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Abstract

The problem of optimal illumination for selective array imaging of small

and not well separated scatterers in clutter is considered. The imag-

ing algorithms introduced are based on the Coherent Interferometric

(CINT) imaging functional, which can be viewed as a smoothed ver-

sion of travel-time migration. The smoothing gives statistical stability

to the image but it also causes blurring. The trade-off between sta-

tistical stability and blurring is optimized with an adaptive version of

CINT. The algorithm for optimal illumination and for selective array

imaging uses CINT. It is a constrained optimization problem that is

based on the quality of the image obtained with adaptive CINT. The

resulting optimal illuminations and selectivity improve significantly the

resolution of the images, as can be seen in the numerical simulations

presented in the paper.

PACS numbers: 43.60.Gk, 43.60.Pt, 43.60.Tj
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I. INTRODUCTION

We consider the imaging of small scatterers in cluttered media from the time traces

of echoes recorded at a remote array. By clutter we mean inhomogeneities in the medium

that are unknown and cannot be estimated in detail. In regimes with significant multiple

scattering of the waves by the clutter, the time traces have considerable delay spread (coda)

and their travel-time migration creates images with speckles that are difficult to interpret.

The images are also unstable, which means that they change unpredictably with different

realizations of the clutter.

To stabilize the imaging process in clutter, we introduced in1,2 the coherent interfero-

metric (CINT) imaging functional. The images produced by CINT are statistically stable,

that is, they have small variance with respect to random background fluctuations. Let us

emphasize that it is the images that have small variance and not the background fluctua-

tions, which have a sizeable cumulative effect on wave propagation, and hence on the array

data. CINT is a smoothed version of travel-time (Kirchhoff) migration3,4 in which the delay

spread is reduced by using the cross-correlations of the traces over appropriate space-time

windows1,5,6, rather than the traces themselves. The CINT images are then formed with

travel-time migration of the local cross-correlations. The choice of the space-time windows

depends on the clutter and it affects both the statistical stability and the resolution of the

image. We showed in5 that there is a trade-off between these two effects, and we introduced

an adaptive algorithm for selecting the size of the space-time windows so as to achieve an

optimal compromise between gaining statistical stability and losing resolution by blurring.

In this paper we consider the imaging of a cluster of small scatterers that are close

together and, because of the inevitable blur, cannot be distinguished with adaptive CINT.

We introduce an algorithm for optimal illumination and selective imaging of the scatterers

one at a time, in which we use the singular value decomposition (SVD) of the array response

matrix, frequency by frequency.

The SVD of the response matrix has been used before in7–9 for obtaining optimal illumi-
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nations for detection of scatterers from the traces recorded at the array. These illuminations

maximize the power of the signals recorded by the array. They are determined by the leading

singular vector of the response matrix at the resonant frequency, which is where the leading

singular value achieves its maximum over the bandwidth. However, the optimal illumination

for detection is not appropriate for imaging because (1) the narrow bandwidth gives poor

range resolution of the images and no statistical stability in clutter6,10,11, and (2) the leading

singular vector does not necessarily illuminate a single (strongest) scatterer in the cluster.

In general, this occurs only when the scatterers are well separated.

Well separated small scatterers can be imaged selectively in known media with the DORT

method12, DORT stands for Decomposition de l’Opérateur de Retournement Temporel in

french, which uses one singular vector at a time, over the entire bandwidth. However,

DORT does not image selectively in clusters of nearby scatterers because the one-to-one

correspondence between the scatterers and the singular vectors does not hold. It also does

not give stable images when there is clutter.

There are three parts to the optimal illumination algorithm for selective imaging of

clusters of small scatterers as presented in this paper. First, all imaging is based on the

adaptive CINT functional, so that it is statistically stable in clutter. Second, the illumination

is not done with one singular vector at a time, but with an optimal convex combination of

the leading singular vectors across the bandwidth. The coefficients (subspace weights) are

calculated by solving a constrained optimization problem which minimizes the support of

the image, which is formed with adaptive CINT. Third, once the optimal subspace selection

has been done so that the image is focused on a single scatterer, it is further improved by

assigning optimal weights to each illuminating source in the array. These weights are also

constrained minimizers of the support of the image.

The paper is organized as follows. In section II we describe the set-up for array imaging

of a cluster of small scatterers. In section III we describe the adaptive CINT algorithm and

its relation to travel-time migration. In section IV we consider the optimal illumination

problem. We define the weighted subspaces using the SVD of the array response matrix in
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section IV.A, and then introduce the optimal illumination algorithm in section IV.B. We

illustrate the performance of the algorithms with numerical simulations in the regime of

ultrasonic array imaging in concrete13,14. Details and comments on the numerical results are

given in section V. We end with a summary and conclusions in section VI.

