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DATA STRUCTURES FOR ROBUST MULTIFREQUENCY IMAGING

MIGUEL MOSCOSO*, ALEXEI NOVIKOVT, GEORGE PAPANICOLAOU#, AND
CHRYSOULA TSOGKAS$

Abstract. In this paper we consider imaging problems that can be cast in the form of an un-
derdetermined linear system of equations. When a single measurement vector is available, a sparsity
promoting ¢1-minimization based algorithm may be used to solve the imaging problem efficiently. A
suitable algorithm in the case of multiple measurement vectors would be the MUItiple SIgnal Clas-
sification (MUSIC) which is a subspace projection method. We provide in this work a theoretical
framework in an abstract linear algebra setting that allows us to examine under what conditions the
£1-minimization problem and the MUSIC method admit an exact solution. We also examine the
performance of these two approaches when the data are noisy. Several imaging configurations that
fall under the assumptions of the theory are discussed such as active imaging with single or multiple
frequency data. We also show that the phase retrieval problem can be re-cast under the same linear
system formalism using the polarization identity and relying on diversity of illuminations. The rele-
vance of our theoretical analysis in imaging is illustrated with numerical simulations and robustness
to noise is examined by allowing the background medium to be weakly inhomogeneous.

Key words. array imaging, phase retrieval, £1-minimization, MUSIC

1. Introduction. Imaging is an inverse problem in which we seek to reconstruct
a medium’s characteristics, such as the reflectivity, by recording its response to one
or more known excitations. The output is usually an image giving an estimate of
an unknown characteristic in a bounded domain, the imaging window of interest.
Although this problem is in all generality non-linear, it is often adequately formulated
as a linear system of the form

(1.1) Ap=b,

where the data vector b € CV is a linear transformation of the unknown vector p € C¥
[13]. A € CNV*E is the model matrix that relates b to p. Typically, the linear system
(1.1) is underdetermined because the number of unknowns K is much larger than the
number of measurements NV, so N < K.

We are interested in this work in imaging problems where the unknown p is M-
sparse with M <« K. Under this assumption (1.1) falls under the compressive sensing
framework [21, 16, 22]. It follows from [16] that the unique M-sparse solution of (1.1)
can be obtained with ¢;-optimization when the mutual coherence® of the model matrix
A is smaller than 1/(2M). The same result can be obtained assuming .4 obeys the
M-restricted isometry property [7] which basically states that all sets of M-columns
of A behave approximately as an orthonormal system.

We show that uniqueness for the minimal ¢; solution of (1.1) can be obtained
under less restrictive conditions on the model matrix A provided that the unknown p
is such that the columns of A that correspond to the support T of p are approximately
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orthogonal, so there exists a small value 0 < € < 1/2 such that

€ .o . .
|<a’i’a‘j>|<Ma V’L,jGT,Z#j.

Under this assumption, we associate to each column vector a;, j € T, its vicinity

. 1
S; = {kz #7j st |(an,a;)| > 2]\4}

that contains all columns of 4 that are approximately parallel to a;. This result
finds interesting applications in imaging since it states under what conditions the
location of well separated reflectors can be determined with high precision. It can be
also used to explain super-resolution, i.e., the significantly superior resolution that ¢;-
optimization provides compared to the conventional resolution of the imaging system,
i.e., the Rayleigh resolution. Moreover, we address the robustness to noise of the
minimal ¢; solution and show that for noisy data the solution p can be decomposed
in two parts: the coherent part p., which is supported in 7" or in the vicinities S},
and the incoherent part p,, usually referred to as grass, that is small. Other stability
results can be found in [7, 8, 17, 35, 18, 4].

The notion of vicinities and weak interaction between scatterers has been con-
sidered in [18] and [4]. In [18], several algorithms for imaging well separated sources
were introduced and analyzed. These algorithms address the issue of high coherence
in A using techniques of band exclusion and local optimization. In [4], a resolution
analysis for /;-minimization and ¢;-penalty was carried out for array imaging in the
paraxial regime. It was shown that for well separated sources or clusters of sources the
minimal ¢; solution is supported mainly in the vicinities of the true sources’ locations.

More recently in [5], the problem of imaging sources in weakly inhomogeneous
media was addressed using Coherent INTerferometry (CINT) followed by ¢; convex
optimization for debluring. This is a natural idea since, as it was shown in [1] (see
also [3]), the CINT image is a convolution of the reflectivity with a Gaussian kernel.
Hence, the resolution in CINT images can be refined by debluring as in [2], where a
level set method was used. In [5], debluring was performed with ¢;-optimization and
its performance was analyzed for well separated sources and well separated clusters
of sources.

We also consider in this paper the more general form that system (1.1) takes when
S multiple measurement vectors (MMYV) are available, so

(1.2) A,p=b,, q=1,...,8

Here, l; = [lig, l2g, - - -, qu]T denotes a parameter vector such as the excitation that
we control. To simplify the notation, we will denote the different excitations by the
scalar ¢ and write A;p = b, instead, unless it is necessary to explicitly state that the
model matrix depends on a vector I,. To solve (1.2) we consider the MUItiple SIgnal
Classification algorithm [34] which has been used successfully in signal processing [23]
and imaging [15, 25]. For a careful analysis of MUSIC for single snapshot spectral
imaging we refer the reader to [26]. We show here that MUSIC gives the exact support
of the solution of (1.2) in the noise free case when the matrices A, admit the following
factorization

(1.3) A, = A A,, with A, diagonal.
2
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In this case, (1.2) admits the following MMV formulation
qu = bQ7 pq = quv

where the multiple unknown vectors p,, ¢ = 1,..., S, share the same support. The
main advantage of this formulation is that we can immediately infer that the data
vectors by, are linear combinations of the same M-columns of A, those that belong to
the support of the unknown p. The implication is that the columns of A indexed by
T = supp(p) span the column subspace of B, the ’signal’ subspace of B. Hence, the
support T is the zero set of the orthogonal projections of the columns of matrix A
onto the null space of the data matrix B. Moreover, the support is recovered exactly
under the assumption that all M-sets of columns of A are linearly independent. We
discuss several imaging configurations for which the factorization (1.3) is feasible as
well as instances where (1.3) holds only approximately and MUSIC is no longer exact
even for noise free data.

Let us remark that for different excitations ¢ we obtain multiple measurement
vectors b, which correspond to linear transformations of the same unknown vector p.
The data can be arranged in a matrix B € CV*% whose columns are the vectors b,
and the MMV formulation may be expressed as a matrix-matrix equation

AP = B,

where the unknown is now the matrix P € CX*¥ whose columns are the vectors
p, = Agp that share the same support. The optimization can therefore be performed
within the MMV formalism as described in [14, 24, 36, 37]. The main idea is to
seek the solution with the minimal (2,1)-norm which consists in minimizing the ¢;
norm of the vector formed by the /5 norms of the rows of the unknown matrix P.
This guarantees the common support of the solution’s columns. We do not pursue
this approach here and refer the reader to [12] for an application of this formalism
to imaging strong scattering scenes as well as to [6] where an MMV formulation
for synthetic aperture imaging of frequency and direction dependent reflectivity was
introduced and analyzed.

We present several configurations in array imaging that can be cast under the
general framework discussed here, such as single- and multiple-frequency array imag-
ing using single- or multiple-receivers. All these problems can be formulated as (1.1)
for a single measurement vector, or as (1.2) when multiple measurement vectors are
available. We also consider the non-linear phase retrieval problem, which according
to [31, 28, 29] can be reduced to a linear system of the form (1.2). This requires
intensity data corresponding to multiple coherent illuminations which when using the
polarization identity are transformed to interferometric data. We consider multiple
frequency intensity data collected at a single receiver due to multiple coherent illumi-
nations that could be generated by a spatial light modulator (SLM) [30]. The solution
of (1.2) may then be computed with Single Receiver INTerferometry (SRINT) as in
[29], ¢;-minimization or MUSIC.

The performance of these imaging methods for the non-linear phase retrieval
problem is studied with numerical simulations in an optical digital microscopy imaging
regime. Our simulations allow us to asses the robustness of the different methods to
modeling errors resulting to perturbations in the unknown phases of the recorded
data. We consider phase perturbations that are either due to grid displacements or
to wave propagation in a weakly inhomogeneous medium. Our conclusions are that
SRINT provides the less satisfactory image in terms of resolution but it is the more
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robust method when there are modeling errors, the ¢; method has the best resolution
but is not very robust with respect to noise, while MUSIC seems to be the more
competitive method at moderate signal to noise ratio regimes because it has better
resolution than SRINT and is less sensitive to noise than ¢;-minimization.

The paper is organized as follows. In Section 2 we present in a abstract linear
algebra framework the conditions under which ¢;-minimization and MUSIC provide
the exact solution to problems (1.1) and (1.2) respectively. We also analyze the
performance of these methods for noisy data. In Section 3 we formulate the array
imaging problem and consider some common configurations used in active array imag-
ing. Moreover, we discuss how the imaging problem can be cast under the abstract
framework of Section 2 and what are adequate data-structures to be used in imaging
with ¢1-minimization and MUSIC. In Section 4, we explore with numerical simulations
the robustness of the imaging methods for the phase retrieval problem in an optical
(digital) microscopy regime. In Section 5 we illustrate with numerical simulations how
our abstract theoretical results are relevant in assessing image resolution. Section 6
contains our conclusions.

2. Linear algebra aspects of imaging algorithms. In this section we dis-
cuss under what conditions ¢;-minimization and MUSIC algorithms provide the exact
solution when there is no noise in the data. We also discuss the performance of these
algorithms for noisy data. We assume that imaging can be formulated as a linear
inverse problem of the form

(2.1) Aip=by,

that is underdetermined. In (2.1), the model matrix

T T )
(2.2) A= ol o . agg‘) € CVxK
1 4 4

relates the unknown vector p € C¥, which is the “image” to be constructed, to
the transformed vector b; € CV, which contains the data. This matrix is fixed by
the physical setup of the imaging system and, therefore, it is given to us. However,
the important observation here is that A; also depends on a parameter vector I =
[l1,1s,...,lx]T which may be varied so as several transformed vectors b; of the same
unknown p can be obtained.

