ

(1)

qq′
(ωo)

]
Z⋆+i[Oq(ωo)−Oq′(ωo)]Z⋆

+

N(ωo)∑

q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x

s)Uql(ωo, Z
⋆)



 , (6.24)

and it simplifies to

XM (j;xs) ≈ ε2−σ‖fB‖2
4

N(ωo)∑

l=1

βl(ωo)

βj(ωo)
φ2
l (x

s)Ujl(ωo, Z
⋆) (6.25)

in the case of full aperture and for broad band pulses. Although it may appear that the broad band does not

play a role in (6.25), we need it to get statistical stability. The variance calculation for X (j) is essentially

the same as that for R(Zs, j), and we do not repeat it here.

6.2.1. The estimation algorithm.

Algorithm 6.5. The cross-range estimation is based on the minimization of the objective function

O(xs) =
∑

j∈S

∣∣∣∣
X (j)

< X (·) > − XM (j;xs)

< XM (·, xs) >

∣∣∣∣
2

, (6.26)
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where

< X (·) >=
1

|S|
∑

j∈S

X (j), < XM (·;xs) >=
1

|S|
∑

j∈S

XM (j;xs) (6.27)

are averages over the index set S, with cardinality |S|. The set S of indexes included in the optimization is

decided on the behavior of the model XM (j;xs) for different source locations. We show below, with numerical

simulations, that the higher modes may not distinguish between different source cross-ranges, as they are most

affected by the random medium. If XM (j;xs) does not show sensitivity to xs, we exclude j from the set S.

It is easy to infer from (6.25) that at long ranges, where Z ≫ Le, we cannot estimate the cross-range

of the source. This is because Ujl ≈ 1/N(ωo) and XM becomes essentially independent of xs, as confirmed

by the numerical experiments given below. However, the range estimation works at such long distances, as

shown in the previous section.

Since it is only φ2
l (x

s) that appears in the full aperture model (6.25), we cannot determine xs uniquely,

but find instead two possible cross-ranges, symmetric with respect to the axis of the wave guide. The general

model (6.24) may suggest that we can resolve this ambiguity with partial apertures, because of the coherent

terms (the sum over q 6= q′ in (6.24)). However, these terms decay exponentially with the source range,

and they are not expected to improve much the estimation. In fact, the numerical results show that partial

apertures make the cross-range estimation quite difficult.

Fig. 6.5. XM (j; xs) for ε = 2%, central frequency 2.69kHz, 0.375kHz bandwidth, and full aperture. In the left plot
we compare XM (j;xs) for xs = 5λc and 10λc. On the right we take more values of xs, equal to 0.5λc, λc, 2λc and 5λc,
respectively.

Fig. 6.6. XM (j;xs) for xs = 5λc and 10λc, for ε = 2%, central frequency 2.69kHz and 0.375kHz bandwidth, and partial
aperture. Left: A = [0, 12λc]. Right: A = [0, 4λc].

6.2.2. Numerical results. We present here cross-range estimation results in the same setup as in

section 6.1.3. The unknown source is at ~x⋆ = (5λc, 0), at unscaled range zA = 494λc from the array.

We begin in Figure 6.5 with an illustration of the model function XM (j;xs), for a medium with ε = 2%

fluctuations, at central frequency 2.69kHz, bandwidth 0.375kHz and full aperture. This is the case considered
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Fig. 6.7. XM (j; xs) for xs = 5λc and full aperture. Left plot is at ε = 2%, for central frequencies 2.09kHz, 2.69kHz and
3.13kHz, respectively. Right plot is for central frequency 2.69kHz and ε = 2% and 3%. The bandwidth is 0.375kHz.

Fig. 6.8. Cross-range estimation results at ε = 2%, central frequency 2.69kHz and bandwidth 0.375KHz. We plot the
objective function O versus xs and ℓs. Top left: full aperture A = [0, 20λc]. Top right: A = [0, 12λc]. Bottom left: A = [0, 8λc].
Bottom right: A = [0, 4λc].

in plot (i) of Figure 3.4, where both matched field and CINT give good results at full aperture, but not

at partial aperture (Figure 3.5). We plot XM (j;xs), for various source cross-ranges. Note the different

oscillatory patterns for various xs, and at the lower index of the modes, which are included in the set S
used in the optimization. It is because of these different oscillatory patterns that we can estimate the source

cross-range, independent of where it is in the interval (0, X).