II. PROBLEM SETUP

We consider imaging of a cluster of M small (point-like) scatterers at nearby locations

~y(j), for j = 1, . . . , M , in a cluttered medium. The data is gathered with an array A of Ns

sources and Nr receivers that is far from the scatterers. The sources are at points ~xs ∈ A,

for s = 1, . . . , Ns and the receivers are at ~xr ∈ A, for r = 1, . . . , Nr. The array illuminates

sequentially the scatterers by sending a pulse f(t) from the sources at ~xs and recording for

each pulse the traces P (~xr, ~xs, t) of the scattered echoes at the receivers

P (~xr, ~xs, t) = f(t) ⋆ Π(~xr, ~xs, t),

for r = 1, . . . , Nr, s = 1, . . . , Ns.
(2.1)

Here Π(t) = {Π(~xr, ~xs, t)} is the Nr × Ns array impulse response matrix and the symbol ⋆

stands for time convolution. The traces P (~xr, ~xs, t) are recorded over a time window that

is assumed for simplicity to be long enough (essentially infinite) so as to neglect it in (2.1).

We also take for convenience the case of Ns = Nr = N co-located sources and receivers. By

reciprocity, this makes the array response matrix Π(t) symmetric.

The probing pulse is of the form

f(t) = e−iωotfB(t), (2.2)

where ωo is the central frequency and fB(t) is the base-band pulse, with bandwidth B. In

the frequency domain we have

f̂(ω) =

∫ ∞

−∞

ei(ω−ωo)tfB(t)dt = f̂B(ω − ωo) 6= 0

for |ω − ωo| ≤
B
2

,

(2.3)
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where the symmetric interval of negative frequencies is suppressed for simplicity. We choose

f̂B(ω) as the indicator function of the frequency interval |ω| ≤ B/2. This way, the Fourier

coefficients of the traces coincide over the bandwidth with the Fourier coefficients of the

response matrix

P̂ (~xr, ~xs, ω) = Π̂(~xr, ~xs, ω), s, r, = 1, . . . , N, |ω − ωo| ≤
B

2
. (2.4)

A. Setup for the numerical simulation

0d=3

0

λ 0λ 0

λ

absorbing medium

ar
ra

y

L=90
d

d

λ100

100
Source

FIG. 1. Schematic of array imaging in a homogeneous medium. The computational set-up

is on the left. The traces received when illuminating from the central element in the array

are on the right.

The numerical simulations are in two dimensions, in a regime that is often used in ultra-

sonic array imaging in concrete13,14. In this paper, the elastic wave propagation in concrete

is approximated by a scalar acoustic problem. Therefore, only pressure waves are considered

and shear waves, Rayleigh waves, and mode conversion effects are neglected. We solve the

acoustic wave equation as a first order velocity-pressure system with the finite element, time

domain method given in15, for both two and three dimensions. The setup is shown in Fig-

ures 1 and 2 for imaging in homogeneous and cluttered media, respectively. We simulate the

wave propagation in an unbounded environment by surrounding the computational domain
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scatterers
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FIG. 2. Array imaging in clutter. The computational set-up is shown on the left. The

fluctuations in the sound speed are shown in color and the color-bar is in km/s. The traces

received when illuminating from the central element in the array are on the right.

with a perfectly matched absorbing layer, as shown in Figure 1.

The array is linear, with N = 100 transducers at λo/2 apart and with an aperture

a = 49.5λ0. We use the frequency band 150 − 450kHz, with bandwidth B = 300kHz. The

reference sound speed is co = 3km/s and therefore λo = 1cm. We have M = 4 small

scatterers at range L = 90λo from the array. They are at distance d = 3λo apart and we

model them as soft acoustic disks of diameter λo, with the acoustic pressure equal to zero

at their boundary. In concrete they correspond to air holes.

We model the clutter as a random process and write the square of the index of refraction

n(~x) = co/c(~x) in the form

n2(~x) = n2
o(~x)

[
1 + σν

(
~x

ℓ

)]
. (2.5)

Here no(~x) is the smooth and known index of refraction of the background medium. We take

no(~x) = 1 for simplicity, so that the wave speed c(~x) fluctuates about the constant value

co. The normalized fluctuations are modeled by ν(~x), which is a statistically homogeneous

random process with mean zero and rapidly decaying correlation. The fluctuations have a

characteristic length scale ℓ, the correlation length for example, which can be considered to
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be the typical size of the inhomogeneities. The parameter σ controls the strength of the

fluctuations.

The fluctuation process ν(~x) is isotropic with Gaussian correlation

R(~x, ~x′) = R (|~x − ~x′|) = e−
|~x−~x′|2

2ℓ2 .

The correlation length is taken to be ℓ = λo/2 and the fluctuation strength σ = 0.03. Note

that we are in a regime with small fluctuations σ ≪ 1, as is expected in concrete structures.

Nevertheless, because the range L is large with respect to λo and ℓ, there is significant delay

spread in the traces, as seen in Figure 2. The estimated transport mean free path16,17 in

the clutter is 75λo. This is to be contrasted with the time reversal experiments in18, where

the range is about 10 transport mean free paths and all coherence is effectively lost in the

echoes. Here the range L is comparable to the mean free path so there is some residual

coherence in the data and coherent interferometric imaging can be effective.

