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Abstract. In this paper we consider imaging problems that can be cast in the form of an un-4
derdetermined linear system of equations. When a single measurement vector is available, a sparsity5
promoting `1-minimization based algorithm may be used to solve the imaging problem efficiently. A6
suitable algorithm in the case of multiple measurement vectors would be the MUltiple SIgnal Clas-7
sification (MUSIC) which is a subspace projection method. We provide in this work a theoretical8
framework in an abstract linear algebra setting that allows us to examine under what conditions the9
`1-minimization problem and the MUSIC method admit an exact solution. We also examine the10
performance of these two approaches when the data are noisy. Several imaging configurations that11
fall under the assumptions of the theory are discussed such as active imaging with single or multiple12
frequency data. We also show that the phase retrieval problem can be re-cast under the same linear13
system formalism using the polarization identity and relying on diversity of illuminations. The rele-14
vance of our theoretical analysis in imaging is illustrated with numerical simulations and robustness15
to noise is examined by allowing the background medium to be weakly inhomogeneous.16
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1. Introduction. Imaging is an inverse problem in which we seek to reconstruct18

a medium’s characteristics, such as the reflectivity, by recording its response to one19

or more known excitations. The output is usually an image giving an estimate of20

an unknown characteristic in a bounded domain, the imaging window of interest.21

Although this problem is in all generality non-linear, it is often adequately formulated22

as a linear system of the form23

(1.1) Aρ = b ,24

where the data vector b ∈ CN is a linear transformation of the unknown vector ρ ∈ CK25

[13]. A ∈ CN×K is the model matrix that relates b to ρ. Typically, the linear system26

(1.1) is underdetermined because the number of unknowns K is much larger than the27

number of measurements N , so N � K.28

We are interested in this work in imaging problems where the unknown ρ is M-29

sparse with M � K. Under this assumption (1.1) falls under the compressive sensing30

framework [21, 16, 22]. It follows from [16] that the unique M-sparse solution of (1.1)31

can be obtained with `1-optimization when the mutual coherence1 of the model matrix32

A is smaller than 1/(2M). The same result can be obtained assuming A obeys the33

M-restricted isometry property [7] which basically states that all sets of M-columns34

of A behave approximately as an orthonormal system.35

We show that uniqueness for the minimal `1 solution of (1.1) can be obtained
under less restrictive conditions on the model matrix A provided that the unknown ρ
is such that the columns of A that correspond to the support T of ρ are approximately
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orthogonal, so there exists a small value 0 < ε < 1/2 such that

|〈ai,aj〉| <
ε

M
, ∀ i, j ∈ T, i 6= j.

Under this assumption, we associate to each column vector aj , j ∈ T , its vicinity

Sj =

{
k 6= j s.t. |〈ak,aj〉| >

1

2M

}
that contains all columns of A that are approximately parallel to aj . This result36

finds interesting applications in imaging since it states under what conditions the37

location of well separated reflectors can be determined with high precision. It can be38

also used to explain super-resolution, i.e., the significantly superior resolution that `1-39

optimization provides compared to the conventional resolution of the imaging system,40

i.e., the Rayleigh resolution. Moreover, we address the robustness to noise of the41

minimal `1 solution and show that for noisy data the solution ρ can be decomposed42

in two parts: the coherent part ρc, which is supported in T or in the vicinities Sj ,43

and the incoherent part ρi, usually referred to as grass, that is small. Other stability44

results can be found in [7, 8, 17, 35, 18, 4].45

The notion of vicinities and weak interaction between scatterers has been con-46

sidered in [18] and [4]. In [18], several algorithms for imaging well separated sources47

were introduced and analyzed. These algorithms address the issue of high coherence48

in A using techniques of band exclusion and local optimization. In [4], a resolution49

analysis for `1-minimization and `1-penalty was carried out for array imaging in the50

paraxial regime. It was shown that for well separated sources or clusters of sources the51

minimal `1 solution is supported mainly in the vicinities of the true sources’ locations.52

More recently in [5], the problem of imaging sources in weakly inhomogeneous53

media was addressed using Coherent INTerferometry (CINT) followed by `1 convex54

optimization for debluring. This is a natural idea since, as it was shown in [1] (see55

also [3]), the CINT image is a convolution of the reflectivity with a Gaussian kernel.56

Hence, the resolution in CINT images can be refined by debluring as in [2], where a57

level set method was used. In [5], debluring was performed with `1-optimization and58

its performance was analyzed for well separated sources and well separated clusters59

of sources.60

We also consider in this paper the more general form that system (1.1) takes when61

S multiple measurement vectors (MMV) are available, so62

(1.2) Alqρ = blq , q = 1, . . . , S.63

Here, lq = [l1q, l2q, . . . , lKq]
T denotes a parameter vector such as the excitation that64

we control. To simplify the notation, we will denote the different excitations by the65

scalar q and write Aqρ = bq instead, unless it is necessary to explicitly state that the66

model matrix depends on a vector lq. To solve (1.2) we consider the MUltiple SIgnal67

Classification algorithm [34] which has been used successfully in signal processing [23]68

and imaging [15, 25]. For a careful analysis of MUSIC for single snapshot spectral69

imaging we refer the reader to [26]. We show here that MUSIC gives the exact support70

of the solution of (1.2) in the noise free case when the matrices Aq admit the following71

factorization72

(1.3) Aq = Ã Λq, with Λq diagonal.73
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In this case, (1.2) admits the following MMV formulation

Ãρq = bq; ρq = Λqρ ,

where the multiple unknown vectors ρq, q = 1, . . . , S, share the same support. The74

main advantage of this formulation is that we can immediately infer that the data75

vectors bq are linear combinations of the same M-columns of Ã, those that belong to76

the support of the unknown ρ. The implication is that the columns of Ã indexed by77

T = supp(ρ) span the column subspace of B, the ’signal’ subspace of B. Hence, the78

support T is the zero set of the orthogonal projections of the columns of matrix Ã79

onto the null space of the data matrix B. Moreover, the support is recovered exactly80

under the assumption that all M-sets of columns of Ã are linearly independent. We81

discuss several imaging configurations for which the factorization (1.3) is feasible as82

well as instances where (1.3) holds only approximately and MUSIC is no longer exact83

even for noise free data.84

Let us remark that for different excitations q we obtain multiple measurement
vectors bq which correspond to linear transformations of the same unknown vector ρ.
The data can be arranged in a matrix B ∈ CN×S whose columns are the vectors bq,
and the MMV formulation may be expressed as a matrix-matrix equation

ÃP = B ,

where the unknown is now the matrix P ∈ CK×S whose columns are the vectors85

ρq = Λqρ that share the same support. The optimization can therefore be performed86

within the MMV formalism as described in [14, 24, 36, 37]. The main idea is to87

seek the solution with the minimal (2,1)-norm which consists in minimizing the `188

norm of the vector formed by the `2 norms of the rows of the unknown matrix P.89

This guarantees the common support of the solution’s columns. We do not pursue90

this approach here and refer the reader to [12] for an application of this formalism91

to imaging strong scattering scenes as well as to [6] where an MMV formulation92

for synthetic aperture imaging of frequency and direction dependent reflectivity was93

introduced and analyzed.94

We present several configurations in array imaging that can be cast under the95

general framework discussed here, such as single- and multiple-frequency array imag-96

ing using single- or multiple-receivers. All these problems can be formulated as (1.1)97

for a single measurement vector, or as (1.2) when multiple measurement vectors are98

available. We also consider the non-linear phase retrieval problem, which according99

to [31, 28, 29] can be reduced to a linear system of the form (1.2). This requires100

intensity data corresponding to multiple coherent illuminations which when using the101

polarization identity are transformed to interferometric data. We consider multiple102

frequency intensity data collected at a single receiver due to multiple coherent illumi-103

nations that could be generated by a spatial light modulator (SLM) [30]. The solution104

of (1.2) may then be computed with Single Receiver INTerferometry (SRINT) as in105

[29], `1-minimization or MUSIC.106

The performance of these imaging methods for the non-linear phase retrieval107

problem is studied with numerical simulations in an optical digital microscopy imaging108

regime. Our simulations allow us to asses the robustness of the different methods to109

modeling errors resulting to perturbations in the unknown phases of the recorded110

data. We consider phase perturbations that are either due to grid displacements or111

to wave propagation in a weakly inhomogeneous medium. Our conclusions are that112

SRINT provides the less satisfactory image in terms of resolution but it is the more113
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robust method when there are modeling errors, the `1 method has the best resolution114

but is not very robust with respect to noise, while MUSIC seems to be the more115

competitive method at moderate signal to noise ratio regimes because it has better116

resolution than SRINT and is less sensitive to noise than `1-minimization.117

The paper is organized as follows. In Section 2 we present in a abstract linear118

algebra framework the conditions under which `1-minimization and MUSIC provide119

the exact solution to problems (1.1) and (1.2) respectively. We also analyze the120

performance of these methods for noisy data. In Section 3 we formulate the array121

imaging problem and consider some common configurations used in active array imag-122

ing. Moreover, we discuss how the imaging problem can be cast under the abstract123

framework of Section 2 and what are adequate data-structures to be used in imaging124

with `1-minimization and MUSIC. In Section 4, we explore with numerical simulations125

the robustness of the imaging methods for the phase retrieval problem in an optical126

(digital) microscopy regime. In Section 5 we illustrate with numerical simulations how127

our abstract theoretical results are relevant in assessing image resolution. Section 6128

contains our conclusions.129

2. Linear algebra aspects of imaging algorithms. In this section we dis-130

cuss under what conditions `1-minimization and MUSIC algorithms provide the exact131

solution when there is no noise in the data. We also discuss the performance of these132

algorithms for noisy data. We assume that imaging can be formulated as a linear133

inverse problem of the form134

(2.1) Alρ = bl ,135

that is underdetermined. In (2.1), the model matrix136

(2.2) Al =

 ↑ ↑ ↑
a

(l1)
1 a

(l2)
2 . . . a

(lK)
K

↓ ↓ ↓

 ∈ CN×K137

relates the unknown vector ρ ∈ CK , which is the “image” to be constructed, to138

the transformed vector bl ∈ CN , which contains the data. This matrix is fixed by139

the physical setup of the imaging system and, therefore, it is given to us. However,140

the important observation here is that Al also depends on a parameter vector l =141

[l1, l2, . . . , lK ]T which may be varied so as several transformed vectors bl of the same142

unknown ρ can be obtained.143

If only one snapshot of array measurements is available for imaging, we solve144

(2.1) for a single measurement vector (SMV) l using `1 minimization that promotes145

the assumed sparsity of the vector ρ. In that case, we will write (2.1) simply as146

Aρ = b. When several snapshots of array measurements corresponding to different147

parameter vectors lq are available, we solve the corresponding MMV problem using148