The plots of XM (j;xs) for partial apertures are in Figure 6.6, where xs = 5λc and 10λc. They show

that as we reduce the aperture, the cross-range estimation becomes ambiguous, because the oscillations of

XM corresponding to different source locations are similar.

In Figure 6.7, we show the effect of the random medium on the model function XM (j;xs). Here we fix

xs = x⋆ = 5λc and plot in the left picture how XM (j;xs) changes as we increase the central frequency, from

2.09kHz to 3.13kHz. In the right plot we fix the central frequency at 2.69kHz but increase ε from 2% to 3%.

We note that as we increase the frequency and/or ε, the oscillatory pattern of XM (j;xs) is damped due to

the stronger effect of the random medium. In fact, XM (j;xs) becomes less and less sensitive to xs and the

cross-range estimation becomes more and more ambiguous.

Figures 6.8 - 6.9 give the cross-range estimation results. We note that aside from x⋆, we can also estimate

the correlation function, although this is better done in conjunction with the range estimation. Here we use

the true Gaussian model of the correlation function and we illustrate the estimation of the correlation length
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Fig. 6.9. Full aperture cross-range estimation results at ε = 2% and 0.375kHz bandwidth. The central frequency is 2.69kHz
in the left plot, 2.99kHz in the middle and 3.13kHz on the right.

ℓs. The estimation of the amplitude parameter αs appears to be ambiguous.

Figure 6.8 is at ε = 2%, central frequency 2.69kHz and bandwidth 0.375kHz, where matched field and

CINT work at full aperture (case (i) in Figure 3.4) but not at partial aperture (Figure 3.5). The top left

picture in Figure 6.8 shows the estimation at full aperture. The true values of the estimation parameters

are indicated in red. The estimation returns the correct correlation length and source cross-range, except

for the ghost that is symmetric with respect to the wave guide axis, as expected from the theory. The ghost

is removed at partial apertures, because there is still enough coherence in the data (recall the discussion at

the end of section 6.2.1). However, we note that the estimation becomes more difficult as we reduce the

aperture, and it is ambiguous at A = [0, 4λc] (bottom right plot). This is expected from the behavior of

XM (j;xs) illustrated in Figure 6.5.

Figure 6.9 shows cross-range estimation results at full aperture, for bandwidth 0.375kHz and central

frequencies 2.69kHz, 2.99kHz and 3.13kHz. These are cases (i), (ii) and (iii) in Figure 3.4. The cross-range

estimation works well but we note that the ratio of the peak and minimum of the objective function O(~xs)

approaches one as we increase the frequency, indicating that the estimation becomes more difficult. This is

expected from the behavior of the model XM illustrated in Figure 6.7.

7. Summary. In this paper we study with analysis and numerical simulations the problem of source

localization in random waveguides, given measurements of the acoustic pressure at a remote array A of

receivers. We describe in detail the deterioration of coherent source localization methods, due to cumulative

strong wave scattering by the random inhomogeneities in the waveguide, and introduce a novel incoherent

source localization approach.

We consider three coherent methods: synthetic back propagation of the time reversed array data in

deterministic (unperturbed) waveguides; matched field and coherent interferometry. The first method is the

same as time reversal, when the source localization occurs in unperturbed waveguides. Time reversal works

well in random waveguides, but it cannot be used for source localization, because we cannot implement the

back propagation in the true medium, which is unknown. We find that synthetic back propagation in the

unperturbed waveguide is not useful, because it lacks statistical stability with respect to the realization of

the medium. Explicitly, we show that the mean of the estimation function focuses at the correct location,

but its amplitude decays exponentially with range and central frequency. This is because the wave field

loses rapidly (exponentially) its coherence, and the energy is transferred to the fluctuations, the incoherent

field. Consequently, the relative standard deviation of the estimation function is very large and the method

is unstable.