III. ADAPTIVE COHERENT INTERFEROMETRIC IMAGING

In travel-time (Kirchhoff) migration the data traces are mapped to an image by the

functional

IKM(~yS) =

∫

|ω−ωo|≤B/2

dω

N∑

r=1

e−iωτ(~xr ,~yS)
N∑

s=1

P̂ (~xr, ~xs, ω)e−iωτ(~xs,~yS)

=
N∑

r=1

N∑

s=1

P (~xr, ~xs, τ(~xr, ~y
S) + τ(~xs, ~y

S)). (3.1)

Here ~yS is a search point in the region where we form the image and τ(~xr, ~y
S) is the travel

time of the waves from the array element ~xr to ~yS, in the background medium with sound

speed co. Since we assume a constant co, τ(~xr, ~y
S) = |~xr − ~yS|/co. In general smooth media

τ is given by Fermat’s principle19.

Travel-time migration of the traces when they have significant delay spread due to

multiple scattering in clutter produces images with speckles that are difficult to interpret,
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as seen in the left picture of Figure 3. The images are also unstable, in the sense that they

change unpredictably with the realization of the clutter.

To stabilize the imaging process we introduced in1,2,6 the coherent interferometric

(CINT) approach which migrates to ~yS local cross-correlations of the traces, computed

over appropriately sized space-time windows. The CINT imaging function is

ICINT(~yS; Ωd, κd) =

∫

|ω−ωo|≤
B
2

dω

∫

|ω′−ωo|≤
B
2

, |ω−ω′|≤Ωd

dω′
∑ ∑

r,r′∈X(ω+ω′

2
,κd)

∑ ∑

s,s′∈X(ω+ω′

2
,κd)

Q̂(~xr, ~xs, ω; ~yS)Q̂(~xr′, ~xs′, ω′; ~yS),
(3.2)

where the bar means complex conjugate and Q̂(~xr, ~xs, ω; ~yS) is the Fourier transform of the

trace P (~xr, ~xs, t) migrated to ~yS

Q̂(~xr, ~xs, ω; ~yS) = P̂ (~xr, ~xs, ω)e−iω[τ(~xs,~yS)+τ(~xr ,~yS)]. (3.3)

Here the set of indices in the summation is defined by

X (ω, κd) =

{
r, r′ = 1, . . . , N ; |~xr − ~xr′ | ≤ Xd(ω) =

co

ωκd

}
. (3.4)

The Ωd and κd are clutter-dependent coherence parameters that must be estimated from

the data. They determine the size of the time-space windows used to compute the local

cross-correlations of the traces, as we now explain.

The data appears in ICINT in the form P̂ (~xr, ~xs, ω)P̂ (~xr′ , ~xs′, ω′) for receiver and source

location indexes in X
(

ω+ω′

2
, κd

)
, and for frequencies that are not more than Ωd apart. This

Ωd is the decoherence frequency in clutter, defined as the smallest difference |ω − ω′| over

which P̂ (~xr, ~xs, ω) and P̂ (~xr, ~xs, ω
′) become statistically uncorrelated. When we restrict

|ω − ω′| ≤ Ωd, we have significant random phase cancellation in the local cross-correlation

P̂ (~xr, ~xs, ω)P̂ (~xr, ~xs, ω′). Equivalently, in the time domain, when we convolve P (~xr, ~xs, t)

with its time reversed version over a time window of size O(1/Ωd), we get a significant

reduction of the delay spread.

The parameter κd defines the decoherence length Xd(ω), at frequency ω, as shown in

(3.4). This decoherence length is the smallest separation between the sources |~xs − ~xs′ | and
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between receivers |~xr − ~xr′ | over which P̂ (~xr, ~xs, ω) and P̂ (~xr′ , ~xs′, ω) become statistically

uncorrelated. Thus, in CINT, we cross-correlate the traces over space-time windows that

are defined by the decoherence length and frequency in order to have significant reduction

of the delay spread in the traces.

We showed in5,6 that thresholding of the space-frequency windows with Xd and Ωd

amounts to smoothing the image and giving it statistical stability. In very weak clutter,

where there is little loss of coherence in the data, Xd and Ωd can be as large as the aperture a

and bandwidth B, respectively. Then ICINT becomes simply the square of IKM. However,

in stronger cluter Xd and Ωd can be small compared to a and B, respectively, and then

ICINT is a smoothed version of
∣∣∣IKM

∣∣∣
2

. The smoothing occurs by convolution with the

window functions whose effective support is controlled by Ωd and κd, as we explain in detail

in5,6. We showed in1,5 that the CINT point spread function has range resolution co/Ωd

and cross-range resolution λoL/Xd(ωo) = 2πLκd. These results should be compared with

the Rayleigh resolution limits co/B and λoL/a for travel-time migration in homogeneous

media19. For strong clutter, where Ωd ≪ B and Xd(ωo) ≪ a, there is considerable loss of

resolution.

The key question in the implementation of ICINT is how to estimate the clutter de-

pendent parameters Ωd and κd. This can be done directly from the data, using statistical

techniques such as the variogram20, but it is a delicate process. We introduced in5 an adap-

tive version of the CINT algorithm that estimates Ωd and κd during the image formation

process by optimization of an objective function that quantifies the quality of the image.