MUSIC. In that case, we will write (2.1) as Aqρ = bq.149

2.1. `1 minimization-based methods. In the imaging problems considered150

here we assume that the scatterers occupy only a small fraction of a region of interest151

called the image window IW. This means that the true reflectivity vector ρ0 is sparse,152

so the number of its entries that are different than zero, denoted by M , is much153

smaller than its length K. Thus, M = | supp(ρ0)| � K. This prior knowledge154

changes the imaging problem substantially because we can exploit the sparsity of ρ0155

by formulating (2.1) as an optimization problem which seeks the sparsest vector in156
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CK that equates model and data. Thus, for a single measurement vector b we solve157

(2.3) min ‖ρ‖`1 subject to Aρ = b.158

In this form, we may be able to pick the true solution ρ0 if the matrix A and the159

sparsity of ρ0 fulfill certain conditions. In particular, we have the following four160

theorems whose proofs are given in Appendix A. We denote by ‖ · ‖`2 and ‖ · ‖`1 the161

`2 and `1 norms of a vector, respectively.162

Theorem 2.1. M -sparse solutions of Aρ = b are unique, if163

(2.4) |〈ai,aj〉| <
1

2M
∀i 6= j,164

where we assume that the columns of matrix A are normalized so that ‖ai‖`2 = 1 ∀i.165

Theorem 2.2. The M -sparse solution of Aρ = b can be found as the solution of166

(2.5) min ‖η‖`1 , subject to Aη = b,167

if168

(2.6) |〈ai,aj〉| <
1

2M
, ∀i 6= j,169

where we assume that the columns of matrix A are normalized so that ‖ai‖`2 = 1 ∀i.170

Theorem 2.3. Let ρ be a solution of Aρ = b, and let T be the index set of the171

support of ρ, so172

T = supp(ρ), and M = |T |.173

Fix a positive ε < 1/2, and suppose that the matrix A satisfies:174

(i) The column vectors are normalized so that ‖ai‖`2 = 1 ∀i.175

(ii) The column vectors in the set T are approximately orthogonal, so176

(2.7) |〈ai,aj〉| <
ε

M
, ∀ i, j ∈ T, i 6= j.177

(iii) For any j ∈ T the vicinity178

(2.8) Sj =

{
k 6= j s.t. |〈ak,aj〉| >

1

2M

}
179

has the properties180

(2.9) |〈ak,aj〉| 6 1− 2ε ∀k ∈ Sj ,181

and182

(2.10) |〈ak,aj〉| <
ε

M
∀k ∈ Si, ∀i 6= j.183

Then ρ, the M -sparse solution of Aρ = b, can be found as the solution of184

min ‖η‖`1 , subject to Aη = b.185
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Theorem 2.4. Noisy case. Let ρ be an M -sparse solution of

Aρ = b,

and let T = supp(ρ), so M = |T |. Fix a positive ε < 1/2, and suppose that A satisfies186

conditions (i), (ii), and (iii) of Theorem 2.3.187

Furthermore, let ρδ be the minimal `1-norm solution of the noisy problem188

(2.11) min ‖η‖`1 , subject to Aη = bδ,189

with bδ defined by190

(2.12) bδ = b+ δb,191

such that the noise δb is bounded for some small positive δ, so that192

(2.13) ‖δb‖`2 6 δ .193

Assume that A has the property that the solution δρ to194

(2.14) min ‖η‖`1 , subject to Aη = δb,195

satisfies196

(2.15) ‖δρ‖`1 6 C‖δb‖`2 .197

Then, we can show that the solution ρδ of (2.11) can be decomposed as198

(2.16) ρδ = ρc + ρi,199

with ρc the coherent part of the solution supported on T or in the vicinities Sj with200

j ∈ T , and ρi the incoherent part of the solution which is supported away from the201

vicinities and it is small. Specifically, for ρc we have that for any j ∈ T202

| |(ρ)j | − |(ρc)j +
∑
k∈Sj

〈aj , ak〉(ρc)k| | 6 δ0 + Cδ,203

with204

δ0 =
2Cδ(1− ε)
M(1− 2ε)

+
2ε(‖ρ‖`1 + Cδ)

M
.205

While for ρi we can show that:
‖ρi‖`1 6 δ1,

with δ1 given by206

δ1 = Cδ +
4Cδ(1− ε)

(1− 2ε)
.207

Theorems 2.1 and 2.2 are well known results in the literature of compressive208

sensing [21, 16, 22]. The first theorem tells us that the M-sparse solution of the linear209

system Aρ = b is unique when the columns of the matrix satisfy the orthonormality210

condition (2.4). This condition is satisfied when the mutual coherence of the matrix211

A, defined as maxi 6=j |〈ai,aj〉|, is smaller than 1/(2M). This first theorem is an212

`0 uniqueness result. The second result, Theorem 2.2, tells us that the unique M-213

sparse solution of Aρ = b can be found by solving the `1 minimization problem (2.5).214
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Algorithm 1 GelMa for solving (2.5)

Require: Set y = 0, z = 0. Pick the step size β, and a regularization parameter τ .
repeat

Compute the residual r = b−Ay
y ⇐ ητβ(y + βA∗(z + r))
z ⇐ z + βr

until Convergence

This is a very useful result because it is the `1 minimization problem that can be215

solved efficiently in practice, for example, by using the algorithm GelMa described in216

Algorithm 1, which involves only simple matrix-vector multiplications followed by a217

shrinkage-thresholding step defined by the operator ητ (yi) = sign(yi) max{0, |yi|−τ}.218

In the noiseless case, this algorithm converges to the exact solution independently of219

the value of the regularization parameter τ . For more details we refer to [27].220

Theorem 2.3 is to the best of our knowledge new. Its proof is given in Appendix221

A. This theorem tells us that the M-sparse solution of Aρ = b can be recovered222

by solving the `1 minimization problem under a less stringent condition than (2.6)223

provided that the column vectors of the matrix A that are in the support of the true224

solution ρ0 are approximately orthogonal, that is, they satisfy (2.7). Note that we225

allow for the columns of A to be close to collinear. Moreover, we define the vicinities226

Sj for the column vectors aj in the support of the true solution, and we assume that227

all the column vectors that are in the vicinity of a support column vector are close228

enough to it, so (2.9) holds. We also assume that the vicinities Si and Sj , for i 6= j,229

are far enough, so (2.10) holds.230

The last result, Theorem 2.4, is the noisy version of Theorem 2.3. It shows that231

when the data b is not exact but is known up to some bounded vector δb, the solution232

ρδ of the minimization problem (2.11)-(2.12) is close to the solution of the original233

(noiseless) problem in the following sense. The solution ρδ can be decomposed in234

two parts: the coherent part ρc supported in T or in the vicinities Sj , j ∈ T , of the235

true solution, and the incoherent part ρi usually referred to as grass in imaging. The236

grass is supported away from the vicinities Sj and it is shown to be small assuming237

that (2.15) holds for the solution to (2.14) and assuming that the norm of the noise238

is small so (2.13) holds. Other stability results can be found in [7, 8, 17, 35, 18, 4].239

We will see in Section 5 how Theorems 2.3 and 2.4 can be applied in imaging.240

2.2. MUSIC. MUSIC is a subspace imaging algorithm based on the decomposi-241

tion of the measurements into two orthogonal domains: the signal and noise subspaces242

[34]. The key is to be able to form a data matrix243

(2.17) B =


b11 b12 . . . b1S
b21 b22 . . . b2S
. . . . . . . . . . . .
bN1 bN2 . . . bNS

 =

 ↑ ↑ ↑
b1 b2 . . . bS
↓ ↓ ↓

 ∈ CN×S ,244

whose column vectors bq are obtained from a family of linear systems Aqρ = bq that245

can be rewritten in the form246

(2.18) ÃΛqρ = bq , q = 1, . . . , S,247

where Λq is a diagonal matrix whose entries can be controlled to form the images.248

The assumption here is that the model matrices Aq relating the unknown vector ρ249
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with the data vectors bq can be factorized into two matrices250

(2.19)

Ã =

 ↑ ↑ ↑
ã1 ã2 . . . ãK
↓ ↓ ↓

 ∈ CN×K and Λq =


l1q 0
0 l2q

. . .

0 lKq

 ∈ CK×K ,251

with Ã independent of the parameter vector lq = [l1q, l2q, . . . , lKq]
T , and Λq252

diagonal. Under this assumption, the imaging problem (2.18) can be reinterpreted in253

the form of an MMV problem254

(2.20) Ãρq = bq,255

with ρq = Λqρ. Physically, each ρq is a transformed version of the same unknown256

vector ρ. The data can be arranged into the data matrix (2.17), and (2.20) may be257

expressed as a matrix-matrix equation258

(2.21) ÃP = B ,259

where the columns of P ∈ CK×S , ρq = Λqρ, share the same support.260

The important element of the new formulation (2.20) (or (2.21)) is that now all261

the data vectors bq are linear combinations of the same M columns of Ã (or A), those262

columns that correspond to T = supp(ρ), with M = |T |. Thus, every column of Ã263

indexed by T is contained in the column space of B, the signal subspace, which is264

orthogonal to the noise subspace. Hence, one can simply find the unknown support265

T by projecting the columns of Ã onto the noise subspace. Both, the signal and the266

noise subspaces can be obtained via the singular value decomposition (SVD) of B.267

More precisely, the objective of a MUSIC algorithm is to find the support T of268

an unknown sparse vector ρ = [ρ1, ρ2, . . . , ρK ]T with a number of nonzero entries M269

much smaller than its length K. With a sufficiently diverse number of experiments270

S ≥M we create a data matrix B, and we compute its SVD271

(2.22) B = UΣV ∗ =

K∑
j=1

σjujv
∗
j .272

If the data is noiseless there are M nonzero singular values σ1 > σ2 > · · · > σM > 0273

with corresponding (left) singular vectors uj , j = 1, . . . ,M that span the signal274

subspace of CN . The remaining singular values σj , j = M + 1, . . . ,K, are zero, and275

the corresponding (left) singular vectors span the noise subspace of CN . Because the276

set of columns of Ã indexed by T = supp(ρ) also spans the signal subspace, the sought277

support T corresponds to the zero set of the orthogonal projections of the columns278

vectors ãk onto the noise subspace. Thus, it follows that the support of ρ can be279

found among the zeros of the imaging functional280

(2.23) ISIGNAL
k =

M∑
j=1

|ã∗k uj |2, k = 1, . . . ,K,281

or, equivalently, among the peaks of the imaging functional282

(2.24) IMUSIC
k =

‖ãk‖`2∑N
j=M+1 |ã

∗
k uj |2

, k = 1, . . . ,K.283
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Furthermore, if all sets of M columns of Ã are linearly independent, then the peaks284

exactly coincide with the support of ρ in the noiseless case. In (2.24), the numerator285

is a normalization factor.286

Once the support is recovered, the problem typically becomes overdetermined287

(N > | supp(ρ)|) and the nonzero values of ρ can be easily found by solving the linear288

system restricted to the given support with an `2 method [13].289

Regarding imaging with noisy data, it follows from Weyl’s theorem [39] that when290

noise is added to the data so B → Bδ = B + E with ‖E‖`2 < δ, then no singular291

value σδ moves more than the norm of the perturbation, i.e., ‖σδ − σ‖`2 < δ. Hence,292