The matched field and coherent interferometric source localization functions are not useful for localizing

sources at long ranges either. Both methods use cross-correlations of the array data, which have a nontrivial

long range mean. However, since they do not account for the strong dispersive effect induced by scattering

in the waveguide, they do not focus at the source location.
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To localize the source from almost incoherent array data, we need to exploit systematically the dispersive

effect induced by the random medium. This requires a mathematical model, which allows us to restate the

problem as one of parameter estimation for the source coordinates and possibly the correlation function of

the random fluctuations of the wave speed. We use here the asymptotic model derived in [14, 9, 12, 11]. The

asymptotics is in the amplitude scale of the fluctuations, which is typically 1%− 3% in underwater acoustics

[10], and for long distances of propagation. We show how to use the model to formulate a statistically stable

incoherent source localization approach. We analyze the method in detail and assess its performance with

extensive numerical simulations.
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Appendix A. Time reversal refocusing in unperturbed waveguides. Begin with expression

(5.5) of the time reversal function. Based on the O(1/B) support of fB(t), we can change variables

Zs − Z = −ε2−σηs, i.e. zs = zA − Zs/ε2 = ε−σηs,

and obtain

ITR
o (xs, ε−σηs) ≈ 1

4

N(ωo)∑

j=1

φj(x⋆)φj(x
s)e−iβj(ωo)η

s/εσ fB
(
−β′

j(ωo)η
s
)
. (A.1)

This is a sum of highly oscillatory terms, and we expect that when N(ωo) is large enough, there will be a

lot of cancellations unless βj(ωo)η
s ∼ ηs/λo ≤ O(εσ). Indeed,

ITR
o (xs, εσηs) ≈ 1

λoN

N∑

j=1

sin

(
j

N

2πxs

λo

)
sin

(
j

N

2πx⋆

λo

)
e−iε−σηs 2π

λo

√
1− j2

N2 fB


 −ηs

co

√
1− j2

N2




≈ 1

2λo

∫ 1

0

dξ

[
cos

(
ξ
2π(xs − x⋆)

λo

)
− cos

(
ξ
2π(xs + x⋆)

λo

)]
e−i 2πε−σηs

λo

√
1−ξ2fB

(
−ηs

co
√
1− ξ2

)

when N = N(ωo) = ⌊2X/λo⌋ & ε−σ ≫ 1, and we can interpret the sum over ξj = j/N as a Riemann sum

for the integral over ξ ∈ (0, 1). Then, it follows from the method of stationary phase [3, chapter 6] that ITR
o

is large for ηs/λo ∼ εσ so that zs ∼ λo. At the true source range (zs = 0), we have

ITR
o (xs, 0) ≈ fB(0)

4

N(ωo)∑

j=1

φj(x⋆)φj(x
s) ≈ fB(0)

2λo

∫ 1

0

dξ

[
cos

(
ξ
2π(xs − x⋆)

λo

)
− cos

(
ξ
2π(xs + x⋆)

λo

)]

≈ fB(0)

2λo
sinc

[
2π(xs − x⋆)

λo

]
(A.2)

in the limit N(ωo) ≫ 1. �

Appendix B. Proof of Proposition 6.1. Recall model (4.20) of the array data, and set zA = Z/ε2,

to obtain from (6.6)

P̂j(ω, zA) ≈
f̂ ε(ω)

2

N(ωo)∑

q,l=1

Mjq

√
βl(ωo)

βq(ωo)
φl(x⋆)T

ε
ql(ω,Z)eiβq(ω)Z/ε2 . (B.1)
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Then,

R(ζ, j) =

∫

|ω−ωo|≤εσB

dω

2π
R̂(ω, ζ, j), (B.2)

where

R̂(ω, ζ, j) =

∫

|ω−ω′|≤ε2Ω

dω′

2π
P̂j(ω, zA)P̂j(ω

′, zA) (B.3)

is given by

R̂(ω, ζ, j) ≈ ε2

4

N(ωo)∑

q,l,q′,l′=1

MjqMjq′

√
βl(ωo)βl′(ωo)

βq(ωo)βq′ (ωo)
φl(x⋆)φl′(x⋆)e

i[βq(ω)−βq′ (ω)]Z/ε2
∫ Ω

−Ω

dh̃

2π
f̂ ε
(
ω + ε2h̃/2

)
×

f̂ ε
(
ω − ε2h̃/2

)
T ε
ql

(
ω + ε2h̃/2, Z

)
T ε
q′l′

(
ω − ε2h̃/2, Z

)
eih̃Z[β

′
q(ω)+β′

q′
(ω)]/2−ih̃ζβ′

j(ω), (B.4)

after the change of variables (ω + ω′)/2 ω and ω − ω′  ε2h̃. Taking expectations and using Lemma 5.2,

E
{
R̂(ω, ζ, j)

}
≈ ε2

4

N(ωo)∑

q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x⋆)

∫
dτ W(l)

q (ω, τ, Z)Ψ(ω, β′
j(ω)ζ − τ), (B.5)

where

Ψ(ω, t) =

∫ Ω

−Ω

dh̃

2π
f̂ ε
(
ω + ε2h̃/2

)
f̂ ε
(
ω − ε2h̃/2

)
e−ih̃t, (B.6)

and we neglected the exponentially decaying terms in Z.