CINT is a trade-off between smoothing for statistical stabilization and loss of resolution

by blurring. This can be seen in Figure 3, where we display the ICINT image computed with

three different sets of parameters Ωd and κd. On the left we show IKM, which corresponds

to setting Ωd = B and Xd = a across the bandwidth. On the right we show the square

root of the oversmoothed image ICINT, obtained with values for Ωd and Xd that are too

small. There are no speckles in this image. They have been removed by smoothing but we

have also lost a lot of resolution. The middle picture in Figure 3 shows the square root of
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FIG. 3. The square root of the coherent interferometric imaging function for three choices

of smoothing parameters. The left picture is with no smoothing, the middle picture is with

optimal smoothing, and the right picture with too much smoothing. The four reflectors are

indicated with green dots.

ICINT for the optimal choice of Ωd and Xd (i.e., κd) obtained by the following adaptive

CINT algorithm.

Adaptive CINT algorithm: For given starting values of the parameters Ωd and κd,

calculate

J (~yS; Ωd, κd) =

∣∣∣ICINT(~yS; Ωd, κd)
∣∣∣

1

2

sup~yS∈D

∣∣∣ICINT(~yS; Ωd, κd)
∣∣∣

1

2

(3.5)

for ~yS sweeping a search domain D. For a suitably chosen parameter α > 0, estimate Ωd

and κd as the minimizers of

O(Ωd, κd) = ‖J (·; Ωd, κd)‖L1(D) + α
∥∥∇~ySJ (·; Ωd, κd)

∥∥
L1(D)

, (3.6)

over all possible Ωd ∈ [0, B] and κd ≥ 0.

The first term in (3.6) favors images of small spatial support and the second term

induces smoothing. This is essential for penalizing speckled images but the smoothing must

be controled in order to minimize the blurring. The balance between the two terms in (3.6) is

done with parameter α > 0, which must be chosen in such a way that ‖J (·; Ωd, κd)‖L1(D) and

α
∥∥∇~ySJ (·; Ωd, κd)

∥∥
L1(D)

are of the same order. In principle, α can be changed during the

estimation process. However, a good indication that the data responds well to the adaptive
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CINT algorithm is the relative stability of α as the iteration process for the determination of

Ωd and κd advances, until a plateau for the objective is reached. In all numerical simulations

in this paper, and in previous ones5, α = 1 worked well.

Note that in adaptive CINT we work with the square root of
∣∣∣ICINT

∣∣∣. This is because

we compare it with IKM. When no smoothing is done then
∣∣∣ICINT

∣∣∣
1

2

is equal to
∣∣∣IKM

∣∣∣.

In the numerical setup considered in this paper (cf. Figure 2) the scatterers are close

together and because of the inevitable blurring that CINT introduces, they cannot be distin-

guished with adaptive CINT. This is clear from the middle picture in Figure 3. In order to

image the scatterers separately, we introduce in the next section an algorithm for optimal il-

lumination and selective imaging. In this algorithm we use the singular value decomposition

(SVD) of the array response matrix, frequency by frequency. When the scatterers are not so

closely spaced, or more precisely, when the blurring introduced is smaller than the distance

in between the scatterers, then the adaptive CINT method can effectively distinguish them.

Results for such a case are reported in5.

IV. OPTIMAL ILLUMINATION AND SELECTIVE IMAGING WITH CINT

We introduce a two-step algorithm for optimal illumination and subspace selection with

adaptive CINT in order to image clusters of small scatterers in clutter. The first step is

described in section IV.A and it uses the singular value decomposition of the array response

matrix to image the scatterers in a selective manner, one at a time. The second step is

described in section IV.B. It is designed to improve the image of each scatterer using an

optimal illumination from the array.
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A. Selective imaging with CINT

1. The singular value decomposition of the response matrix

The singular value decomposition of the N ×N response matrix Π̂(ω) =
{

Π̂(~xr, ~xs, ω)
}

at any frequency ω in the bandwidth is given by

Π̂(ω) =
N∑

j=1

σj(ω)ûj(ω)v̂⋆
j (ω), (4.1)

so that

Π̂(ω)v̂j(ω) = σj(ω)ûj(ω), j = 1, . . . , N. (4.2)

Here the star stands for complex conjugate and transpose. The singular values σj(ω) ≥ 0

are in decreasing order and ûj(ω), v̂j(ω) are the orthonormal left and right singular vectors,

respectively.

Because the complex matrix Π̂(ω) is symmetric, although not hermitian, we can deter-

mine the left singular vectors as the complex conjugates of the right ones. However, this is

true only when the correct phase has been assigned to these vectors. The computation of

the SVD with any public software returns

ûj(ω) = eiϕj(ω)v̂j(ω), j = 1, . . . , N, (4.3)

with an ambiguous phase that is difficult to unwrap in a consistent manner across the

bandwidth. Nevertheless, the projection matrices

Pj(ω) = ûj(ω)û⋆
j(ω) (4.4)

onto the space spanned by the jth left singular vector have no phase ambiguities, and this

is what we use in the algorithm described below.