If only one snapshot of array measurements is available for imaging, we solve
(2.1) for a single measurement vector (SMV) ! using ¢; minimization that promotes
the assumed sparsity of the vector p. In that case, we will write (2.1) simply as
Ap = b. When several snapshots of array measurements corresponding to different
parameter vectors l, are available, we solve the corresponding MMV problem using
MUSIC. In that case, we will write (2.1) as Agp = by.

2.1. /; minimization-based methods. In the imaging problems considered
here we assume that the scatterers occupy only a small fraction of a region of interest
called the image window IW. This means that the true reflectivity vector p, is sparse,
so the number of its entries that are different than zero, denoted by M, is much
smaller than its length K. Thus, M = |supp(py)| < K. This prior knowledge
changes the imaging problem substantially because we can exploit the sparsity of p
by formulating (2.1) as an optimization problem which seeks the sparsest vector in
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CX that equates model and data. Thus, for a single measurement vector b we solve
(2.3) min ||plle, subject to Ap=b.

In this form, we may be able to pick the true solution p, if the matrix A and the
sparsity of p, fulfill certain conditions. In particular, we have the following four
theorems whose proofs are given in Appendix A. We denote by || - ||¢, and || - ||, the
{5 and ¢; norms of a vector, respectively.

THEOREM 2.1. M-sparse solutions of Ap = b are unique, if

1 L
(2.4) [{a;,a;)| < oYY Vi # j,
where we assume that the columns of matriz A are normalized so that ||a;|l¢, =1 Vi.

THEOREM 2.2. The M -sparse solution of Ap = b can be found as the solution of

(2.5) min ||n]|e,, subject to An =b,
if
(2.6) laisag) < ==, Vi#j

. (2] QM’ j?

where we assume that the columns of matriz A are normalized so that ||a;|l¢, =1 Vi.

THEOREM 2.3. Let p be a solution of Ap = b, and let T be the index set of the
support of p, so
T =supp(p), and M =|T|.

Fiz a positive e < 1/2, and suppose that the matriz A satisfies:
(i) The column vectors are normalized so that ||a;|l¢, =1 Vi.
(i) The column vectors in the set T are approzimately orthogonal, so

3 .. . .
(2.7) \(ai,aj>|<M, Vi,j€T,i# 7.

(iii) For any j € T the vicinity

(2.8) S, = {k 25 st [apa)| > 2}\4}
has the properties

(2.9) {ak,a;)| <1—-2¢ VkelSj,
and

(2.10) ax, a;)] < % Vk € Sy, Vi # .

Then p, the M -sparse solution of Ap = b, can be found as the solution of

min ||n]le,, subject to An =b.
5
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THEOREM 2.4. Noisy case. Let p be an M -sparse solution of
Ap =10,

and let T = supp(p), so M = |T|. Fiz a positive e < 1/2, and suppose that A satisfies
conditions (i), (i), and (iii) of Theorem 2.5.

Furthermore, let ps be the minimal ¢1-norm solution of the noisy problem
(2.11) min |||, , subject to An = b°,
with b° defined by
(2.12) b’ = b+ b,
such that the noise db is bounded for some small positive 6, so that

(2.13) 6B, < 5.

Assume that A has the property that the solution §p to

(2.14) min || n]le,, subject to An = b,
satisfies
(2.15) 16plle, < C||0b]le,.

Then, we can show that the solution ps of (2.11) can be decomposed as

(2.16) Ps = Pc+ Py,

with p,. the coherent part of the solution supported on T or in the vicinities S; with
j €T, and p; the incoherent part of the solution which is supported away from the
vicinities and it is small. Specifically, for p, we have that for any j € T

()il = 1(po); + D {ag.a)(po)il | < do+C4,

keS;
with
2C05(1 —¢)  2e(|lplle, + C9)
50 = =+ .
M(1—2¢) M
While for p; we can show that:
lpille, < 1,
with 6, given by
4CH(1 —¢)
0 =00+ ———F—
! i

Theorems 2.1 and 2.2 are well known results in the literature of compressive
sensing [21, 16, 22]. The first theorem tells us that the M-sparse solution of the linear
system Ap = b is unique when the columns of the matrix satisfy the orthonormality
condition (2.4). This condition is satisfied when the mutual coherence of the matrix
A, defined as max;-; |(a;, a;)|, is smaller than 1/(2M). This first theorem is an
£y uniqueness result. The second result, Theorem 2.2, tells us that the unique M-
sparse solution of Ap = b can be found by solving the ¢; minimization problem (2.5).

6
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Algorithm 1 GelMa for solving (2.5)

Require: Set y = 0, z = 0. Pick the step size 8, and a regularization parameter .
repeat
Compute the residual r = b — Ay
y <= nrp(y + BA (2 + 1))
z<=z+0r
until Convergence

This is a very useful result because it is the £; minimization problem that can be
solved efficiently in practice, for example, by using the algorithm GelMa described in
Algorithm 1, which involves only simple matrix-vector multiplications followed by a
shrinkage-thresholding step defined by the operator 7. (y;) = sign(y;) max{0, |y;| —7}.
In the noiseless case, this algorithm converges to the exact solution independently of
the value of the regularization parameter 7. For more details we refer to [27].

Theorem 2.3 is to the best of our knowledge new. Its proof is given in Appendix
A. This theorem tells us that the M-sparse solution of Ap = b can be recovered
by solving the ¢; minimization problem under a less stringent condition than (2.6)
provided that the column vectors of the matrix A that are in the support of the true
solution p, are approximately orthogonal, that is, they satisfy (2.7). Note that we
allow for the columns of A to be close to collinear. Moreover, we define the vicinities
S; for the column vectors a; in the support of the true solution, and we assume that
all the column vectors that are in the vicinity of a support column vector are close
enough to it, so (2.9) holds. We also assume that the vicinities S; and S}, for ¢ # j,
are far enough, so (2.10) holds.

The last result, Theorem 2.4, is the noisy version of Theorem 2.3. It shows that
when the data b is not exact but is known up to some bounded vector §b, the solution
ps of the minimization problem (2.11)-(2.12) is close to the solution of the original
(noiseless) problem in the following sense. The solution ps can be decomposed in
two parts: the coherent part p. supported in 7" or in the vicinities S;, j € T, of the
true solution, and the incoherent part p; usually referred to as grass in imaging. The
grass is supported away from the vicinities S; and it is shown to be small assuming
that (2.15) holds for the solution to (2.14) and assuming that the norm of the noise
is small so (2.13) holds. Other stability results can be found in [7, 8, 17, 35, 18, 4].

We will see in Section 5 how Theorems 2.3 and 2.4 can be applied in imaging.

2.2. MUSIC. MUSIC is a subspace imaging algorithm based on the decomposi-
tion of the measurements into two orthogonal domains: the signal and noise subspaces
[34]. The key is to be able to form a data matrix

by by ... b
(2.17) B= | "2 o S by by ... bg | eCN*S,
bxi bne ... bys v v

whose column vectors by are obtained from a family of linear systems A,p = b, that
can be rewritten in the form

(2.18) Ahgp=1b,, q=1,...,85,

where A, is a diagonal matrix whose entries can be controlled to form the images.
The assumption here is that the model matrices A, relating the unknown vector p

7
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with the data vectors b, can be factorized into two matrices

(2.19)
lig 0
5 T 7 T 0 oy
A= a a ... ax | €eCV*f and A, = . € CExK
L 3 -
0 kg
with A independent of the parameter vector Iy = [liglags- -, lkg)T, and A,

diagonal. Under this assumption, the imaging problem (2.18) can be reinterpreted in
the form of an MMV problem

(2.20) Ap, =b,,

with p, = Agp. Physically, each p, is a transformed version of the same unknown
vector p. The data can be arranged into the data matrix (2.17), and (2.20) may be
expressed as a matrix-matrix equation

(2.21) AP = B,

where the columns of P € CK*5, P, = Ayp, share the same support.

The important element of the new formulation (2.20) (or (2.21)) is that now all
the data vectors b, are linear combinations of the same M columns of A (or A), those
columns that correspond to T' = supp(p), with M = |T|. Thus, every column of A
indexed by T is contained in the column space of B, the signal subspace, which is
orthogonal to the noise subspace. Hence, one can simply find the unknown support
T by projecting the columns of A onto the noise subspace. Both, the signal and the
noise subspaces can be obtained via the singular value decomposition (SVD) of B.

More precisely, the objective of a MUSIC algorithm is to find the support T of
an unknown sparse vector p = [p1, p2, ..., px|’ with a number of nonzero entries M
much smaller than its length K. With a sufficiently diverse number of experiments
S > M we create a data matrix B, and we compute its SVD

K
(2.22) B=UXV* = Zajujv;f .
j=1

If the data is noiseless there are M nonzero singular values g1 > g9 > -+ > o) > 0
with corresponding (left) singular vectors w;, j = 1,...,M that span the signal
subspace of CV. The remaining singular values o, j = M + 1,..., K, are zero, and
the corresponding (left) singular vectors span the noise subspace of CV. Because the
set of columns of A indexed by T' = supp(p) also spans the signal subspace, the sought
support T corresponds to the zero set of the orthogonal projections of the columns
vectors aj, onto the noise subspace. Thus, it follows that the support of p can be
found among the zeros of the imaging functional

M
2.23 ZOIGNAL aru;®, k=1,... K,
k k™
j=1

or, equivalently, among the peaks of the imaging functional

(2.24) AL — ”a’“”f?* Ck=1,... K.
Zj:MJrl lay, uj|2
8
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Furthermore, if all sets of M columns of A are linearly independent, then the peaks
exactly coincide with the support of p in the noiseless case. In (2.24), the numerator
is a normalization factor.