(i) perturbed and unperturbed singular values are paired, and (ii) the spectral gap293

between the zero and the nonzero singular values remains large if the smallest nonzero294

unperturbed singular value σM � δ. If the noise is not too large, then the rank of295

the data matrix Bδ can be determined, and so is M = |T |.296

The signal and noise subspaces are also perturbed in the presence of noise. It can297

be shown, however, that the perturbed subspaces remain close to the unperturbed298

ones, with changes that are proportional to the reciprocal of the spectral gap β =299

σδM − σM+1. This follows from Wedin’s Theorem [38].300

Theorem 2.5. (Wedin) Let B have the SVD B = Q+Q0 with Q = UΣV T and301

Q0 = U0Σ0V
T
0 , and let the perturbed matrix Bδ = B+E have the SVD Bδ = Qδ+Qδ0302

with Qδ = U δΣδV δ
T

and Qδ0 = Uδ0 Σδ0V
δ
0
T

. If there exist two constants α ≥ 0 and303

β > 0 such that σmax(Q0) ≤ α and σmin(Qδ) ≥ α+ β, then the distance between the304

orthogonal projections onto the subspaces R(Q) and R(Qδ) is bounded by305

(2.25) ‖PR(Qδ) − PR(Q)‖`2 6
δ

β
,306

where δ = max(‖EV ‖`2 , ‖E∗U‖`2).307

There is much work done on the robustness of MUSIC with respect to noise. We308

refer to [26], and references therein, for a recent discussion about how much noise309

the MUSIC algorithm can tolerate. When we apply the Theorem 2.5 to our imaging310

problem, where Q0 = 0, we obtain the following result whose proof is in Appendix B.311

312

Theorem 2.6. Let X =Diag(ρ) be a diagonal matrix that solves313

(2.26) ÃXL = B,314

where Ã satisfies conditions (i), (ii), and (iii) of Theorem 2.3 for a fixed ε < 1/3,315

L =


l11 l12 l1S
l21 l22 l2S
...

...
...

lK1 lK2 lKS

 ∈ CK×S ,316

and B is the noiseless data matrix (2.17) with SVD B = Q = UΣV T . Let the317

perturbed matrix Bδ = Qδ +Q0 be such that σmax(Bδ−B) 6 δ. Suppose ρ, the vector318

diagonal entries of X, is sparse with T = supp(ρ), M = |T |, M � size(ρ), and319

ρm = min
ρi 6=0
{|ρi|}.320

Let LT be the submatrix of L, formed by the rows corresponding to T , has321

(2.27) σTm = σmin(LT ).322
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If323

(2.28) 2δ < ρmσ
T
m(1− 3ε),324

the orthogonal projections onto the subspaces R(Qδ) and R(B) are close:325

(2.29) ‖PR(Qδ) − PR(B)‖`2 6
δ

ρmσTm(1− 3ε)
.326

To conclude, the main step in setting up MUSIC is to be able to find a suitable327

factorization of the model matrix as Aq = ÃΛq, where Λq is diagonal. In that case,328

the imaging vectors are just the columns of Ã that are given. We discuss next imaging329

situations in which this factorization is possible and MUSIC can form form images330

with high precision. We also discuss applications in which the factorization is only331

approximate and, hence, images obtained with MUSIC lose resolution.332

3. Array imaging: data models. The goal of array imaging is to form images333

inside a region of interest called the image window IW. In active array imaging the334

array probes the medium by sending signals and recording the echoes. Probing of the335

medium can be done with many different types of arrays that differ in their number336

of transmitters and receivers, their geometric layouts, or the type of signals they use337

for illumination. They may use single frequency signals sent from different positions,338

or multifrequency signals sent from one or more positions. Of course, the problem of339

active array imaging also depends on the receivers. They can record the intensities340

and phases of the signals that arrive to the array or only their intensities.341

In this section, we describe some common configurations used in active array342

imaging. The array, with N transducers separated by a distance h, has a characteristic343

length a (see Figure 1). The transducers emit signals from positions ~xs and record344

the echoes at positions ~xr, s, r = 1, 2, . . . , N . They can use single or multifrequency345

signals, with frequencies ωl, l = 1, . . . , S. Our goal is to reconstruct a sparse scene346

consisting of M point-scatterers at a distance L from the array, whose positions ~ynj347

and reflectivities αnj ∈ C, j = 1, . . . ,M , we seek to determine. The ambient medium348

between the array and the scatterers can be homogeneous or inhomogeneous.349

In order to form the images we discretize the IW using a uniform grid of points
~yk, k = 1, . . . ,K, and we introduce the true reflectivity vector

ρ0 = [ρ01, . . . , ρ0K ]T ∈ CK ,

such that ρ0k =
∑M
j=1 αnjδ~ynj ~yk , k = 1, . . . ,K, where δ·· is the classical Kronecker350

delta. We will not assume that the scatterers lie on the grid, i.e., {~yn1
, . . . , ~ynM } 6⊂351

{~y1, . . . , ~yK} in general. To write the data received on the array in a compact form,352

we define the Green’s function vector353

(3.1) ĝ(~y;ω) = [Ĝ(~x1, ~y;ω), Ĝ(~x2, ~y;ω), . . . , Ĝ(~xN , ~y;ω)]T354

at location ~y in the IW, where Ĝ(~x, ~y;ω) denotes the free-space Green’s function of the355

homogeneous or inhomogeneous medium. This function characterizes the propagation356

of a signal of angular frequency ω from point ~y to point ~x, so (3.1) represents the357

signal received at the array due to a point source of frequency ω at ~y. When the358

medium is homogeneous,359

(3.2) Ĝ(~x, ~y;ω) = Ĝ0(~x, ~y;ω) =
exp(iκ|~x− ~y|)

4π|~x− ~y|
, κ =

ω

c0
.360
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IW

~xr

λ

~xs
L

a

~yj

h

Fig. 1. General setup of an array imaging problem. The transducer at ~xs emits a probing
signal and the reflected intensities are recorded at ~xr. The scatterers located at ~yj , j = 1, . . . ,M
are at distance L from the array and inside the image window IW.

In this case, the Green’s function vector is361

ĝ0(~y;ω) = [Ĝ0(~x1, ~y;ω), Ĝ0(~x2, ~y;ω), . . . , Ĝ0(~xN , ~y;ω)]T .362

We assume that the scatterers are far apart or that the reflectivities are small, so363

multiple scattering between them is negligible. In this case, the Born approximation364

holds and, thus, the response at ~xr (including phases) due to a pulse of angular365

frequency ωl sent from ~xs, and reflected by the M scatterers, is given by366

(3.3) P (~xr, ~xs;ωl) =

M∑
j=1

αjG(~xr, ~ynj ;ωl)G(~ynj , ~xs;ωl) ,367

and the the full response matrix that contains all posible information for imaging by368

(3.4) P (ωl) = [P (~xr, ~xs;ωl)] =

M∑
j=1

αj ĝ(~ynj ;ωl) ĝ
T (~ynj ;ωl) .369

Next, we describe different situations of interest in active array imaging.370

3.1. Single frequency signals and multiple receivers. Let us first consider371

the case in which only one illumination of frequency ω is sent using the N sources in372

the array located at positions ~xs, s = 1, . . . , N . The echoes are also recorded at the373

N receivers located at ~xr, r = 1, . . . , N . If f̂(ω) = [f̂1(ω), . . . , f̂N (ω)]T represents the374

illumination vector whose entries are the signals sent from the sources in the array,375

then ĝ
(k)

f̂(ω)
= ĝ(~yk;ω)T f̂(ω) is the field at the grid position ~yk in the IW. Thus,376

(3.5) Af̂(ω) =

 ↑ ↑ ↑
ĝ

(1)

f̂(ω)
ĝ(~y1;ω) ĝ

(2)

f̂(ω)
ĝ(~y2;ω) . . . ĝ

(K)

f̂(ω)
ĝ(~yK ;ω)

↓ ↓ ↓

 ∈ CN×K377

is the model matrix that connects the unknown reflectivity vector ρ ∈ CK to the data378

vector bf̂(ω) ∈ CN that depends on the illumination f̂(ω).379
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If a single illumination is used to form an image, then active array imaging380

amounts to finding ρ from the system of linear equations381

(3.6) Af̂(ω)ρ = bf̂(ω) .382

Abusing a little bit the notation used in Section 2, we have indicated in (3.6) that383

the control parameter vector is the illumination f̂(ω). According to (2.1)-(2.2), the384

parameter vector is l = [ĝ
(1)

f̂(ω)
, ĝ

(2)

f̂(ω)
, . . . , ĝ

(K)

f̂(ω)
]T which depends on the Green’s func-385

tion vectors ĝ(~y;ω) fixed by the physical layout, and on the illumination vector f̂(ω)386

that we control. The system of linear equations (3.6) can be solved using appropriate387

`2 or `1 methods. If an `1-norm minimization method is chosen, we would seek the388

sparsest vector ρ among all possible vectors satisfying (3.6).389

If, instead, multiple illuminations are used to form the images, then we can use390

an MMV approach to find the solution with MUSIC. Indeed, note that the model391

matrix (3.5) can be factorized into two matrices392

(3.7) Ã =

 ↑ ↑ ↑
ĝ(~y1;ω) ĝ(~y2;ω) . . . ĝ(~yK ;ω)
↓ ↓ ↓

 ∈ CN×K393

and394

(3.8) Λf̂(ω) =


ĝ

(1)

f̂(ω)
0

0 ĝ
(2)

f̂(ω)

. . .