2. Data filtering

Let us assume that the number N of array elements is larger than the number M of small

scatterers in the cluster. Then there are n⋆(ω) < N significant singular values of Π̂(ω), with
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FIG. 4. The first m singular values of the response matrix as a function of frequency.

n⋆(ω) ∼ M . See Figure 4 for an illustration of this fact, for the numerical setup described

in section II.A, where M = 4. We note in Figure 4(a) that in the homogeneous medium we

can set n⋆(ω) = 4. In the random medium Figure 4(b) shows that we can set n⋆(ω) = 5 or

at most 6, because for all indices beyond this threshold the singular values level off as when

there is additive noise across the bandwidth. Note also that this threshold stays basically

the same across the bandwidth, so we can write

n⋆(ω) ≈ n⋆(ωo). (4.5)

This is because we are dealing with small, point-like scatterers. In the case of extended

scatterers n⋆(ω) does vary across the bandwidth, as was shown before21, and this has to be

taken into account when doing selective imaging of such reflectors.

Using the threshold n⋆(ωo), we now define a set of filtering operators that we wish to

apply to the data.

Definition 1 Let ∆ be the set of non-negative subspace weights

∆ =




dj(ω) ≥ 0, j = 1, . . . , n⋆(ωo), |ω − ωo| ≤
B

2
;

n⋆(ωo)∑

j=1

∫

|ω−ωo|≤
B
2

dj(ω) dω = 1




 .
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We define the filtering operators D(ω, ·) : ∆ → CN×N , which take coefficients d ∈ ∆ and

return a linear combination of the projection matrices (4.4)

D(ω, d) =

n⋆(ωo)∑

j=1

dj(ω)Pj(ω), (4.6)

for each frequency ω in the bandwidth.

When we apply these filters to the response matrix, we get

D(ω, d)Π̂(ω) =

n⋆(ωo)∑

j=1

dj(ω)Pj(ω)Π̂(ω)

=

n⋆(ωo)∑

j=1

dj(ω)σj(ω)ûj(ω)ûT
j (ω),

(4.7)

where we removed the null space of Π̂(ω). Note that here the singular vectors ûj(ω) have

the correct phase (i.e., ϕj(ω) = 0 in (4.3)). This correct phase is obtained by computing the

projection Pj(ω)Π̂(ω) of Π̂(ω), which does not suffer from the phase ambiguity.

Now if we distinguish the subsets ∆p of ∆, for p = 1, . . . , n⋆(ωo),

∆p = {d ∈ ∆; dj(ω) = 0 for j 6= p,

j = 1, . . . , n⋆(ωo), dp(ω) =
1

B
, |ω − ωo| ≤

B

2

}
,

we note that D(ω, d) for d ∈ ∆p filters out the contribution of all singular vectors, except

the pth one, uniformly across the bandwidth. This is what is done at the pth step of the

basic DORT algorithm. The travel time migration of the filtered data D(ω, d)Π̂(ω) gives

the imaging function

I(~yS, p) =

∫

|ω−ωo|≤
B
2

dω σp(ω)

N∑

s=1

N∑

r=1

ûp(~xs, ω)ûp(~xr, ω)e−iω[τ(~xs,~yS)+τ(~xr ,~yS)]

=

∫

|ω−ωo|≤
B
2

dω σp(ω)

[
N∑

s=1

ûp(~xs, ω)e−iωτ(~xs,~yS)

]2

. (4.8)

We call this the DORT image because it uses one singular vector at a time. We recall that

in the original DORT method12, the singular vectors are computed at a each frequency and

then a time-domain signal is formed from them and is backpropagated. To construct this
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signal in time, the phase of the singular vectors is used to compute the time delay that it

needs at the array in order to focus. We can also describe DORT as an imaging method in

which each singular vector over the bandwidth is backpropagated and the images are then

summed over frequencies. The backpropagation is done in a homogeneous medium. In such

a medium, DORT and iterative time reversal22 are essentially equivalent and can be used

either for detection or for imaging of small targets. In iterative time reversal the backprop-

agation step is done by physically transmitting the time reversed signal from the transducer

array, repeatedly until it focuses on the strongest target. In a random medium iterative time

reversal is an excellent detection method because it is not sensitive to the random inhomo-

geneities. This is another manifestation of statistical stability in time reversal6,10,11. The

issue of iterative time reversal versus DORT as a detection method with noisy signals is also

discussed in chapter ten of23. Imaging in clutter is addressed in24,25 using the singular value

decomposition and time correlation techniques. The algorithms based on adaptive CINT

that are presented in this paper are, however, more flexible and effective.

Note that when we use just one source in (4.8), we get

Ĩ(~yS, p, ~xs) =

∫

|ω−ωo|≤
B
2

dω σp(ω)
[
ûp(~xs, ω)e−iωτ(~xs,~yS)

]

×

[
N∑

r=1

ûp(~xr, ω)e−iωτ(~xr,~yS)

]

.

(4.9)

When p = 1 and σp(ω) is constant in the bandwidth, this can be interpreted as the image

produced by travel-time migration of the traces obtained with the illumination produced by

iterative time reversal7,8 in echo mode. Indeed, suppose that we illuminate the scatterers

from the source at ~xs ∈ A and we record the echoes

P̂ (~xr, ~xs, ω) = Π̂(~xr, ~xs, ω), r = 1, . . . , N.

