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Abstract

We introduce and analyze several algorithms for optimal illumination in array imaging.
We consider time reversal and Kirchhoff migration imaging in homogeneous media, in regimes
where the signal-to-noise ratio is high (infinite). Extensions to coherent interferometric imaging
in clutter are described briefly. We show with numerical simulations that the optimal illu-
mination algorithms image selectively closely spaced point scatterers and extended scatterers
with considerably better resolution than without the optimization. We analyze the imaging
algorithms in the Fraunhofer diffraction regime for small and extended scatterers. Using the
prolate spheroidal wave functions we also derive analytic expressions of optimal illuminations
for imaging strips.

1 Introduction

In optimal waveform design for array imaging, we look for probing pulses and illumination patterns

that enhance the resolution of the image of scatterers in a medium. In this paper we assume that

the medium is known and homogeneous and we study theoretically and with numerical simulations

optimal waveform design for time reversal and Kirchhoff migration imaging.

Time reversal is a physical process [23, 24, 22] that consists of two steps: First, we illuminate

the scatterers from the sources in the array and record over a time window the echoes that come

back. Second, we time-reverse the recorded echoes and re-emit them into the medium, where

they propagate back to the scatterers and focus on them. The focusing occurs because of the time

reversibility of the wave equation, which holds when the waves propagate through the same medium

in both steps of the time reversal process. In general, the imaging process is different than time

reversal, because it back propagates fictitiously the time reversed echoes to points where the image

is formed. By fictitious we mean that the back propagation is done numerically or analytically in

a surrogate medium that can differ from the true one, which may not be known in detail [12, 13].

However, in this paper we consider homogeneous and known media and we refer to the resulting
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imaging function as time reversal since it is mathematically equivalent to that of physical time

reversal.

In time reversal all the sources can work at once to focus energy (beamform) selectively on the

scatterers. In Kirchhoff migration [5, 27] the illumination is done with one source at a time, so

there is no actual beamforming. The Kirchhoff migration function is given by the superposition of

the echoes recorded for each source and back propagated fictitiously to the point where we form

the image. This can be interpreted mathematically as beamforming onto the imaging point, which

varies over a search domain where we look for the scatterers.

The optimal waveform design for time reversal looks for array illuminations that focus selectively

on various features of the scatterers. For example, for a cluster of small scatterers we wish to focus

on one scatterer at a time. For imaging the support of extended scatterers we wish to focus on

their edges or corners. In Kirchhoff migration the aquisition of the array response matrix is done

before the imaging process. The question is then how to process the data in order to enhance the

resolution of the images.

In this paper we study waveform design in a regime where the signal-to-noise ratio (SNR) is

high (infinite). Low SNR can arise because of clutter in the medium and instrument noise at the

receivers. Clutter is more challenging to deal with because it creates echoes with considerable

delay spread (coda), which cannot be treated as additive and uncorrelated noise. The optimal

illumination algorithms introduced in this paper have been extended to imaging in clutter in [11].

The key difference is that the images are formed with the statistically stable adaptive coherent

interferometric (CINT) method, which was introduced in [9, 8]. A preliminary study of optimal

waveform design in low SNR regimes due to instrument noise is given in [9]. A more detailed

analysis of noise effects is left for future studies.

Optimal illumination is typically studied in connection with array detection of scatterers [15,

24, 22]. This is different from optimal illumination for resolution enhancement because it seeks to

maximize the energy of the echoes received at the array, instead of improving the resolution of the

image. The optimal illumination for detection can be obtained from the singular value decompo-

sition (SVD) of the Fourier transform of the array response matrix. The illuminating waveform is

the right singular vector corresponding to the leading singular value at its peak frequency [15, 22].

This is a narrow band illumination that has poor range resolution and cannot detect the edges of an

extended scatterer. If we use successively time reversal with one singular vector at a time, over the

whole frequency band, then we focus selectively on successively weaker scatterers, provided that

they are small and well separated. This is the DORT (Decomposition de l’Operateur de Retourne-

ment Temporel) method of selective illumination and imaging in homogeneous media, introduced

in [23, 22]. Extensions of this SVD approach to imaging well separated small scatterers in random

media are given in [12, 13], using matched field functionals combined with arrival time estimation.

2



In this paper we show that optimal illumination can be used to enhance the resolution of images

of small scatterers that are not well separated, as well as of extended scatterers. We introduce

variational principles for obtaining optimal illuminations, based on minimizing the spatial support

of the image. Using numerical simulations we show that for Kirchhoff migration imaging the

variational algorithms tend to favor illuminations from the edges of the array, and from the higher

end of the frequency band. These results are supported by the analysis, which we carry out in

the Fraunhofer diffraction regime for general extended scatterers. We also analyze linearized least

squares imaging and compare it with Kirchhoff migration with optimal illumination. Kirchhoff

migration is an approximation of least squares imaging when the normal operator is replaced by

the identity. This is a valid approximation for large arrays and large bandwidths [5, 4, 27]. For

moderate size arrays and bandwidths, Kirchhoff migration imaging improves considerably when we

use optimal illumination.

We also introduce in this paper variational principles for optimal illumination with selective

focusing, using the SVD of the response matrix in the frequency domain. We illustrate with

numerical simulations how these algorithms image selectively small scatterers that are not well

separated. We complement the numerical results with an analysis in the Fraunhofer diffraction

regime. We obtain analytical forms of the SVD of the response matrix and of the imaging functions,

for general extended scatterers. For strip-like scatterers, the SVD has an explicit form in terms

of the prolate spheroidal wave functions [26, 21, 25]. At any frequency in the bandwidth the

number of non-zero singular values is approximately b
λL/a , where b is the width of the strip, λ is

the wavelength, L is the range, a is the aperture of the array, and λL/a is the time reversal spot

size. This relation is expected on physical grounds, as pointed out in [29, 28, 19]. Here we derive it

analytically. We also show that, at high SNR, the optimal illuminations are from the edges of the

array and that the resulting images are sharply peaked at the edges of the strip. The focusing of

DORT images on the edges of extended scatterers was observed numerically and experimentally in

[20]. Here we derive it analytically.

This paper is organized as follows. In section 2 we formulate the array imaging problem using

time reversal, Kirchhoff migration, and linearized least squares. In section 3 we first review optimal

illumination for detection and selective illumination with DORT. Then, we introduce variational

principles for imaging with optimal illumination. In section 4 we present numerical simulations

with the optimal illumination algorithms. We begin the analysis in section 5 by introducing the

Fraunhofer diffraction regime and deriving a simplified form of the SVD of the response matrix

in the frequency domain. In section 6 we obtain an analytical form of the variational principles

for optimal illumination associated with time reversal and Kirchhoff migration, respectively. We

calculate explicitly the optimal illumination for a point scatterer. In section 7 we consider the

special case of imaging strip-like objects, where the SVD has an explicit form in terms of the
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prolate spheroidal wave functions. We analyze there selective imaging and show that optimal

illuminations for time reversal imaging favor the edges of the array. The resulting images are

sharply peaked at the edges of strips. In section 8 we use the prolate spheroidal wave functions to

analyze optimal illuminations for strips with Kirchhoff migration. We show that edge illumination

is favored again, in agreement with the more general results of section 6. In section 9 we analyze

linearized least squares imaging of strips with prolate spheroidal wave functions and compare with

Kirchhoff migration imaging. We end with a summary in section 10.

2 Array imaging

We consider time reversal and Kirchhoff migration imaging of reflectors in a medium, given time

traces of the echoes received at an actively probing array. The array has Ns sources and Nr receivers

distributed over a domain A. We consider both two dimensional arrays in three dimensions (3-D)

and one dimensional arrays in two dimensions (2-D). We take for simplicity A to be a square with

side a in 3-D, and an interval of length a in 2-D. The sources and receiver locations are denoted by

~xs and ~xr, for s = 1, . . . , Ns and r = 1, . . . , Nr. We suppose for convenience that the sources and

receivers are co-located and that Ns = Nr = N . We also assume that they are closely spaced, so

that the array behaves like an aperture.

In this paper we consider only wave propagation in a homogeneous medium with wave speed co.

This means that scattering occurs only at the reflectors that we wish to image. The reflectors are

at range L from the array and they have a reflectivity function ρ(~y). We study two array imaging

methods: time reversal and Kirchhoff migration. They are described in the next section.

2.1 Time reversal imaging and migration

We denote by Π̂(ω) the N ×N Fourier transform of the array impulse response matrix. Its entries

Π̂(~xr, ~xs, ω) are the Fourier transform of the time traces received at ~xr, at frequency ω, when a δ

function pulse is sent from ~xs. Note that by reciprocity and due to our assumption of co-located

sources and receivers, Π̂(ω) is complex symmetric but not Hermitian.

We typically send from the array pulses that are band limited and may vary with ~xs. We let

[ωo − B/2, ωo + B/2] be our frequency band, with central frequency ωo and bandwidth B. The

echoes received at the array are given by the time convolution of the emitted pulses with the

response matrix. Depending on the imaging method used, the array may illuminate the reflector

sequentially, with one source at a time, or by using all the sources at once.

In time reversal [18], the sources emit simultaneously waveforms ĝ(~xs, ω) and the receivers
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record the echoes P (~xr, t) whose Fourier transform is

P̂ (~xr, ω) =

N∑

s=1

Π̂(~xr, ~xs, ω)ĝ(~xs, ω). (2.1)

The recordings P (~xr, t) are then time reversed and re-emitted in the medium, where they propagate

back to the reflector and refocus. The wave field observed at search point ~yS is

ITR(~yS ; ĝ) =

∫

|ω−ωo|≤B/2
dω

N∑

r=1

Ĝo(~xr, ~y
S , ω)

N∑

s=1

Π̂(~xr, ~xs, ω)ĝ(~xs, ω), (2.2)

where the bar stands for complex conjugation.

While time reversal is a physical process, we can use (2.2) as an imaging function because

we have a known, homogeneous medium. This allows us to compute ITR(~yS ; ĝ) analytically, for

any search point ~yS , using the outgoing Green’s function Ĝo of the Helmholtz equation in the

homogeneous medium. The Green’s function is given by

Ĝo(~x, ~y, ω) =
eik|~y−~x|

4π|~y − ~x| (2.3)

in 3-D and by

Ĝo(~x, ~y, ω) =
i

4
H0(k|~y − ~x|) (2.4)

in 2-D. Here H0 is the zero-th order Hankel function of the first kind. The phase of the Green’s

function is k|~y − ~x| = ωτ(~y, ~x), where τ(~y, ~x) is the travel time from ~x to ~y and k = ω/co is the

wave number.

The Kirchhoff migration imaging functional has the form [16, 5]

IKM(~yS ; f̂) =

∫

|ω−ωo|≤B/2
dω

N∑

r=1

Ĝo(~xr, ~yS , ω)

N∑

s=1

Π̂(~xr, ~xs, ω)f̂(~xs, ω)Ĝo(~xs, ~yS , ω), (2.5)

and it is related to the least squares method described in the next section. It is called Kirchhoff

migration because for smoothly varying backgrounds the exact Green’s function is approximated

by its high frequency expression involving travel times. This approximation is not needed here

because the medium is homogeneous.

The Kirchhoff migration function is similar to (2.2) but it does not correspond to any physical

time reversal. The main difference between the two imaging functionals (2.5) and (2.2) is the

illumination. In time reversal, the waveform ĝ(~xs, ω) is sent from all the sources in the array and

it carries phase information which allows beamforming to the scatterer. For example, ĝ(~xs, ω)

can be chosen as the leading right singular vector of the response matrix in order to focus energy

on the most reflective part of the scatterer and therefore obtain strong echoes back at the array

[23, 22]. In Kirchhoff migration the illumination is done with one source at a time, so there is no

5



real beamforming to the scatterers. However, comparing the imaging functions (2.5) and (2.2), we

note that f̂(~xs, ω)Ĝo(~xs, ~yS , ω) can be interpreted as an illumination which beamforms to the point

~yS where we form the image. The function f̂(~xs, ω) is the intensity of this illumination (see section

2.2) and the beam steering is done mathematically through the phases of the Green’s function.

In this paper we study how ĝ(~xs, ω) and f̂(~xs, ω) affect the resolution of the images produced

with time reversal and Kirchhoff migration in homogeneous media, in high SNR regimes.

2.2 Linearized least squares imaging and Kirchhoff migration

In this section we relate the Kirchhoff migration imaging function (2.5) to an approximation of the

linearized least squares solution of the array inverse scattering problem [27, 5]. We also explain

why the f̂(~xs, ω) appearing in (2.5) should be viewed as intensities of the illumination from the

sources at ~xs ∈ A.

Assume that the source at ~xs ∈ A emits a signal φ(~xs, t) with complex valued Fourier coefficients

φ̂(~xs, ω) =

∫
dt eiωtφ(~xs, t), (2.6)

supported in the frequency interval [ωo − B/2, ωo + B/2]. The symmetric negative frequency

interval should be included for real signals φ(~xs, t), but we omit it here for simplicity. The Fourier

coefficients of the echoes recorded at receiver locations ~xr ∈ A are

P̂ (~xr, ω;~xs) = φ̂(~xs, ω)Π̂(~xr, ~xs, ω). (2.7)

In linearized inversion we model the array response matrix with the single scattering, Born

approximation [14]

Π̂(~xr, ~xs, ω) ≈ k2

∫
d~yρ(~y)Ĝo(~xr, ~y, ω)Ĝo(~xs, ~y, ω). (2.8)

The forward operator with fixed illumination φ is then a linear map acting on the reflectivity ρ

[Mφρ] (~xr, ω;~xs) = k2φ̂(~xs, ω)

∫
d~yρ(~y)Ĝo(~xr, ~y, ω)Ĝo(~xs, ~y, ω), (2.9)

and the linearized least squares formulation is: Find a reflectivity function ρ that minimizes the

mean square misfit

J (ρ) =

∫

|ω−ωo|≤B/2
dω

N∑

r=1

N∑

s=1

∣∣∣[Mφρ] (~xr, ω;~xs) − P̂ (~xr, ω;~xs)
∣∣∣
2
. (2.10)

The linearized least squares solution satisfies normal equations

[
M⋆

φMφρ
]
(~yS) =

[
M⋆

φP̂
]
(~yS), (2.11)

where M⋆
φ is the adjoint of the forward operator. Given the illumination φ, the adjoint operator

maps the array data in the frequency domain to reflectivities. To determine the form of this adjoint

6



operator we introduce two inner products. The first one is in the space of the array data in the

frequency domain and it has the form

〈
Ŵ , P̂

〉
=

∫

|ω−ωo|≤B/2
dω

N∑

s=1

N∑

r=1

Ŵ (~xr, ω;~xs)P̂ (~xr, ω;~xs), (2.12)

for two different array data sets Ŵ and P̂ . The second inner product is in the space of reflectivity

functions and has the form

(γ, ρ) =

∫
d~y γ(~y)ρ(~y), (2.13)

for two arbitrary reflectivity functions γ and ρ. The adjoint operator M⋆
φ is defined formally by

〈
Mφγ, P̂

〉
=

∫

|ω−ωo|≤B/2
dω

N∑

s=1

N∑

r=1

k2φ̂(~xs, ω)

∫
d~y γ(~y)Ĝo(~xr, ~y, ω)Ĝo(~xs, ~y, ω)P̂ (~xr, ω;~xs)

=

∫
d~y γ(~y)

[∫

|ω−ωo|≤B/2
dω

N∑

s=1

N∑

r=1

k2φ̂(~xs, ω)Ĝo(~xr, ~y, ω)Ĝo(~xs, ~y, ω)P̂ (~xr, ω;~xs)

]

=
(
γ,M⋆

φP̂
)
,

and it has the expression

[
M⋆

φP̂
]
(~yS) =

∫

|ω−ωo|≤B/2
dω

N∑

s=1

N∑

r=1

k2φ̂(~xs, ω)Ĝo(~xr, ~yS , ω)Ĝo(~xs, ~yS , ω)P̂ (~xr, ω;~xs). (2.14)

Now recall (2.7) and note that (2.14) is the Kirchhoff migration function

[
M⋆

φP̂
]
(~yS) =

∫

|ω−ωo|≤B/2
dω

N∑

r=1

Ĝo(~xr, ~yS , ω)

N∑

s=1

Π̂(~xr, ~xs, ω)k2|φ̂(~xs, ω)|2Ĝo(~xs, ~yS , ω)

= IKM(~yS ; f̂), (2.15)

for illumination intensities

f̂(~xs, ω) = k2|φ̂(~xs, ω)|2, s = 1, . . . , N, |ω − ωo| ≤
B

2
. (2.16)

The normal operator M⋆
φMφ is studied in detail in [27]. It is explained there that even though

M⋆
φMφ may not be invertible in the usual sense, it acts as an approximate identity on the discon-

tinuities of the reflectivity function ρ. In fact, when the aperture of the array and the bandwidth

tend to infinity this becomes an exact result [4]. Thus, we can estimate the support of the reflec-

tivity ρ with the right hand side in (2.11) or, equivalently, with IKM(~yS ; f̂). We return to this in

section 9, where we quantify the accuracy of the estimation for strip-like reflectors and a Fraunhofer

diffraction regime. We note here that since IKM(~yS ; f̂) comes from least squares imaging of the

reflectivity, the illuminations f̂(~xs, ω) are non negative, as seen from (2.16).
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3 Optimal illumination for detection and imaging

We discuss two optimization strategies for selecting the array illumination: (1) Maximize the power

of the echoes received at the array, for optimal detection of the strong scatterers in the medium.