Once the support is recovered, the problem typically becomes overdetermined
(N > |supp(p)|) and the nonzero values of p can be easily found by solving the linear
system restricted to the given support with an ¢, method [13].

Regarding imaging with noisy data, it follows from Weyl’s theorem [39] that when
noise is added to the data so B — B® = B + E with ||E||s, < J, then no singular
value 0° moves more than the norm of the perturbation, i.e., ||0® — o, < J. Hence,
(i) perturbed and unperturbed singular values are paired, and (ii) the spectral gap
between the zero and the nonzero singular values remains large if the smallest nonzero
unperturbed singular value oy > 6. If the noise is not too large, then the rank of
the data matrix B° can be determined, and so is M = |T|.

The signal and noise subspaces are also perturbed in the presence of noise. It can
be shown, however, that the perturbed subspaces remain close to the unperturbed
ones, with changes that are proportional to the reciprocal of the spectral gap g =
Ufw — op+1- This follows from Wedin’s Theorem [38].

THEOREM 2.5. (Wedin) Let B have the SVD B = Q + Qo with Q = UXVT and
Qo = UpSo VL, and let the perturbed matriz B9 = B+ E have the SVD B% = Q° —l—Qg
with Q° = Usxovet and Q) = UngVO‘;T, If there exist two constants o > 0 and
B >0 such that 0maz(Qo) < o and 0pmin(Q°) > a + B, then the distance between the
orthogonal projections onto the subspaces R(Q) and R(Q%) is bounded by

1)
(2.25) | Prigsy — Pri@)lle. < 3

where 6 = max(||EV ||e,, || E*Ul|e,)-

There is much work done on the robustness of MUSIC with respect to noise. We
refer to [26], and references therein, for a recent discussion about how much noise
the MUSIC algorithm can tolerate. When we apply the Theorem 2.5 to our imaging
problem, where Qg = 0, we obtain the following result whose proof is in Appendix B.

THEOREM 2.6. Let X =Diag(p) be a diagonal matriz that solves
(2.26) AXL = B,
where A satisfies conditions (i), (ii), and (iii) of Theorem 2.3 for a fized ¢ < 1/3,

i o lig
I lor oo lag  CKxS
lk1 k2 lks

and B is the noiseless data matriz (2.17) with SVD B = Q = UXVT. Let the
perturbed matriz B® = Q% + Qg be such that amax(B‘S — B) < 4. Suppose p, the vector
diagonal entries of X, is sparse with T = supp(p), M = |T|, M < size(p), and

Pm = g};ﬁ%{lpil}-
Let Ly be the submatrix of L, formed by the rows corresponding to T', has

(2.27) ol = omin(LT).
9
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If
(2.28) 20 < pmol (1 - 3e),
the orthogonal projections onto the subspaces R(Q%) and R(B) are close:

)

(2.29) IPr@n) = Preplle: < =775

To conclude, the main step in setting up MUSIC is to be able to find a suitable
factorization of the model matrix as A, = /{Aq, where A, is diagonal. In that case,
the imaging vectors are just the columns of A that are given. We discuss next imaging
situations in which this factorization is possible and MUSIC can form form images
with high precision. We also discuss applications in which the factorization is only
approximate and, hence, images obtained with MUSIC lose resolution.

3. Array imaging: data models. The goal of array imaging is to form images
inside a region of interest called the image window IW. In active array imaging the
array probes the medium by sending signals and recording the echoes. Probing of the
medium can be done with many different types of arrays that differ in their number
of transmitters and receivers, their geometric layouts, or the type of signals they use
for illumination. They may use single frequency signals sent from different positions,
or multifrequency signals sent from one or more positions. Of course, the problem of
active array imaging also depends on the receivers. They can record the intensities
and phases of the signals that arrive to the array or only their intensities.

In this section, we describe some common configurations used in active array
imaging. The array, with N transducers separated by a distance &, has a characteristic
length a (see Figure 1). The transducers emit signals from positions &5 and record
the echoes at positions &, s,r = 1,2,..., N. They can use single or multifrequency
signals, with frequencies w;, I = 1,...,5. Our goal is to reconstruct a sparse scene
consisting of M point-scatterers at a distance L from the array, whose positions Q’nj
and reflectivities a,,; € C, j = 1,..., M, we seek to determine. The ambient medium
between the array and the scatterers can be homogeneous or inhomogeneous.

In order to form the images we discretize the IW using a uniform grid of points
Y, k=1,..., K, and we introduce the true reflectivity vector

Po = [p()la-"apOK]T S CK?

such that por = Zjvil Qi 5ﬂnj g k=1,..., K, where §.. is the classical Kronecker
delta. We will not assume that the scatterers lie on the grid, i.e., {§,,,...,Y,,, }

{Y1,-.-, Y} in general. To write the data received on the array in a compact form,
we define the Green’s function vector

~ ~ ~

(3.1) (g w) = [G(Z1, G;w), G(@2, s w), - .., G(ZN, Gy w)] "

at location 4 in the IW, where G (Z, §;w) denotes the free-space Green’s function of the
homogeneous or inhomogeneous medium. This function characterizes the propagation
of a signal of angular frequency w from point 4 to point &, so (3.1) represents the
signal received at the array due to a point source of frequency w at §. When the
medium is homogeneous,

5 exp(ix|€ — 4|)

(3.2) G(&, giw) = Go(&,F;w) = ———— 2V K=

w
47| T — g co
10
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Fic. 1. General setup of an array imaging problem. The transducer at &s emits a probing
signal and the reflected intensities are recorded at @,. The scatterers located at '_fjj, j=1...,.M
are at distance L from the array and inside the image window IW.

In this case, the Green’s function vector is

go(ng) = [éo(ila g,w>7 60(52,§§W)a ey éo(iN,g,W)]T

We assume that the scatterers are far apart or that the reflectivities are small, so
multiple scattering between them is negligible. In this case, the Born approximation
holds and, thus, the response at &, (including phases) due to a pulse of angular
frequency w; sent from Z, and reflected by the M scatterers, is given by

M
(33) P(a_fra is; wl) = Z OZjG(:I_fr, :l_jnj 5 wl) G(:I_jn7 ’ is; wl) )
j=1
and the the full response matrix that contains all posible information for imaging by
M
(3.4) P(w) = [P(@, Bs;0)] = > ;@(H,,:0) G (Fi00) -
j=1

Next, we describe different situations of interest in active array imaging.

3.1. Single frequency signals and multiple receivers. Let us first consider
the case in which only one illumination of frequency w is sent using the IV sources in
the array located at positions &, s = 1,..., N. The echoes are also recorded at the
N receivers located at &,, 7 = 1,..., N. If f(w) = [fi(w),..., fx(w)]* represents the
illumination vector whose entries are the signals sent from the sources in the array,
then g = G(Fp:w)T fw) is the field at the grid position ,, in the IW. Thus,

fw) —
) o @) (£)
5 i) 7@ ai. SU) G NxK
(35) Az, = gf(w)gjyl,w) 971y G2iw) Ipdlxiw) | €C

is the model matrix that connects the unknown reflectivity vector p € CX to the data
vector by ) € CV that depends on the illumination f(w).

11
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If a single illumination is used to form an image, then active array imaging
amounts to finding p from the system of linear equations

(3.6) Af)P = 07 -

Abusing a little bit the notation used in Section 2, we have indicated in (3.6) that

~

the control parameter vector is the illumination f(w). According to (2.1)-(2.2), the

i ] — ) ~(2) ~(K)

parameter vector is I = Lgf(w)’ 9wy 95 u

tion vectors g(¥;w) fixed by the physical layout, and on the illumination vector f(w)

that we control. The system of linear equations (3.6) can be solved using appropriate

ly or £1 methods. If an f1-norm minimization method is chosen, we would seek the
sparsest vector p among all possible vectors satisfying (3.6).

If, instead, multiple illuminations are used to form the images, then we can use

an MMV approach to find the solution with MUSIC. Indeed, note that the model

matrix (3.5) can be factorized into two matrices

|7 which depends on the Green’s func-

~ T ) )
(3.7) A= ggw) g@xw) ... gHgiw) | eCV*K
1 { {
and
~(1)
Fwy 0
0 g2
(3.8) Afiwy = 1) € CKxK
~(k)
0 9%,

so that Af(w) = flAf(w). Hence, it follows from the discussion in Section 2 that (3.6)
can be written in the MMV form

(3.9) Ap,=b,, q=1,...,85,

and the support of p can be found exactly with MUSIC if enough data vectors b Fo(w)
q
are available. In (3.9), by, = b}? and p, = Af P represents an effective source

w)?
weighted reflectivity vector WithQ(tﬁe same support as p, and whose nonzero entries
vary with f,(w). We remark that the equivalent source problem (3.9) can be used to
account for multiple scattering between the scatterers (see [12] for details).
To show that Theorem 2.6 is relevant for imaging we write (3.9) as (2.26) with
the unknown matrix X =Diag(p), the data matrix B formed by the S vectors b,, and

the illumination matrix

T T T
L=| ATfi(w) ATfw) ... ATfs(w) | €C
A 1 A
whose ith column fleAZ(w) = [ﬁ%gw),ﬁgzw), e ,§](;2))]T contains the fields at all grid

positions 4, k =1,..., K due to the illumination f,(w). Then, condition (2.27) can
be interpreted as an orthogonality condition on the illuminations. Furthermore, if we

12
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111 suppose that S = N and use the illuminations fq(w) = f(w)ey (e, is the vector with
112 a 1 in the gth coordinate and 0’s elsewhere) for all ¢ = 1,...,S, then L = f(w)flT
113 In this case, 07 = omin(L7) > (1 — 3¢)|f(w)]|, assuming A satisfies conditions (i), (i)
414 and (iii) of Theorem 2.3 (see proof of Theorem 2.6 in Appendix B).