0 ĝ
(k)

f̂(ω)

 ∈ CK×K ,395

so that Af̂(ω) = ÃΛf̂(ω). Hence, it follows from the discussion in Section 2 that (3.6)396

can be written in the MMV form397

(3.9) Ãρ̃q = bq , q = 1, . . . , S,398

and the support of ρ can be found exactly with MUSIC if enough data vectors bf̂q(ω)399

are available. In (3.9), bq = bf̂q(ω), and ρ̃q = Λf̂q(ω)ρ represents an effective source400

weighted reflectivity vector with the same support as ρ, and whose nonzero entries401

vary with f̂ q(ω). We remark that the equivalent source problem (3.9) can be used to402

account for multiple scattering between the scatterers (see [12] for details).403

To show that Theorem 2.6 is relevant for imaging we write (3.9) as (2.26) with404

the unknown matrix X =Diag(ρ), the data matrix B formed by the S vectors bq, and405

the illumination matrix406

L =

 ↑ ↑ ↑
ÃT f̂1(ω) ÃT f̂2(ω) . . . ÃT f̂S(ω)
↓ ↓ ↓

 ∈ CK×S407

whose ith column ÃT f̂ i(ω) = [ĝ
(1)

f̂i(ω)
, ĝ

(2)

f̂i(ω)
, . . . , ĝ

(K)

f̂i(ω)
]T contains the fields at all grid408

positions ~yk, k = 1, . . . ,K due to the illumination f̂ i(ω). Then, condition (2.27) can409

be interpreted as an orthogonality condition on the illuminations. Furthermore, if we410
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suppose that S = N and use the illuminations f̂ q(ω) = f̂(ω)êq (êq is the vector with411

a 1 in the qth coordinate and 0’s elsewhere) for all q = 1, . . . , S, then L = f̂(ω)ÃT .412

In this case, σTm = σmin(LT ) ≥ (1− 3ε)|f̂(ω)|, assuming Ã satisfies conditions (i), (ii)413

and (iii) of Theorem 2.3 (see proof of Theorem 2.6 in Appendix B).414

3.2. Multifrequency signals and one receiver: the one-dimensional prob-415

lem. Consider now a one-dimensional problem with scatterers located at different416

ranges. To determine their positions we only use one transducer that emits and re-417

ceives multiple frequency signals. We assume that the scatterers are far from the418

transducer, but not far from each other so the denominator of the Green’s function419

in (3.2) can be approximated by a constant. In that case, the collected data are420

approximately the Fourier transform of the reflectivity vector to be imaged.421

To fix ideas, denote by zn = L + (n − 1)∆z the distance between the single422

transducer and the scatterer of reflectivity ρn, n = 1, . . . ,K. Then,423

(3.10)

K∑
n=1

ei2κmznρn = bm , m = 1, . . . , 2S,424

relates the positions and reflectivities of the scatterers to the measurements bm at425

frequencies ωm = κm c0, where c0 is the wave speed in a homogeneous medium. In426

this problem, we seek to recover the unknown vector ρ = [ρ1, ρ2, . . . , ρK ] from the427

multifrequency data vector b = [b1, b2, . . . , b2S ] recorded at a single receiver.428

The next assumption allows to succinctly formulate one-dimensional multifre-429

quency MUSIC in the form of an MMV problem using the Prony-type argument (see,430

for example, [25]). Namely, suppose that the measurements are obtained at equally431

spaced (spatial) frequencies κm = κ1 + (m− 1)∆κ, m = 1, 2, . . . , 2S. Then, we write432

(3.10) in matrix form as433

(3.11) A2S ρ = b ,434

where435

(3.12) A2S =


ei2κ1z1 ei2κ1z2 . . . ei2κ1zK

ei2κ2z1 ei2κ2z2 . . . ei2κ2zK

. . . . . . . . . . . .
ei2κ2Sz1 ei2κ2Sz2 . . . ei2κ2SzK

436

is a Vandermonde matrix of dimensions 2S ×K. Since we only have one data vector437

b ∈ C2S we cannot determine from it a signal space of dimension M = | supp(ρ)|.438

However, following the general idea of Prony-type [32] methods we form the S × S439

data matrix440

(3.13) B =


b1 b2 . . . bS
b2 b3 . . . bS+1

. . . . . . . . . . . .
bS bS+1 . . . b2S

 ,441

whose rank is M if S > M . If we now set the S ×K matrix442

(3.14) Ã = AS =


ei2κ1z1 ei2κ1z2 . . . ei2κ1zK

ei2κ2z1 ei2κ2z2 . . . ei2κ2zK

. . . . . . . . . . . .
ei2κSz1 ei2κSz2 . . . ei2κSzK

443
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and the K ×K diagonal matrices444

(3.15) Λq =


ei2∆κz1 0 . . . 0 0

0 ei2∆κz2 . . . 0 0
. . . . . . . . . ei2∆κzK−1 0
0 0 . . . 0 ei2∆κzK


q

,445

with q = 1, . . . , S, then it is straightforward to verify that ÃΛqρ = bq, where bq is
the qth column of the matrix B in (3.13). Thus, we obtain the desired structure

Ãρq = bq,

and MUSIC can be applied directly to find the support of ρ. Subsequently, as noted446

above ρ itself can be determined by solving the linear system restricted on the support447

ρ.448

If M � K, so the vector ρ is M -sparse, then the solution can also be found449

directly from (3.11) by using an `1-norm minimization approach. Note that (3.11)450

always has a unique M -sparse solution if M < S. Indeed, we argue by contradiction451

that it is not possible to have more than one M -sparse solution if M < S. Suppose452

there are two M -sparse solutions ρ1 and ρ2. Then, A2Sy = 0 for y = ρ1 − ρ2. Since453

the support of y is less or equal than 2M , we have 2M linearly dependent columns454

of A2S , which is impossible for Vandermonde matrices since they are full rank.455

3.3. The single frequency phase retrieval problem. In its classical form,456

the phase retrieval problem consists in finding a function h from the amplitude of its457

Fourier transform ĥ. In imaging, it consists in finding a vector ρ that is compatible458

with a set of quadratic equations for measured amplitudes. This occurs in imaging459

regimes where only intensity data is recorded, which means that most of the infor-460

mation encoded in the phases is lost. Phase retrieval algorithms have been developed461

over a long time to deal with this problem [20, 19]. They are flexible and effective462

but depend on prior information about the image and can give uneven results. An463

alternative convex approach that guarantees exact recovery has been considered in464

[10, 9] but its computational cost is extremely high when the problem is large. When,465

however, multiple measurements of the object to be imaged are available, we may re-466

cover the missing phase information and image holographically much more efficiently467

[31, 28, 29]. By holographic imaging we mean the use of interference patterns between468

two or more coherent sources in order to form the images [40].469

Indeed, let us consider single frequency imaging with multiple sources and re-
ceivers as in problem (3.9), where the data vectors bq = Ãρ̃q, that depend on the

illumination f̂ q(ω), contained the amplitudes and phases of the recorded signals We
now, however, assume that only the amplitudes squared of the components of these
data vectors can be measured. Then, the phase retrieval problem is to find the un-
known vector ρ from a family of quadratic equations

|Aqρ|2 = |bq|2 , q = 1, . . . , Q,

understood component wise. This problem is nonlinear and nonconvex and, hence,470

difficult to solve. In fact, it is in general NP hard [33]. However, if an appropriate set471

of illuminations is used, we can take advantage of the polarization identity472

2 Re < u, v > = |u+ v|2 − |u|2 − |v|2473

2 Im < u, v > = |u− iv|2 − |u|2 − |v|2(3.16)474
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to solve a simple linear system of the form475

(3.17) Aqρ = m(r)
q .476

The polarization identity allows us to find the inner product between two complex477

numbers and, therefore, its phase differences. In (3.17), m
(r)
q is the vector whose478

ith component is the correlation b
(r)
q b

(r)
êi

between two signals measured at ~xr, one479

corresponding to a general illumination f̂ q(ω) and the other to an illumination êi =480

[0, 0, . . . , 0, 1, 0, . . . , 0]T whose entries are all zero except the ith entry which is 1.481

Using the polarization identity (3.16) we can obtain b
(r)
q b

(r)
êi

from linear combinations482

of the magnitudes (squared) |b(r)q |2, |b(r)êi |
2, |b(r)q + b

(r)
êi
|2, and |b(r)q + ib

(r)
êi
|2. A physical483

interpretation of (3.17) is as follows. Send an illumination f̂ q(ω), collect the response484

at ~xr, time reverse the received signal at ~xr, and send it back to probe the medium485

again. Then, m
(r)
q represents the signals recorded at all receivers ~xi, i = 1, . . . , N .486

To wrap up, if the phases are not measured at the array but we control the487

illuminations, the images can be formed by solving (3.17). We can use `1-norm488

minimization if only one vector m
(r)
q is obtained in the data acquisition process,489

or we can use MUSIC if enough vectors of this form are available [31, 28]. Note that490

in this approach, where only one frequency ω is used, the receiver ~xr is fixed.491

3.4. Multiple frequency signals and multiple receivers. Finally, we con-492

sider the most general case in which multiple frequency signals are used to probe493

the medium from several source positions, and the echoes are measured at several494

receiver positions. This case considers all the possible diversity of information that495

can be obtained from the illuminations. We discuss first the situation in which the496

receivers measure amplitudes and phases and, then, the situation in which they can497

only measure amplitudes squared.498

3.4.1. Imaging with phases. Assume that the data (including phases)499

(3.18) d(~xr, ~xs, ωl) = P (~xr, ~xs;ωl) ,500

for all receiver locations ~xr, source locations ~xs, and frequencies ωl are available for501

imaging. For an array with N colocated sources and receivers that emit S differ-502

ent frequencies the number of measurements is then equal to N2 S. To make use of503

the coherence of these data over all the frequencies we could stack them in a col-504

umn vector b, but then we would have to deal with a huge linear system Aρ = b505

of size N2 S × K. To reduce the number of data used in an `1 approach, we con-506

sider that the illumination is of separable form, i.e., f̂(ωl) = f(ωl)f̂ and the same507

vector f̂ is used for all the frequencies ωl, l = 1, . . . , S. Thus, for an illumination508

f̂ = [f̂(ω1)T , f̂(ω2)T , . . . , f̂(ωS)T ]T we stack the data (including phases) in a column509

vector510

(3.19) bf̂ = [bT
f̂(ω1)

, bT
f̂(ω2)

, . . . , bT
f̂(ωS)

]T ,511

and we solve the system of equations512

(3.20) Af̂ ρ = bf̂ ,513
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with the (N · S)×K matrix514

(3.21) Af̂ =



↑ ↑ ↑
ĝ

(1)

f̂(ω1)
ĝ(~y1;ω1) ĝ

(2)

f̂(ω1)
ĝ(~y2;ω1) . . . ĝ

(K)

f̂(ω1)
ĝ(~yK ;ω1)

↓ ↓ ↓
↑ ↑ ↑

ĝ
(1)

f̂(ω2)
ĝ(~y1;ω2) ĝ

(2)

f̂(ω2)
ĝ(~y2;ω2) . . . ĝ

(K)

f̂(ω2)
ĝ(~yK ;ω2)

↓ ↓ ↓
...

...
...