(2) Seek the array illumination with an optimality criterion that measures the quality of the image

that it produces. The first choice for array waveform design is well understood [24, 15, 22]. We

review it briefly in section 3.2. The second approach to waveform design is the focus of this paper

and it is new.

The singular value decomposition of the array response matrix Π̂(ω) is a very useful tool for

studying array waveform design for both detection and imaging. We assume throughout the paper

that we know Π̂(ω) over the frequency band [ωo − B/2, ωo + B/2]. The question is then how to

process this data for enhancement of the resolution of the images?

3.1 The singular value decomposition of the response matrix

The singular value decomposition of Π̂(ω) at a given frequency ω is

Π̂(ω) =
N∑

j=1

σj(ω)ûj(ω)v̂⋆
j (ω), |ω − ωo| ≤

B

2
. (3.1)

Here the star denotes conjugate and transpose v̂⋆
j (ω) = v̂T

j (ω), the singular values σj(ω) ≥ 0 are

in decreasing order and ûj(ω) and v̂j(ω) are the orthonormal left and right singular vectors.

Because of our assumption of collocated sources and receivers, Π̂(ω) is a complex symmetric

(not Hermitian) matrix in C
N×N . This means in theory that we can write a form of the SVD with

the left singular vectors given by the complex conjugates of the right ones. However, this is true

only when the correct phases are assigned to the singular vectors. When computing the SVD of

Π̂(ω) with any public software we obtain

ûj(ω) = eiϕj(ω)v̂j(ω), j = 1, . . . , N, (3.2)

with an ambiguous phase ϕj(ω) that may be difficult to unwrap in a consistent manner accross the

bandwidth. Nevertheless, the projection matrices

Pj(ω) = ûj(ω)û⋆
j (ω) = v̂j(ω)v̂T

j (ω) (3.3)

have no phase ambiguities, because of the complex conjugation. This means that we can compute

the projected matrix

Pj(ω)Π̂(ω) = σj(ω)ûj(ω)ûT
j (ω) = σj(ω)v̂j(ω)v̂⋆

j (ω), j = 1, . . . , N, (3.4)

and obtain consistent phases in the right hand side, over the bandwidth. We use this phase

consistent form of the SVD of Π̂(ω) in our optimal waveform design algorithms.
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3.2 Optimal illumination for detection

When trying to detect reflectors in a medium, we seek illuminations that create strong echoes

at the array, so that in low SNR regimes we can distinguish them from the noise. The optimal

illumination waveform for detection maximizes the power of the echoes received at the array

P(ĝ) =

∫

|ω−ωo|≤B/2
dω

N∑

r=1

∣∣∣∣∣

N∑

s=1

Π̂(~xr, ~xs, ω)ĝ(~xs, ω)

∣∣∣∣∣

2

, (3.5)

subject to the normalization
∫

|ω−ωo|≤B/2
dω

N∑

s=1

|ĝ(~xs, ω)|2 = 1 (3.6)

of the power emitted from the sources. We denote the maximum power by

Pmax = P(ĝmax) = max
bg

P(ĝ), (3.7)

and the optimal illumination for detection by ĝmax(~xs, ω). This can be found easily from the

singular value decomposition of Π̂(ω), as explained in [24, 22, 15].

Denote by v1(~xs, ω) the s-th component of v̂1(ω), which is the right singular vector correspond-

ing to the largest singular value σ1(ω). The illumination

ĝ1(~xs, ω) =
v̂1(~xs, ω)√

B
(3.8)

maximizes the single frequency power over ĝ, subject to the normalization (3.6),

P(ω, ĝ1) = max
bg

P(ω, ĝ) =
σ2

1(ω)

B
, P(ω, ĝ) =

N∑

r=1

∣∣∣∣∣

N∑

s=1

Π̂(~xr, ~xs, ω)ĝ(~xs, ω)

∣∣∣∣∣

2

. (3.9)

The images produced with ITR(~yS , ĝ1), defined by (2.2), are peaked near the strongest reflector

[23], as is seen in the numerical simulations of section 4. The received power is

1

B

∫

|ω−ωo|≤B/2
σ2

1(ω) dω ≤ Pmax. (3.10)

The optimal illumination for detection ĝmax(~xs, ω) maximizes the power by selecting the singular

vectors at the resonant frequencies, where σ1(ω) attains its global maximum. If we assume for

simplicity that there is a unique resonant frequency ωmax ∈ (ωo −B/2, ωo +B/2) and define

ĝδ
max(~xs, ω) =

{
bv1(~xs,ω)√

δ
, |ω − ωmax| ≤ δ/2,

0, otherwise,
(3.11)

for a positive and small δ, then the optimal illumination for detection is obtained with ĝδ
max(~xs, ω)

in the limit δ → 0. This narrow-band optimal illumination for detection can be realized with

iterative time reversal [24, 22]. It gives the strongest echoes but the lack of bandwidth is bad for

imaging, as we see in section 4.
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3.3 Selective imaging for well separated point reflectors (DORT)

Time reversal imaging with right singular vector illuminations has the form

ITR(~yS ; v̂j) =

∫

|ω−ωo|≤B/2
dω

N∑

r=1

Ĝo(~xr, ~y
S , ω)

N∑

s=1

Π̂(~xr, ~xs, ω)v̂j(~xs, ω)

=

∫

|ω−ωo|≤B/2
dω

N∑

r=1

Ĝo(~xr, ~y
S , ω)σj(ω)v̂j(~xr, ω).

(3.12)

This is the DORT method [23] that images selectively well separated small scatterers, as we now

describe.

When there are M point reflectors at well separated locations ~y(j) and with reflectivity ρ(j), for

j = 1, . . . ,M , the response matrix has the form,

Π̂(ω) ≈ k2
M∑

j=1

ρ(j)Ĝ(j)
o (ω)

(
Ĝ(j)

o (ω)
)T

, (3.13)

where Ĝ
(j)
o (ω) is the vector of Green’s functions

Ĝ(j)
o (ω) =

(
Ĝo(~x1, ~y

(j), ω), Ĝo(~x2, ~y
(j), ω), . . . , Ĝo(~xN , ~y

(j), ω)
)T

. (3.14)

The inner product

(
Ĝ(j)

o (ω)
)⋆

Ĝ(l)
o (ω) =

N∑

r=1

Ĝo(~xr, ~y(j), ω)Ĝo(~xr, ~y
(l), ω) (3.15)

is the time reversal point spread function evaluated at ~y(l), for a source at ~y(j), at frequency ω [7].

For well separated reflectors with cross-range offsets greater than the support of the point spread

function, or spot size λL/a, the vectors Ĝ
(j)
o (ω) and Ĝ

(l)
o (ω) are orthogonal. If this holds for all

j, l = 1, . . . ,M , then the point scatterers are well separated and Π̂(ω) has M positive singular

values

σj = k2|ρ(j)|‖Ĝ(j)
o ‖2, (3.16)

with right singular vectors

v̂j(ω) =
Ĝ

(j)
o (ω)

‖Ĝ(j)
o ‖

, j = 1, 2 . . . ,M. (3.17)

Assuming that N > M , the remaining N −M singular values are zero.

If we define the normalized illuminations by

ĝj(~xs, ω) =
v̂j(~xs, ω)√

B
=
Ĝo(~xs, ~y(j), ω)
√
B‖Ĝ(j)

o ‖
, (3.18)
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then

ITR(~yS ; ĝj) =

∫

|ω−ωo|≤B/2
dω

N∑

r=1

Ĝo(~xr, ~y
S , ω)

N∑

s=1

Π̂(~xr, ~xs, ω)
Ĝo(~xs, ~y

(j), ω)
√
B‖Ĝ(j)

o ‖

=
‖Ĝ(j)

o ‖√
B

∫

|ω−ωo|≤B/2
dω k2|ρ(j)|

N∑

r=1

Ĝo(~xr, ~y
S , ω)Ĝo(~xr, ~y(j), ω)

(3.19)

is the DORT imaging function. We note its similarity to the Kirchhoff migration imaging function

(2.5), except for one thing. In (3.19) the singular vector illumination beamforms to the scatterer

at ~y(j) whereas in (2.5) the illumination beamforms to the search point ~yS , where we also image.

The imaging functional (3.19) is the broadband time reversal point spread function for a point

source at ~y(j). It is focused at ~y(j) with range resolution co/B and cross-range resolution λ0a/B

[8, 14]. We shall see next how to use the singular value decomposition in general, when we are not

dealing with well separated point scatterers.

Remark: The time reversal function (3.12) with the singular vector illumination v̂j(~xs, ω)

requires that this be computed with consistent phases over the whole bandwidth. As explained in

section 3.1, this is not given automatically by any public software SVD decomposition. In the simple

case of well separated scatterers, where the singular values remain distinct over the frequency band,

as it is assumed in DORT, the phases of the singular values can be unwraped consistently over the

bandwidth, in a simple manner. However, in more complicated situations where the singular values

cross each other over the frequency band, the consistent determination of the phases is a difficult

problem. We use instead the projections (3.3) which are not affected by the phase ambiguity of

the singular vectors.

Consider the projected response matrix

Pj(ω)Π̂(ω) = σj(ω)v̂j(ω)v̂⋆
j (ω)

and denote its s−th column by Q̂j(ω;~xs) = σj(ω)v̂j(~xs, ω)v̂j(ω). Then the vector

V̂j(ω;~xs) =
Q̂j(ω;~xs)

σj(ω)|v̂j(~xs, ω)| =
v̂j(~xs, ω)

|v̂j(~xs, ω)| v̂j(ω)

is almost the desired right singular vector v̂j(ω), except for the extra phase carried by v̂j(~xs, ω).

This is similar to what we get in echo-mode iterative time reversal, when v̂j(ω) corresponds to the

strongest scatterer and when we illuminate at the first step from a single source at ~xs.

The time reversal function with illumination V̂j(ω;~xs) is

ĨTR
(
~yS ; V̂j(·;~xs)

)
=

∫

|ω−ωo|≤B/2
dω e−iωτ(~xs,~yS)

N∑

r=1

Go(~xr, ~y
S , ω)

[
Π̂(ω)V̂j(ω;~xs)

]
(~xr)

∼
∫

|ω−ωo|≤B/2
dωσj(ω)

[
v̂j(~xs, ω)Ĝo(~xs, ~yS , ω)

] N∑

r=1

[
v̂j(~xr, ω)Ĝo(~xr, ~y

S , ω)
]
, (3.20)
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where we compensate1 the extra phase in V̂j(ω;~xs) with the travel time τ(~xs, ~y
S). This amounts

to observing at time τ(~xs, ~y
S) the time reversed and backpropagated field to ~yS . The symbol ∼ in

(3.20) stands for approximate, up to a multiplicative constant.

Note that if we superposed the images ĨTR
(
~yS ; V̂j(·;~xs)

)
over all the sources in the array, we

would obtain

N∑

s=1

ĨTR
(
~yS ; V̂j(·;~xs)

)
∼

∫

|ω−ωo|≤B/2
dωσj(ω)

∣∣∣∣∣

N∑

r=1

[
v̂j(~xr, ω)Ĝo(~xr, ~y

S , ω)
]∣∣∣∣∣

2

=

∫

|ω−ωo|≤B/2
dω

N∑

s=1

N∑

r=1

[
Pj(ω)Π̂

]
(~xs, ~xr, ω)Ĝo(~xs, ~y

S , ω)Ĝo(~xr, ~y
S , ω).

This is like the Kirchhoff migration imaging function (2.5), with Π̂(ω) replaced by the projected

matrix Pj(ω)Π̂(ω).

3.4 Optimal illumination and selective imaging of clusters of small scatterers

When the M scatterers are clustered together, we do not have a one-to-one correspondence between

a singular value and a single scatterer uniformly in the bandwidth, and DORT fails to image

selectively. We introduce here a new algorithm for optimal illumination and selective imaging of

clusters of small scatterers. The case of extended scatterers is studied theoretically in the second

half of this paper. Numerical results for such scatterers will be presented in a future paper.

There are two key steps in our algorithm: First, the selective imaging is achieved with an

optimal filtering of the data, as explained in section 3.4.1. The second step is described in section

3.4.2 and it seeks optimal source weights and pulses in order to improve the selective image of each

scatterer. The algorithm is based on variational principles that minimize the spatial support of the

image, as it is being formed with the filtered data and the source illumination. The algorithm is

flexible with respect to the imaging function. Because we consider here imaging in homogeneous

media, we form the image with Kirchhoff migration. In clutter, this can be replaced by the coherent

interferometric imaging function [8, 9], as we explain briefly in section 3.5.

3.4.1 Selective imaging

Assuming that we have a large number N of array elements, we can write

σj(ω) ≈ 0 for n⋆(ω) < j ≤ N. (3.21)

Here n⋆(ω) is the rank of the array response matrix Π̂(ω) and it varies in general with the frequency,

especially in the case of extended scatterers (see section 7). However, for clusters of small M < N

1Such phase compensation does not work in clutter, where it is difficult to get good refocusing with time reversal
in echo mode. It is the time reversal in direct mode (i.e., with the illumination coming from the point that we wish
to refocus in the medium) that is stable and has super-resolution of focusing in clutter [18, 6].
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scatterers, we can set

n⋆(ω) ≈ n⋆(ωo) ≈M. (3.22)

• Data filtering: Using the threshold n⋆(ωo), we now define a set of filtering operators that we

wish to apply to the measured array response matrix Π̂(ω).

Definition 1 Let ∆ be the set of non-negative subspace weights

∆ =




d̂j(ω) ≥ 0, j = 1, . . . , n⋆(ωo), |ω − ωo| ≤
B

2
;

n⋆(ωo)∑

j=1

∫

|ω−ωo|≤B
2

d̂j(ω) dω = 1




 .