This is the s column of the response matrix written in short Π̂(·, ~xs, ω). Now, if we time-

reverse these signals and we reemit them in the medium, we get back the new vector

Π̂(ω)Π̂(·, ~xs, ω).
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Iterating this way, we converge to the leading singular vector as is well known7,8. However,

this singular vector is computed with the phase of û(~xs, ω) that is inherited from the original

illumination from the source at ~xs. This phase is compensated in (4.9) with the travel

time τ(~xs, ~y
S) to the search point ~yS where the image peaks. The DORT images (4.8)
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FIG. 5. DORT images using the first, second, third and fourth singular vector across the

bandwidth. Top row: homogeneous medium. Bottom row: random medium. Above each

plot we give the value of the L2 norm of the image normalized by its maximum, which we

denote by O.

peak on one scatterer at a time, if these are well separated, in the sense that the pth

singular value is associated with the same scatterer uniformly in the bandwidth. However,

in clusters of nearby scatterers DORT does not give selective images because the one-to-

one correspondence between the singular values and the scatterers does not hold across the

bandwidth. This is seen clearly in the plots of the top row of Figure 5. Moreover, DORT

does not give stable images in clutter as can be seen in plots of the bottom row of Figure 5.
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3. The selective imaging algorithm

To image the scatterers one by one, we formulate an iterative algorithm with two parts

that we now describe.

Part 1: We estimate first the clutter-dependent decoherence parameters Ωd and κd using

adaptive CINT. This estimation is done as described in section III with the CINT imaging

function (3.2) that uses the unfiltered array response matrix Π̂(ω). The resulting image is

shown in the middle in Figure 3. The numerical setup is described in section II.A.

We note that we may also be able to estimate Ωd and κd using CINT with array data

coming from a known small scatterer, a pilot, whose range is comparable to that of the

cluster that we wish to image selectively.

Part 2: With Ωd and κd fixed, as found in Part 1, define the CINT image using the filtered

data D(ω, d)Π̂(ω)

ICINT(~yS; Ωd, κd; d) =

∫

|ω−ωo|≤
B
2

dω

∫

|ω′−ωo|≤
B
2

, |ω−ω′|≤Ωd

dω′
∑ ∑

r,r′∈X(ω+ω′

2
,κd)

∑ ∑

s,s′∈X(ω+ω′

2
,κd)

Q̂d(~xr, ~xs, ω; ~yS)Q̂d(~xr′, ~xs′, ω′; ~yS),
(4.10)

for arbitrary d ∈ ∆. Here Q̂d(~xr, ~xs, ω; ~yS) is the filtered data migrated to ~yS

Q̂d(~xr, ~xs, ω; ~yS) =
[
D(ω, d)Π̂(ω)

]

r,s
e−iω[τ(~xs,~yS)+τ(~xr ,~yS)] (4.11)

and the set X (ω, κd) is defined in (3.4) in terms of κd.

Now we begin the iteration:

Step 1: Find the optimal filter D(ω, d), for |ω − ωo| ≤ B/2, by minimizing the objective

function

O(d) = ‖J (·; d)‖L1(D) ,

J (~yS; d) =

∣∣∣ICINT(~yS; Ωd, κd; d)
∣∣∣

1

2

sup~yS∈D

∣∣∣ICINT(~yS; Ωd, κd; d)
∣∣∣

1

2

(4.12)
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over all subspace weights d ∈ ∆. This optimization seeks images of small spatial support.

There is no need to penalize the gradient here because all the statistical smoothing has been

done by the thresholding with Ωd and Xd (i.e., κd). The optimization involves n⋆(ωo)Nω

variables dj(ωm), for j = 1, . . . , n⋆(ωo) and m = 1, . . . , Nω, where Nω is the number of

frequency sub-bands used to parametrize the bandwidth. Denote the resulting optimal filter

by D(ω, d(1)).

Remark 1 We show in the bottom left picture of Figure 6 the image obtained with the

optimal filter D(ω, d(1)), in the setup described in section II.A. The image is focused on a

single scatterer and the optimally filtered data D(ω, d(1))Π̂(ω) corresponds to the echoes from

this scatterer alone. The optimal subspace weights d(1) are plotted in the bottom left picture

of Figure 7.

Step 2: In order to image the next scatterer, we use filters that mask the scatterer found

in Step 1, as follows. Let us denote by J(ω, 1) the index of the largest subspace weight

d
(1)
J(ω,1)(ω) = max

j=1,...,n⋆(ωo)
d

(1)
j (ω). (4.13)

We define the map δ(1) :
[
ωo −

B
2
, ωo + B

2

]
→ N which takes a frequency ω in the bandwidth

and returns

δ(1)(ω) =






J(ω, 1) if d
(1)
J(ω,1)(ω) > 0,

0 otherwise.
(4.14)

Now we seek the optimal filter D(ω, d(2)) for |ω−ωo| ≤ B/2 by minimizing the objective

function (4.12) over all the subspace weights in

∆(1) =
{
dj(ω) ∈ ∆, dj(ω) = 0 if j = δ(1)(ω)

for |ω − ωo| ≤
B

2
, j = 1, . . . , n⋆(ωo)

}
.