415 3.2. Multifrequency signals and one receiver: the one-dimensional prob-J}
116 lem. Consider now a one-dimensional problem with scatterers located at different
117 ranges. To determine their positions we only use one transducer that emits and re-
418 ceives multiple frequency signals. We assume that the scatterers are far from the
419 transducer, but not far from each other so the denominator of the Green’s function
420 in (3.2) can be approximated by a constant. In that case, the collected data are
421 approximately the Fourier transform of the reflectivity vector to be imaged.

122 To fix ideas, denote by z, = L + (n — 1)Az the distance between the single
423 transducer and the scatterer of reflectivity p,, n =1,..., K. Then,

K
124 (3.10) > erminpy =by, m=1,...,28,

n=1

425 relates the positions and reflectivities of the scatterers to the measurements b,, at
426 frequencies w,, = K co, where ¢y is the wave speed in a homogeneous medium. In

127 this problem, we seek to recover the unknown vector p = [p1,pa,...,pk] from the
128 multifrequency data vector b = [by, b, ..., bog] recorded at a single receiver.
429 The next assumption allows to succinctly formulate one-dimensional multifre-

430 quency MUSIC in the form of an MMV problem using the Prony-type argument (see,
431 for example, [25]). Namely, suppose that the measurements are obtained at equally
432 spaced (spatial) frequencies k,, = k1 + (m — 1)Ax, m =1,2,...,2S5. Then, we write
133 (3.10) in matrix form as

434 (3.11) Asp =0,
435 where
ei?mlzl ei2n122 ei2ﬁ121{
12K2 % i2K2% 12K22
R
436 (3.12) Aazs =
eiQIigszl 6i2/{gsz2 ei?liQszK

137 is a Vandermonde matrix of dimensions 25 x K. Since we only have one data vector
138 b € C?% we cannot determine from it a signal space of dimension M = |supp(p)|.
439  However, following the general idea of Prony-type [32] methods we form the S x S
440  data matrix

by bo bs
441 (3.13) B= by b3 ... bsya :
bs bsii ... bas

442  whose rank is M if S > M. If we now set the S x K matrix

ei2ﬁlz1 ei2)<,122 . ei2l€12K
- ei2n2z1 ein{QZQ e’iZKQZK

143 (3.14) A=As =
eiQHszl ei2H5Z2 o ei2HSZK

13
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and the K x K diagonal matrices

e 0 0\’

0 ei2hrz2 0 0
(3.15) Ag = ... ei2Bkzk— 0 '

0 0 0 gi2AkRzK

with ¢ = 1,...,.5, then it is straightforward to verify that Aqu = by, where b, is
the gth column of the matrix B in (3.13). Thus, we obtain the desired structure

qu = bq7

and MUSIC can be applied directly to find the support of p. Subsequently, as noted
above p itself can be determined by solving the linear system restricted on the support
p.

If M <« K, so the vector p is M-sparse, then the solution can also be found
directly from (3.11) by using an ¢;-norm minimization approach. Note that (3.11)
always has a unique M-sparse solution if M < S. Indeed, we argue by contradiction
that it is not possible to have more than one M-sparse solution if M < S. Suppose
there are two M-sparse solutions p; and p,. Then, Asgy = 0 for y = p; — py. Since
the support of y is less or equal than 2M, we have 2M linearly dependent columns
of Asg, which is impossible for Vandermonde matrices since they are full rank.

3.3. The single frequency phase retrieval problem. In its classical form,
the phase retrieval problem consists in finding a function A from the amplitude of its
Fourier transform h. In imaging, it consists in finding a vector p that is compatible
with a set of quadratic equations for measured amplitudes. This occurs in imaging
regimes where only intensity data is recorded, which means that most of the infor-
mation encoded in the phases is lost. Phase retrieval algorithms have been developed
over a long time to deal with this problem [20, 19]. They are flexible and effective
but depend on prior information about the image and can give uneven results. An
alternative convex approach that guarantees exact recovery has been considered in
[10, 9] but its computational cost is extremely high when the problem is large. When,
however, multiple measurements of the object to be imaged are available, we may re-
cover the missing phase information and image holographically much more efficiently
[31, 28, 29]. By holographic imaging we mean the use of interference patterns between
two or more coherent sources in order to form the images [40].

Indeed, let us consider single frequency imaging with multiple sources and re-
ceivers as in problem (3.9), where the data vectors b, = /ii)q, that depend on the

illumination f q(w), contained the amplitudes and phases of the recorded signals We
now, however, assume that only the amplitudes squared of the components of these
data vectors can be measured. Then, the phase retrieval problem is to find the un-
known vector p from a family of quadratic equations

|qu|2:|bq|2? qzla"'an

understood component wise. This problem is nonlinear and nonconvex and, hence,
difficult to solve. In fact, it is in general NP hard [33]. However, if an appropriate set
of illuminations is used, we can take advantage of the polarization identity

2Re < u,v > = |u+v|? — |[u|* - |v]?
(3.16) 2Tm < u,v > = |u — iv|* — |ul® — |v]?
14
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to solve a simple linear system of the form
(3.17) Agp = mfz’”) .

The polarization identity allows us to find the inner product between two complex
numbers and, therefore, its phase differences. In (3.17), ,(1 ") is the vector whose

ith component is the correlation bgr)bg) between two signals measured at @,., one

corresponding to a general illumination fq(w) and the other to an illumination e; =
[0,0,...,0,1,0,...,0]7 whose entries are all zero except the ith entry which is 1.

Using the polarlzatlon identity (3.16) we can obtain b(r)b(r) from linear combinations
of the magnitudes (squared) [b5”|2, |b(r)|2 1657 + b(r)|2 and [b{") + ib{ T)|2 A physical

interpretation of (3.17) is as follows. Send an illumination f q( w), collect the response
at &,, time reverse the received signal at &,, and send it back to probe the medium
again. Then, m( ") represents the signals recorded at all receivers &;, i =1,..., N.
To wrap up, if the phases are not measured at the array but we control the
illuminations, the images can be formed by solving (3.17). We can use ¢;-norm
minimization if only one vector m,(f) is obtained in the data acquisition process,
or we can use MUSIC if enough vectors of this form are available [31, 28]. Note that

in this approach, where only one frequency w is used, the receiver &, is fixed.

3.4. Multiple frequency signals and multiple receivers. Finally, we con-
sider the most general case in which multiple frequency signals are used to probe
the medium from several source positions, and the echoes are measured at several
receiver positions. This case considers all the possible diversity of information that
can be obtained from the illuminations. We discuss first the situation in which the
receivers measure amplitudes and phases and, then, the situation in which they can
only measure amplitudes squared.

3.4.1. Imaging with phases. Assume that the data (including phases)
(3.18) d(Z,,&s,w;) = P(&,, Zs;wy),

for all receiver locations &,, source locations Z,, and frequencies w; are available for
imaging. For an array with N colocated sources and receivers that emit S differ-
ent frequencies the number of measurements is then equal to N2 S. To make use of
the coherence of these data over all the frequencies we could stack them in a col-
umn vector b, but then we would have to deal with a huge linear system Ap = b
of size N2S x K. To reduce the number of data used in an ¢; approach, we con-

~

sider that the illumination is of separable form, i.e., f(w;) = f(w;) f and the same

vector f is used for all the frequencies w;, [ = 1,...,S. Thus, for an illumination
f=[f(w)? ,f(wg) v Flws) T we stack the data (including phases) in a column
vector

T T T T
(3.19) by [bf(w ),b ) bf(ws)} ,

and we solve the system of equations

(3.20) Azp=bs,
15
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with the (N - S) x K matrix

(1) f (2) T (K) T

f(wl)g(yl;wl) gf(wl)g(ymwl) gf(wl)g( KiW1)
{ 1 1
(1) f (2) T (K) T

(321)  A-= FanIW102) - G5, 825 w2) Ty I Wi w2)
f d 1 1
() ! (2) (K) I

s IWiws) Tg, 9 Waiws) Ty F i ws)
!

Here, §;Aj() y = §(gj;wl)Tf(wl) denotes the field with frequency w; at position ;:jj .
wy

The system (3.20) relates the unknown vector p € CX to the data vector bse C(N-9)

in a coherent way. The system of linear equations (3.20) can, of course, be solved by
appropriate ¢ and /1 methods.

However, because (3.20) cannot be written in the form of an MMV problem, MU-
SIC cannot be used to identify the support of p as in the previous imaging problems.
The issue here is that matrix (3.21) cannot be factorized in the form Az = flAf
)
where the scatterers are far from the array, and the array and the IW are small so the
wavefronts that illuminate the scatterers are planar, we can take into account these
changes over frequencies explicitly to image coherently with MUSIC.