We define the filtering operators D(ω, ·) : ∆ → C
N×N which take coefficients d̂ ∈ ∆ and return a

linear combination of the projection matrices (3.3)

D(ω, d̂) =

n⋆(ωo)∑

j=1

d̂j(ω)Pj(ω), (3.23)

for each frequency ω in the bandwidth.

When we apply the filters D(ω, ·) to the response matrix, we get according to (3.4)

D(ω, d̂)Π̂(ω) =

n⋆(ωo)∑

j=1

d̂j(ω)Pj(ω)Π̂(ω) =

n⋆(ωo)∑

j=1

d̂j(ω)σj(ω)ûj(ω)ûT
j (ω). (3.24)

The question is how to choose the filter coefficients? We distinguish two trivial cases:

(1) For uniform weights in the bandwidth

d̂j(ω) =
1

Bn⋆(ωo)
, j = 1, . . . , n⋆(ωo), |ω − ωo| ≤

B

2
, (3.25)

D(ω, d̂) is basically the identity operator, up to a scaling factor

D(ω, d̂)Π̂(ω) =
1

Bn⋆(ωo)

n⋆(ωo)∑

j=1

σj(ω)ûj(ω)ûT
j (ω) ≈ 1

Bn⋆(ωo)
Π̂(ω), (3.26)

(2) The operators D(ω, ·) : ∆p → C
N×N defined on the subsets ∆p of ∆,

∆p =

{
d̂ ∈ ∆; d̂j(ω) = 0 for j 6= p, j = 1, . . . , n⋆(ωo), d̂p(ω) =

1

B
, |ω − ωo| ≤

B

2

}
,

for p = 1, . . . , n⋆(ωo), filter out the contribution of all singular vectors, except the p−th one,

uniformly across the bandwidth. The imaging function given by such filtered data is

IDORT
p (~yS) =

∫

|ω−ωo|≤B
2

dω σp(ω)

N∑

s=1

N∑

r=1

ûp(~xs, ω)ûp(~xr, ω)Ĝo(~xs, ~yS , ω)Ĝo(~xr, ~yS , ω). (3.27)
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We call it the DORT image because it uses one singular vector at a time.

In our selective imaging approach we calculate the filter coefficients d̂ =
{
d̂j(ω)

}
using an

optimization algorithm that minimizes the spatial support of the image that we form with the

filtered data

I(~yS ; d̂) =

∫

|ω−ωo|≤B
2

dω

N∑

s=1

N∑

r=1

[
D(ω, d̂)Π̂

]
(~xr, ~xs, ω) Ĝo(~xs, ~yS , ω)Ĝo(~xr, ~yS , ω). (3.28)

The optimization is done over the set ∆ or subsets of ∆, as we explain next.

• Step 1 of the selective imaging algorithm: We begin by finding the optimal filter D(ω, ·)
of the data which minimizes over the weights d̂ =

{
d̂j(ω)

}
in ∆ the objective function

O(d̂) =
∥∥∥J (·; d̂)

∥∥∥
2

L2(D)
, J (~yS ; d̂) =

I(~yS ; d̂)

max~y∈D |I(~y; d̂)|
. (3.29)

Here D is the image domain that contains the cluster of scatterers. The optimization is intended

to minimize the spatial support of I(~yS ; d̂) in D, in order to focus the image on a single scatterer

in the cluster. We denote the optimal filter weights by

d̂ (1) =
{
d̂

(1)
j (ω)

}
, 1 ≤ j ≤ n⋆(ωo), |ω − ωo| ≤

B

2
. (3.30)

• Masking the identified scatterer: In order to image the remaining scatterers in the cluster,

we mask the one that we have identified, as follows. Denote by J(ω, 1) the index of the largest

subspace weight at frequency ω,

d̂
(1)
J(ω,1) = max

1≤j≤n⋆(ωo)
d̂

(1)
j (ω), |ω − ωo| ≤

B

2
. (3.31)

We define the map δ (1) :
[
ωo − B

2 , ωo + B
2

]
→ N which takes a frequency ω in the bandwidth and

returns

δ (1)(ω) =

{
J(ω, 1) if d̂

(1)
J(ω,1)(ω) > 0,

0 otherwise.
(3.32)

We mask the scatterer found at step 1 by seeking filters D(ω, ·) : ∆ (1) → CN×N , where ∆ (1) is the

subset of ∆ given by

∆ (1) =

{
d̂j(ω) ∈ ∆, d̂j(ω) = 0 if j = δ (1)(ω) for |ω − ωo| ≤

B

2
, j = 1, . . . , n⋆(ωo)

}
.

• The iterative selective imaging algorithm: At step p > 1 of the selective imaging

algorithm, we compute the optimal filter D(ω, d̂ (p)) by minimizing the objective function (3.29)

over the subset ∆(p) of ∆ given by

∆(p) =

{
d̂j(ω) ∈ ∆(p−1), d̂j(ω) = 0 if j = δ(p)(ω) for |ω − ωo| ≤

B

2
, j = 1, . . . , n⋆(ωo)

}
.
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Here we use the masking maps δ(p) :
[
ωo − B

2 , ωo + B
2

]
→ N defined for p > 1 by

δ (p)(ω) =

{
J(ω, p) if d̂

(p)
J(ω,p)(ω) > 0,

0 otherwise,
d̂

(p)
J(ω,p) = max

1≤j≤n⋆(ωo)
d̂

(p−1)
j (ω). (3.33)

We also set ∆(0) ≡ ∆ and note that the selective imaging algorithm is an iterative optimization

over the nested sets

∆(n⋆(ωo)−1) ⊂ . . . ⊂ ∆(p) ⊂ ∆(p−1) ⊂ . . . ⊂ ∆.

This iteration terminates at the n⋆(ωo) step, when we have used all the degrees of freedom.

We illustrate how the algorithm works with numerical simulations in section 4.

3.4.2 Optimal illumination

The images obtained with the selective imaging algorithm introduced in section 3.4.1 can be im-

proved further by assigning optimal intensities to each source in the array, as we now describe.

Let F be the set of source intensities in the bandwidth

F =

{
f̂(~xs, ω) ≥ 0,

N∑

s=1

∫

|ω−ωo|≤B
2

dωf̂(~xs, ω) = 1

}

and define for any d̂ ∈ ∆ and f̂ =
{
f̂(~xs, ω)

}
in F the imaging function

IF (~yS ; d̂, f̂) =

∫

|ω−ωo|≤B
2

dω

N∑

s=1

f̂(~xs, ω)

N∑

r=1

[
D(ω, d̂)Π̂

]
(~xr, ~xs, ω) Ĝo(~xs, ~yS , ω)Ĝo(~xr, ~yS , ω).

(3.34)

For a given data filter D(ω, d̂) with |ω − ωo| ≤ B/2, the optimal illumination f̂ is the minimizer

over the set F of the objective function

OF (f̂) =
∥∥∥JF (·; f̂)

∥∥∥
2

L2(D)
, JF (~yS ; f̂) =

IF(~yS ; d̂, f̂)

max~y∈D |IF (~y; d̂, f̂)|
, (3.35)

This can be done in conjunction with the optimal selective illumination algorithm as follows.

• The optimal illumination algorithm: For p = 1, . . . , n⋆(ωo) determine the optimal filters

D(ω, d̂ (p)) for |ω − ωo| ≤ B/2 as described in section 3.4.1. Then compute for any given p the

optimal illumination f̂ (p), which minimizes over the set F the objective function (3.35) computed

with d̂ = d̂ (p).

This would be very expensive to do in practice, but the problem can be relaxed to a suboptimal

one, with separable illuminations

f̂(~xs, ω) = wsϕ̂(ω),

15



where

ws ≥ 0,

N∑

s=1

ws = 1, ϕ̂(ω) ≥ 0,

∫

|ω−ωo|≤B/2
ϕ̂(ω)dω = 1.

We show in section 4 numerical results obtained with such separable illuminations.

Remark: The selective imaging and optimal illumination algorithms can be used together, as

we described here, or separately. For example, if we were to skip the selective imaging part, we

would work with the unfiltered data and obtain from (3.34) the Kirchhoff migration image

IKM(~yS ; f̂) =

∫

|ω−ωo|≤B
2

dω

N∑

s=1

f̂(~xs, ω)

N∑

r=1

Π̂(~xr, ~xs, ω)Ĝo(~xs, ~yS , ω)Ĝo(~xr, ~yS , ω), (3.36)

for weights f̂ ∈ F to be determined by the minimization of the spatial support of IKM(~yS ; f̂).

3.5 Extensions to coherent interferometric imaging in clutter

While in this paper we consider imaging in high SNR regimes in known and homogeneous media,

we have extended the selective imaging algorithm described in section 3.4 to low SNR regimes due

to clutter in [11]. Imaging in such regimes is difficult, because the time traces of the echoes recorded

at the array have significant delay spread (coda) due to wave scattering in clutter. This makes the

Kirchhoff migration images speckled and difficult to interpret [12, 8]. They are also statistically

unstable, in the sense that they change unpredictably with the realization of the clutter. We showed

in [8, 9] that the imaging process can be stabilized if we remove the delay spread by computing cross-

correlations of the echoes over appropriately chosen space-time windows. These cross-correlations

are called coherent interferograms and their fictitious backpropagation in the smooth part of the

medium (without the clutter) produces the coherent interferometric (CINT) imaging function [8, 9].

In CINT imaging there are two clutter dependent parameters that affect the quality of the

image, in addition to the array illumination and data filtering that we study in this paper. They

are the decoherence frequency Ωd and the uncertainty in the direction of arrival κd. The lat-

ter determines the decoherence length at frequency ω as Xd(ω) = co

ωκd
[9, 10]. The decoherence

frequency measures the frequency separation over which the Fourier coefficients of the measured

echoes become statistically uncorrelated. In CINT we compute cross-correlations of the echoes over

time windows of length ∼ Ω−1
d , to obtain a significant delay spread reduction and emphasis of the

coherent arrivals [9, 8]. This happens if we take receivers that are not more than Xd apart. It is

only for such spatial separations that the echoes are statistically correlated.

16



The CINT imaging function is

ICINT(~yS ; Ωd,Xd, f̂ , d̂) =

∫

|ω−ωo|≤B/2
dω

∫

|ω′ − ωo| ≤ B/2
|ω − ω′| ≤ Ωd

dω′
N∑

r=1

N∑

r′ = 1

|~xr − ~xr′ | ≤ Xd

“
ω+ω′

2

”

N∑

s=1

N∑

s′ = 1

|~xs − ~xs′ | ≤ Xd

“
ω+ω′

2

”

f̂(~xs, ω)f̂(~xs′ , ω
′)Q̂(~xr, ~xs, ω; ~yS ; d̂)Q̂(~xr′ , ~xs′ , ω′; ~yS ; d̂), (3.37)

where Q̂(~xr, ~xs, ω; ~yS ; d̂) is the filtered data backpropagated fictitiously to the image point ~yS

Q̂(~xr, ~xs, ω; ~yS ; d̂) =
[
D(ω, d̂)Π̂

]
(~xr, ~xs, ω) Ĝo(~xs, ~yS , ω)Ĝo(~xr, ~yS , ω). (3.38)

Note that in weak clutter there may be no loss of coherence, in which case we can replace Ωd by B

and Xd by the array aperture a. Then we get

ICINT(~yS ;B, a, f̂ , d̂) =
∣∣∣IF(~yS ; d̂, f̂)

∣∣∣
2
. (3.39)

When Ωd < B and Xd < a, we use the thresholding of the frequency and spatial separation in the

CINT function (3.37) to smooth statistically the image [10]. This smoothing is necessary to achieve

statistical stability with respect to the realization of the clutter but it comes at the cost of loss of

resolution, by blur [9].

The selective imaging algorithm described in section 3.4 has been extended in [11] to imaging in

clutter, as follows: First, the imaging is done with the CINT imaging function ICINT(~yS ; Ωd,Xd, f̂ , d̂)

instead of IF (~yS ; d̂, f̂). The thresholding parameters Ωd and Xd are estimated before the selective

imaging process, with the adaptive estimation algorithm introduced in [9]. The selective imaging

is then done with an iterative procedure, as in section 3.4, where at each step we minimize the

support of the image, as measured by the objective function

∥∥∥∥∥
ICINT(·; Ωd,Xd, f̂ , d̂)

max~y∈D ICINT(~y; Ωd,Xd, f̂ , d̂)

∥∥∥∥∥
L1(D)

. (3.40)

We take the L1 norm instead of L2, because it is a better sparsity measure (i.e., gives tighter

images) and because the CINT function is related to the square of the image IF (recall (3.39)).

4 Numerical results

In this section we present several numerical results that illustrate how the selective imaging and

optimal illumination algorithms described in section 3 perform.
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We use two sets of numerically simulated array data. The first set is for array imaging of a

point scatterer in a homogeneous background. This is the simplest array imaging problem that

can be considered. It allows us to test our algorithms and to visualize the results obtained in the

analysis. The second set of array data is for four small, not well separated scatterers. The data

is obtained by solving numerically the 2D acoustic wave equation, with the finite element method

described in [1, 2].

4.1 Numerical simulations for a point scatterer

�
�
�
�

A
rr

ay

L

Figure 1: The one point scatterer configuration. The array is composed by 100 elements at
distance λo/2 apart, at a range L = 90λo from the scatterer.

We begin with the case of a single point scatterer, as in Figure 1. The array consists of N = 100

elements, at distance λo/2 apart, where λo is the central wavelength for the frequency band 1.5−4.5

MHz. The bandwidth is B = 3MHz and the speed of propagation is co = 1.5 km/s. The range of

the scatterer is L = 90λo. The response matrix in this case is

Π̂(~xr, ~xs, ω) = k2Ĝo(~xr, ~y
∗, ω)Ĝo(~xs, ~y

∗, ω),

where ~y∗ is the scatterer location.

4.1.1 Optimal illumination for detection

We consider first optimal illumination for detection and show the results obtained with the methods

discussed in section 3.2. In Figure 2-(a) we show the Kirchhoff migration image obtained with

the illumination ĝδ
max(~xs, ω) defined by (3.11). Because in this example we have one scatterer

with frequency independent reflectivity, there is only one nonzero singular value σ1(ω), which

attains its maximum at the largest frequency in the bandwidth. The width δ in (3.11) is at first

B/100 = 0.03MHz. Then, we take a larger δ = B/10 = 0.3MHz and compare the results in Figure

2-(a) and (b). In Figure 2-(c) we use the illumination (see (3.8))

ĝDORT (~xs, ω) =
v̂1(~xs, ω)√

B
.
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(a) bgδ
max illumination, δ = 0.03MHz.
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(b) bgδ
max illumination, δ = 0.3MHz.
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(c) bgDORT illumination.

Figure 2: The one scatterer configuration. Optimal illumination for detection results. The
scatterer is indicated with a green dot.

All the images are displayed in a square of 41 × 41 pixels, with pixel size λ0/3 × λ0/3.

As expected, the power P(ĝ) received at the array is bigger for small δ and it decreases as δ

increases. However, the quality of the image is better as δ increases because more bandwidth leads

to better resolution. We show in Table 1 the values of the received power given by (3.5), for all the

illuminations considered in this section.

Illumination Power received P L2 norm of the image

gδ
max, δ = 0.03MHz 5.1440e-09 3.7367

gδ
max, δ = 0.3MHz 4.9098e-10 1.4515

ĝDORT 3.8884e-11 0.1813

KM - optimal 2.3663e-11 0.1344

Table 1: The received power on the array and the L2 norm of the image (normalized by its
maximum) for the one scatterer configuration

4.1.2 Optimal illumination for Kirchhoff migration imaging

We consider the variational problem for optimal illumination in Kirchhoff migration imaging (3.36),

where we minimize the objective function

OKM(f̂) = ‖J KM(·; f̂ )‖2
L2(D), JKM(~yS ; f̂) =

IKM(~yS ; f̂)

max
~y∈D

∣∣∣IKM(~y; f̂)
∣∣∣
, (4.1)

over the set of separable illuminations defined by

{
f̂(~xs, ω) = ϕ̂(ω)ws, φ̂(ω) ≥ 0,

∫
dω ϕ̂(ω) = 1, ws ≥ 0,

N∑

s=1

ws = 1

}
. (4.2)
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(c) Optimal image

Figure 3: The one scatterer configuration. Optimal illumination for KM imaging.