↑ ↑ ↑
ĝ

(1)

f̂(ωS)
ĝ(~y1;ωS) ĝ

(2)

f̂(ωS)
ĝ(~y2;ωS) . . . ĝ

(K)

f̂(ωS)
ĝ(~yK ;ωS)

↓ ↓ ↓



.515

Here, ĝ
(j)

f̂(ωl)
= ĝ(~yj ;ωl)

T f̂(ωl) denotes the field with frequency ωl at position ~yj .516

The system (3.20) relates the unknown vector ρ ∈ CK to the data vector bf̂ ∈ C(N ·S)517

in a coherent way. The system of linear equations (3.20) can, of course, be solved by518

appropriate `2 and `1 methods.519

However, because (3.20) cannot be written in the form of an MMV problem, MU-520

SIC cannot be used to identify the support of ρ as in the previous imaging problems.521

The issue here is that matrix (3.21) cannot be factorized in the form Af̂ = ÃΛf̂522

because the scalars ĝ
(j)

f̂(ωl)
depend on frequency. However, in the paraxial regime,523

where the scatterers are far from the array, and the array and the IW are small so the524

wavefronts that illuminate the scatterers are planar, we can take into account these525

changes over frequencies explicitly to image coherently with MUSIC.526

Indeed, assume for simplicity that only one source at ~xs = (xs, 0) with cross-527

range vector xs = (xsx, xsy) emits the signals, i.e., for all the frequencies ωl we use528

the N-vector f̂(ωl) ≡ f̂ l,s = [0, 0 . . . , 0, 1, 0, . . . , 0]T with all the entries equal to zero529

except the sth entry which is one. In the paraxial regime, where λ � a � L and530

the IW is small compared to L, the illumination at position ~yj = (yj , L + ηj) can531

be approximated by ĝ
(j)

f̂l,s
≈ eiκl(ηj+(xs−yj)

2/2L) ≈ eiκlηjeiκc(xs−yj)
2/2L and, thus,532

Af̂l,s ≈ ÃΛf̂c,s where533

(3.22) Ã =



↑ ↑ ↑
ĥ(~y1;ω1) ĥ(~y2;ω1) . . . ĥ(~yK ;ω1)
↓ ↓ ↓
↑ ↑ ↑

ĥ(~y1;ω2) ĥ(~y2;ω2) . . . ĥ(~yK ;ω2)
↓ ↓ ↓
...

...
...

↑ ↑ ↑
ĥ(~y1;ωS) ĥ(~y2;ωS) . . . ĥ(~yK ;ωS)
↓ ↓ ↓


534
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with ĥ(~yj ;ωl) = eiκlηj ĝ(~yj ;ωl), and535

(3.23) Λf̂c,s =


eiκc(xs−y1)2/2L 0

0 eiκc(xs−y2)2/2L

. . .

0 eiκc(xs−yK)2/2L

 .536

In this approximation, the nonzero entries of the diagonal matrix (3.23) are given by537

the illumination relative to the central frequency κc. Then, the multiple-frequency538

MUSIC formulation is of the MMV form539

(3.24) ÃΛf̂c,sρ = B ,540

with Ã as in (3.22), Λf̂c,s as in (3.23), and the (N · S)×N matrix541

(3.25) B = P c = [P (ω1)T , P (ω2)T , . . . , P (ωS)T ]T542

corresponding to stacking the array response data matrices (3.4) for multiple frequen-543

cies in a column. With this data structure, multiple-frequency imaging can be carried544

out coherently using MUSIC with the column vectors of (3.22) as the imaging vectors.545

We could have used instead the alternative data structure546

(3.26) B = P d =


P (ω1) . . . 0 0

0 P (ω2) . . . 0
. . . . . . . . . . . .
0 0 0 P (ωS)

547

to image with MUSIC. However, that would be as if imaging with each frequency548

separately and summing up the resulting images incoherently, so there would be no549

significant improvement over single frequency imaging.550

To summarize, multiple frequency imaging with phases can be done in all regimes551

by solving (3.20) with suitable `2-norm or `1-norm methods. The matrix-matrix552

formulation (3.24) can be used to form the images with MUSIC or using (2,1)-matrix553

minimization as in [12]. Recall that (3.24) is an approximate formulation, which is554

valid for the paraxial regime.555

3.4.2. Imaging without phases. Assume now that only the intensities can be556

recorded at the array. In subsection 3.3 we showed that with multiple sources and557

multiple receivers, but a single frequency, we could recover cross correlated data from558

intensity-only measurements if we control the illuminations and, then, we could image559

holographically. In general, if several frequencies are used for imaging, we can fix one560

of the three possible variables (~xr, ~xs, ω) and proceed similarly. For example, we can561

fix the receiver position ~xr, and recover the multifrequency interferometric data562

(3.27) d((~xr, ~xr), (~xs, ~xs′), (ω, ω
′)) = P (~xr, ~xs;ω)P (~xr, ~xs′ ;ω

′)563

for all pairs of frequencies (ω, ω′) and source locations (~xs, ~xs′).564

To understand the type of data that we can use in this situation, let us consider565

one row of the N × (N · S) full response matrix for multiple frequencies566

(3.28) P r = [P (ω1), P (ω2), . . . , P (ωS)] ,567

17

This manuscript is for review purposes only.



and denote the r-th row of this matrix by568

(3.29) pr = [pr1, pr2, . . . , prN ·S ] .569

Here, prj with j ≡ j(s, l) = s+ (l− 1) ·N , denotes the received signal at ~xr when the570

source at ~xs sends a signal of frequency ωl. With this notation, and denoting by the571

superscript ·∗ the conjugate transpose of a vector,572

(3.30) Mr = p∗rpr573

is the rank-one matrix whose jth column corresponds to the vector mr
êj

in the right574

hand side of the linear system (3.17), introduced in subsection 3.3 for single frequency575

imaging, but generalized here so as to account for multiple frequencies, i.e., for l =576

1, . . . , S. That is, the jth column of (3.30) contains the correlations of the response577

received at ~xr when a signal of unit amplitude and frequency ωl is sent from ~xs to578

probe the medium (j = s + (l − 1)N), with all the other responses received also at579

~xr when unit amplitude signals are sent from all the sources with all the different580

frequencies. In short,581

(3.31) [Mr]ij = priprj = (prêi)
∗
prêj .582

Since Mr is rank one, all the columns are linearly dependent, so we can only use583

one of its columns to solve the imaging problem584

(3.32) Aêjρ = mr
êj

585

for one êj , and form the images with an `2-norm or `1-norm method. The matrix Aêj586

is given by (3.21) and, hence, the model (3.32) is exact.587

Alternatively, once the matrix Mr has been obtained from intensity-only mea-588

surements, imaging can be done using the Kirchhoff migration functional589

(3.33) IKM = diag(A∗êjM
rAêj ).590

The `2 images (3.33) are very robust with respect to additive measurement noise, but591

they are statistically unstable when imaging is done in a randomly inhomogeneous592

medium or when there are modeling errors due to off-grid scatterers. Both situations593

lead to perturbations in the (unknown) phases that may make the IKM images depen-594

dent on the particular realization of the medium and/or the positions of the scatterers.595

In [29], we showed that statistical stability can be enhanced by masks that limit the596

frequency and source offsets of the measurements used in (3.33). Hence, if the pertur-597

bations of the phases are important, we can use the Single Receiver INTerferometric598

(SRINT) imaging functional given by599

(3.34) ISRINT = diag(A∗êjZ �M
rAêj ) .600

In (3.34), the mask Z is a matrix composed by zeros and ones restricting the data601

to coherent nearby source locations and frequencies, and � denotes component-wise602

multiplication. The same idea can be used for stabilizing the `1-norm minimization603

method if the perturbation of the phases are important. We can just replace the jth604

column of the matrix Mr by the jth column of the masked data Z�Mr, and remove605

the corresponding rows from the model matrix Aêj .606

On the other hand, as noted in [31, 28], the support of the reflectivity ρ can be607

recovered exactly by using the MUSIC algorithm on the single frequency interfero-608

metric matrix M(ω) = P ∗(ω)P (ω). Once the support of ρ is found, we can estimate609
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the reflectivities by solving a trace minimization problem restricted to the support of610

ρ (see [10, 31] for details).611

For multiple frequencies, multiple sources and multiple receivers one can use the612

data structure613

(3.35) M c =


P (ω1)∗P (ω1)
P (ω2)∗P (ω1)

...
P (ωS)∗P (ω1)

614

for pairs of frequencies (ωl, ω1), l = 1, . . . , S, to image coherently using MUSIC.615

Indeed, the matrices M c as in (3.35) and P c defined in (3.25) have the same column616

space and, therefore, MUSIC can form the images using the SVD of M c and the617

column vectors of (3.22) as imaging vectors. We denote these data structures with618

the superscript c to point out that we have stacked the one frequency matrices P (ωl)619

and the two frequencies matrices P (ωl)
∗P (ω1) in a column.620

As noted in the previous section we could have used instead the alternative data621

structure622

(3.36) Md =


P (ω1)∗P (ω1) . . . 0 0

0 P (ω2)∗P (ω2) . . . 0
. . . . . . . . . . . .
0 0 0 P (ωS)∗P (ωS)

623

to image using MUSIC. However, as we have already explained, if we used the SVD624

of Md to obtain the signal and noise subspaces, then the frequencies are not used625

coherently and there is no improvement over single frequency imaging.626

In summary, multiple frequency imaging with intensity-only can be done in all627

regimes by solving (3.32) with appropriate `2-norm or `1-norm methods or, in the628

paraxial regime, by forming the images using MUSIC on the data structure (3.35)629

with imaging vectors given by the column vectors of the matrix (3.22). MUSIC on the630

data structure (3.36) should not be used since multiple frequencies are not processed631

coherently. The performance of these methods will be assessed in Section 4, where we632

show numerical experiments in homogeneous and weakly inhomogeneous media.633

4. Numerical Simulations. We present here numerical simulations that illus-634

trate the performance of the different imaging methods discussed in the previous sec-635

tions. Specifically, we consider multifrequency interferometric imaging without phases636

discussed in subsection 3.4.2, and we present the images obtained with `1-norm min-637

imization, SRINT, and MUSIC using the data structures M c and Md. Our objective638

is to study the robustness of these imaging methods in the presence of noise, that639

is perturbations in the unknown phases of the collected signals. Two types of phase640

perturbations are considered, systematic due to off-grid placement of the scatterers641

and random resulting from wave propagation in an inhomogeneous ambient medium.642

4.1. Imaging setup. We consider a typical imaging regime in optics, with a643

central frequency f0 = 600 THz corresponding to a central wavelength λ0 = 500nm.644

We use S = 12 equally spaced frequencies covering a total bandwidth of 30THz. In645

this regime, the decoherence frequency of the data Ωd is equal to the total bandwidth.646

All considered wavelengths are in the visible spectrum of green light.647

The size of the array is a = 500λ0, and the distance between the array and the IW648

is L = 10000λ0. The IW, whose size is 120λ0 × 60λ0, is discretized using a uniform649
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lattice with mesh size 4λ0 × 2λ0. The medium between the array and the IW is650

inhomogeneous, with weak fluctuations and long correlation lengths with respect to651

the central wavelength. The propagation distance L is large so cumulative scattering652

effects are important, but not too large so the phases of the signals received at the653

array still maintain certain degree of coherence. In all the figures, the true locations654

of the scatterers are indicated with white crosses, and the length scales are measured655

in units of λ0.656

Again, we assume that the phases of the signals received at the array cannot be657

measured. Hence, only their intensities are available for imaging. These measure-658

ments are collected at only one receiver, so we can use the methods explained in659

subsection 3.4.2 to image interferometrically. We consider imaging in homogeneous660

and inhomogeneous media.
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Fig. 2. Imaging in a homogeneous medium. There is no noise added to the data and the
scatterers are on the grid. From left to right: SRINT image, MUSIC with Md, MUSIC with Mc

coupling over frequencies, and `1-norm minimization applied on one column of the masked matrix
Z �Mr.