Indeed, assume for simplicity that only one source at &; = (xs,0) with cross-
range vector s = (Zsz,Tsy) emits the signals, i.e., for all the frequencies w; we use

the N-vector f(w;) = fis=10,0...,0,1,0,...,0]" with all the entries equal to zero
except the sth entry which is one. In the paraxial regime, where A\ < a < L and
the IW is small compared to L, the illumination at position 4; = (yj, L + n;) can
be approximated by g;]) ~ ei'ﬂ(ﬂj+(ms—yj)2/2L) ~ eiﬁzmeiﬁc(ms—yj)z/ﬂ and, thus,

fre
Az,

because the scalars ) depend on frequency. However, in the paraxial regime,
1

~ AA 7. where

T T T
h(y;w1)  h(Yy;wi) h(yx;w)
{ 1 1
1 0 1
(3.22) - h(ﬂi,wz) h(gi;wz) h(ﬁszz)
R R
h(y;ws)  h(yy;ws) h(§x;ws)
l 1 1
16
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with h(g;;w) = €1 G(g;;wr), and

einc(ms—y1)2/2L 0
(323) A 0 eire(To—Y,)* /2L
. .?\c,s =

0 emc(ws—yk)z/zL

In this approximation, the nonzero entries of the diagonal matrix (3.23) are given by
the illumination relative to the central frequency k.. Then, the multiple-frequency
MUSIC formulation is of the MMV form

(3.24) ANz p=B,

with A as in (3.22), A+

7., asin (3.23), and the (V- S) x N matrix

(3.25) B = P =[P(w)", P(w)?,..., P(ws)"]*

corresponding to stacking the array response data matrices (3.4) for multiple frequen-

cies in a column. With this data structure, multiple-frequency imaging can be carried

out coherently using MUSIC with the column vectors of (3.22) as the imaging vectors.
We could have used instead the alternative data structure

P(Wl) 0 0
(3.26) B=P!= 0 P,(%u,z) . 0
0 0 0 P(ws)

to image with MUSIC. However, that would be as if imaging with each frequency
separately and summing up the resulting images incoherently, so there would be no
significant improvement over single frequency imaging.

To summarize, multiple frequency imaging with phases can be done in all regimes
by solving (3.20) with suitable ¢3-norm or ¢;-norm methods. The matrix-matrix
formulation (3.24) can be used to form the images with MUSIC or using (2,1)-matrix
minimization as in [12]. Recall that (3.24) is an approximate formulation, which is
valid for the paraxial regime.

3.4.2. Imaging without phases. Assume now that only the intensities can be
recorded at the array. In subsection 3.3 we showed that with multiple sources and
multiple receivers, but a single frequency, we could recover cross correlated data from
intensity-only measurements if we control the illuminations and, then, we could image
holographically. In general, if several frequencies are used for imaging, we can fix one
of the three possible variables (&, &s,w) and proceed similarly. For example, we can
fix the receiver position &,., and recover the multifrequency interferometric data

(327) d((a_frv j’7“)a (:i:sv is’)v (w,w’)) = P(ira is; W)P(a_frv £S’§ w/)

for all pairs of frequencies (w,w’) and source locations (&, Zs ).
To understand the type of data that we can use in this situation, let us consider
one row of the N x (N - S) full response matrix for multiple frequencies

(3.28) P’ =[P(w), P(w2),...,P(ws)],
17
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and denote the r-th row of this matrix by

(329) P, = [pr17pr27 cee 7p7‘N-S'] .

Here, p,; with j = j(s,1) = s+ (I —1)- N, denotes the received signal at &, when the
source at & sends a signal of frequency w;. With this notation, and denoting by the
superscript -* the conjugate transpose of a vector,

(3.30) M" = plp,

is the rank-one matrix whose jth column corresponds to the vector mgj in the right
hand side of the linear system (3.17), introduced in subsection 3.3 for single frequency
imaging, but generalized here so as to account for multiple frequencies, i.e., for [ =
1,...,S. That is, the jth column of (3.30) contains the correlations of the response
received at @, when a signal of unit amplitude and frequency w; is sent from & to
probe the medium (j = s+ (I — 1)N), with all the other responses received also at
Z, when unit amplitude signals are sent from all the sources with all the different
frequencies. In short,

(3.31) [M")ij = Driprj = (P,€:)" D,.€; -

Since M" is rank one, all the columns are linearly dependent, so we can only use
one of its columns to solve the imaging problem

(3.32) Az, p = mgj

for one €;, and form the images with an f-norm or ¢;-norm method. The matrix Az,
is given by (3.21) and, hence, the model (3.32) is exact.

Alternatively, once the matrix M" has been obtained from intensity-only mea-
surements, imaging can be done using the Kirchhoff migration functional

(3.33) T*M = diag(AL, M" Ag,).

The ¢y images (3.33) are very robust with respect to additive measurement noise, but
they are statistically unstable when imaging is done in a randomly inhomogeneous
medium or when there are modeling errors due to off-grid scatterers. Both situations
lead to perturbations in the (unknown) phases that may make the Z¥M images depen-
dent on the particular realization of the medium and/or the positions of the scatterers.
In [29], we showed that statistical stability can be enhanced by masks that limit the
frequency and source offsets of the measurements used in (3.33). Hence, if the pertur-
bations of the phases are important, we can use the Single Receiver INTerferometric
(SRINT) imaging functional given by

(3.34) IORINT — diag(A2, 2 © M" Az,) .

In (3.34), the mask Z is a matrix composed by zeros and ones restricting the data
to coherent nearby source locations and frequencies, and ® denotes component-wise
multiplication. The same idea can be used for stabilizing the ¢;-norm minimization
method if the perturbation of the phases are important. We can just replace the jth
column of the matrix M" by the jth column of the masked data Z® M", and remove
the corresponding rows from the model matrix Ag, .

On the other hand, as noted in [31, 28], the support of the reflectivity p can be
recovered exactly by using the MUSIC algorithm on the single frequency interfero-
metric matrix M(w) = P*(w)P(w). Once the support of p is found, we can estimate

18
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the reflectivities by solving a trace minimization problem restricted to the support of
p (see [10, 31] for details).

For multiple frequencies, multiple sources and multiple receivers one can use the
data structure

ﬁ(wl)zi(wl)
(3.35) ape | Pl
P(ws)*P(w1)

for pairs of frequencies (wj,wi1), I = 1,...,5, to image coherently using MUSIC.
Indeed, the matrices M¢ as in (3.35) and P° defined in (3.25) have the same column
space and, therefore, MUSIC can form the images using the SVD of M€ and the
column vectors of (3.22) as imaging vectors. We denote these data structures with
the superscript ¢ to point out that we have stacked the one frequency matrices P(w;)
and the two frequencies matrices P(w;)*P(w1) in a column.

As noted in the previous section we could have used instead the alternative data
structure

P(w1)*P(wr) 0 0
(3.36) Me = 0 P(w2)*P(w) ... 0
0 00 Plus) Plws)

to image using MUSIC. However, as we have already explained, if we used the SVD
of M? to obtain the signal and noise subspaces, then the frequencies are not used
coherently and there is no improvement over single frequency imaging.

In summary, multiple frequency imaging with intensity-only can be done in all
regimes by solving (3.32) with appropriate fo-norm or ¢;-norm methods or, in the
paraxial regime, by forming the images using MUSIC on the data structure (3.35)
with imaging vectors given by the column vectors of the matrix (3.22). MUSIC on the
data structure (3.36) should not be used since multiple frequencies are not processed
coherently. The performance of these methods will be assessed in Section 4, where we
show numerical experiments in homogeneous and weakly inhomogeneous media.

4. Numerical Simulations. We present here numerical simulations that illus-
trate the performance of the different imaging methods discussed in the previous sec-
tions. Specifically, we consider multifrequency interferometric imaging without phases
discussed in subsection 3.4.2, and we present the images obtained with £;-norm min-
imization, SRINT, and MUSIC using the data structures M¢ and M¢. Our objective
is to study the robustness of these imaging methods in the presence of noise, that
is perturbations in the unknown phases of the collected signals. Two types of phase
perturbations are considered, systematic due to off-grid placement of the scatterers
and random resulting from wave propagation in an inhomogeneous ambient medium.

4.1. Imaging setup. We consider a typical imaging regime in optics, with a
central frequency fy = 600 THz corresponding to a central wavelength Ay = 500nm.
We use S = 12 equally spaced frequencies covering a total bandwidth of 30THz. In
this regime, the decoherence frequency of the data 24 is equal to the total bandwidth.
All considered wavelengths are in the visible spectrum of green light.

The size of the array is a = 500\, and the distance between the array and the IW
is L = 10000\g. The ITW, whose size is 120\g x 60)\g, is discretized using a uniform
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This manuscript is for review purposes only.



650
651
652
653
654
655
656
657
658
659

660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

686

lattice with mesh size 4\g x 2)\g. The medium between the array and the IW is
inhomogeneous, with weak fluctuations and long correlation lengths with respect to
the central wavelength. The propagation distance L is large so cumulative scattering
effects are important, but not too large so the phases of the signals received at the
array still maintain certain degree of coherence. In all the figures, the true locations
of the scatterers are indicated with white crosses, and the length scales are measured
in units of Ag.

Again, we assume that the phases of the signals received at the array cannot be
measured. Hence, only their intensities are available for imaging. These measure-
ments are collected at only one receiver, so we can use the methods explained in
subsection 3.4.2 to image interferometrically. We consider imaging in homogeneous
and inhomogeneous media.

9980 10020 9980 10020 9980 10020

10000 10000
rangeina, angs i,

w38,

Fi1Gc. 2. Imaging in a homogeneous medium. There is no noise added to the data and the
scatterers are on the grid. From left to right: SRINT image, MUSIC with M®, MUSIC with M¢
coupling over frequencies, and £1-norm minimization applied on one column of the masked matrix
ZOM".

4.2. Imaging in homogeneous media. Let us first consider imaging in ho-
mogeneous media. For the imaging system described above, we expect cross-range
and range resolutions of \gL/a = 20\g and Cy/B = Ao fo/B = 20\¢, respectively. In
order to keep the resolution fixed with respect to imaging in inhomogeneous media
that we consider afterwards, we also apply masks to the data used to image in the
homogeneous medium. This reduces the cross-range resolution to A\gL/Xyg = 32X
corresponding to X4y = 5a/8. The range resolution does not change because the
decoherence frequency 24 is equal to the total bandwidth.