For convenience, we choose a slightly different normalization of ϕ̂(ω),
∫

|ω−ωo|≤B/2
ωϕ̂(ω)dω = 1,

which corresponds to keeping a constant value of the peak of the image, as we we will see in section

6.2.1. This makes the division by the maximum of the image in (4.1) unnecessary in the simple

case of a point scatterer.

To solve the optimization problem numerically, we discretize the bandwidth B in 10 sub-bands

of width 0.3MHz and we look for a constant ωϕ(ω) in each sub-band. We also group the sources

in blocks of 10 elements and take the weights ws to be constant in each block. The number of

variables in the optimization problem is 20.

The results of the optimization are shown in Figure 3. In Figure 3-(a) we show the optimal

weights ws, in Figure 3-(b) the optimal pulse ωϕ̂(ω) and in Figure 3-(c) the resulting image. By

comparing Figure 3-(c) with 2-(c) we can clearly see that by using the optimal illumination for

imaging we obtain a tighter image of the scatterer. On the other hand, the received power is lower,

as can be seen in Table 1.

The results in Figure 3 are in very good agreement with the theoretical analysis of optimal

illumination for a point scatterer (section 6.2.1). The weights ws are large only at the edges of the

array and the pulse increases linearly with the frequency. The deviations from linearity in Figure

3-(b) are due to the discretization and they diminish when we consider a finer frequency grid.

Remark: The results in Figure 3 correspond to a high SNR regime. We studied in [9] the

case of low SNR due to instrument noise. This was done by introducing in the variational problem

lower bound inequality constraints on the power generated by the illumination. As we decreased

the signal to noise ratio (i.e. we increased the bound on the received power), we found in [9] that

the illumination became closer and closer to that for optimal detection. This is to be expected.

20



The case of low SNR due to clutter is studied in [11]. We found there that the optimal pulses favor

the lower frequencies in the bandwidth, because they are affected less by the scattering, and there

is an overall blurring of the image. The source weights are also distributed in a more complicated

manner in a cluttered medium.

4.2 Numerical results for four small not well-resolved scatterers

Now we consider four scatterers that are not well separated, in the sense explained in section 3.3.

This means that they cannot be imaged one by one with DORT, because each singular vector is not

associated to only one scatterer uniformly in the frequency band. The array-scatterer configuration

is shown in Figure 4. The array and the bandwidth are as given in section 4.1. The range of the

scatterers is L = 90λo and they are separated by the distance d = 3λ0. Each one is a disk of

diameter λ0, modeled as a soft acoustic scatterer, by setting the pressure to zero on its boundary.

The response matrix is computed numerically in the time domain by solving the acoustic wave

equation in two dimensions with the method described in [1, 2]. We model the infinite medium

by surrounding the computational domain with a perfectly matched absorbing layer [3]. All the

images in this section are displayed in a square of 31 × 31 pixels, with pixel size λ0/3 × λ0/3.
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Figure 4: The four point scatterer configuration. The array has 100 elements at distance λo/2
apart and the range of the scatterers is L = 90λo.

4.2.1 Optimal illumination for detection

We begin with the optimal illumination for detection. We show in Figure 5 the first five singular

values of the response matrix as a function of frequency. We observe four significant singular values,

as expected, but they are not well separated over the bandwidth.
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Figure 5: The first five singular values of the response matrix as a function of frequency.

In Figure 6-(a) we show the Kirchhoff migration image obtained with the illumination ĝδ
max(~xs, ω)

defined by (3.11). This maximizes the power of the echoes by selecting the singular vector at the

resonant frequency of 2.9MHz, where σ1(ω) attains its global maximum. Here the width δ is

B/100 = 0.03MHz. To see the effect of this parameter on the received power and on the image

we also show in Figure 6-(b) the results with a bigger δ = B/10 = 0.3MHz. As expected, these

illuminations do not give good images although they are very good for detection.
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Figure 6: The configuration of four scatterers. Optimal illumination for detection results. The
scatterers are indicated with green dots.

In the top row of Figure 8, we show the DORT images given by illuminations

ĝ(~xs, ω) = ĝDORT
j (~xs, ω) = v̂j(~xs, ω)/

√
B,

with j = 1, 2, 3 and 4 from left to right, respectively. We see from these results that the scatterers

are not well separated and they cannot be imaged selectively with one singular vector at a time.
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4.2.2 Optimal illumination for Kirchhoff migration imaging
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Figure 7: The four scatterers configuration. Optimal illumination for KM imaging.

We consider here the problem of optimal illumination for Kirchhoff migration imaging. As in the

case of one scatterer, we seek the illumination in the separable set defined by (4.2), and we use

the same discretization of ϕ̂(ω) and w(~xs) as in section 4.1.2. The results are shown in Figure 7.

The optimal weights correspond again to illumination from the edges of the array (cf. section 6.2)

and the optimal pulse is increasing with frequency. We see in Figure 7-(c) that all the scatterers

can be seen in the reconstructed image. The scatterers in the back appear weaker in the image

because they are further from the array. This could be corrected using an amplitude factor in the

backpropagation with the Green’s function.

4.2.3 Optimal illumination and selective imaging

We show in Figure 8 two sets of results. First, we image as if the scatterers were well separated,

with one singular vector at a time. These are the DORT images shown in the top row of Figure 8.

In the bottom row, we show the results obtained with the selective imaging algorithm described in

section 3.4.1. The subspace weights are shown in Figure 9.

To save computational time, we divide the bandwidth in 10 sub-bands of size 0.3MHz and set

the subspace weights d̂j(ω) constant in each sub-band. This means that we have 40 unknowns in

the optimization. Finally, we show in Figure 10 how to improve the bottom right image in Figure

8, by optimizing over the source weights w = {ws}, as explained in section 3.4.2.
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Figure 8: Top row: DORT images using the first, second, third and fourth singular vector
accross the bandwidth. Bottom row: Images obtained with the selective imaging algorithm. We
show from left to right the first four iterations. On top of each image we give the value of the
objective function O, i.e., the L2 norm of the image normalized by its maximum.
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Figure 9: The four scatterer configuration. Optimal subspace weights. We show the first 4
iterations, from left to right. For each frequency sub-band we plot the largest weights. We use

blue for d̂
(p)
1 (ω), green for d̂

(p)
2 (ω), red for d̂

(p)
3 (ω) and cyan for d̂

(p)
4 (ω), for p = 1, . . . , 4.

5 Imaging in the Fraunhofer diffraction regime

We will analyze the effect of the illuminations on Kirchhoff migration and time reversal images in

the Fraunhofer diffraction regime described in section 5.2. We rewrite the imaging functions (2.2)
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Figure 10: Improved bottom right image in Figure 8 with optimal array weight selection.

and (2.5) in this regime, in sections 5.4 and 5.5, respectively. The optimal illumination problem

for these imaging functions is studied in section 6.

5.1 The array scatterer configuration

Let us begin with the imaging setup shown in Figure 11. The array is a square, of side a in 3-D

and an interval of length a in 2-D. The reflector is at distance L from the array. We distinguish a

center point ~y⋆ in the reflector and we define a system of coordinates with the origin at the center

of the array and with range axis passing through ~y⋆. The support of the reflector is a domain of

size h in the range direction and b in the cross-range. The planar (or linear) array is chosen for

simplicity to be orthogonal to the range axis.

In our system of coordinates and in 3-D, the sources and receivers are located at

~xs = (0,xs), ~xr = (0,xr), xs,xr ∈
[
−a

2
,
a

2

]
×

[
−a

2
,
a

2

]
,

for s, r = 1, . . . , N . In 2-D

~xs = (0, xs), ~xr = (0, xr), xs, xr ∈
[
−a

2
,
a

2

]
.

The sources and receivers are closely spaced so that the array can be approximated by an aperture.

The reflector is centered at ~y⋆ = (L,0) and ~y denotes an arbitrary point in its support. In

3-D we write ~y = (L + η, ξ), with η ∈ [−h/2, h/2] and |ξ| ≤ b/2, for ξ ∈ R
2. In 2-D we have

~y = (L + η, ξ), with ξ ∈ [−b/2, b/2]. The same notation convention applies to search points ~yS

where we image. In 3-D ~yS = (L+ ηS , ξS) for ξS ∈ R
2, and in 2-D ~yS = (L+ ηS , ξS), for ξS ∈ R.

5.2 Scaling and the Fraunhofer diffraction regime

The important length scales in the problem are the range L, the array aperture a, the thickness

h and diameter b of the reflector and the carrier wavelength λo. For an arbitrary point ~x = (0,x)

25



L

a

a

h

~xs

~xr

b
~y

A

Figure 11: Setup for array imaging of an extended reflector. The illustration is in three dimensions,
with a square array of aperture a.

in the array we have |x| = O(a) and for a point ~y = (L + η, ξ) in the reflector we take η = O(h)

and |ξ| = O(b). We scale the same way the range and cross-range offsets of the search point

~yS = (L+ ηS , ξS), because we expect the image function to peak at the reflector. The frequencies

are assumed to be O(ωo) throughout the bandwidth.

In the scaling analysis of the imaging functions we encounter four dimensionless parameters

θa =
koa

2

L
, θb =

kob
2

L
, θh =

koh
2

L
, θab =

koab

L
, (5.1)

where ko = ωo/co is the central wave number. The first parameter in (5.1) is the Fresnel number

and it is proportional to the ratio of the aperture a and the time reversal spot size λoL/a

θa =
2πa

λoL/a
. (5.2)

The remaining parameters in (5.1) are called Fresnel numbers by analogy.

We consider a high frequency regime with a small spot size

θa ≫ 1 =⇒ a≫ λoL

a
, (5.3)

and we suppose that the reflector is far enough from the array, so that

a

L
≪ 1√

θa
≪ 1. (5.4)
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The diameter b of the reflector is small, when compared with the aperture

θb ≪ 1 =⇒ b≪ a, (5.5)

but not with respect to the spot size

θab ∼ 1 =⇒ b ∼ λoL

a
. (5.6)

The thickness h of the reflector satisfies

θh ≪ 1 (5.7)

and therefore, by (5.3) and (5.4),

h≪ a≪ L. (5.8)

We let further
hθa

L
≪ 1 (5.9)

or, equivalently,

h≪ L2

koa2
, (5.10)

where L2/(koa
2) is the range resolution of images obtained with time harmonic signals, oscillating

at frequency ωo [14]. Thus, we ask that h be small with respect to the narrow-band resolution

limit, but we can also have h comparable to the broadband resolution

h ∼ co
B
. (5.11)

It is because of (5.6) and (5.11) that we call the reflector extended.

We wish to study the time reversal and Kirchhoff migration imaging functions (2.2) and (2.5)

in the asymptotic regime defined by (5.3)-(5.11). We call it a Fraunhofer diffraction regime [14]

because it allows us to set the analysis in the framework of Fourier transforms, as explained in

detail in the following sections. Here we note that although most of the analysis applies to imaging

generic extended reflectors, we shall consider point-like reflectors with b ≪ λoL/a and h ≪ co/ωo

as well. We shall also look at imaging with very large arrays (λoL/a≪ b).

5.3 The response matrix in the Fraunhofer regime

In the Fraunhofer diffraction regime defined by (5.3)-(5.11), the Green’s function is given by

Ĝo(~x, ~y, ω) ≈ α(L)

k(3−d)/2
eik|~x−~y|,

with amplitude

α(L) =






1
4πL in 3-D,

1
2

√
i

2πL in 2-D.

(5.12)
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Here d = 3 in 3-D and d = 2 in 2-D. This is because for ~x = (0,x) and ~y = (L+ η, ξ), we can write

|~x − ~y| =
[
(L+ η)2 + |x − ξ|2

] 1
2 = L

[
1 +O

(
h

L

)
+O

(
a2

L2

)]
≈ L.

The phase of Ĝo can also be approximated as

k|~x− ~y| = k

(
L+ η +

|x|2
2L

− x · ξ
L

)
+O

(
θb + θh + θa

h

L
+ θa

a2

L2

)
≈ k

(
L+ η +

|x|2
2L

− x · ξ
L

)
,

and we obtain

Ĝo(~x, ~y, ω) ≈ Ĝo(~x, ~y, ω) =
α(L)

k(3−d)/2
e
ik

„
L+η+

|x|2

2L
−x·ξ

L

«

. (5.13)

In the Born approximation, the response matrix is given by

Π̂(~xr, ~xs, ω) ≈ k2

∫
d~yρ(~y)Ĝo(~xr, ~y, ω)Ĝo(~xs, ~y, ω)

= k2Ĝo(~xr, ~y
⋆, ω)Ĝo(~xs, ~y

⋆, ω)

∫
dη

∫
dξ ρ(L+ η, ξ)e2ikη− ik(xr+xs)

L
·ξ, (5.14)

where we recall that ~y⋆ = (L,0). This equation involves the Fourier transform of the reflectivity

function

ρ̂(ζ,β) =

∫
dz

∫
dξ ρ(z, ξ)e−iζz−iβ·ξ

= e−iζL

∫
dη

∫
dξ ρ(L+ η, ξ)e−iζη−iβ·ξ = e−iζLρ̂L(ζ, β), (5.15)

so we can rewrite it as

Π̂(~xr, ~xs, ω) ≈ Π̂F (~xr, ~xs, ω) = k2Ĝo(~xr, ~y
⋆, ω)Ĝo(~xs, ~y

⋆, ω)ρ̂L

(
−2k,

k(xr + xs)

L

)
, (5.16)

where Π̂F (ω) stands for the response matrix in the Fraunhofer regime. We use this formula next

to analyse time reversal and Kirchhoff migration imaging in the Fraunhofer regime.

5.4 Time reversal in the Fraunhofer regime

The time reversal imaging function is given by

ITR(~yS ; ĝ) ≈
∫

|ω−ωo|≤B/2
dω

N∑

r=1

Ĝo(~xr, ~y
S , ω)

N∑

s=1

Π̂F (~xr, ~xs, ω)ĝ(~xs, ω), (5.17)

for some illumination waveform ĝ(~xs, ω) that we wish to optimize. Now the illumination vector

ĝ(ω) = {ĝ(~xs, ω)}1≤s≤N
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is in C
N , so we can write it as

ĝ(ω) =

N∑

n=1

d̂n(ω)v̂n(ω), v̂n(ω) = (v̂n(~x1, ω), . . . , v̂n(~xN , ω))T , (5.18)

using the basis {v̂n(ω)}n≥1 of the right singular vectors of Π̂F (ω).

Assume a decreasing ordering of the singular values σn(ω) and note that, for sufficiently large

N , there is a threshold n⋆(ω) above which

σn(ω) ≈ 0 for n > n⋆(ω).

This threshold depends on the diameter b of the reflector. It is O
(

b
λL/a

)
in 2-D and O

(
b

λL/a

)2
in

3-D, as noted in [28] and as follows from the analysis of section 7. We can truncate then the sum

in (5.18) to the first n⋆(ω) terms

ĝ(~xs, ω) =

n⋆(ω)∑

n=1

d̂n(ω)v̂n(~xs, ω), (5.19)

to stay outside the null space of Π̂F (ω). This way, we receive echoes at the array for any non-trivial

choice of the coefficients d̂n(ω) that we wish to determine optimally.