661

4.2. Imaging in homogeneous media. Let us first consider imaging in ho-662

mogeneous media. For the imaging system described above, we expect cross-range663

and range resolutions of λ0L/a = 20λ0 and C0/B = λ0f0/B = 20λ0, respectively. In664

order to keep the resolution fixed with respect to imaging in inhomogeneous media665

that we consider afterwards, we also apply masks to the data used to image in the666

homogeneous medium. This reduces the cross-range resolution to λ0L/Xd = 32λ0667

corresponding to Xd = 5a/8. The range resolution does not change because the668

decoherence frequency Ωd is equal to the total bandwidth.669

In Figure 2, the scatterers lie on the grid and there is no noise in the data. We670

observe that SRINT (left image) provides a quite limited resolution and it cannot671

resolve two of the four scatterers. On the other hand, imaging with MUSIC (two672

middle images) or imaging using `1-norm minimization (right image) give much better673

results. MUSIC using the block-diagonal matrix Md (second image from the left) gives674

exact recovery, while MUSIC using the M c matrix (third image from the left), that675

couples all the frequencies, is less accurate. This is so because, as we explained in676

Section 3.4, MUSIC with M c is not exact as it provides approximate locations of the677

scatterers only in the paraxial regime. Finally, the `1-norm approach recovers exactly678

the four scatterers as can be seen in the right image of this figure.679

Figure 3 shows the same experiment as Figure 2 but with the scatterers displaced680

by half the grid size with respect to the grid points in range and cross-range directions.681

This produces perturbations in the unknown phases of the collected signals due to682

modeling errors. Because the point spread function is, in this case, much wider (of the683

order of 20λ0) than the off-grid displacements, the image formed with SRINT (left684

plot) is very robust with respect to these perturbations in the phases. However, the685

image obtained with MUSIC using the data structure Md (second plot from the left)686
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deteriorates dramatically because the multiple-frequency information contained in the687

data is not processed in a coherent way. On the other hand, both MUSIC with the688

M c data structure (third plot from the left) and `1-norm minimization (right plot)689

are very robust with respect to the off-grid displacements.690
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Fig. 3. Same as Figure 2 but with the scatterers off the grid. The scatterers are displaced by
half the grid size in both directions from a grid point.

We study next the performance of the proposed methods for imaging in inhomo-691

geneous media with weak fluctuations and long correlation lengths with respect to λ0.692

The challenge is to obtain similar results in this case.693

4.3. Imaging in random inhomogeneous media. Consider the setup dis-694

played in Figure 4 with four scatterers in the right (black circles) at a distance695

L = 10000λ0 from the array (black stars). The data used in the numerical experiments696

are generated using the random phase model which is frequently used to account for697

weak phase distortions [3, 13, 5, 29]. In this model, the standard deviation of the698

perturbations of the phases is given by σ
√
lL/λ0, where σ and l denote the strength699

and the correlation length of the fluctuations of the medium, respectively. If we in-700

troduce the characteristic strength σ0 = λ0/
√
lL, for which the standard deviation of701

the random phases is O(1), we can quantify the perturbations of the unknown phases702

by the dimensionless parameter ε = σ/σ0.703

In order to study the effect of phase distortions due to a random medium on704

imaging, we consider that the scatterers lie on the grid. Imaging in random media705

with `1-norm minimization has also been considered in [13, 5].706
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Fig. 4. One realization of the random medium used in the simulations. The correlation length
of the fluctuations is l = 100λ0.

Figure 5 displays the images obtained in a very weak fluctuating random medium707

with ε = 0.05. Comparing these images with the ones obtained in a homogeneous708
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Fig. 5. Same as Figure 2 but the medium is inhomogeneous. The strength of the fluctuations
is σ = 0.5 10−4 which corresponds to ε = 0.05. The scatterers are on-grid.

medium with scatterers on and off the grid (Figures 2 and 3, respectively) we observe709

that (i) SRINT (left plot), MUSIC using M c (third plot from the left) and `1-norm710

minimiation (right plot) are stable, and (ii) MUSIC using Md (second plot from the711

left) is not. Note that off-grid scatterers and a random medium both induce similar712

noise in the data, as both occur in the phases. In the off-grid case, the noise is713

systematic and similar for all array elements, while the noise induced by the random714

phase model depends on the path that connects the scatterer to each array element.715

Hence, depending on the correlation length of the random medium the noise produced716

in the phases is more or less correlated over the array elements.717
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Fig. 6. Imaging with SRINT in inhomogeneous media illustrating its stability with respect to
the random fluctuations of the media. The strength of the fluctuations increases from left to right so
ε = 0.1, 0.2, 0.4, 0.6 and 0.8. The top and bottom rows are two realizations of the random medium.

Since MUSIC using Md is not robust with respect to perturbations in the phases718

(see Figures 3 and 5) because the data are not processed coherently over frequencies,719

we do not present more results using this method.720

To further examine the robustness of the other imaging methods with respect to721

random medium fluctuations, we consider in the next figures five noise levels corre-722

sponding to ε = 0.1, 0.2, 0.4, 0.6 and 0.8. Each figure presents results for two realiza-723

tions of the random medium. In Figure 6 we see that, as expected, SRINT is highly724

robust, although its resolution is not very good. Even for ε = 0.8 (right column) the725

images do not change much respect to the ones obtained in a homogeneous medium.726

Figure 7 shows the images obtained with `1-norm minimization. The resolution is727

much better than that provided by SRINT, but it is much more sensitive to noise.728

Only for fluctuation strengths below or equal ε = 0.2 the images are good. Above this729

strength the images are useless. However, the use of masks on the data effectively730

removes the distortion imposed by the medium up to ε = 0.4, as it can be seen in731

Figure 8. This is so because by using masks we discard the incoherent data and, thus,732

we improve the robustness of the `1-norm method (even though we reduce the number733
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of equations in the linear system by about 40%).734
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Fig. 7. Images obtained with `1-norm minimization without masks in the same media and the
same scatterer’s configuration as in Figure 6. Imaging with `1-norm minimization without masks is
stable only for ε ≤ 0.2.
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Fig. 8. Same as Figure 7 but using masked data. The results are now stable for ε ≤ 0.4.

Finally, the images shown in Figure 9 formed using MUSIC with M c are also very735

good. They have significantly better resolution than the SRINT images but not as736

good as the ones obtained with `1-norm minimization. We stress that MUSIC with737

M c is not exact even for perfect data and, therefore, `1-norm minimization should738

be preferred if the fluctuations of the medium are weak. However, as the strength739

of the fluctuations increases, MUSIC with M c becomes competitive. Observe that at740

lower SNR, when the `1-norm images are not usefull, MUSIC with M c is robust and741

the resolution is better than the one provided by SRINT. Therefore, it should be the742

preferred method among the three for imaging in moderate SNR regimes.743
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Fig. 9. Images obtained with MUSIC using Mc in the same media and the same scatterer’s
configuration as in Figures 6-8. MUSIC using Mc is stable for ε ≤ 0.6.

5. Imaging results in the framework of Theorems 2.3 and 2.4. To illus-
trate the relevance of Theorems 2.3 and 2.4 for imaging, we consider in this section
the equivalent source problem of active array imaging with multiple frequencies and
multiple receivers described in subsection 3.4.1. In this setting we have to solve the
linear system

Ãρ = bf̂

with Ã the model matrix (3.22). We compare the corresponding `2 and `1 solutions744

of this problem for different imaging configurations. Our results illustrate the well745

know super-resolution for `1, meaning that ρ`1 determines the support of the un-746

known ρ with higher accuracy than the conventional resolution limits, provided the747

assumptions of Theorem 2.3 for the noiseless case or Theorem 2.4 for the noisy case748

are satisfied. We also show how the bandwidth, the array size and the number of749

scatterers affect the vicinities defined in (2.8). The numerical results are not special-750

ized to a paticular physical regime. They illustrate only the role of the theorems in751

solving the associated linear systems.752

Imaging methods. We compare the solution ρ`1 obtained with the `1-norm753

minimization algorithm GelMa described in section 2, and the `2-norm solution754

(5.1) ρ`2 = Ã∗bf̂ .755

where Ã∗ is the conjugate transpose of Ã.756

Imaging setup. The images are obtained in a homogeneous medium with an757

active array of N = 37 transducers. The ratio between the array aperture a and758

the distance L to IW, as well as the ratio between the bandwidth 2B and the central759

frequency f0, vary in the numerical experiments. The IW is discretized using a uniform760

grid of K = 3721 points of size λ0/2 in range and cross-range directions. The classical761

resolution theory suggests that the range and cross-range resolutions are c0/(2B) and762

λ0L/a, respectively. There is no additive noise in the data, but we consider on-grid763

and off-grid scatterers which produces perturbations in the recorded phases.764

Imaging results. In Figure 10 we show the results obtained for a large array765

and a large bandwidth corresponding to a/L = 1 and (2B)/f0 = 1. From left to766

right we show the ρ`2 solution, the ρ`1 solution, and the vicinities Sj defined in (2.8)767

plotted with different colors. In the top and bottom rows there are M = 4 and M = 8768

scatterers, respectively. All the scatterers are on the grid and their exact locations769

are indicated with white crosses. The four scatterers in the top row are far apart and,770
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therefore, their vicinities do not overlap as it can be seen in the top right image of771

this figure. In this case, all the conditions of Theorem 2.3 are satisfied and we find772

the exact locations of scatterers with the `1-norm minimization algorithm. The eight773

scatterers in the bottom row are closer and their vicinities are larger (according to774

(2.8) the size of the vicinities increases with M). We observe in the bottom right image775

of this figure that the vicinities overlap, so condition (2.10) is not satisfied in this case.776

We still, however, find the exact locations of scatterers with the `1-norm minimization777

algorithm which means that the conditions of Theorem 2.3 have pessimistic bounds.778

Because the array and the bandwidth are large, the `2-norm solutions also give very779

good estimates of the scatterer’s locations (see the left column images).
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Fig. 10. Imaging in a homogeneous medium and scatterers on grid. From left to right: ρ`2 ,
ρ`1 , and the vicinities Sj , j = 1, . . . ,M , plotted with different colours. Top row M = 4, bottom row
M = 8. Large array aperture and large bandwidth so a/L = 1 and (2B)/f0 = 1.