Now, let us evaluate (B.6) using the definition (4.21) of f̂ ε, and for σ ∈ (1, 2]. For broad band pulses,

we can approximate

f̂ ε
(
ω ± ε2h̃/2

)
=

1

εσ
f̂B

(
ω − ωo

εσ
± ε2−σh̃

2

)
≈ 1

εσ
f̂B

(
ω − ωo

εσ

)

and obtain

Ψ(ω, t) ≈ Ωε−2σ

π

∣∣∣∣f̂B
(
ω − ωo

εσ

)∣∣∣∣
2

sinc(Ωt), σ ∈ (1, 2). (B.7)

In the narrow band case σ = 2

f̂ ε
(
ω ± ε2h̃/2

)
=

1

ε2
f̂B

(
ω − ωo

ε2
± h̃

2

)
,

and

Ψ(ω, t) ≈ 1

ε4

∫
dt1

∫
dt2fB(t1)fB(t2)e

i(ω−ωo)(t1−t2)/ε
2

∫ Ω

−Ω

dh̃

2π
eih̃[(t1+t2)/2−t]

=
Ωε−4

π

∫
dt1

∫
dt2fB(t1)fB(t2)e

i(ω−ωo)(t1−t2)/ε
2

sinc

[
Ω

(
t1 + t2

2
− t

)]
. (B.8)

Thus, the theoretical expected model of (6.8) is given by

E {R(ζ, j)} ≈ ε2−2σ

4

N(ωo)∑

q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x⋆)

∫
dω

2π

∫
dτW(l)

q (ω, τ, Z)

∣∣∣∣f̂B
(
ω − ωo

εσ

)∣∣∣∣
2

×

Ω

π
sinc

[
Ω
(
β′
j(ω)ζ − τ

)]

≈ ε2−σ‖fB‖2
4

N(ωo)∑

q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x⋆)W(l)

q (ωo, β
′
j(ωo)ζ, Z) (B.9)
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in broad band, and by

E {R(ζ, j)} ≈ ε−2

4

N(ωo)∑

q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x⋆)

∫
dω

2π

∫
dτ W(l)

q (ω, τ, Z)×
∫
dt1

∫
dt2fB(t1)fB(t2)e

i(ω−ωo)(t1−t2)/ε
2 Ω

π
sinc

[
Ω

(
t1 + t2

2
+ τ − β′

j(ω)ζ

)]

≈ 1

4

N(ωo)∑

q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x⋆)

∫
dτW(l)

q (ωo, β
′
j(ωo)ζ − τ, Z)×

∫
dt̃

B

π
sinc

(
Bt̃
)
fB(τ + t̃/2)fB(τ − t̃/2). (B.10)

in narrow band. �

Appendix C. The fourth order multi-frequency moments of the transfer matrix. We wish to

calculate the fourth order multi frequency moments

E
{
T ε
jm(ω + ε2h, Z)T ε

ln(ω − ε2ω̃, Z)T ε
JM(ω − ε2ω̃′, Z)T ε

LN (ω + ε2h′, Z)
}

for frequency offsets h, h′, ω̃ and ω̃′ of order one. For this, we use that T ε satisfies stochastic equations

(4.18), and write that

eihzβ
′
j
∂

∂z
T ε
jm =

∂

∂z
Tε
jm − ihβ′

jT
ε
jm =

iω2

2c2oε

N∑

p=1

Tε
pm

Cjp(z/ε
2)√

βpβj

ei(βp−βj)z/ε
2

+

iω4

4c4o

N∑

p=1

Tε
pm

∑

l′>N

∫ ∞

−∞

ds
Cjl′ (z/ε

2)Cpl′ (z/ε
2 + s)

βl′
√
βpβj

e−βl′ |s|+iβps+i(βp−βj)z/ε
2

, (C.1)

for z > 0, where

Tε
jm(ω + ε2h, z) = eihzβ

′
j(ω)T ε

jm(ω + ε2h, z). (C.2)

At z = 0 we have the initial conditions

Tε
jm(ω + ε2h, 0) = T ε

jm(ω + ε2h, 0) = δjm. (C.3)