5.4.1 The singular value decomposition in the Fraunhofer regime

Now let us write the SVD of the complex symmetric response matrix Π̂F (ω)

N∑

s=1

Π̂F (~xr, ~xs, ω)v̂n(~xs, ω) = σn(ω)v̂n(~xr, ω). (5.20)

We use the expression (5.16) of Π̂F (ω) and seek the singular vectors in the form

v̂n(~xs, ω) = Ĝo(~xs, ~y⋆, ω)V̂n(~xs, ω). (5.21)

The first factor corresponds to the singular vector for a point scatterer at ~y⋆. The second factor is

determined by the reflectivity function, as follows below.

Substituting (5.21) in (5.20), we obtain

N∑

s=1

Π̂F (~xr, ~xs, ω)v̂n(~xs, ω) = kd−1|α(L)|2Ĝo(~xr, ~y
⋆, ω)

N∑

s=1

ρ̂L

(
−2k,

k(xr + xs)

L

)
V̂n(~xs, ω)

= σn(ω)Ĝo(~xr, ~y
⋆, ω)V̂n(~xr, ω), (5.22)

because |Ĝo(~xs, ~y
⋆, ω)| = |α(L)|/k(3−d)/2 . This reduces to another SVD problem, for a complex

symmetric matrix with entries given by the Fourier coefficients of the reflectivity,

N∑

s=1

ρ̂L

(
−2k,

k(xr + xs)

L

)
V̂n(~xs, ω) =

σn(ω)

kd−1|α(L)|2 V̂n(~xr, ω), (5.23)

‖v̂n‖ =
|α(L)|
k(3−d)/2

‖V̂n‖ = 1. (5.24)
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We derive later, in section 7.1, explicit formulas for V̂n(~xs, ω), in the special case of the reflec-

tivity of a strip. Here we let ρ be a general reflectivity and we write next the imaging function ITR

and its L2 norm.

5.4.2 The time reversal imaging function

Let us also suppose from now on that we have a dense sampling of the array aperture by the sources

and the receivers, so that we can write

N∑

r=1

∼
∫

A
dxr,

N∑

s=1

∼
∫

A
dxs. (5.25)

Here xr and xs vary continuously in A, but we keep the indices to distinguish between the sources

and receivers. The symbol ∼ means approximate up to a multiplicative constant, as before. Using

equation (5.21) in (5.17) and (5.19), we obtain the imaging function

ITR(~yS ; ĝ) ∼
∫

|ω−ωo|≤B/2
dω

n⋆(ω)∑

n=1

d̂n(ω)σn(ω)

∫

A
dxr Ĝo(~xr, ~y

S , ω)Ĝo(~xr, ~y⋆, ω)V̂n(~xr, ω)

∼
∫

|ω−ωo|≤B/2
dω ωd−3

n⋆(ω)∑

n=1

d̂n(ω)σn(ω)eikηS

∫

A
dxr e

ikxr
L

·ξS

V̂n(~xr, ω). (5.26)

Remark: We note from (5.26) that in the Fraunhofer diffraction regime, the cross-range (ξS)

dependence in the time reversal imaging function is given by the Fourier transform of the singular

vectors V̂n(~xr, ω), with respect to the receiver coordinates xr ∈ A.

The L2(D) norm of the image function is

∥∥ITR(·; ĝ)
∥∥2 ∼

∫∫

|ω − ωo| ≤ B/2
|ω′ − ωo| ≤ B/2

dω dω′(ωω′)d−3

n⋆(ω)∑

n=1

n⋆(ω)∑

n′=1

d̂n(ω)d̂n′(ω′)σn(ω)σn′(ω′)
∫
dηSei(k−k′)ηS

∫

A
dxr V̂n(~xr, ω)

∫

A
dxr′ V̂n′(~xr′ , ω′)

∫
dξSe

i(kxr−k′x
r′

)

L
·ξS

(5.27)

where the integrals over ηS and ξS extend over the search domain D. We know that any reasonable

illumination gives an image that is large near the reflector and small elsewhere, so let us extend D
to the entire space R

3, for the purpose of our analysis. We get this way
∫ ∞

−∞
dηSei(k−k′)ηS

= 2πδ(k − k′),

∫

R2

dξSe
i(kxr−k′x

r′ )

L
·ξS

= (2π)2δ

(
kxr − k′xr′

L

)
.

Equation (5.27) becomes

∥∥ITR(·; ĝ)
∥∥2 ∼

∫

|ω−ωo|≤B/2

dω

ω2

n⋆(ω)∑

n=1

σ2
n(ω)|d̂n(ω)|2, (5.28)

30



due to the ortogonality of the singular vectors

k3−d

|α(L)|2 δn,n′ =

N∑

r=1

V̂n(~xr, ω)V̂n′(~xr, ω) ∼
∫

A
dxrV̂n(~xr, ω)V̂n′(~xr, ω), ~xr = (0,xr),

and the property

δ

(
k(xr − xr′)

L

)
=

(
L

k

)d−1

δ(xr − xr′)

of the δ(·) function.

5.5 Kirchhoff migration in the Fraunhofer regime

The expression (2.5) of the Kirchhoff migration imaging function in the Fraunhofer regime is,

IKM(~yS ; f̂) ∼
∫

|ω−ωo|≤B/2
dω

∫

A
dxr Ĝo(~xr, ~yS , ω)Ĝo(~xr, ~y

⋆, ω)

∫

A
dxs ω

2f̂(~xs, ω)Ĝo(~xs, ~yS , ω)

Ĝo(~xs, ~y
⋆, ω)ρ̂L

(
−2k,

k(xr + xs)

L

)
,

where we used approximation (5.16) of Π̂(~xr, ~xs, ω). Now using the identity

Ĝo(~xr, ~yS , ω)Ĝo(~xr, ~y
⋆, ω) = |Ĝo(~xr, ~y

⋆, ω)|2e−ikηS+
ikxr ·ξ

S

L =
|α(L)|2
k3−d

e−ikηS+
ikxr ·ξ

S

L ,

we can write

IKM(~yS ; f̂) ∼
∫

|ω−ωo|≤B/2
dω

∫

A
dxr

∫

A
dxs f̂(~xs, ω)kd−1ρ̂L

(
−2k,

k(xs + xr)

L

)

exp

[
−2ikηS +

ik(xr + xs) · ξS

L

]
. (5.29)

5.5.1 Imaging with large arrays

Let us suppose for a moment that we have a very large array, so that the spot size λoL/a≪ b. The

imaging function is given by (5.29), in terms of the integral over the receivers

I(xs, ξ
S , ω) =

∫

A
dxr ρ̂L

(
−2k,

kxs

L
+
kxr

L

)
exp

[
ik(xr + xs) · ξS

L

]
. (5.30)

Now, since ρ(~y) has cross-range support of order b, its Fourier transform ρ̂(ζ,β) is supported on

|β| ≤ O(b−1) and, as xr varies in A, kxr/L covers a domain of diameter O
(

a
λoL

)
≫ O(b−1). This

allows us to approximate the integral in (5.30) by

I(xs, ξ
S , ω) ≈

∫

R2

dxr ρ̂L

(
−2k,

kxs

L
+
kxr

L

)
exp

[
ik(xr + xs) · ξS

L

]
∼ k−2ρ̃L(−2k, ξS), (5.31)
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where ρ̃L is the phase shifted partial Fourier transform of ρ, with respect to the range coordinate
∫
dz ρ(z, ξ)e−iζz = e−iζL

∫
dη ρ(L+ η, ξ)e−iζη = e−iζLρ̃L(ζ, ξ). (5.32)

We obtain the imaging function

IKM(~yS ; f̂) ∼
∫

|ω−ωo|≤B/2
dω

[∫

A
dxs f̂(~xs, ω)

]
ρ̃L

(
−2k, ξS

)
e−2ikηS

(5.33)

in 3-D, which has perfect cross-range resolution, due to the very large (essentially infinite) array.

This is well known [4] and it means that the optimization of f̂(~xs, ω) over ~xs becomes unnecessary

for infinite arrays. It is only for finite apertures that the optimal illumination question becomes

interesting. The range resolution in (5.33) is dependent on the bandwidth and it can be improved

by optimizing the pulse shape over frequencies.

5.5.2 The L2 norm of the Kirchhoff migration image

It remains to compute the L2(D) norm of the image which we wish to minimize over the illumination

intensities f̂(~xs, ω). We have in 3-D

∥∥∥IKM(·; f̂)
∥∥∥

2
∼

∫

|ω−ωo|≤B/2
dω k2

∫

|ω−ωo|≤B/2
dω′ (k′)2

∫

A
dxr

∫

A
dx′

r

∫

A
dxs

∫

A
dx′

s f̂(~xs, ω)f̂(~x′
s, ω

′)

ρ̂L

(
−2k,

k(xs + xr)

L

)
ρ̂L

(
−2k′,

k′(x′
s + x′

r)

L

)∫ ∞

−∞
dηS e2i(k′−k)ηS

∫

R2

dξS exp

{
i [k(xs + xr) − k′(x′

s + x′
r)] · ξS

L

}
, (5.34)

where we extend the search domain to the whole R
3, as in the previous section. Integrating over

ηS , ξS and ω′ we have

∥∥∥IKM(·; f̂ )
∥∥∥

2
∼

∫

|ω−ωo|≤B/2
dω

∫

A
dxs

∫

A
dx′

s f̂(~xs, ω)f̂(~x′
s, ω)

∫

A
dxr

∣∣∣∣k
2ρ̂L

(
−2k,

k(xs + xr)

L

)∣∣∣∣
2

∫

A
dx′

r

(
L

k

)2

δ(xs + xr − x′
s − x′

r). (5.35)

Next, we make the change of variables

x =
xr + x′

r

2
, x̃ = xr − x′

r, (5.36)

which gives
∫ a/2

−a/2
d(xr)j

∫ a/2

−a/2
d(x′r)j =

∫ a

−a
dx̃j

∫ a
2
− |x̃j |

2

− a
2
+

|x̃j |

2

dx̄j , j = 1, 2. (5.37)
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Integrating over x̃, we obtain

∥∥∥IKM(·; f̂ )
∥∥∥

2
∼

∫

|ω−ωo|≤B/2
dω

∫

A
dxs

∫

A
dx′

s

f̂(~xs, ω)f̂(~x′
s, ω)

ω2

2∏

j=1

∫ a
2
− |(x′s−xs)j |

2

− a
2
+

|(x′s−xs)j |

2

dx̄j

∣∣∣∣k
2ρ̂L

(
−2k,

k

L

(
x +

xs + x′
s

2

))∣∣∣∣
2

. (5.38)

This is in 3-D and for ~xs = (0,xs). In 2-D, ~xs = (0, xs), for xs ∈ [−a/2, a/2] and the result is

∥∥∥IKM(·; f̂)
∥∥∥

2
∼

∫

|ω−ωo|≤B/2
dω

∫ a/2

−a/2
dxs

∫ a/2

−a/2
dx′s

f̂(~xs, ω)f̂(~x′
s, ω)

ω

∫ a
2
− |x′s−xs|

2

− a
2
+

|x′s−xs|
2

dx̄

∣∣∣∣kρ̂L

(
−2k,

k

L

(
x̄+

xs + x′s
2

))∣∣∣∣
2

in 2-D. (5.39)

6 Variational analysis in the Fraunhofer regime

We consider here the optimal illuminations ĝ(~xs, ω) and f̂(~xs, ω) that minimize the support of the

time reversal and Kirchhoff migration images in the L2 sense.

6.1 Optimal illumination for time reversal imaging

The L2 norm of the time reversal image, with illumination

ĝ(~xs, ω) =

n⋆(ω)∑

n=1

d̂n(ω)v̂n(~xs, ω), v̂n(~xs, ω) = Go(~xs, ~y⋆, ω)V̂n(~xs, ω), (6.1)

is given by (5.28). Recall (5.23) and the continuum approximation of the array. We have that the

singular functions V̂n satisfy the integral equation

∫

A
dxs ρ̂L

(
−2k,

k(xr + xs)

L

)
V̂n(~xs, ω) =

σn(ω)

kd−1|α(L)|2 V̂n(~xr, ω) (6.2)

and we normalize them as

‖v̂n(·, ω)‖2 =
|α(L)|2
k3−d

∫

A
dxs |V̂n(~xs, ω)|2 = 1. (6.3)

Moreover, using the orthogonality of v̂n(~xs, ω), we get

∫

A
dxs |ĝ(~xs, ω)|2 =

n⋆(ω)∑

n=1

|d̂n(ω)|2 = |ϕ̂(ω)|2, (6.4)

where ϕ̂(ω) could be known apriori or we can select it with some optimization criterion.
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The question is how to choose the coefficients d̂n(ω) in order to minimize the L2 norm of the

image? The result follows easily from (5.28),

d̂n(ω) = ϕ̂(ω)δnn⋆(ω), |ω − ωo| ≤
B

2
, (6.5)

because the singular functions are smallest at the threshold n⋆(ω). In general, it is difficult to

characterize precisely the geometrical features of the time reversal image given by the illumination

(6.1), with coefficients (6.5). We can do it however in at least two special cases, that of well

separated point reflectors (section 6.1.1), and that of strips (section 7.2).

Because the singular value decomposition is done frequency by frequency, it does not address

the resolution in range. This can be improved by a separate optimization over ϕ̂(ω), of the L2 norm

of the image normalized by its maximal value. We illustrate this optimization in the next section,

for a small, point-like reflector.

6.1.1 Time reversal imaging of a point reflector

For a small reflector with thickness h≪ co/ωo and diameter b≪ λoL/a, we can approximate

ρ̂L

(
−2k,

k(xs + xr)

L

)
=

∫ h/2

−h/2
dη

∫

|ξ|≤b/2
dξ ρ(L+ η, ξ) exp

[
2ikη − ik(xs + xr) · ξ

L

]

≈
∫ h/2

−h/2
dη

∫

|ξ|≤b/2
dξ ρ(L+ η, ξ) = ρ̂L(~0). (6.6)

We obtain that V̂n(~xs, ω) are the singular functions of an integral operator with constant kernel

ρ̂L(0), which we can assume is positive. This gives a single non-zero singular value

σ1(ω) = kd−1|A| |α(L)|2|ρ̂L(0)|, n⋆(ω) = 1, (6.7)

for the constant singular function

V̂1(~xs, ω) =
k(3−d)/2

|α(L)| |A|1/2
,

where |A| = a2 in 3-D and a in 2-D. Equivalently, we have in agreement with (3.17),

v̂1(~xr, ω) =
k(3−d)/2

|α(L)| |A|1/2
Ĝo(~xr, ~y⋆, ω). (6.8)

The time reversal image is

ITR(~yS ; ĝ) ∼
∫

|ω−ωo|≤B/2
dω ω

d−3
2 d̂1(ω)σ1(ω)eikηS

∫

A
dξSe

ikxr
L

·ξS

∼
∫

|ω−ωo|≤B/2
dω ω

d−3
2 d̂1(ω)σ1(ω)eikηS

d−1∏

j=1

sin

(
kaξS

j

2L

)

kξS
j

. (6.9)
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Moreover, recalling (6.4), we can set d̂1(ω) = ϕ̂(ω), i.e.,

ĝ(~xs, ω) = ϕ̂(ω)v̂1(~xs, ω), (6.10)

for a ϕ̂(ω) that we wish to determine.