Remark 2 We show in Figure 7 the optimal subspace weights d(2) and in Figure 6 the

images obtained with D(ω, d(2)). The objective function is larger than that at Step 1 because

of the additional constraints in ∆(1). The images are focused on a single scatterer, which is
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different from the one in Step 1. That scatterer has been masked by restricting the search to

the set ∆(1) ⊂ ∆.

...

Step p: At the pth iteration we mask the scatterers found at Steps 1, . . . , p−1 and we seek

the optimal filter D(ω, d(p)) that minimizes the objective function (4.12) over the subspace

weights in

∆(p) =
{
dj(ω) ∈ ∆(p−1), dj(ω) = 0 if j = δ(p−1)(ω)

for |ω − ωo| ≤
B

2
, j = 1, . . . , n⋆(ωo)

}
.

...

The iteration terminates at the n⋆(ωo) step, where we have used all the degrees of freedom

in the array response matrix.

B. The optimal illumination algorithm

The images obtained with the selective imaging algorithm described in section IV.A can

be improved further by assigning optimal weights to each source in the array, as we now

describe. Let

W =

{

ws ≥ 0 for s = 1, . . . , N ;

N∑

s=1

ws = 1

}

be the set of weights that we can assign to the sources in the array and define for any d ∈ ∆

and any weights in W the CINT imaging function

ICINT(~yS; Ωd, κd; d, w) =

∫

|ω−ωo|≤
B
2

dω

∫

|ω′ − ωo| ≤
B
2

|ω − ω′| ≤ Ωd

dω′
∑ ∑

r,r′∈X(ω+ω′

2
,κd)

∑ ∑

s,s′∈X(ω+ω′

2
,κd)

wsQ̂d(~xr, ~xs, ω; ~yS) ws′Q̂d(~xr′, ~xs′, ω′; ~yS).

(4.15)

Here Q̂d(~xr, ~xs, ω; ~yS) is the filtered data migrated to ~yS and given by (4.1).
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(a)Step 1
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(c)Step 3
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(d)Step 4

FIG. 6. Images with optimally selected dj(ω) and uniform weights w. Top row: Homoge-

neous medium, Middle row: Cluttered medium using Xd = a and Ωd = B. Bottom row:

Cluttered medium using Xd and Ωd obtained by the adaptive algorithm. The scatterers are

indicated with green dots in the image. Above each plot we give the value of the objective

function O.
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(a)Step 1: {d(1)(ω)}
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FIG. 7. Optimal d
(p)
j (ω), j = 1, . . . , 4, p = 1, . . . , 4. Top row: homogeneous medium.

Bottom row: random medium. Only the largest coefficients in each frequency band are

shown, and d
(p)
1 (ω) are in blue, d

(p)
2 (ω) in green, d

(p)
3 (ω) in red and d

(p)
4 in cyan (light-blue).

The pth column is for the p iteration, with p = 1, . . . , 4.

For a given data filter D(ω, d) with |ω − ωo| ≤ B/2, the optimal illumination w is the

minimizer of the objective function

O(w) = ‖J (·; w)‖L1(D) ,

J (~yS; w) =

∣∣∣ICINT(~yS; Ωd, κd; d, w)
∣∣∣
1

2

sup~yS∈D

∣∣∣ICINT(~yS; Ωd, κd; d, w)
∣∣∣
1

2

,
(4.16)

over the set W. This can be used in conjunction with the optimal selective illumination

algorithm as follows.

The optimal illumination algorithm: For p = 1, . . . , n⋆(ωo) determine the optimal filters

D(ω, d(p)) for |ω − ωo| ≤ B/2 as described in section IV.A. Then compute for any given p

the optimal illumination w(p), which minimizes over the set W the objective function (4.16)

computed with d = d(p).

Remark 3 We illustrate this algorithm with numerical simulations in the setup described
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in section II.A. The source weights are shown in Figure 9 and the images are shown in

Figure 8
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FIG. 8. Images with optimally selected dj(ω) and weights w. Top row: Homogeneous

medium, Bottom row: Cluttered medium using Xd and Ωd obtained by the adaptive algo-

rithm. The scatterers are indicated with green dots in the image. Above each plot we give

the value of the objective function O.

To explain how the algorithm works, let us consider the source at ~xs. Its contribution

to the imaging function (4.15) is in the term

ws

[
D(ω, d)Π̂(ω)

]

r,s
for r = 1, . . . , Ns. (4.17)

Suppose for simplicity that we have a single scatterer and M = n⋆(ωo) = 1. Then (4.17) with

d = d(1) is just the sth column of the response matrix, corresponding to the illumination of

the scatterer from the source at ~xs. The image with the source at ~xs peaks naturally at the

location of the scatterer. However, the focusing can be sharpened by using all the sources

with optimal weights, as we have shown in21.

23



10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

Source index
10 20 30 40 50 60 70 80 90 100

0

0.005

0.01

0.015

0.02

0.025

Source index
10 20 30 40 50 60 70 80 90 100

0

0.005

0.01

0.015

0.02

0.025

0.03

Source index
10 20 30 40 50 60 70 80 90 100

0

0.005

0.01

0.015

0.02

Source index

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Source index

(a)Step 1 : w1

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

Source index

(b)Step 2: w2

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

Source index

(c)Step 3: w3

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Source index

(d)Step 4: w4

FIG. 9. (color online) The optimal weights. Top row: homogeneous medium. Bottom row:

cluttered medium.