In Figure 2, the scatterers lie on the grid and there is no noise in the data. We
observe that SRINT (left image) provides a quite limited resolution and it cannot
resolve two of the four scatterers. On the other hand, imaging with MUSIC (two
middle images) or imaging using ¢;-norm minimization (right image) give much better
results. MUSIC using the block-diagonal matrix M? (second image from the left) gives
exact recovery, while MUSIC using the M€ matrix (third image from the left), that
couples all the frequencies, is less accurate. This is so because, as we explained in
Section 3.4, MUSIC with M€ is not exact as it provides approximate locations of the
scatterers only in the paraxial regime. Finally, the /1-norm approach recovers exactly
the four scatterers as can be seen in the right image of this figure.

Figure 3 shows the same experiment as Figure 2 but with the scatterers displaced
by half the grid size with respect to the grid points in range and cross-range directions.
This produces perturbations in the unknown phases of the collected signals due to
modeling errors. Because the point spread function is, in this case, much wider (of the
order of 20)g) than the off-grid displacements, the image formed with SRINT (left
plot) is very robust with respect to these perturbations in the phases. However, the
image obtained with MUSIC using the data structure M? (second plot from the left)
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deteriorates dramatically because the multiple-frequency information contained in the
data is not processed in a coherent way. On the other hand, both MUSIC with the
M¢ data structure (third plot from the left) and ¢;-norm minimization (right plot)
are very robust with respect to the off-grid displacements.
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Fic. 3. Same as Figure 2 but with the scatterers off the grid. The scatterers are displaced by
half the grid size in both directions from a grid point.

We study next the performance of the proposed methods for imaging in inhomo-
geneous media with weak fluctuations and long correlation lengths with respect to Ag.
The challenge is to obtain similar results in this case.

4.3. Imaging in random inhomogeneous media. Consider the setup dis-
played in Figure 4 with four scatterers in the right (black circles) at a distance
L = 10000 from the array (black stars). The data used in the numerical experiments
are generated using the random phase model which is frequently used to account for
weak phase distortions [3, 13, 5, 29]. In this model, the standard deviation of the
perturbations of the phases is given by U\/E/ Ao, where o and [ denote the strength
and the correlation length of the fluctuations of the medium, respectively. If we in-
troduce the characteristic strength g = Ao/ V1L, for which the standard deviation of
the random phases is O(1), we can quantify the perturbations of the unknown phases
by the dimensionless parameter € = o/0y.

In order to study the effect of phase distortions due to a random medium on
imaging, we consider that the scatterers lie on the grid. Imaging in random media
with ¢1-norm minimization has also been considered in [13, 5].

-500 w T ; .
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' s 4
f u"' i b!*"
500 MANVLUTT ALY | .‘l‘“

2000 4000 60(&0 8000 10000
range in A,

cross-range in xo
o
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F1a. 4. One realization of the random medium used in the simulations. The correlation length
of the fluctuations is I = 100)\g.

Figure 5 displays the images obtained in a very weak fluctuating random medium
with ¢ = 0.05. Comparing these images with the ones obtained in a homogeneous
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Fic. 5. Same as Figure 2 but the medium is inhomogeneous. The strength of the fluctuations
is o = 0.510~* which corresponds to € = 0.05. The scatterers are on-grid.

medium with scatterers on and off the grid (Figures 2 and 3, respectively) we observe
that (i) SRINT (left plot), MUSIC using M€ (third plot from the left) and ¢;-norm
minimiation (right plot) are stable, and (ii) MUSIC using M? (second plot from the
left) is not. Note that off-grid scatterers and a random medium both induce similar
noise in the data, as both occur in the phases. In the off-grid case, the noise is
systematic and similar for all array elements, while the noise induced by the random
phase model depends on the path that connects the scatterer to each array element.
Hence, depending on the correlation length of the random medium the noise produced

in the phases is more or less correlated over the array elements.
m&

b ¥

Fic. 6. Imaging with SRINT in inhomogeneous media illustrating its stability with respect to

the random fluctuations of the media. The strength of the fluctuations increases from left to right so
€=20.1,0.2,0.4,0.6 and 0.8. The top and bottom rows are two realizations of the random medium.

,,,,,

h

Since MUSIC using M¢ is not robust with respect to perturbations in the phases
(see Figures 3 and 5) because the data are not processed coherently over frequencies,
we do not present more results using this method.

To further examine the robustness of the other imaging methods with respect to
random medium fluctuations, we consider in the next figures five noise levels corre-
sponding to € = 0.1,0.2,0.4,0.6 and 0.8. Each figure presents results for two realiza-
tions of the random medium. In Figure 6 we see that, as expected, SRINT is highly
robust, although its resolution is not very good. Even for ¢ = 0.8 (right column) the
images do not change much respect to the ones obtained in a homogeneous medium.
Figure 7 shows the images obtained with ¢;-norm minimization. The resolution is
much better than that provided by SRINT, but it is much more sensitive to noise.
Only for fluctuation strengths below or equal € = 0.2 the images are good. Above this
strength the images are useless. However, the use of masks on the data effectively
removes the distortion imposed by the medium up to € = 0.4, as it can be seen in
Figure 8. This is so because by using masks we discard the incoherent data and, thus,
we improve the robustness of the ¢;-norm method (even though we reduce the number
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of equations in the linear system by about 40%).

F1a. 7. Images obtained with £1-norm minimization without masks in the same media and the
same scatterer’s configuration as in Figure 6. Imaging with £1-norm minimization without masks is
stable only for e < 0.2.

Fic. 8. Same as Figure 7 but using masked data. The results are now stable for e < 0.4.

Finally, the images shown in Figure 9 formed using MUSIC with M€ are also very
good. They have significantly better resolution than the SRINT images but not as
good as the ones obtained with ¢;-norm minimization. We stress that MUSIC with
Mc¢€ is not exact even for perfect data and, therefore, /;-norm minimization should
be preferred if the fluctuations of the medium are weak. However, as the strength
of the fluctuations increases, MUSIC with M¢ becomes competitive. Observe that at
lower SNR, when the ¢;-norm images are not usefull, MUSIC with M€ is robust and
the resolution is better than the one provided by SRINT. Therefore, it should be the
preferred method among the three for imaging in moderate SNR regimes.
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F1G. 9. Images obtained with MUSIC using M€ in the same media and the same scatterer’s
configuration as in Figures 6-8. MUSIC using M€ is stable for € < 0.6.

5. Imaging results in the framework of Theorems 2.3 and 2.4. To illus-
trate the relevance of Theorems 2.3 and 2.4 for imaging, we consider in this section
the equivalent source problem of active array imaging with multiple frequencies and
multiple receivers described in subsection 3.4.1. In this setting we have to solve the
linear system ~

Ap = bfA

with A the model matrix (3.22). We compare the corresponding ¢5 and ¢; solutions
of this problem for different imaging configurations. Our results illustrate the well
know super-resolution for £1, meaning that p, determines the support of the un-
known p with higher accuracy than the conventional resolution limits, provided the
assumptions of Theorem 2.3 for the noiseless case or Theorem 2.4 for the noisy case
are satisfied. We also show how the bandwidth, the array size and the number of
scatterers affect the vicinities defined in (2.8). The numerical results are not special-
ized to a paticular physical regime. They illustrate only the role of the theorems in
solving the associated linear systems.

Imaging methods. We compare the solution p, obtained with the £;-norm
minimization algorithm GelMa described in section 2, and the ¢3-norm solution

where A* is the conjugate transpose of A.

Imaging setup. The images are obtained in a homogeneous medium with an
active array of N = 37 transducers. The ratio between the array aperture a and
the distance L to IW, as well as the ratio between the bandwidth 2B and the central
frequency fo, vary in the numerical experiments. The IW is discretized using a uniform
grid of K = 3721 points of size \y/2 in range and cross-range directions. The classical
resolution theory suggests that the range and cross-range resolutions are ¢p/(2B) and
AoL/a, respectively. There is no additive noise in the data, but we consider on-grid
and off-grid scatterers which produces perturbations in the recorded phases.

Imaging results. In Figure 10 we show the results obtained for a large array
and a large bandwidth corresponding to a/L = 1 and (2B)/fo = 1. From left to
right we show the p,, solution, the p, solution, and the vicinities S; defined in (2.8)
plotted with different colors. In the top and bottom rows there are M = 4 and M = 8
scatterers, respectively. All the scatterers are on the grid and their exact locations
are indicated with white crosses. The four scatterers in the top row are far apart and,
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therefore, their vicinities do not overlap as it can be seen in the top right image of
this figure. In this case, all the conditions of Theorem 2.3 are satisfied and we find
the exact locations of scatterers with the £;-norm minimization algorithm. The eight
scatterers in the bottom row are closer and their vicinities are larger (according to
(2.8) the size of the vicinities increases with M). We observe in the bottom right image
of this figure that the vicinities overlap, so condition (2.10) is not satisfied in this case.
We still, however, find the exact locations of scatterers with the ¢;-norm minimization
algorithm which means that the conditions of Theorem 2.3 have pessimistic bounds.
Because the array and the bandwidth are large, the £o-norm solutions also give very
good estimates of the scatterer’s locations (see the left column images).

Fic. 10. Imaging in a homogeneous medium and scatterers on grid. From left to right: p,,,
Py, s and the vicinities Sj, j = 1,..., M, plotted with different colours. Top row M = 4, bottom row
M = 8. Large array aperture and large bandwidth so a/L =1 and (2B)/fo = 1.