Clearly, the peak of the image function occurs at ~yS = ~y⋆, where ηS = 0 and ξS = 0 and

ITR(~y⋆; ĝ) ∼
∫

|ω−ωo|≤B/2
dω ω

d−3
2 ϕ̂(ω)σ1(ω). (6.11)

Furthermore, we get from (5.28) that

OTR(ϕ̂) =

∫

|ω−ωo|≤B/2
dω

|ϕ̂(ω)|2σ2
1(ω)

ω2

∣∣∣∣∣

∫

|ω−ωo|≤B/2
dω ω

d−3
2 ϕ̂(ω)σ1(ω)

∣∣∣∣∣

2 = ‖J TR(·, ϕ̂)‖2, J TR(~yS , ϕ̂) =
ITR(~yS , ĝ)

max
~yS∈D

∣∣ITR(~yS , ĝ)
∣∣ .

(6.12)

We wish to minimize OTR(ϕ̂) over ϕ̂(ω) normalized by

∫

|ω−ωo|≤B/2
dω |ϕ̂(ω)|2 = 1, such that

∫

|ω−ωo|≤B/2
dω

∫

A
dxs |ĝ(~xs, ω)|2 = 1. (6.13)

The result is given by the following theorem.

Theorem 1 The minimizer of OTR(ϕ̂) over ϕ̂(ω) ∈ C, with support in the interval [ωo −B/2, ωo +B/2]

and with normalization (6.13) is given by

ϕ̂(ω) =
Cω

d+1
2

σ1(ω)
, where C =

[∫

|ω−ωo|≤B/2
dω

ωd+1

σ2
1(ω)

]−1/2

, (6.14)

up to an arbitrary phase. This gives in light of (6.7) and (6.10) the optimal illumination

ĝ(~xs, ω) ∼ ω3−dĜo(~xs, ~y⋆, ω).

The proof follows immediately from the Euler-Lagrange equations. The phase ambiguity can be

removed by restricting ϕ̂(ω) to the class of non-negative functions.

6.2 Optimal illumination for Kirchhoff migration imaging

The L2 norm of the Kirchhoff migration image is given by (5.38) in 3-D and by (5.39) in 2-D. We

seek optimal illuminations f̂(~xs, ω) in the functional space,

F =

{
f̂(~xs, ω) ≥ 0,

∫

|ω−ωo|≤B/2
dω

∫

A
dxs f̂(~xs, ω) = 1

}
, ~xs = (0,xs), (6.15)

35



that minimize the spatial support of the image, as measured by the objective function

OKM(f̂) = ‖J KM(·, f̂)‖2, JKM(~yS , f̂) =
IKM(~yS , f̂)

max
~y∈D

∣∣∣IKM(~y, f̂)
∣∣∣
. (6.16)

The location ~yM = (L + ηM , ξM ) of the maximum of IKM(~yS ; f̂) depends on the reflectivity.

For example, if we let the reflectivity be the indicator function of a parallelepiped

ρ(L+ η, ξ) = χ
(η
h

) 2∏

j=1

χ

(
ξj
b

)
, with χ(t) =

{
1 if |t| ≤ 1/2,
0 otherwise,

then IKM(~yS ; f̂) peaks at the corners
(
L± h

2 ,± b
2 ,± b

2

)
. We can therefore normalize the image by

its value at any corner. On the other hand, if we have a small, point-like reflector at ~y⋆ = (L,0),

the peak of IKM(~yS ; f̂) is at ~yM = ~y⋆. Because of the strong dependence of the peak of the image

on the reflectivity ρ(~y), we cannot write explicitly the optimal illumination f̂(~xs, ω) in the general

case. But we can draw some interesting conclusions, by looking first at the case of a point reflector.

6.2.1 Kirchhoff migration imaging of a point reflector

Using the approximation (6.6) of ρ̂L in the imaging function (5.29), we obtain

IKM(~yS ; f̂) ∼
∫

|ω−ωo|≤B/2
dω

∫

A
dxr

∫

A
dxs ω

d−1 f̂(~xs, ω) exp

[
−2ikηS +

ik(xr + xs) · ξS

L

]
, (6.17)

The image peaks at ~yM = ~y⋆ = (L,0) and its L2 norm is given by

∥∥∥IKM(·; f̂ )
∥∥∥

2
∼

∫

|ω−ωo|≤B/2
dω

∫

A
dxs

∫

A
dx′

s ω
d−1f̂(~xs, ω)f̂(~x′

s, ω)

d−1∏

j=1

(
a− |(x′

s − xs)j |
)
. (6.18)

The minimizer of OKM(f̂) in the functional space F is given by the following theorem.

Theorem 2 The optimal illumination for Kirchhoff migration imaging of a point reflector is

f̂(~xs, ω) =
1

B

2∏

j=1

2

a

[
δ
(a

2
+ (xs)j

)
+ δ

(a
2
− (xs)j

)]
, ~xs = (0,xs), (6.19)

in 3-D. It corresponds to illuminating the reflector with the sources at the corners of the square

array and taking a flat distribution of the frequency in the bandwidth. In 2-D we have

f̂(~xs, ω) =
2

aB

[
δ
(a

2
+ xs

)
+ δ

(a
2
− xs

)]
for ~xs = (0, xs) in 2-D. (6.20)
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Proof: We begin with the Euler-Lagrange equations for the optimization,

∫

A
dx′

s f̂(~x′
s, ω)

d−1∏

j=1

(
a− |(x′

s − xs)j |
)

= C1 +
C2

ωd−1
, ~x′

s = (0,x′
s), (6.21)

where C1 and C2 are constants with respect to xs

C1 =

∫

|ω−ωo|≤B/2
dω

∫

A
dxs

∫

A
dx′

sω
d−1f̂(~xs, ω)f̂(~x′

s, ω)]

d−1∏

j=1

(
a− |(x′

s − xs)j |
)

∫

|ω−ωo|≤B/2
dω

∫

A
dxs ω

d−1f̂(xs, ω)

C2 = γ

{∫

|ω−ωo|≤B/2
dω

∫

A
dxs ω

d−1f̂(~xs, ω)

}2

and γ is the Lagrange multiplier for the normalization constraint on f̂ .

Now we note that in order to find the spatial distribution of the sources in the optimal illumi-

nation, we must solve equations of the form

∫ a/2

−a/2
dx′s (a− |xs − x′s|)w(x′s) = C, (6.22)

for an arbitrary constant C and for w(x) supported in [−a/2, a/2].

Lemma 1 Equation (6.22) has the unique solution

w(xs) =
2C

a

[
δ
(a

2
+ xs

)
+ δ

(a
2
− xs

)]
. (6.23)

Once we prove Lemma 1, the proof of Theorem 2 follows immediately from the Euler-Lagrange

equations (6.21) and the normalization condition on f̂(~xs, ω). Note in particular that due to the

homogeneity of degree zero of the objective function OKM(f̂), and the diagonal form of the kernels

of the integral operators in ω, the Lagrange multiplier γ vanishes. This is why f̂ is constant in the

bandwidth.

Proof of Lemma 1: First, it is easy to check that (6.23) satisfies equation (6.22). Thus, all

we have to do is to show that the integral operator in (6.22) has a trivial null space. Suppose that

there exists a function ϑ(xs) supported in [−a/2, a/2], such that

∫ a/2

−a/2
dx′s(a− |xs − x′s|)ϑ(x′s) = 0. (6.24)

This equation is the convolution of ϑ with function

F (x) =

{
a− |x| if |x| ≤ a,
0 otherwise.

(6.25)
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Take then the Fourier transform in (6.24) and obtain that F̂ (β)ϑ̂(β) = 0. Now,

F̂ (β) =

∫ a

−a
dx (a− |x|)e−iβx =

4 sin2
(

βa
2

)

β2
, (6.26)

so ϑ̂(β) must vanish almost everywhere on the real line, except for the discrete locations βn = 2nπ/a,

for n = 0,±1, . . .. However, ϑ̂(β) is an analytic function (since ϑ(x) has compact support), which

means that it must be identically zero. 2

Remark: In the numerical simulations of section 4 we optimize the 2-D objective function over

ϕ̂(~xs, ω) = ωf̂(~xs, ω), (6.27)

instead of f̂(~xs, ω) and we consider the normalization

∫

|ω−ωo|≤B/2
dω

∫ a/2

−a/2
dxs ϕ̂(xs, ω) = 1,

which keeps the peak of the image at a constant value (see (6.17)). With this choice we have

ϕ̂(~xs, ω) =
2ω

aωoB

[
δ
(a

2
+ xs

)
+ δ

(a
2
− xs

)]
, ~xs = (0, xs).

This coincides with (6.20), except for the normalization constant. Moreover, it agrees with the

numerical results obtained in section 4.

Remark: Theorem 2 shows that in the case of a point scatterer and at high SNR, the optimal

illumination f̂(~xs, ω) is of separable form and that it favors edge illumination from the array. This

is due to the form of the kernel in (5.39),

∫ a
2
− |x′s−xs|

2

− a
2
+

|x′s−xs|
2

dx̄

∣∣∣∣k
2ρ̂L

(
−2k,

k

L

(
x̄+

xs + x′s
2

))∣∣∣∣
2

≈ ρ̂L(~0)
(
a− |xs − x′s|

)
,

which is smallest when xs and x′s are at the opposite ends of the array. The kernel has a similar

behavior for general reflectivity functions and this is why we observe that optimal illuminations are

from the edge of the array. We illustrate this in section 8 for the case of strip-like reflectors.

7 Time reversal imaging of strips

We already discussed in section 5.4.1 the SVD of the response matrix Π̂F (ω) in the Fraunhofer

diffraction regime and for a general reflectivity ρ. We also wrote in section 5.4.2 the mathematical

expression of the time reversal imaging function, using the SVD. We formulated the variational prin-

ciple for optimal illumination in section 6.1, and we obtained an explicit solution for isolated point

reflectors, in section 6.1.1. Now we analyze the 2-D problem of imaging a strip, with reflectivity

ρ(L+ η, ξ) = ρL(η)χ(ξ). (7.1)
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Here χ(ξ) is the indicator function of the interval [−b/2, b/2], and ρL(η) is some bounded function

in L1(R), with support in [−h/2, h/2] (as in section 5.2). The analysis extends easily to 3-D, for

reflectivities of the form

ρ(L+ η, ξ) = ρL(η)χB(ξ),

with χB being the indicator function of the square B = [−b/2, b/2] × [−b/2, b/2]. The case of

arbitrarily shaped cross-sections B of the reflectors is left for future studies.

7.1 Spectral analysis of the response matrix for a strip

Let us recall from section 6.1 that the singular functions are of the form

v̂(~xs, ω) = Ĝo(~xs, ~y⋆, ω)V̂ (xs, ω). (7.2)

Here V̂ (xs, ω) are singular functions of the integral operator with kernel ρ̂L

(
−2k, k(xr+xs)

L

)
, and

~xs = (0, xs) are points in the array, with xs varying continuously in [−a/2, a/2]. We droped the

vector notation in the argument of V̂ and neglect temporarily the index of the singular functions.

We note that

χ̂

[
k(xr + xs)

L

]
=

∫ b/2

−b/2
dξ e−i k(xr+xs)ξ

L =
2πL

k

sin
(

kb(xr+xs)
2L

)

π(xr + xs)
, (7.3)

and we suppose for simplicity that

ρ̂L(−2k) =

∫
dη ρL(η)e2ikη = |ρ̂L(−2ko)| (7.4)

is constant and positive in the bandwidth. We obtain

∫ a/2

−a/2
dxs

sin
[
C(ω)

(
2xr

a + 2xs

a

)]

π(xr + xs)
V̂ (xs, ω) = µ(ω)V̂ (xr, ω),

‖V̂ (·, ω)‖ = |α(L)|−1,

(7.5)

with

µ(ω) =
σ(ω)

2πL|α(L)|2|ρ̂L(−2ko)|
, (7.6)

and with

C(ω) =
kab

4L
, (7.7)

assumed positive in the bandwidth.
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7.1.1 A canonical problem for the prolate spheroidal wave functions

To solve (7.5), we recall the integral equation analyzed by Landau, Pollack and Slepian [26, 21, 25],

∫ 1

−1
dζ ′

sin [C (ζ − ζ ′)]
π(ζ − ζ ′)

ψ(ζ, C) = ν(C)ψ(ζ, C) , ζ ∈ [−1, 1], C > 0. (7.8)

Note that the integral operator in (7.8) has a symmetric and positive definite kernel. Therefore,

it has a discrete spectrum with non-negative eigenvalues [17] ν0(C) ≥ ν1(C) ≥ . . . ≥ 0, that

accumulate at zero ( lim
n→∞

νn(C) = 0). The eigenfunctions are the prolate spheroidal wave functions

ψn(ζ, C). They have many interesting properties [26, 21, 25], including the following.

Property 1 The prolate spheroidal wave functions form a complete set in L2[−1, 1]. They are

normalized to have unit energy on the the real line and they satisfy the orthogonality relations

∫ 1

−1
dζ ψn(ζ;C)ψm(ζ;C) = νn(C) δn,m, (7.9)

∫ ∞

−∞
dζ ψn(ζ;C)ψm(ζ;C) = δn,m, for n,m = 0, 1, . . . (7.10)

Property 2 The prolate spheroidal wave functions ψn(ζ, C) are even functions of ζ for even n and

odd otherwise,

ψn(−ζ, C) = (−1)nψn(ζ, C) , n = 0, 1, . . . . (7.11)

Property 3 The eigenvalues νn(C) stay close to 1 for small n and then, they plunge to 0 near the

threshold value n⋆ =
⌊

2C
π

⌋
, where ⌊·⌋ denotes the integer part.

Property 4 The functions ψn are preserved by the Fourier transform, up to a coordinate change

ψn(ζ;C) =
1

γn(C)

∫ C
2π

− C
2π

dt ψn

(
2πt

C
;C

)
e2πiζt, γ2

n(C) =
(−1)n

2π
Cνn(C) . (7.12)

7.1.2 The singular value decomposition with the prolate spheroidal wave functions

Now let us change the variable of integration in (7.5) from xs to −xs to obtain

∫ a/2

−a/2
dxs

sin
[
C(ω)

(
2xr

a − 2xs

a

)]

π(xr − xs)
V̂ (−xs, ω) = µ(ω)V̂ (xr, ω). (7.13)

Using Properties 1 and 2 we find that this equation is solvable for the discrete eigenvalues

µn(ω) = νn(C(ω)) , n = 0, 1, . . . (7.14)

The singular functions in (7.13) are

V̂n(xs, ω) =
√

(−1)nKnψn

(
2xs

a
,C(ω)

)
, n = 0, 1, . . .
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with normalization constants Kn > 0 determined by

‖V̂n(·, ω)‖2 =
aK2

n

2
νn(C(ω)) =

1

|α(L)|2 .

Note that V̂n(xs, ω) satisfy the identity

V̂n(−xs, ω) = (−1)nV̂n(xs, ω) = V̂n(xs, ω),

for all indices n ≥ 0. We now gather all the results and state the SVD for the strip:

Theorem 3 The singular value decomposition of the integral operator with kernel Π̂F (~xr, ~xs, ω) is

∫ a/2

−a/2
dxs Π̂F (~xr, ~xs, ω)v̂n(~xs, ω) = σn(ω)v̂(~xr, ω), (7.15)

with singular values

σn(ω) = 2πL|α(L)|2|ρ̂L(−2ko)|νn(C(ω)) , (7.16)

for n = 0, 1, . . .. The singular functions are

v̂n(~xs, ω) =
k1/2

|α(L)|

√
2(−1)n

aνn(C(ω))
Ĝo(~xs, ~y⋆, ω)ψn

(
2xs

a
;C(ω)

)
, (7.17)

for ~xs = (0, xs). They form a complete, orthonormal set in L2[−a/2, a/2]. The singular values

σn(ω) are negligible for indices n above the threshold value

n⋆(ω) =

⌊
2C(ω)

π

⌋
=

⌊
b

λL/a

⌋
, (7.18)

given by the ratio of the size b of the strip and the spot size λL/a. This means that any illumination

in the null space

N (Π̂F ) = span {v̂n(~xs, ω)}n>n⋆(ω) (7.19)

returns no echoes at the array.