Then, we can write

E
{
T ε
jm(ω + ε2h, z)T ε

ln(ω − ε2ω̃, z)T ε
JM(ω − ε2ω̃′, z)T ε

LN (ω + ε2h′, z)
}
= e−i(hβ′

j+ω̃β′
l+tw′β′

J+h′β′
L)z ×

E
{
Vε

jlJL(ω, h, h
′, ω̃, ω̃′)

}
, (C.4)

where we let

Vε
jlJL(ω, h, h

′, ω̃, ω̃′) = Tε
jm(ω + ε2h, Z)Tε

ln(ω − ε2ω̃, z)Tε
JM(ω − ε2ω̃′, Z)Tε

LN (ω + ε2h′, z), (C.5)

and suppressed the indexes m,n,M and N in the notation. These indexes are parameters in the differential

equations (C.1), but they influence the initial conditions (C.3).

The stochastic system of differential equations for Vε
jlJL follows from (C.1), and we write it in compact

form as

∂

∂z
Vε

jlJL =
1

ε
FjlJL +GjlJL, z > 0,

Vε
jlJL

∣∣
z=0

= δjmδlnδJMδLN , (C.6)
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where

FjlJL =
iω2

2c2o

N∑

p=1

[
Cjp(z/ε

2)√
βpβj

ei(βp−βj)z/ε
2

Vε
plJL − Clp(z/ε

2)√
βpβl

e−i(βp−βl)z/ε
2

Vε
jpJL−

CJp(z/ε
2)√

βpβJ

e−i(βp−βJ )z/ε
2

Vε
jlpL +

CLp(z/ε
2)√

βpβL

ei(βp−βL)z/ε2Vε
jlJp

]
(C.7)

and

GjlJL = i
[
hβ′

j + ω̃β′
l + ω̃′β′

J + h′β′
L

]
Vε

jlJL +
iω4

4c4o

N∑

p=1

∑

l′>N

∫ ∞

−∞

ds e−βl′ |s|
Cpl′(z/ε

2 + s)

βl′
×

[
Cjl′ (z/ε

2)√
βpβj

eiβps+i(βp−βj)z/ε
2

Vε
plJL − Cll′(z/ε

2)√
βpβj

e−iβps−i(βp−βl)z/ε
2

Vε
jpJL−

CJl′ (z/ε
2)√

βpβJ

e−iβps−i(βp−βJ)z/ε
2

Vε
jlpL +

CLl′(z/ε
2)√

βpβL

eiβps+i(βp−βL)z/ε2Vε
jlJp

]
. (C.8)

We are almost ready to apply the diffusion approximation theorem [11, Theorem 6.5], to obtain E
{
Vε

jlJL

}

in the limit ε → 0. We need to do one more step, and write (C.6) as a system of differential equations for

vector Vε ∈ R2N4

, with components

V ε
(L−1)N3+(J−1)N2+(l−1)N+j = ReVε

jlJL, V ε
N4+(L−1)N3+(J−1)N2+(l−1)N+j = ImVε

jlJL. (C.9)

Equations (C.6) become

∂

∂z
Vε =

1

ε
F
[
ν(·, z/ε2), z/ε2

]
Vε + G

[
ν(·, z/ε2), z/ε2

]
Vε, (C.10)

with matrices F ,G ∈ R2N4×2N4

following obviously from (C.7) and (C.8).

We obtain from [11, Theorem 6.5] that as ε → 0, Vε converges in distribution to the diffusion Markov

process V with generator Q given by

Qϕ(v) = lim
Z̄→∞

1

Z̄

∫ Z̄

0

ds

∫ ∞

0

dzE{F(ν(·, 0), s)v · ∇v[F(ν(·, z), s+ z)v · ∇vϕ(v)]} +

lim
Z̄→∞

1

Z̄

∫ Z̄

0

dsE{G(ν(·, 0), s)v · ∇vϕ(v)}, (C.11)

for an arbitrary smooth function ϕ. To get the limit of E
{
Vε

jlJL

}
as ε → 0, it suffices to compute the action

of Q on ϕ(v) = vq and ϕ(v) = vq+N4 , where q = (L − 1)N3 + (J − 1)N2 + (l − 1)N + j. Then, the result

follows from Kolmogorov’s backward equation [7].