In Figure 11 we show the results for the same configurations of scatterers as in
Figure 10, but using a smaller array aperture and a smaller bandwidth so a/L = 1/2
and (2B)/fy = 1/2. Thus, the classical resolution limits become c¢y/(2B) = 2\ in
range and AgL/a = 2]\ in cross-range. Hence, the resolution of the ¢y-norm solutions
deteriorate, as can be observed in the left column images of this figure. In fact, we only
recover seven scatterers instead of eight for M = 8 (there are two scatterers that are
quite close). The ¢;-norm minimization approach, however, still gives exact recovery
for both M = 4 and M = 8 scatterers. This is referred to as super-resolution, which
means that we can determine the location of the scatterers with a better accuracy
than the classical resolution limits.

To illustrate the effect of the array and bandwidth sizes on the size of the vicinities
we plot them in Figure 12 for the case M = 4. From left to right we plot the vicinities
for a/L = 1/2 and (2B)/fy = 1/2, a/L = 1/2 and (2B)/fy = 1/4, and a/L = 1/4
and (2B)/fo = 1/2. As expected, cross-range and range resolutions deteriorate and
consequently vicinity sizes increase as the ratios a/L and (2B)/ fo decrease.

In Figure 13 we use a relatively small array and bandwidth so a/L = 1/4 and
(2B)/ fo = 1/4. In this case, the conditions of Theorem 2.3 are not satisfied for neither
M =4 nor M = 8, but the images obtained with £;-norm minimization are still very
good. They are exact for M = 4 and very close to the true image for M = 8.

By further decreasing the array aperture and the bandwidth so that a/L = 0.1
and (2B)/ fo = 0.1, we consider in Figure 14 a very challenging situation even for well
separated scatterers. The f5-norm solutions shown in the left column of this figure
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Fic. 11. Same as Figure 10 but using a smaller array aperture and a smaller bandwidth so
a/L =1/2 and (2B)/fo = 1/2.

a/L=1/2, (2B)/fo=1/2  a/L=1/4, (2B)/fo=1/2  a/L=1/2, (2B)/fo=1/4

Fi1G. 12. Vicinities Sj, j = 1,...,4, for different array and bandwidth sizes. From left to right:
a/L=1/2 and (2B)/fo =1/2, a/L =1/2 and (2B)/fo =1/4 and a/L =1/4 and (2B)/fo =1/2.

are not able to locate the positions of the scatterers because of the low resolution of
the imaging system. However, when the number of the scatterers is very small (see
the top row corresponding to M = 4) the ¢;-norm approach provides a precise image
even though the discretization of the IW is 20 times finer than the classical resolution
limits of the imaging system. On the other hand, when we increase the number of
scatterers to M = 8 (bottom row) the interaction between the vicinities is very strong
and the /1-norm image in not good neither.

We now consider the same situation as in Figure 10, so the array aperture and
the bandwidth are large, but with scatterers off the grid. This means that there are
modeling errors and, therefore, there is not a vector p for which Ap = bf~ In the
case considered next, the scatterers are displaced by \g/4 from a grid point in range
and cross-range directions. The left column of Figure 15 shows, as expected, that the
¢o-norm solutions (5.1) are not affected by off-grid displacements. This is so because
the resolution is larger than the displacements of the scatterers with respect to the
grid points. The right column shows, however, that the ¢;-norm solutions are sensitive
to these displacements. They are no longer exact, although they remain very close to
the true solutions. By carefully examining the results of this figure we observe that
the /1-norm solutions behave as it is predicted by Theorem 2.4. The coherent part of
the solution is supported in the vicinities of the exact solution while the incoherent
part remains very small.

Figure 16 shows similar results but for a smaller array and a smaller bandwidth.
We use a/L = 1/4 and (2B)/fo = 1/4, so the classical resolution limits increase as
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Fic. 13. Same as Figures 10 and 11 but using a smaller array aperture and a smaller bandwidth
soa/L=1/4 and (2B)/fo =1/4.

F1G. 14. Imaging in a homogeneous medium with a/L = 0.1 and (2B)/fo = 0.1. Top and
bottom rows: M = 4 and M = 8 scatterers, respectively. From left to right: p,, as in (5.1), P,
obtained with GelMa, and the vicinities S, j =1,..., M plotted with different colors.
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Fic. 15. Imaging in a homogeneous medium with scatterers off the grid. As in Figure 10, we
use a large array aperture and a large bandwidth so a/L = 1 and (2B)/fo = 1. Top and bottom
rows show the images for M = 4 and M = 8 sactterers, respectively. Left and right columns show
the £2-norm and £1-norm solutions, respectively.
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can be observed in the £-norm solutions shown in the left column. As in the previous
figure, the ¢;-norm solutions shown in the right column have a coherent part whose
support is contained in the vicinities of the true solutions and an incoherent part that
is very small. We also refer to [18, 4] for nice discussions about what to expect from
¢1-norm minimization when the scatterers do not lie on the grid.
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F1G. 16. Same as Figure 15 but with a/L = 1/4 and (2B)/fo = 1/4.

6. Conclusions. In this paper we addressed the question of what are appro-
priate data structures so as to obtain robust images with two widely used methods:
¢1-norm minimization and MUSIC. Both methods are well adapted to finding sparse
solutions of linear underdetermined systems of equations of the form A;p = b; where
l is a parameter vector that can be varied, such as the illumination profile in space
and/or frequency. ¢i-norm minimization is well suited for solving problems with a
single measurement vector corresponding to one parameter vector . On the other
hand, MUSIC requires multiple measurement vectors that are obtained for several
parameter vectors l;, i = 1,...,5. Given the data b;, our first main result concerns
the uniqueness and robustness to noise of the minimal #;-norm solution of A;p = b;.
This is the subject of Theorems 2.3 and 2.4. The second important result is the key
observation that MUSIC provides the exact support of the unknown p when the ma-
trix A; admits a factorization of the form A; = AA; with A; diagonal. Furthermore,
we show in Theorem 2.6 that MUSIC is robust with respect to noise. Our third main
contribution is the formulation of several common imaging configurations, including
multifrequency imaging and imaging without phases, under a common linear algebra
framework. For imaging without phases (the phase retrieval problem) the robustness
of ¢1-norm minimization and MUSIC is studied with numerical simulations in weakly
inhomogeneous media. Our results suggest that ¢;-norm minimization may be used
for low noise levels while MUSIC should be the method of choice for higher noise
levels.
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Appendix A. Proofs of theorems 2.1 to 2.4.
THEOREM 2.1. M -sparse solutions of Ax = b are unique, if

1
A..]. i? / 77 ] .7
(A1) (ar,a) < 5or Vit
where we assume that the columns of matriz A are normalized so that Vi, ||a;||e, = 1.

Proof. Assume that there exist two M-sparse solutions x; and xs of Ax = b.
Then their difference z = x; — x5 is at most 2M-sparse, and z is in the kernel:
Az = 0. This implies that there exist a l-sparse vector z; and a (2M — 1)-sparse
vector zo with disjoint support such that z; — zo = 2, and

(A.2) [Z1lle= = [[22le=

This means that the vector z; was constructed so as to contain only the largest in
magnitude component of z (one of them if there are several) while z5 contains all
the other components of z. Suppose that the unique non-zero coordinate of zy is i.
Multiplying the identity Az; = Az, by a;, we get

(@i, Az1) = (a;, Aza),

which reduces to
oM

(z1)i = (@i, Aza) = > (@i, a;)(22);

J=1.j#i

Using now (A.1) we obtain

1
lz1][iee < o7 2M — Dlz2lle < ||22][ <,

which is in contradiction with (A.2). d
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THEOREM 2.2. M -sparse solutions of Ax = b can be found as solutions of
min ||ylle,, subject to Ay =b,
if
1 L,
(@ aj)| < 570 Vi

where we assume that the columns of matriz A are normalized so that Vi, ||a;||e, = 1.

Proof. Assume that there exist two solutions x; and x5 of Ax = b. Suppose x; is
M-sparse, and x5 is arbitrary. Their difference z = @7 — x5 is in the kernel: Az = 0.
We will show that ||z1]le, < ||Z2]le,. Without loss of generality, we may assume that
o, and x5 have disjoint support. Otherwise we decompose z in z; and z, such that
z =2z — z9 and

supp(z1) C supp(z1),
supp(zz2) Nsupp(x1) = 0.

If we assume

(A.3) [@2lle, <[l
then necessarily

(A.4) 1Z2lley < llz1lle; -

Indeed, if ||z1|le;, = ||@1lle,, it is obvious that (A.3) implies (A.4). Otherwise, if
[Z1lle, < ll@1lle, we have

120 = @1lle, = [[@alle, = [zalle, > 0.
Since &3 = ®1 — 2 = &1 — 21 + 22 we obtain ||xale, = |[|[®1 — 21|, + [|22]le, and from
(A.3) we get
[@1lle, > [l@2lle, =l — 21lle, + (12261,
which implies

z2lle; < llZ1lley = lI21 — x1lley < N21lley-

This finishes the proof of the statement that (A.3) implies (A.4).

We return now in the proof of the theorem and let i be the coordinate of the
component of z = z; — zo with the largest absolute value. Without loss of generality,
we may suppose this component is real and positive. Then by multiplying the identity
Az = 0 by a; we conclude

1 1 1
12l < 577 D 125l < 577 l12lle = 577 (1zalle + 22le) -
2M 2M 2M
Since ||z1]l¢, < M||2z1]l¢e < M||2]|¢>, we obtain
1 1
Izl < glizlles + gyl .

It implies M||2]e~ < ||2slls,. Again using [21]ls, < M2l we obtain |21, <
|[z2|l¢, which is in contradiction with (A.4).
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998

1010

1011

THEOREM 2.3. Let x be a solution of Ax = b. Let T be the index set of the
support of x:
T =supp(xz), M =|T|.