780
In Figure 11 we show the results for the same configurations of scatterers as in781

Figure 10, but using a smaller array aperture and a smaller bandwidth so a/L = 1/2782

and (2B)/f0 = 1/2. Thus, the classical resolution limits become c0/(2B) = 2λ0 in783

range and λ0L/a = 2λ0 in cross-range. Hence, the resolution of the `2-norm solutions784

deteriorate, as can be observed in the left column images of this figure. In fact, we only785

recover seven scatterers instead of eight for M = 8 (there are two scatterers that are786

quite close). The `1-norm minimization approach, however, still gives exact recovery787

for both M = 4 and M = 8 scatterers. This is referred to as super-resolution, which788

means that we can determine the location of the scatterers with a better accuracy789

than the classical resolution limits.790

To illustrate the effect of the array and bandwidth sizes on the size of the vicinities791

we plot them in Figure 12 for the case M = 4. From left to right we plot the vicinities792

for a/L = 1/2 and (2B)/f0 = 1/2, a/L = 1/2 and (2B)/f0 = 1/4, and a/L = 1/4793

and (2B)/f0 = 1/2. As expected, cross-range and range resolutions deteriorate and794

consequently vicinity sizes increase as the ratios a/L and (2B)/f0 decrease.795

In Figure 13 we use a relatively small array and bandwidth so a/L = 1/4 and796

(2B)/f0 = 1/4. In this case, the conditions of Theorem 2.3 are not satisfied for neither797

M = 4 nor M = 8, but the images obtained with `1-norm minimization are still very798

good. They are exact for M = 4 and very close to the true image for M = 8.799

By further decreasing the array aperture and the bandwidth so that a/L = 0.1800

and (2B)/f0 = 0.1, we consider in Figure 14 a very challenging situation even for well801

separated scatterers. The `2-norm solutions shown in the left column of this figure802
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Fig. 11. Same as Figure 10 but using a smaller array aperture and a smaller bandwidth so
a/L = 1/2 and (2B)/f0 = 1/2.

a/L=1/2, (2B)/f0=1/2 a/L=1/4, (2B)/f0=1/2 a/L=1/2, (2B)/f0=1/4
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Fig. 12. Vicinities Sj , j = 1, . . . , 4, for different array and bandwidth sizes. From left to right:
a/L = 1/2 and (2B)/f0 = 1/2, a/L = 1/2 and (2B)/f0 = 1/4 and a/L = 1/4 and (2B)/f0 = 1/2.

are not able to locate the positions of the scatterers because of the low resolution of803

the imaging system. However, when the number of the scatterers is very small (see804

the top row corresponding to M = 4) the `1-norm approach provides a precise image805

even though the discretization of the IW is 20 times finer than the classical resolution806

limits of the imaging system. On the other hand, when we increase the number of807

scatterers to M = 8 (bottom row) the interaction between the vicinities is very strong808

and the `1-norm image in not good neither.809

We now consider the same situation as in Figure 10, so the array aperture and810

the bandwidth are large, but with scatterers off the grid. This means that there are811

modeling errors and, therefore, there is not a vector ρ for which Ãρ = bf̂ . In the812

case considered next, the scatterers are displaced by λ0/4 from a grid point in range813

and cross-range directions. The left column of Figure 15 shows, as expected, that the814

`2-norm solutions (5.1) are not affected by off-grid displacements. This is so because815

the resolution is larger than the displacements of the scatterers with respect to the816

grid points. The right column shows, however, that the `1-norm solutions are sensitive817

to these displacements. They are no longer exact, although they remain very close to818

the true solutions. By carefully examining the results of this figure we observe that819

the `1-norm solutions behave as it is predicted by Theorem 2.4. The coherent part of820

the solution is supported in the vicinities of the exact solution while the incoherent821

part remains very small.822

Figure 16 shows similar results but for a smaller array and a smaller bandwidth.823

We use a/L = 1/4 and (2B)/f0 = 1/4, so the classical resolution limits increase as824
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Fig. 13. Same as Figures 10 and 11 but using a smaller array aperture and a smaller bandwidth
so a/L = 1/4 and (2B)/f0 = 1/4.
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Fig. 14. Imaging in a homogeneous medium with a/L = 0.1 and (2B)/f0 = 0.1. Top and
bottom rows: M = 4 and M = 8 scatterers, respectively. From left to right: ρ`2 as in (5.1), ρ`1
obtained with GelMa, and the vicinities Sj , j = 1, . . . ,M plotted with different colors.
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Fig. 15. Imaging in a homogeneous medium with scatterers off the grid. As in Figure 10, we
use a large array aperture and a large bandwidth so a/L = 1 and (2B)/f0 = 1. Top and bottom
rows show the images for M = 4 and M = 8 sactterers, respectively. Left and right columns show
the `2-norm and `1-norm solutions, respectively.
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can be observed in the `2-norm solutions shown in the left column. As in the previous825

figure, the `1-norm solutions shown in the right column have a coherent part whose826

support is contained in the vicinities of the true solutions and an incoherent part that827

is very small. We also refer to [18, 4] for nice discussions about what to expect from828

`1-norm minimization when the scatterers do not lie on the grid.
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Fig. 16. Same as Figure 15 but with a/L = 1/4 and (2B)/f0 = 1/4.

829

6. Conclusions. In this paper we addressed the question of what are appro-830

priate data structures so as to obtain robust images with two widely used methods:831

`1-norm minimization and MUSIC. Both methods are well adapted to finding sparse832

solutions of linear underdetermined systems of equations of the form Alρ = bl where833

l is a parameter vector that can be varied, such as the illumination profile in space834

and/or frequency. `1-norm minimization is well suited for solving problems with a835

single measurement vector corresponding to one parameter vector l. On the other836

hand, MUSIC requires multiple measurement vectors that are obtained for several837

parameter vectors li, i = 1, . . . , S. Given the data bl, our first main result concerns838

the uniqueness and robustness to noise of the minimal `1-norm solution of Alρ = bl.839

This is the subject of Theorems 2.3 and 2.4. The second important result is the key840

observation that MUSIC provides the exact support of the unknown ρ when the ma-841

trix Al admits a factorization of the form Al = ÃΛl with Λl diagonal. Furthermore,842

we show in Theorem 2.6 that MUSIC is robust with respect to noise. Our third main843

contribution is the formulation of several common imaging configurations, including844

multifrequency imaging and imaging without phases, under a common linear algebra845

framework. For imaging without phases (the phase retrieval problem) the robustness846

of `1-norm minimization and MUSIC is studied with numerical simulations in weakly847

inhomogeneous media. Our results suggest that `1-norm minimization may be used848

for low noise levels while MUSIC should be the method of choice for higher noise849

levels.850
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Appendix A. Proofs of theorems 2.1 to 2.4.946

theorem 2.1. M -sparse solutions of Ax = b are unique, if947

(A.1) |〈ai,aj〉| <
1

2M
, ∀i 6= j,948

where we assume that the columns of matrix A are normalized so that ∀i, ‖ai‖`2 = 1.949

Proof. Assume that there exist two M -sparse solutions x1 and x2 of Ax = b.950

Then their difference z = x1 − x2 is at most 2M -sparse, and z is in the kernel:951

Az = 0. This implies that there exist a 1-sparse vector z1 and a (2M − 1)-sparse952

vector z2 with disjoint support such that z1 − z2 = z, and953

(A.2) ‖z1‖`∞ > ‖z2‖`∞ .954

This means that the vector z1 was constructed so as to contain only the largest in
magnitude component of z (one of them if there are several) while z2 contains all
the other components of z. Suppose that the unique non-zero coordinate of z1 is i.
Multiplying the identity Az1 = Az2 by ai, we get

〈ai,Az1〉 = 〈ai,Az2〉,

which reduces to

(z1)i = 〈ai,Az2〉 =

2M∑
j=1,j 6=i

〈ai,aj〉(z2)j

Using now (A.1) we obtain955

‖z1‖l∞ <
1

2M
(2M − 1)‖z2‖`∞ < ‖z2‖`∞ ,956

which is in contradiction with (A.2).957
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theorem 2.2. M -sparse solutions of Ax = b can be found as solutions of958

min ‖y‖`1 , subject to Ay = b,959

if960

|〈ai,aj〉| <
1

2M
, ∀i 6= j,961

where we assume that the columns of matrix A are normalized so that ∀i, ‖ai‖`2 = 1.962

Proof. Assume that there exist two solutions x1 and x2 of Ax = b. Suppose x1 is
M-sparse, and x2 is arbitrary. Their difference z = x1 − x2 is in the kernel: Az = 0.
We will show that ‖x1‖`1 < ‖x2‖`1 . Without loss of generality, we may assume that
x1 and x2 have disjoint support. Otherwise we decompose z in z1 and z2 such that
z = z1 − z2 and

supp(z1) ⊂ supp(x1),
supp(z2) ∩ supp(x1) = ∅.

If we assume963

(A.3) ‖x2‖`1 < ‖x1‖`1964

then necessarily965

(A.4) ‖z2‖`1 < ‖z1‖`1 .966

Indeed, if ‖z1‖`1 > ‖x1‖`1 , it is obvious that (A.3) implies (A.4). Otherwise, if967

‖z1‖`1 < ‖x1‖`1 we have968

‖z1 − x1‖`1 > ‖x1‖`1 − ‖z1‖`1 > 0.969

Since x2 = x1− z = x1− z1 + z2 we obtain ‖x2‖`1 = ‖x1− z1‖`1 + ‖z2‖`1 and from970

(A.3) we get971

‖x1‖`1 > ‖x2‖`1 = ‖x1 − z1‖`1 + ‖z2‖`1 ,972

which implies973

‖z2‖`1 < ‖x1‖`1 − ‖z1 − x1‖`1 6 ‖z1‖`1 .974

This finishes the proof of the statement that (A.3) implies (A.4).975

We return now in the proof of the theorem and let i be the coordinate of the976

component of z = z1−z2 with the largest absolute value. Without loss of generality,977

we may suppose this component is real and positive. Then by multiplying the identity978