We obtain after tedious but straightforward calculations that

lim
ε→0

E
{
Vε

jlJL

}
= VjlJL(ω, h, h

′, ω̃, ω̃′, z), (C.12)

where

∂

∂z
VjlJL =

[
i
(
hβ′

j + ω̃β′
l + ω̃′β′

J + h′β′
L

)
+QjlJL

]
VjlJL − (1− δjL)Γ

(c)
jLVLlJj −

(1 − δjL)Γ
(c)
Jl VjJlL + δlj

N∑

p6=j,p=1

Γ
(c)
pj VppJL + δJj

N∑

p6=j,p=1

Γ
(c)
pj VplpL +

δlL

N∑

p6=l,p=1

Γ
(c)
pl VjpJp + δJL

N∑

p6=J,p=1

Γ
(c)
pJ Vjlpp (C.13)
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for z > 0, and

QjlJL =
1

2

(
Γ
(c)
jj + Γ

(c)
ll + Γ

(c)
JJ + Γ

(c)
LL

)
− 1

2

(
Γ
(1)
jj + Γ

(1)
ll + Γ

(1)
JJ + Γ

(1)
LL

)
+ Γ

(1)
jl + Γ

(1)
jJ + Γ

(1)
lL +

Γ
(1)
JL − Γ

(1)
lJ − Γ

(1)
jL +

i

2

(
Γ
(s)
jj + Γ

(s)
LL − Γ

(s)
ll − Γ

(s)
JJ

)
+ i (κj + κL − κl − κJ) . (C.14)

The initial conditions at z = 0 are

VjlJL(ω, h, h
′, ω̃, ω̃′, z = 0) = δjmδlnδJMδLN . (C.15)

Proposition D.1 follows now easily from (C.13)-(C.15). �

Appendix D. Proof of Proposition 6.4. We need the following result:

Proposition D.1. Consider arbitrary indexes j, l, l′, n, n′ = 1, . . .N(ω). As ε → 0, we have

E

{
T ε
jl

(
ω +

ε2(ω̃ + h̃)

2
, Z

)
T ε
jl′

(
ω − ε2(ω̃ − h̃)

2
, Z

)
T ε
jn

(
ω − ε2(ω̃′ + h̃)

2
, Z

)
T ε
jn′

(
ω +

ε2(ω̃′ − h̃)

2
, Z

)}
→

e−i(ω̃+ω̃′)β′
jZVjjjj (ω, ω̃, ω̃

′, h̃, Z), (D.1)

where {Vjjqq}j,q=1,...N(ω) and {Vjqjq}j 6=q=1,...N(ω) satisfy the closed system of equations

∂

∂z
Vjjqq = i

[(
ω̃ + ω̃′

2

)
(β′

j + β′
q) +

(
ω̃ − ω̃′

2

)
(β′

j − β′
q)

]
Vjjqq − Γ

(c)
jq [Vjqjq + Vqjqj ] +

N∑

p6=j,p=1

Γ
(c)
pj (Vppqq − Vjjqq) +

N∑

p6=q,p=1

Γ(c)
pq (Vjjpp − Vjjqq) +

δjq




N∑

p6=j,p=1

Γ
(c)
pj (Vpjpj − Vjjjj) +

N∑

p6=j,p=1

Γ
(c)
pj (Vjpjp − Vjjjj )


 , j, q = 1, . . .N(ωo),

∂

∂z
Vjqjq = i

[(
ω̃ + ω̃′

2

)
(β′

j + β′
q) + h̃(β′

j − β′
q)

]
Vjqjq − Γ

(c)
jq [Vjjqq + Vqqjj ] +

N∑

p6=j,p=1

Γ
(c)
pj (Vpqpq − Vjqjq) +

N∑

p6=q,p=1

Γ(c)
pq (Vjpjp − Vjqjq) , j 6= q,

for z > 0, and initial conditions

Vjjqq(ω, ω̃, ω̃
′, h̃, z = 0) = δjlδjl′δqnδqn′

Vjqjq(ω, h̃, ω̃, ω̃
′, h̃, z = 0) = δjlδql′δjnδqn′ . (D.2)

The proof is in Appendix C. Note that the initial conditions (D.2) are identically zero unless l, l′, n, n′

satisfy one of the following conditions

l = l′ and n = n′, (D.3)

l = n 6= l′ = n′. (D.4)

This means that of all moments (D.1), only those with these indexes are not zero. Note also that in

Proposition D.1 and in Appendix C we suppressed the initial condition notation in Vjjjj . We restore it now

by writing

Vjjjj  V ll′nn′

jjjj .
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We obtain from (6.20), Lemma 5.2 and Proposition D.1 that