7.1.3 The support of the singular functions and their Fourier transform

The canonical problem (7.8) was solved by Landau, Pollack and Slepian [26, 21, 25] in their study

of simultaneous concentration in finite intervals of signals and their Fourier transforms.

Consider the restriction operator Ra : L2(R) → L2(R) to the interval [−a/2, a/2],

Rau(x) =

{
u(x) if x ∈ [−a/2, a/2],
0 otherwise.

Let also R̂b,ω be the operator that restricts the support of the Fourier transform of a function

R̂b,ωu(x) =
k

2πL

∫ b/2

−b/2
dξ û

(
kξ

L

)
e

ikxξ
L ,
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for a given frequency ω. We have

RaR̂b,ωRau(xr) =
k

2πL

∫ b/2

−b/2
dξe

ikxrξ
L

∫ a/2

−a/2
dxs u(xs)e

− ikxsξ
L

=

∫ a/2

−a/2
dxs

sin
[
C(ω)

(
2xr

a − 2xs

a

)]

π(xr − xs)
u(xs), xr ∈ [−a/2, a/2] . (7.20)

Now, observe by comparison with (7.8) that νn and ψn are the eigenvalues and eigenfunctions

of the symmetric operator RaR̂b,ωRa. This means that for n ≤ n⋆(ω), V̂n(x, ω) are concentrated

in the interval |x| ≤ a/2 while their Fourier transforms
∫ a/2

−a/2
dx V̂n(x, ω)e−

ikxξ
L

are concentrated in the interval |ξ| ≤ b/2. This plays a key role in our imaging study.

7.2 Time reversal imaging of strips

We consider as in section 6.1 illuminations

ĝ(~xs, ω) =

n⋆(ω)∑

n=0

d̂n(ω)v̂n(xs, ω), (7.21)

for coefficients d̂n(ω) to be determined, subject to the normalization condition

|ϕ̂(ω)|2 =

∫ a/2

−a/2
dxs |ĝ(xs, ω)|2 =

n⋆(ω)∑

n=0

|d̂n(ω)|2. (7.22)

Here ϕ̂(ω) may be given in advance or we can select it optimally, as explained in section 6. The

time reversal imaging function is given by (recall (5.26))

ITR(~yS ; ĝ) ∼
∫

|ω−ωo|≤B/2
dω

n⋆(ω)∑

n=0

d̂n(ω)σn(ω)ω− 1
2

∫ a/2

−a/2
dxr Ĝo(~xr, ~y

S , ω)v̂n(~xr, ω). (7.23)

Theorem 3 and definition (5.13) of Ĝo allow us to rewrite (7.23) as

ITR(~yS ; ĝ) ∼
∫

|ω−ωo|≤B/2
dωeikηS

n⋆(ω)∑

n=0

d̂n(ω)

ω

√
(−1)nνn(C(ω))

∫ a/2

−a/2
dxr ψn

(
2xr

a
,C(ω)

)
e−

ikxrξS

L

∼
∫

|ω−ωo|≤B/2
dωeikηS

n⋆(ω)∑

n=0

d̂n(ω)

ω3/2
νn(C(ω))ψn

(
2ξS

b
, C(ω)

)
. (7.24)

Here we used Property 4

∫ a/2

−a/2
dxr ψn

(
2xr

a
,C(ω)

)
e−

ikxrξS

L =
πa

C(ω)

∫ C(ω)
2π

−C(ω)
2π

dt ψn

(
2πt

C(ω)
;C(ω)

)
e−2πit 2ξS

b

=
πaγn(C(ω))

C(ω)
ψn

(
2ξS

b
, C(ω)

)
, (7.25)
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and
√

(−1)nνn(C(ω))
γn(C(ω))

C(ω)
=

νn(C(ω))√
2πC(ω)

∼ νn(C(ω))

ω1/2
.

We study next how different choices of the coefficients d̂n(ω) affect the time reversal image.

7.3 Selective illumination and imaging of the strip

The time reversal image (7.24) is a linear superposition of the prolate spheroidal wave functions,

adapted to the support [−b/2, b/2] of the reflector. Since
{
ψn

(
2ξS/b;C(ω)

)}
n≥0

are complete in

L2[−b/2, b/2], we can get a good approximation (in the L2 sense) of the reflectivity by ITR(yS ; ĝ),

for an appropriate choice of the coefficients d̂n(ω) (i.e. of the illumination ĝ(xs, ω)). A more

interesting question is how to choose the coefficients to focus selectively the illumination on various

parts of the strip? To answer it, we look next at the behavior of the prolate spheroidal functions,

for various frequencies and indices below the threshold n⋆(ω).
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Figure 12: The prolate spheroidal wave functions ψn(ζ, C(ω)) plotted for ζ ∈ [−1, 1]. Top: C(ω) =

10π. Bottom: C(ω) = 100π. From left to right: n = 0,
⌊

n⋆(ω)
4

⌋
,
⌊

n⋆(ω)
2

⌋
, and n⋆(ω).

We plot in Figure 12 the functions ψn (ζ, C(ω)) for C(ω) equal to 10π and 100π. This corre-

sponds to b = 20λL/a and b = 200λL/a, respectively. We observe that for the index n = 0, the

prolate spheroidal wave functions are non-negative and concentrated near the origin. The higher

the frequency is the better the spatial concentration, but the L2 norm remains the same

∫ 1

−1
dζ ψ2

0(ζ, C(ω)) = ν0(ω) = 1. (7.26)

As the index n increases, ψn (ζ, C(ω)) becomes oscillatory and its peaks move toward the ends of

the interval [−1, 1]. This is evident from the plots in Figure 12, for n equal to a quarter, a half
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and the entire threshold n⋆(ω), respectively. For index n > n⋆(ω), the support of ψn is essentially

outside the interval [−1, 1], so that

∫ 1

−1
dζ ψ2

n(ζ, C(ω)) = νn(ω) ≈ 0 for n > n⋆(ω). (7.27)

Now we can conclude from (7.24) and Figure 12 that we can manipulate the coefficients d̂n(ω)

in order to focus selectively on different parts of the strip. For example, if we set d̂n(ω) ∼ δn0, we

illuminate the center of the strip. To illuminate toward the ends of the strip, we set d̂n(ω) ∼ δnm,

for m near or at the threshold. At a fixed frequency the image is oscillatory, as in Figure 12.

However, the oscillations disappear when we integrate over the bandwidth and we get a nice focus

on the desired part of the strip. This is shown in Figure 13, where we integrate over the frequencies

corresponding to C(ω) ∈ [50π, 100π]. Recall from Property 2 that the prolate spheroidal wave

functions ψn (ζ, C(ω)) are even for even indices n and odd otherwise. We obtain symmetric results

in Figure 13 by considering only the even indices n in the integral. When we include the odd indices

as well, we can focus selectively on one end of the interval or the other, as we show in Figure 14.

This is done by simply changing the sign of the coefficients d̂n(ω) for odd and even indices.
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Figure 13: The integral of ψn(ζ, C(ω)) over C(ω) ∈ [50π, 100π] (i.e., λL/a ∈ [b/200, b/100]). We

normalize by the maximum value. From left to right: n = 0,
⌊

n⋆(ω)
4

⌋
,
⌊

n⋆(ω)
2

⌋
, and n⋆(ω).
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Figure 14: Selective edge illumination with ψn⋆(ζ, C(ω)) and C(ω) ∈ [50π, 100π].

7.4 Time reversal imaging with edge illumination

The optimal illumination criterion stated as the minimization of the L2 norm of the time reversal

image, for waveforms (7.21) and constraints (7.22), gives edge illuminations of the strip.
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Indeed, from Theorem 3 and (5.28), the L2 norm of the time reversal image given by

‖ITR(·, ĝ)‖2 ∼
∫

|ω−ωo|≤B/2
dω

n⋆(ω)∑

n=0

ν2
n (C(ω))

|d̂n(ω)|2
ω3

(7.28)

and we can minimize it by choosing d̂n(ω) = ω
3
2 ϕ̂(ω)δnn⋆(ω), because the eigenvalues νn (C(ω)) are

smallest near the threshold n⋆(ω).

The resulting illumination ĝ(xs, ω) = ω
3
2 ϕ̂(ω)v̂n⋆(ω) is

ĝ(xs, ω) ∼ ϕ̂(ω)ω2

√
(−1)n⋆(ω)

νn(C(ω))
Ĝo(~xs, ~y⋆, ω)ψn⋆(ω)

(
2xs

a
;C(ω)

)
, (7.29)

and it uses mostly the edges of the array, where ψn⋆(ω)

(
2xs

a ;C(ω)
)

is peaked. When we integrate

over the frequencies, we get time domain profiles that are similar to the plots in Figure 14. These

edge illuminations produce time reversal images

ITR(~yS ; ĝ) ∼
∫

|ω−ωo|≤B/2
dω ϕ̂(ω)eikηS

νn⋆(ω)(C(ω))ψn⋆(ω)

(
2ξS

b
, C(ω)

)
, (7.30)

that emphasize the edges of the strip (see Figure 12 and 14).

8 Kirchhoff migration imaging of strips

We begin the analysis of the Kirchhoff migration function for the strip by expanding the Fourier

coefficients of the reflectivity in terms of the prolate spheroidal wave functions. We recall that

ρ̂L

(
−2k,

k(xr + xs)

L

)
=

πb|ρ̂L(−2ko)|
C(ω)

sin
[
C(ω)

(
2xr

a + 2xs

a

)]

π
(

2xr

a + 2xs

a

) (8.31)

and use the spectral representation of the kernel in (7.8),

∞∑

n=0

νn(C(ω))ψn(ζ, C(ω))ψn

(
ζ ′, C(ω)

)
=

{
sin[C(ω)(ζ−ζ′)]

π(ζ−ζ′) for ζ, ζ ′ ∈ [−1, 1],

0 otherwise,
(8.32)

to get

sin
[
C(ω)

(
2xr

a + 2xs

a

)]

π
(

2xr

a + 2xs

a

) ≈
n⋆(ω)∑

n=0

(−1)nνn(C(ω))ψn

(
2xr

a
,C(ω)

)
ψn

(
2xs

a
,C(ω)

)
. (8.33)

Here we used Property 2 and we truncated the sum to n⋆(ω), because νn(C(ω)) ≈ 0 for n > n⋆(ω).

Substituting (8.33) in (5.29), we have

IKM(~yS ; f̂) ∼
∫

|ω−ωo|≤B/2
dωe−2ikηS

n⋆(ω)∑

n=0

(−1)nνn(C(ω))

∫ a/2

−a/2
dxsf̂(~xs;ω)ψn

(
2xs

a
;C(ω)

)

exp

(
ikxsξ

S

L

)∫ a/2

−a/2
dxrψn

(
2xr

a
;C(ω)

)
e

ikxrξS

L ,
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and with the Fourier transform formula (7.25), we get

IKM(~yS ; f̂) ∼
∫

|ω−ωo|≤B/2
dω e−2ikηS

n⋆(ω)∑

n=0

(−1)n

ω
νn(C(ω)) γn(C(ω))ψn

(
2ξS

b
;C(ω)

)

∫ a/2

−a/2
dxsf̂(~xs;ω)ψn

(
2xs

a
;C(ω)

)
e

ikxsξS

L . (8.34)

Remark: Equations (8.34) and (7.24) say that, at each frequency ω in the bandwidth, both the

Kirchhoff migration and time reversal images are given by a superposition of the prolate spheroidal

wave functions ψn

(
2ξS

b ;C(ω)
)
. The difference between the two imaging functions lies in the coef-

ficients multiplying ψn

(
2ξS

b ;C(ω)
)
. In time reversal, these coefficients are constant with respect

to ~yS and we can manipulate them easily (analytically) to focus the image selectively on different

parts of the strip. In Kirchhoff migration, the coefficients are a multiple of

∫ a/2

−a/2
dxsf̂(~xs;ω)ψn

(
2xs

a
;C(ω)

)
e

ikxsξS

L ,

and they depend on ξS. This makes the Kirchhoff migration focusing properties quite different

than those of time reversal.

We have seen in section 7.4 that we can use the variational principle that minimizes the L2

norm of the time reversal image over the illuminations ĝ(~xs, ω), to achieve focusing on the ends of

the strip. The optimal waveforms favor edge illuminations from the array. We show next that this

holds for the Kirchhoff migration imaging function as well.

8.1 Variational principle for edge illumination of strips

We begin our study of the variational problem of minimizing the L2 norm of the image IKM(~yS ; f̂)

over the illuminations f̂ , with a few simplifying assumptions. First, we suppose that we know the

range L of the strip and we concentrate on the cross-range resolution. This can be done with a

single frequency ω in the bandwidth. Second, we look for real valued illuminations f̂ that are in

the function space L2[−a/2, a/2], instead of the larger, more natural space L1[−a/2, a/2]. This

simplifies our computation because it allows us to write f̂ as the superposition

f̂(~xs, ω) ≈
n⋆(ω)∑

m=0

d̂m(ω)ψm

(
2xs

a
;C(ω)

)
, (8.35)

for coefficients
{
d̂m(ω)

}
to be determined.
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Figure 15: Left: the minimimum L2 norm image normalized by its maximum, ploted at the correct
range L, as a function of cross-range. Right: The illumination f̂(~xs, ω) that gives this image. Here
C(ω) = 10π, so that n⋆(ω) = 20.

The image at search points ~yS = (L, ξS) and fixed frequency ω is (recall (8.34))

IKM
(
(L, ξS); f̂(·, ω)

)
∼

n⋆(ω)∑

n=0

(−1)n

ω
νn(C(ω)) γn(C(ω))ψn

(
2ξS

b
;C(ω)

) n⋆(ω)∑

m=1

d̂m(ω)

∫ a/2

−a/2
dxsψm

(
2xs

a
;C(ω)

)
ψn

(
2xs

a
;C(ω)

)
e

ikxsξS

L . (8.36)

We find the optimal illumination f̂ by minimizing numerically the L2 norm of the image (8.36)

normalized by its maximum, over all possible choices of the coefficients d̂m(ω), normalized by

‖f̂(·, ω)‖2 ≈
n⋆(ω)∑

m=0

|d̂m(ω)|2 = 1. (8.37)

Note that d̂n(ω) ∈ R since we seek real valued illuminations f̂(~xs, ω). Ideally, we would also like

f̂(~xs, ω) to be nonnegative, but we relax here this constraint in order to simplify the optimization.

We show in Figure 15 the optimal illumination f̂(~xs, ω) and the resulting image, for C(ω) = 10π

or, equivalently, n⋆(ω) = 20. We note that the result is an edge illumination from the array, that

gives an image focused at the ends of the strip. The focusing becomes tighter at higher frequencies,

but then n⋆(ω) is large and the optimization can be prohibitively expensive. In such cases, we

could use a more efficient parametrization of f̂(~xs, ω), that takes flat illuminations over segments

of the array, as we have done in the numerical simulations of section 4.

9 Linearized least squares imaging of strips

In this section we study the linearized least squares formulation of the inverse problem for a strip.

We consider a fixed frequency ω illumination from a single source at xs. However, we do more

than Kirchhoff migration, because we compute the image as a regularized solution of the normal

equations, that is we invert the normal operator. The solution is given explicitly in terms of the

prolate spheroidal wave functions.
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Since we fixed the frequency, let us suppose that we know the range L of the strip-like reflector.