When we have a cluster of scatterers the algorithm works in a similar way. The selective

imaging algorithm gives at step p an image that is focused on the pth scatterer. The filtered

data D(ω, d(p))Π̂(ω) correspond approximately to the echoes from this scatterer alone, and

the image is sharpened by using the optimal illumination w(p) from the array.

V. NUMERICAL IMPLEMENTATION AND RESULTS

In the implementation of the algorithms, the search point ~yS is in a square domain of

size 10λ0 ×10λ0, centered at the center of mass of the scatterers. This domain is discretized

using a uniform grid of 31 × 31 points and thus the discretization step is λ0/3. It is in this

domain that we present all the images in the paper (see Figures 3, 5, 6 and 8).

Details regarding the implementation of the adaptive CINT algorithm can be found in5.

In order to save computational time when implementing the selective imaging algorithm,

we divide the bandwidth B into 15 sub-bands. In the lower frequency range, for ω ∈

[150, 300]kHz, we take 5 sub-bands of size 30kHz while in the higher frequency range, for

ω ∈ [300, 450]kHz, we take a finer discretization using 10 sub-bands of size 15kHz. In each
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sub-band the subspace weights dj(ω) are constant. This means that for the selective imaging

algorithm we have 60 unknowns because we use n∗(ω0) = 4. In the cluttered medium, we

tried first this discretization of the frequency and noted that the coefficients dj(ω) are mostly

zero for frequencies ω outside of [150, 250]kHz. We therefore changed the discretization. In

the cluttered medium we use non-zero dj(ω) only in the lower part of the bandwidth, that

is, for ω ∈ [150, 250]kHz. The results shown in the bottom row of Figure 7 are obtained

by dividing this part of the bandwidth into 10 sub-bands of size 10kHz and taking the

subspace weights dj(ω) to be constant in each sub-band. The optimal coefficients dj(ω) for

homogeneous and random media are shown in Figure 7. The convention for the colors in

Figure 7 is the following: we use the blue color for d1(ω), green for d2(ω), red for d3(ω) and

cyan for d4(ω).

In the implementation of the optimal illumination algorithm, we group the array weights

into blocks of 10 elements and take the weights w to be constant in each block. The number

of variables in this optimization problem is 10. The optimal weights for homogeneous and

random media are shown in Figure 9.

Because the scatterers are close to each other in our numerical simulations, we cannot

image them separately with the DORT method as can be seen clearly in the top row of

Figure 5, which are in a homogeneous medium. There are more elaborate implementations

of DORT that use continuation methods for singular values along frequencies. These may

give better results in homogeneous media. However, DORT in its various implementations

cannot be used in cluttered media, because it gives noisy and unstable images. In the images

in the bottom row of Figure 5, we note that as we go from left to right the results deteriorate.

The last image in particular is just noise.

We see a big improvement in Figure 6, where the images are obtained with the selective

subspace algorithm. We note that we image the scatterers one by one, both in the homo-

geneous and in the cluttered medium. The discretization of the bandwidth in the selective

imaging process affects significantly the results. On one hand, coarser parametrizations lead

to fewer optimization variables and lower computational cost. On the other hand, the image
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quality suffers from a coarse parametrizations. This can be seen in the images in the top

row of Figure, which is for a homogeneous medium. They are better than the DORT images

shown in the top row of Figure 5, but we still see some ghosts. However, when we refine the

bandwidth parametrization, the results improve.

By comparing the images in the middle and bottom rows of Figure 6, we see that it is

crucial to use a statistically stable method in clutter, such as CINT. When we do not have

statistically stable results, the optimal subspace selection does not make sense. This is seen

in the middle row of Figure 6, where travel time migration is used instead of CINT. The

bottom row in Figure 6 shows how selective imaging works in clutter. Here the resolution

is naturally worse than that in the homogeneous case. This is expected because, as we

explained in section III, with CINT we give up some resolution to gain stability in clutter.

The results are further improved with the optimal illumination algorithm, as shown in

the images of Figure 8. For both homogeneous and random media, the use of the optimal

weights improves the quality of the images by reducing sidelobes. The improvement is more

visible in cluttered media.

VI. SUMMARY AND CONCLUSIONS

We introduce a three-part algorithm for imaging small nearby scatterers in a randomly

inhomogeneous medium. We assess its performance with numerical simulations in the con-

text of ultrasonic array imaging of concrete structures. Travel time migration is not effective

and gives images that have speckles and are unstable because of significant multiple scat-

tering from the inhomogeneities. Adaptive coherent interferometry (CINT) is effective in

stabilizing the image at the expense of some blurring, which makes nearby scatterers difficult

to identify. The algorithm presented in this paper uses adaptive CINT combined with (1)

optimal subspace selection using the singular value decomposition (SVD) of the array re-

sponse matrix, and (2) with optimal illumination. This algorithm is much more demanding

computationally than travel time migration, but it is quite effective for imaging in clutter.
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