V (ζ, j) ≈ ε3(2−σ)

42

∫ B

−B

dh

2π

∫ Ω

−Ω

dh̃

2π

∫ Ω

−Ω

dω̃

2π

∫ Ω

−Ω

dω̃′

2π
ei(ω̃+ω̃′)(Z−ζ)β′

j(ωo)f̂B

(
h+

ε2−σ

2
(ω̃ + h̃)

)
×

f̂B

(
h− ε2−σ

2
(ω̃ − h̃)

)
f̂B

(
h− ε2−σ

2
(ω̃′ + h̃)

)
f̂B

(
h+

ε2−σ

2
(ω̃′ − h̃)

)
×

N(ωo)∑

l,l′,n,n′=1

√
βlβl′βnβ′

n

β2
j

φl(x⋆)φl′ (x⋆)φn(x⋆)φn′(x⋆)Fll′nn′(ωo + εσh, ω̃, ω̃′, h̃)

where

Fll′nn′(ω, ω̃, ω̃′, h̃) = e−i(ω̃+ω̃′)Zβ′
j(ω) [δll′δnn′ + (1− δll′)δlnδl′n′ ]V ll′nn′

jjjj

(
ω, ω̃, ω̃′, h̃, Z

)
−

e−i(ω̃+ω̃′)Zβ′
j(ω)δll′δnn′Ŵ

(l)
j (ω, ω̃, Z)Ŵ

(n)
j (ω, ω̃′, Z). (D.5)

The expression of the variance becomes

V (ζ, j) ≈ ε3(2−σ)

16

∫ B

−B

dh

2π

∫ Ω

−Ω

dh̃

2π

∫ Ω

−Ω

dω̃

2π

∫ Ω

−Ω

dω̃′

2π
e−i(ω̃+ω̃′)ζβ′

j(ωo)f̂B

(
h+

ε2−σ

2
(ω̃ + h̃)

)
×

f̂B

(
h− ε2−σ

2
(ω̃ − h̃)

)
f̂B

(
h− ε2−σ

2
(ω̃′ + h̃)

)
f̂B

(
h+

ε2−σ

2
(ω̃′ − h̃)

)
×

N(ωo)∑

l,n=1

βl(ωo)βn(ωo)

β2
j

φ2
l (x⋆)φ

2
n(x⋆)

[
V llnn
jjjj + (1− δln)V lnln

jjjj − Ŵ
(l)
j (ωo, ω̃, Z)Ŵ

(n)
j (ωo, ω̃

′, Z)
]

(D.6)

where the arguments of V llnn
jjjj and V lnln

jjjj are (ωo, ω̃, ω̃
′, h̃, Z). The expectation of R(ζ, j) is computed in

Proposition 6.1, and we rewrite it here as

|E {R(ζ, j)}|2 ≈ ε2(2−σ)

16

∣∣∣∣∣

∫ B

−B

dh

2π

∫ Ω

−Ω

dω̃

2π
f̂B

(
h+

ε2

2
ω̃

)
f̂B

(
h− ε2

2
ω̃

)
e−iω̃ζβ′

j(ωo)×

N(ωo)∑

l=1

βl(ωo)

βj(ωo)
φ2
l (x⋆)Ŵ

(l)
j (ωo, ω̃, Z)

∣∣∣∣∣∣

2

, (D.7)

Now, let us recall from (5.29) that as Z increases,

Ŵ
(l)
j (ωo, ω̃, Z) → 1

N(ωo)
eiω̃β′(ωo)Z−ω̃2σ2

eZ/2. (D.8)

It is difficult to get an explicit limit of V ll′nn′

jjjj for arbitrary values of h̃, ω̃ and ω̃′. Their maximum is attained

at h̃ = ω̃ = ω̃′ = 0, where we have from [11, section 20.9.3] that

V llll
jjjj (ωo, 0, 0, 0, Z) → 2

N(ωo) [N(ωo) + 1]
, (D.9)

V llnn
jjjj (ωo, 0, 0, 0, Z) → 1

N(ωo) [N(ωo) + 1]
, l 6= n, (D.10)

V lnln
jjjj (ωo, 0, 0, 0, Z) → 1

N(ωo) [N(ωo) + 1]
, l 6= n. (D.11)