This could be determined with some other method, such as travel time estimation. Now let Mω,xs

be the forward operator given by the Born approximation (2.8), in the Fraunhofer diffraction regime.

This operator takes the indicator function χ(ξ) of the strip and maps it to the data

Π̂(~xr, ~xs, ω) ≈ [Mω,xsχ](~xr) = k2

∫ b/2

−b/2
dξ Ĝo(~xr, ~y, ω)Ĝo(~xs, ~y, ω), (9.1)

where ~y = (L, ξ) and ~xr = (0, xr), ~xs = (0, xs). We wish to solve the least squares problem:

Minimize ∫ a/2

−a/2
dxr

∣∣∣
[
Mω,xsχ

LS
]
(~xr) − Π̂(~xr, ~xs, ω)

∣∣∣
2
, (9.2)

over “reflectivities” χLS(ξ).

The normal equations at search points ξS are

[
M⋆

ω,xs
Mω,xsχ

LS
]
(ξS) =

[
M⋆

ω,xs
Π̂(·, ~xs, ω)

]
(ξS), (9.3)

where M⋆
ω,xs

is the adjoint of Mω,xs , defined formally by

〈
Mω,xsϑ, Π̂

〉
=

∫ a/2

−a/2
dxr k

2

∫
dξ ϑ(ξ)Ĝ(~xr, ~y, ω)Ĝo(~xs, ~y, ω)Π̂(~xr, ~xs, ω)

=

∫
dξ ϑ(ξ)

[∫ a/2

−a/2
dxr k

2Ĝo(~xr, ~y, ω)Ĝo(~xs, ~y, ω)Π̂(~xr, ~xs, ω)

]

=
(
ϑ,M⋆

ω,xs
Π̂(·, ~xs, ω)

)
, (9.4)

for an arbitrary test function ϑ(ξ). We have explicitly,

[
M⋆

ω,xs
Π̂(·, ~xs, ω)

]
(ξS) = k2

∫ a/2

−a/2
dxr Ĝo(~xr, ~y, ω)Ĝo(~xs, ~y, ω)Π̂(~xr, ~xs, ω). (9.5)

To solve the normal equations, we use the spectral decomposition of the normal operator.

Lemma 2 The normal operator M⋆
ω,xs

Mω,xs has eigenfunctions

Un(ξ) = exp

(
ikxsξ

L

)
ψn

(
2ξ

b
;C(ω)

)
(9.6)

and eigenvalues

µn(ω) =
k

32πL
νn(C(ω)) , n = 0, 1, . . . . (9.7)

The eigenfunctions satisfy the orthogonality relation

∫ b/2

−b/2
dξ Un(ξ)Um(ξ) =

∫ b/2

−b/2
dξ ψn

(
2ξ

b
;C(ω)

)
ψm

(
2ξ

b
;C(ω)

)
=
b

2
νn(C(ω)) δnm. (9.8)
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The proof is given at the end of the section. Let us first use this lemma to solve (9.3).

Since the eigenvalues µn(ω) are negligible for n > n⋆(ω), the normal operator M⋆
ω,xs

Mω,xs

is singular, with a null space N = span {Un(ξ)}n>n⋆(ω) . Thus, the normal equations (9.3) have

infinitely many solutions and we seek the one with minimal L2 norm in the form

χLS
ω,xs

(ξS) =

n⋆(ω)∑

n=0

d̂n(ω;xs)Un(ξS). (9.9)

Here we emphasize the dependence of the solution on the frequency and the source location with

indices. We substitute (9.9) in (9.3) and get

d̂n(ω;xs) =
64πL

kbν2
n(C(ω))

(
Un,M⋆

ω,xs
Π̂(·, xs, ω)

)
, (9.10)

using the orthogonality relation (9.8). The inner product
(
Un,M⋆

ω,xs
Π̂(·, xs, ω)

)
is given by:

Lemma 3 Let n ≥ 0 be an arbitrary index. We have

(
Un,M⋆

ω,xs
Π̂

)
=

∫ b/2

−b/2
dξSUn(ξS)

[
M⋆

ω,xs
Π̂(·, xs, ω)

]
(ξS)

≈ (−1)n

8a
γn(C(ω)) νn(C(ω))ψn

(
2xs

a
;C(ω)

)
. (9.11)

With this lemma and equation (9.10), we obtain

χLS
ω,xs

(ξS) ≈ 2π

n⋆(ω)∑

n=0

(−1)nγn(C(ω))

C(ω)νn(C(ω))
exp

(
ikxsξ

S

L

)
ψn

(
2xs

a
;C(ω)

)
ψn

(
2ξS

b
;C(ω)

)
. (9.12)

This is the least squares image with a single source at xs and with a single frequency ω. The result

is shown in Figure 16, for the central source location xs = 0 and two frequencies, corresponding to

C(ω) = 10π and 100π. We plot in blue χLS
ω,xs

(ξS) normalized by its maximum. We also show in red

the Kirchhoff migration images for the same single source and frequency. Note that these images

are almost the same as χLS
ω,xs

(ξS) for the sources near the center of the array, but the discrepancy

increases for sources at the ends of the array. In particular, we get a better focusing of the least

squares image at the ends of the strip.

If we use all the sources, we can superpose the estimates (9.12) to get a better result

χLS
ω (ξS) ≈ 1

a

∫ a/2

−a/2
dxs χ

LS
ω,xs

(ξS) =
π

C(ω)

n⋆(ω)∑

n=0

ψ2
n

(
2ξS

b
;C(ω)

)
. (9.13)

Here we used Property 4 of the prolate spheroidal wave functions. We plot χLS
ω (ξS) in Figure 17,

with the blue line, for C(ω) = 10π and 100π. We note that it is close to the true reflectivity χ(ξS),

the indicator function of the interval [−b/2, b/2]. This follows from Lemma 4. We also show in
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Figure 16: In blue, the linearized least squares solution for a single source at xs and frequency ω.
In red, the Kirchhoff migration image for a single source at xs and frequency ω. Top: C(ω) = 10π.
Bottom: C(ω) = 100π. Left: xs = 0, middle: xs = a/4 and right: xs = a/2. The abscissa is 2ξS/b.
We plot the absolute value of the image normalized by its maximum.
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Figure 17: In blue, the linearized least squares solution (9.13) with all the sources in the array and
a fixed frequency. In red, the Kirchhoff migration image (9.14) for uniform illumination. The range
is assumed known and we take a fixed frequency. Left: C(ω) = 10π. Right: C(ω) = 100π. The
abscissa is 2ξS/b.

Figure 17, in red, the Kirchhoff migration image given by f̂(~xs, ω) = 1, at fixed frequency and

known range. Straightforward calculations give

IKM
(
(L, ξS); f̂ = 1

)
∼

n⋆(ω)∑

n=0

ν2
n(C(ω))ψ2

n

(
2ξS

b
;C(ω)

)
. (9.14)

We note that by inverting the normal operator we improve a little the reconstruction at the edges

of the strip. This is more visible at the lower frequencies. At the high frequencies, the images are

basically the same.

Lemma 4 The prolate spheroidal wave functions satisfy the identity

π

C(ω)

∞∑

n=0

νn(C(ω))ψ2
n(ζ;C(ω)) =

{
1 if |ζ| ≤ 1,
0 otherwise.

(9.15)
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Since νn(C(ω)) ≈ 1 for n < n⋆(ω) and 0 for n > n⋆(ω), we have

χ(ξS) ≈ χLS
ω (ξS) =

π

C(ω)

n⋆(ω)∑

n=0

ψ2
n

(
2ξS

b
;C(ω)

)

≈ π

C(ω)

n⋆(ω)∑

n=0

ν2
n(C(ω))ψ2

n

(
2ξS

b
;C(ω)

)
∼ IKM

(
(L, ξS); f̂ = 1

)
. (9.16)

Proof: From the spectral representation (8.32) of the kernel and letting ζ ′ → ζ in (8.32), we get

C(ω)

π
=

∞∑

n=0

νn(C(ω))ψ2
n(ζ;C(ω)) . (9.17)

The rest of the lemma follows from Property 3. 2

9.1 Proofs of Lemmas 2 and 3

Proof of Lemma 2: We already know from section 7 that the prolate spheroidal wave functions

are concentrated in [−b/2, b/2] for indices below the threshold. The orthogonality relation (9.8)

follows from Property 1. Thus, the only thing left to prove is that Un are eigenfunctions of the

normal operator. Write using the definition (9.5) of the adjoint M⋆
ω,xs

that

[
M⋆

ω,xs
Mω,xsUn

]
(ξS) = k2

∫ a/2

−a/2
dxr Ĝo(~xr, ~yS , ω)Ĝo(~xs, ~yS , ω) [Mω,xsUn] (xr), (9.18)

where ~yS = (L, ξS) is the search point. Use also the definition (9.1) of Mω,xs to get

[
M⋆

ω,xs
Mω,xsUn

]
(ξS) = k4

∫ a/2

−a/2
dxr Ĝo(~xr, ~yS , ω)Ĝo(~xs, ~yS , ω)

∫ b/2

−b/2
dξ Un(ξ) Ĝo(~xr, ~y, ω)Ĝo(~xs, ~y, ω), (9.19)

for points ~y = (L, ξ). Now the Green’s function is given by (5.13) and so (9.19) becomes

[
M⋆

ω,xs
Mω,xsUn

]
(ξS) = k2|α(L)|4 exp

(
ikxsξ

S

L

)∫ b/2

−b/2
dξ ψn

(
2ξ

b
;C(ω)

)

∫ a/2

−a/2
dxr exp

(
ikxr(ξ

S − ξ)

L

)
. (9.20)

Finally, we integrate over xr and use definitions (5.12) and (7.7) to get

[
M⋆

ω,xs
Mω,xsUn

]
(ξS) = 2πLk|α(L)|4 exp

(
ikxsξ

S

L

) ∫ b/2

−b/2
dξ

sin
[
C(ω)2(ξS−ξ)

b

]

π(ξS − ξ)
ψn

(
2ξ

b
;C(ω)

)

=
k

32πL
νn(C(ω))Un(ξS). 2 (9.21)
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Proof of Lemma 3: Using definition (9.5) of the adjoint operator and (9.6), we have

∫ b/2

−b/2
dξSUn(ξS)

[
M⋆

ω,xs
Π̂(·, ~xs, ω)

]
(ξS) = k2Ĝo(~xs, ~y⋆, ω)

∫ a/2

−a/2
dxr Π̂(~xr, ~xs, ω)Ĝo(~xr, ~y⋆, ω)

∫ b/2

−b/2
dξSψn

(
2ξS

b
;C(ω)

)
exp

(
ikxrξ

S

L

)
,

where

∫ b/2

−b/2
dξSψn

(
2ξS

b
;C(ω)

)
exp

(
ikxrξ

S

L

)
=
πbγn(C(ω))

C(ω)
ψn

(
2xr

a
;C(ω)

)
, (9.22)

by identity (7.25). We obtain

∫ b/2

−b/2
dξS Un(ξS)

[
M⋆

ω,xs
Π̂(·, ~xs, ω)

]
(ξS) =

πbk2γn(C(ω))

C(ω)
Ĝo(~xs, ~y⋆, ω)

∫ a/2

−a/2
dxr Π̂(xr, xs, ω)Ĝo(~xr, ~y⋆, ω)ψn

(
2xr

a
;C(ω)

)
. (9.23)

Now, the Born approximation (9.1) of the data gives

∫ a/2

−a/2
dxr Π̂(~xr, ~xs, ω)Ĝo(~xr, ~y⋆, ω)ψn

(
2xr

a
;C(ω)

)
≈ k2

∫ b/2

−b/2
dξ

∫ a/2

−a/2
dxr Ĝo(~xs, ~y, ω)

Ĝo(~xr, ~y, ω)Ĝo(~xr, ~y⋆, ω)ψn

(
2xr

a
;C(ω)

)
(9.24)

and, with definition (5.13) of the Green’s function, we get

∫ a/2

−a/2
dxr Π̂(~xr, ~xs, ω)Ĝo(~xr, ~y⋆, ω)ψn

(
2xr

a
;C(ω)

)
≈ k|α(L)|2Ĝo(~xs, ~y

⋆, ω)

∫ b/2

−b/2
dξ exp

(
− ikxsξ

L

)∫ a/2

−a/2
dxrψn

(
2xr

a
;C(ω)

)
exp

(
− ikxrξ

L

)
. (9.25)

The integral over xr is similar to (9.22),

∫ a/2

−a/2
dxrψn

(
2xr

a
;C(ω)

)
exp

(
− ikxrξ

L

)
=
πaγn(C(ω))

C(ω)
ψn

(
2ξ

b
;C(ω)

)
, (9.26)

and so

∫ b/2

−b/2
dξ exp

(
− ikxsξ

L

)∫ a/2

−a/2
dxrψn

(
2xr

a
;C(ω)

)
exp

(
− ikxrξ

L

)
=
πaγn(C(ω))

C(ω)
∫ b/2

−b/2
dξ ψn

(
2ξ

b
;C(ω)

)
exp

(
− ikxsξ

L

)
=
π2abγ2

n(C(ω))

C2(ω)
ψn

(
2xs

a
;C(ω)

)
. (9.27)
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Equation (9.24) becomes

∫ a/2

−a/2
dxr Π̂(~xr, ~xs, ω)Ĝo(~xr, ~y⋆, ω)ψn

(
2xr

a
;C(ω)

)
≈ 2πL|α(L)|2Ĝo(~xr, ~y

⋆, ω)

(−1)nνn(C(ω))ψn

(
2xs

a
;C(ω)

)
, (9.28)

and using it in (9.23) we obtain

∫ b/2

−b/2
dξS Un(ξS)

[
M⋆

ω,xs
Π̂(·, xs, ω)

]
(ξS) =

(−1)n

8a
γn(C(ω)) νn(C(ω))ψn

(
2xs

a
;C(ω)

)
, (9.29)

as stated in Lemma 3 2.

10 Summary

We have introduced new variational algorithms for optimal illumination and selective array imaging.

Although we considered here imaging in homogeneous media, in high SNR regimes, the algorithms

have been extended to imaging in clutter in [11]. Low SNR due to noise at the receivers is taken

into account in [9], using lower bound constraints on the power of the received echoes.

We showed with numerical simulations and with analysis in the Fraunhofer diffraction regime

that both time reversal and Kirchhoff migration images can improve significantly with optimal

illumination. We found that, at high SNR, the optimal illuminations favor the edges of the array

and the high end of the frequency band. These illuminations give the sharpest images of small

scatterers and they emphasize the edges of extended scatterers.

We also introduced variational, selective subspace array imaging algorithms, based on the SVD

of the array response matrix in the frequency domain. We illustrated with numerical simulations

how the algorithms image selectively clusters of small scatterers.

We obtained analytical forms of the SVD of the array response matrix in the Fraunhofer diffrac-

tion regime and used them to analyze the optimal illumination and selective imaging problems for

time reversal and Kirchhoff migration imaging of extended scatterers. In the case of strip-like scat-

terers, we derived an explicit form of the SVD using the prolate spheroidal wave functions. We

proved in the process that the rank of the response matrix in the frequency domain is given by the

ratio of the strip length and the time reversal spot size.

Using the explicit form of the SVD for strip scatterers we obtained a detailed description of

optimal waveform design for time reversal and Kirchhoff migration imaging. In particular, we

showed how the variational algorithms mask the strong specular reflections from the bulk of the

scatterer and emphasize its edges.

Finally, we studied full linearized least squares imaging for strip scatterers. Kirchhoff migration

is expected to be an approximation of the least squares method, where the normal operator is
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replaced by the identity. We computed explicitly the normal operator and its pseudo-inverse for

the strip and obtained a quantitative comparison between least squares and Kirchhoff migration.
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