Fiz a positive € < 1/2 and suppose that A satisfies
i. The columns of matriz A are normalized so that Vi, ||a;|le, = 1.
1. The vectors a; in the set T are approximately orthogonal, that is they satisfy

€
(@i, a;)] < 77

i Vi €Ti# ).

it1. For any j € T the vicinity S; defined as

. 1
5= {k £l laa)l > 17 |
has the properties

|<ak,aj>|<1726, VkGSj

and

an a;)| < —, VkeS;, Vi

M)
Then x, the M-sparse solution of Ax = b, can be found as the solution of

min ||y|le,, subject to Ay = b.

Proof. Assume y is another solution of Az = b. Then Ax = Ay. As in the proof
of Theorem 2.2 we may suppose that & and y have disjoint support. For any p € T
multiplying the identity Az = Ay by a, we get

Tp + Z (ai, ap)z; :Z<ai7a;ﬁ>yi+ Z (@i, ap)y; + Z (@i, ap)y;

i€T,i#p 1€S) i¢U; S, 1€S;,j#D
1 €
< (1-2¢) E lyi| + — E lyi| + — E |y -
, 2M M ‘
i€S, ig€U;S; 1€S;,J#p

This implies

1 5 €
|2p| < (1 - 2¢) Z il + 557 | S lul+ v Z il + 57l
i€S) i€U;S; 1€S;,j#p
Adding up the inequalities for all p € T we obtain
1
llle, < (T=e) D |yl +ellzle, + 3 D il
’iEUij iQUJSj

Thus

1
(A.5) e < Z lyil + m” Z lyil < lYlle.-

iEUJ‘Sj i&UJ‘SJ'

Contradiction. 0

32

This manuscript is for review purposes only.



1012
1013
1014
1015

1016

1017
1018

1019
1020

1021

1022

1023

1024

1025

1026

1027

1028
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THEOREM 2.4. Noisy case Let  be an M-sparse solution of
Ax = b,

and let as before T denote the index set of the support of @, that is T = supp(x) and
M = |T|. Fiz a positive e < 1/2 and suppose that A satisfies conditions i, i, and i
of Theorem 2.3.

Furthermore, let s be the {1-norm minimal solution of the noisy problem

(A.6) min ||ylle,, subject to Ay = b°,

with b° defined by
b’ = b+ db.

We assume that the noise 6b is bounded, that is we have
16b]|e, <6,

for some small positive 6. We further assume that A has the property that the solution
ox of

(A.7) min ||y|le,, subject to Ay = b,
satisfies
(A.8) 102le, < C|8b]|e,

Then we can show that the solution xs of (A.6G) can be decomposed as
(A.9) T5 = T+ T,

with . the coherent part of the solution that is supported on T or in the vicinities S;
with j € T, and x; the incoherent part of the solution which is supported away from
the vicinities and is small. Specifically, for x. we have: for any j € T

| (@) = () + D (aj, an)(@e)i| | < 8o+ C3,

k‘ESj
with
S 2C6(1 —¢) n 2e(||x||e, + C9)
07 M1 -2e) M '
While for x; we can show that:
[@ille, < 01,
with 61 given by
_ 4Co(1 —¢)
01 =C6+ (-2

Proof. By assumption (A.7)-(A.8) there exist dx such that Adx = b, and
|[6x]|¢, < Cd. Suppose x is the M-sparse solution of Ax = b. Note that

A(xs —0x) =b, A(x+dx)=10b°.
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1038

1039

1040
1041

1042

1043

1044

1045

1046

1047

1051

1052

Since both ® and x5 are respective minimizers, we obtain

(A.10)

and

[@lle, < [les — 0l|e, ,

[®s5]le, < [l + 0le,

Using the triangle inequalities

s — 0wlle, < l2slley + [10le,, [l + b, < [l2]le,

we obtain

+ (|0,

@5 — e, < l@slle, + [[02]le, <@+ 0zlle, + [|02(le, < [l2lle, + 2(|0]|e,

which implies

(A.11)

|25 — 0x|[e, < |lle, +2C0.

Combining (A.10) and (A.11) we conclude that

(A.12)

[&]le, < lls = 0zlle, < [lle, +2C6.

For any p € T, taking the inner product of

Alx —xs +0x) =0

with a, we get

(A.13)

(x — x5+ 0x), + Z (ak, ap)(x — x5 + 0x)) + Z(ak,ap>(6m—m5)k

kET,k#p kes,

+ Z (ak, ap)(dx — x5), — Z (ak,ap)(0x — xs5), = 0.

kES; j#p k@US; kgT

Using properties (ii)-(iii) we obtain

(A.14)

(@—ws+0x)l < D l@—as+ 5w

kET k#p

+(1-25) Y [(@s— ozl + - D, |(@s—da)d

keS, keS;,j#p

1
tonp Do (@i dml.
kgusS, kgT

Summing over all p € T' we get

S @ —xs+6m)y| <e Y |(w—a5+6z),| + (1 - 20)

peT

Thus

keT

> (@5 — ozl

peT keUlL S,
1
+e Y (5 — 8| + 5 S @i — da)l.
keUlL Sy kguS; kgT

Z|(m—w5+6az)k| < Z \(wg—éw)ﬂ—i—ﬁ Z [(x; — 0x)k]

keull,s, kguS; kgT
1—2¢
=Y l@s —dm)| — 5=—— D> (@i —dm)y|
2(1—¢)
kgT kgUS;, kgT
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1058  We therefore obtain

1—2e

1059 llle, <ll@s — dxlle, — 21—2) Z (i — 6

k@US; kT
1060 By (A.12) we conclude

4C6(1 —
1061 Z [(x; — 0x)| < 1(—7255)
k@US; kT

1062 By the triangle inequality

4C5(1 —¢) <O+ 4C6(1 —¢)

1063 (A.1 ; <||é
065 (A15) l@ille, < 6@l + =~ T

= 41.

1064 It remains to investigate x., the coherent part of the solution. From (A.13) we have

€ €
@)+ Y (arap)(dz—xs)k| <7 D (@ — @5+ 0x)u| + 7 Z (x5 — 6|
keS,U{p} kET,k#p keS;,j#p
1
+m Z |(z; — 6)|
kguS,; kgT
1065 - i” w5+ Ozl + 1 4C6(1—¢)
Sl T
5 — &
< £ O T )
< 37 (el + sl + 62) + 7 =5
€ 2C5(1 —¢)
<— (2 2 e S A

1066 Applying the triangle inequality:

0 @y — Y (ana(@s)i] <|@pt Y (aray) 0z — x|+ Y (ara,)(6a)

keS,U{p} keS,U{p} keS,

1069 < b0+ C3,

1070 we obtain the result. ]
1071 Appendix B. Proof of theorem 2.6.

1072 THEOREM 2.6. Let X =Diag(x) be a diagonal matrix that solves

1073 AXL = B,

1074 where A satisfies conditions (i), (ii), and (iii) of Theorem 2.3 for a fixed & < 1/3,

i o lis
lor 122 las

1075 L= . . € CK*5
lkr ko lxs

1076 and B is the noiseless data matrix (2.17) with SVD B = Q = UXVT. Let the
1077 perturbed matrix B? = Q° 4+ Qo be such that guax(B® — B) < §. Suppose x, the
1078 vector diagonal entries of X, is sparse with T' = supp(x), M = |T|, M < size(x), and

1079 Ton, = ;n;é%{|xl|}
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1080 Let Ly be the submatrix of L, formed by the rows corresponding to 7', has

1081 (B.1) o = gmin(L7T).
1082 If
1083 (B.2) 28 < wpo k(1 - 3¢),

1084 the orthogonal projections onto the subspaces R(Q%) and R(B) are close:

4]

1085 (B.3) IPr@0) = Praplles < =233

1086 Proof. Denote by Xt be the submatrix of X where we keep the rows that corre-
1087 spond to the support of . Similarly, denote by yr be the subvector of y where we
1088 keep the entries that correspond to the support of . We claim that

1050 (B.4) (1= 3e)llz]7, < I(A"2)7l7, < (1+3¢)%|217,

1090 if z € R(B). Indeed, suppose that

1091 z = Zaiai.

i€T

1092 Then, defining o as the vector in CX whose components are zero except the ith
1093 components with ¢ € T' that are equal to «;, we get

1094 N=z17, = ez, = | . diajlai,a)| <cllel?,
1,J€Ti#]

1095 and

1096 (1 =o)llall?, <l=lZ, < A +e)leli,.

1097  For any j € T we have

1098 (A*z); = Z%(Clj,ai%

i€T
1099 and, therefore,
1100 (A 2)rl7, = > doilak, a:)(ak, a;).
1,j,k€T

1101 Hence,

1102 1A 22l = e[ < | Y djaian aiaray)
i,J,k€T,i#]
1103 o2 4 Jau?
Q; + le% 2 €
1104 < Z J : €<M+M> < 3ellall?,.
i,J€T,i#]
1105 Therefore, ~
1106 (1 =39l <I(A*2)rll7, < (1 +3e)|el,
1107 and we obtain . 143
2 €2
1108 1+8 2213, < (A 2)r 3, < T I#lle,
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1109 which implies (B.4).

1110 In order to compute the smallest nonzero singular value of B we observe that

1111 min 2*BB*z = min (A*2) Xp Ly L Xp (A" 2) 1
ZER(B),|1Z]le,=1 ZER(B),||Z]le,=1

1112 _

1113 > (1 —3¢)? min Yy XpLrLiXry > (1 - 3¢)%22 (o1)?,

YeCM|[Y]ley=1

1114 where we have used the condition (B.1). Since yax(B° — B) < §, we conclude that

1115 B = Q° + Qf, where Q° has M nonzero singular values, with smallest nonzero
1116  singular value
1117 Omin(Q°) = Tmo (1 —3¢) = 4,

1118 and Q) has largest singular value

1119 Omax(Q)) < 4.

1120 If (B.2) holds, then we can discard Q) by truncation of the singular values smaller
1121 than the noise level. We now apply Theorem 2.5 to obtain (B.3). O
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