Using these results and writing the probabilistic representation§ of the transport equations obtained by

taking the Fourier transform over (ω̃ + ω̃′)/2 and (ω̃ − ω̃′)/2 in Proposition D.1, for h̃ = (ω̃ − ω̃′)/2, we can

§The probabilistic representation is obtained with a procedure similar to that in [11, section 20.6.2], but for a jump Markov
process {Jz , Qz}z≥0 with state space in [1, . . . N(ωo)] × [1, . . . N(ωo)], and with generator given by the right hand side of the
equations in Proposition D.1.
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also obtain that

V ll′nn′

jjjj

(
ωo, ω̃, ω̃

′, h̃ =
ω̃ − ω̃′

2

)
 V ll′nn′

jjjj (ωo, 0, 0, 0)e
i(ω̃+ω̃′)β′(ωo)Z−(ω̃2+(ω̃′)2)σ2

eZ/2.

The choice h̃ = (ω̃ − ω̃′)/2 simplifies the problem in Proposition D.1, because we can set by symmetry

Vjqjq = Vjjqq . The equations are much harder to analyze in the remaining cases, but we observe with direct

numerical computations, which solve the system of equations in Proposition D.1, that V llnn
jjjj and V lnln

jjjj remain

of the same order as Ŵ
(l)
j Ŵ

(n)
j .

Let us look closer at the sum in (D.6) and estimate it at h̃ = ω̃ = ω̃′ = 0. We have that as Z grows, this

sum approaches

2

N(N + 1)

∣∣∣∣∣
N∑

l=1

βl

βj
φ2
l (x⋆)

∣∣∣∣∣

2

− 1

N2

∣∣∣∣∣
N∑

l=1

βl

βj
φ2
l (x⋆)

∣∣∣∣∣

2

=
N − 1

N + 1

1

N2

∣∣∣∣∣
N∑

l=1

βl

βj
φ2
l (x⋆)

∣∣∣∣∣

2

whereas the sum in (D.7) satisfies

N(ωo)∑

l=1

βl(ωo)

βj(ωo)
φ2
l (x⋆)Ŵ

(l)
j (ωo, ω̃ = 0, Z) → 1

N

N∑

l=1

βl

βj
φ2
l (x⋆).

That is, the sum in (D.6) is a factor of (N − 1)/(N + 1) ≈ 1 of the sum in (D.7), in the vicinity of

h̃ = ω̃ = ω̃′ = 0, where the terms attain their maximum. Therefore, we cannot expect a small ratio

V/|E{R}|2, unless we are in a broad band regime with σ < 2.

For σ < 2 we can approximate (D.6) as

V (ζ, j) ≈ ε3(2−σ)Ω

16π

∫ B

−B

dh

2π
|f̂B(h)|4

N(ωo)∑

l,n

βl(ωo)βn(ωo)

β2
j

φ2
l (x⋆)φ

2
n(x⋆)

∫ Ω

−Ω

dω̃

2π

∫ Ω

−Ω

dω̃′

2π

e−i(ω̃+ω̃′)ζβ′
j(ωo)

{∫ Ω

−Ω

dh̃

2Ω

[
V llnn
jjjj + (1− δln)V lnln

jjjj

]
− Ŵ

(l)
j (ωo, ω̃, Z)Ŵ

(n)
j (ωo, ω̃

′, Z)

}
(D.12)

and (D.7) as

|E {R(ζ, j)}|2 ≈ ε2(2−σ)

16

[∫ B

−B

dh

2π
|f̂B(h)|2

]2N(ωo)∑

l,n

βl(ωo)βn(ωo)

β2
j

φ2
l (x⋆)φ

2
n(x⋆)×

∫ Ω

−Ω

dω̃

2π

∫ Ω

−Ω

dω̃′

2π
e−i(ω̃+ω̃′)ζβ′

j(ωo)Ŵ
(l)
j (ωo, ω̃, Z)Ŵ

(n)
j (ωo, ω̃

′, Z), (D.13)

where

[∫ B

−B

dh|f̂B(h)|2
]2

≤ 2B

∫ B

−B

dh|f̂B(h)|4

by the Cauchy Schwartz inequality. We conclude by comparing these expressions and the fact that V llnn
jjjj

and V lnln
jjjj are of similar magnitude to Ŵ

(l)
j Ŵ

(n)
j , that

V (ζ, j)

maxζ |E {R(ζ, j)}|2
= O

(
ε2−σΩ

B

)
, (D.14)

as stated in Proposition 6.4. �
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