Az = 0 by ai we conclude979

‖z‖l∞ 6
1

2M

∑
j 6=i

|zj | <
1

2M
‖z‖`1 =

1

2M
(‖z1‖`1 + ‖z2‖`1) .980

Since ‖z1‖`1 6M‖z1‖`∞ 6M‖z‖`∞ , we obtain981

‖z‖l∞ <
1

2
‖z‖`∞ +

1

2M
‖z2‖`1 .982

It implies M‖z‖`∞ < ‖z2‖`1 . Again using ‖z1‖`1 6 M‖z‖`∞ , we obtain ‖z1‖`1 <983

‖z2‖`1 which is in contradiction with (A.4).984
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theorem 2.3. Let x be a solution of Ax = b. Let T be the index set of the985

support of x:986

T = supp(x), M = |T |.987

Fix a positive ε < 1/2 and suppose that A satisfies988

i. The columns of matrix A are normalized so that ∀i, ‖ai‖`2 = 1.989

ii. The vectors ai in the set T are approximately orthogonal, that is they satisfy990

|〈ai,aj〉| <
ε

M
, ∀i, j ∈ T, i 6= j.991

iii. For any j ∈ T the vicinity Sj defined as992

Sj =

{
k 6= j| |〈ak,aj〉| >

1

2M

}
,993

has the properties994

|〈ak,aj〉| 6 1− 2ε, ∀k ∈ Sj995

and996

|〈ak,aj〉| <
ε

M
, ∀k ∈ Si, ∀i 6= j.997

Then x, the M -sparse solution of Ax = b, can be found as the solution of998

min ‖y‖`1 , subject to Ay = b.999

1000

Proof. Assume y is another solution of Ax = b. Then Ax = Ay. As in the proof1001

of Theorem 2.2 we may suppose that x and y have disjoint support. For any p ∈ T1002

multiplying the identity Ax = Ay by ap we get1003

xp +
∑

i∈T,i 6=p

〈ai,ap〉xi =
∑
i∈Sp

〈ai,ap〉yi +
∑

i 6∈∪jSj

〈ai,ap〉yi +
∑

i∈Sj ,j 6=p

〈ai,ap〉yi

6 (1− 2ε)
∑
i∈Sp

|yi|+
1

2M

∑
i 6∈∪jSj

|yi|+
ε

M

∑
i∈Sj ,j 6=p

|yi|.
1004

This implies1005

|xp| < (1− 2ε)
∑
i∈Sp

|yi|+
1

2M

∑
i 6∈∪jSj

|yi|+
ε

M

∑
i∈Sj ,j 6=p

|yi|+
ε

M
‖x‖`1 .1006

Adding up the inequalities for all p ∈ T we obtain1007

‖x‖`1 < (1− ε)
∑

i∈∪jSj

|yi|+ ε‖x‖`1 +
1

2

∑
i6∈∪jSj

|yi|.1008

Thus1009

(A.5) ‖x‖`1 <
∑

i∈∪jSj

|yi|+
1

2(1− ε)
‖
∑

i6∈∪jSj

|yi| 6 ‖y‖`1 .1010

Contradiction.1011
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theorem 2.4. Noisy case Let x be an M -sparse solution of

Ax = b,

and let as before T denote the index set of the support of x, that is T = supp(x) and1012

M = |T |. Fix a positive ε < 1/2 and suppose that A satisfies conditions i, ii, and iii1013

of Theorem 2.3.1014

Furthermore, let xδ be the `1-norm minimal solution of the noisy problem1015

(A.6) min ‖y‖`1 , subject to Ay = bδ,1016

with bδ defined by1017

bδ = b+ δb.1018

We assume that the noise δb is bounded, that is we have

‖δb‖`2 6 δ,

for some small positive δ. We further assume that A has the property that the solution1019

δx of1020

(A.7) min ‖y‖`1 , subject to Ay = δb,1021

satisfies1022

(A.8) ‖δx‖`1 6 C‖δb‖`2 .1023

Then we can show that the solution xδ of (A.6) can be decomposed as1024

(A.9) xδ = xc + xi,1025

with xc the coherent part of the solution that is supported on T or in the vicinities Sj1026

with j ∈ T , and xi the incoherent part of the solution which is supported away from1027

the vicinities and is small. Specifically, for xc we have: for any j ∈ T1028

| |(x)j | − |(xc)j +
∑
k∈Sj

〈aj , ak〉(xc)k| | 6 δ0 + Cδ,1029

with1030

δ0 =
2Cδ(1− ε)
M(1− 2ε)

+
2ε(‖x‖`1 + Cδ)

M
.1031

While for xi we can show that:

‖xi‖`1 6 δ1,

with δ1 given by1032

δ1 = Cδ +
4Cδ(1− ε)

(1− 2ε)
1033

1034

Proof. By assumption (A.7)-(A.8) there exist δx such that Aδx = δb, and1035

‖δx‖`1 6 Cδ. Suppose x is the M -sparse solution of Ax = b. Note that1036

A (xδ − δx) = b, A (x+ δx) = bδ.1037

33

This manuscript is for review purposes only.



Since both x and xδ are respective minimizers, we obtain1038

(A.10) ‖x‖`1 6 ‖xδ − δx‖`1 ,1039

and1040

‖xδ‖`1 6 ‖x+ δx‖`1 .1041

Using the triangle inequalities1042

‖xδ − δx‖`1 6 ‖xδ‖`1 + ‖δx‖`1 , ‖x+ δx‖`1 6 ‖x‖`1 + ‖δx‖`11043

we obtain1044

‖xδ − δx‖`1 6 ‖xδ‖`1 + ‖δx‖`1 6 ‖x+ δx‖`1 + ‖δx‖`1 6 ‖x‖`1 + 2‖δx‖`11045

which implies1046

(A.11) ‖xδ − δx‖`1 6 ‖x‖`1 + 2Cδ.1047

Combining (A.10) and (A.11) we conclude that1048

(A.12) ‖x‖`1 6 ‖xδ − δx‖`1 6 ‖x‖`1 + 2Cδ.1049

For any p ∈ T , taking the inner product of

A(x− xδ + δx) = 0

with ap we get1050

(A.13)

(x− xδ + δx)p +
∑

k∈T,k 6=p

〈ak,ap〉(x− xδ + δx)k +
∑
k∈Sp

〈ak,ap〉(δx− xδ)k

+
∑

k∈Sj ,j 6=p

〈ak,ap〉(δx− xδ)k −
∑

k 6∈∪Sj ,k 6∈T

〈ak,ap〉(δx− xδ)k = 0.
1051

Using properties (ii)-(iii) we obtain1052

(A.14)

|(x− xδ + δx)p| <
ε

M

∑
k∈T,k 6=p

|(x− xδ + δx)k|

+(1− 2ε)
∑
k∈Sp

|(xδ − δx)k|+
ε

M

∑
k∈Sj ,j 6=p

|(xδ − δx)k|

+
1

2M

∑
k 6∈∪Sj ,k 6∈T

|(xi − δx)k|.

1053

Summing over all p ∈ T we get1054 ∑
p∈T
|(x− xδ + δx)p| < ε

∑
p∈T
|(x− xδ + δx)p|+ (1− 2ε)

∑
k∈∪Mp=1Sp

|(xδ − δx)k|

+ε
∑

k∈∪Mp=1Sp

|(xδ − δx)k|+
1

2

∑
k 6∈∪Sj ,k 6∈T

|(xi − δx)k|.
1055

Thus1056 ∑
k∈T

|(x− xδ + δx)k| <
∑

k∈∪Mp=1Sp

|(xδ − δx)k|+
1

2(1− ε)
∑

k 6∈∪Sj ,k 6∈T

|(xi − δx)k|

=
∑
k 6∈T

|(xδ − δx)k| −
1− 2ε

2(1− ε)
∑

k 6∈∪Sj ,k 6∈T

|(xi − δx)k|
.1057
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We therefore obtain1058

‖x‖`1 < ‖xδ − δx‖`1 −
1− 2ε

2(1− ε)
∑

k 6∈∪Sj ,k 6∈T

|(xi − δx)k|1059

By (A.12) we conclude1060 ∑
k 6∈∪Sj ,k 6∈T

|(xi − δx)k| 6
4Cδ(1− ε)

1− 2ε
.1061

By the triangle inequality1062

(A.15) ‖xi‖`1 6 ‖δx‖`1 +
4Cδ(1− ε)

1− 2ε
6 Cδ +

4Cδ(1− ε)
1− 2ε

= δ1.1063

It remains to investigate xc, the coherent part of the solution. From (A.13) we have1064 ∣∣∣∣∣∣(x)p +
∑

k∈Sp∪{p}

〈ak,ap〉(δx− xδ)k

∣∣∣∣∣∣ <
ε

M

∑
k∈T,k 6=p

|(x− xδ + δx)k|+
ε

M

∑
k∈Sj ,j 6=p

|(xδ − δx)k|

+
1

2M

∑
k 6∈∪Sj ,k 6∈T

|(xi − δx)k|

6
ε

M
‖x− xδ + δx‖`1 +

1

2M

4Cδ(1− ε)
1− 2ε

6
ε

M
(‖x‖`1 + ‖xδ‖`1 + ‖δx‖`1) +

2Cδ(1− ε)
M(1− 2ε)

6
ε

M
(2‖x‖`1 + 2Cδ) +

2Cδ(1− ε)
M(1− 2ε)

= δ0.

1065

Applying the triangle inequality:1066 ∣∣∣∣∣∣(x)p −
∑

k∈Sp∪{p}

〈ak,ap〉(xδ)k

∣∣∣∣∣∣ 6
∣∣∣∣∣∣(x)p +

∑
k∈Sp∪{p}

〈ak,ap〉(δx− xδ)k

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
k∈Sp

〈ak,ap〉(δx)k

∣∣∣∣∣∣1067

1068
6 δ0 + Cδ,1069

we obtain the result.1070

Appendix B. Proof of theorem 2.6.1071

theorem 2.6. Let X =Diag(x) be a diagonal matrix that solves1072

ÃXL = B,1073

where Ã satisfies conditions (i), (ii), and (iii) of Theorem 2.3 for a fixed ε < 1/3,1074

L =


l11 l12 l1S
l21 l22 l2S
...

...
...

lK1 lK2 lKS

 ∈ CK×S ,1075

and B is the noiseless data matrix (2.17) with SVD B = Q = UΣV T . Let the1076

perturbed matrix Bδ = Qδ + Q0 be such that σmax(Bδ − B) 6 δ. Suppose x, the1077

vector diagonal entries of X, is sparse with T = supp(x), M = |T |, M � size(x), and1078

xm = min
xi 6=0
{|xi|}.1079
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Let LT be the submatrix of L, formed by the rows corresponding to T , has1080

(B.1) σTm = σmin(LT ).1081

If1082

(B.2) 2δ < xmσ
T
m(1− 3ε),1083

the orthogonal projections onto the subspaces R(Qδ) and R(B) are close:1084

(B.3) ‖PR(Qδ) − PR(B)‖`2 6
δ

xmσTm(1− 3ε)
.1085

Proof. Denote by XT be the submatrix of X where we keep the rows that corre-1086

spond to the support of x. Similarly, denote by yT be the subvector of y where we1087

keep the entries that correspond to the support of x. We claim that1088

(B.4) (1− 3 ε)2‖z‖2`2 6 ‖(Ã∗z)T ‖2`2 6 (1 + 3 ε)2‖z‖2`21089

if z ∈ R(B). Indeed, suppose that1090

z =
∑
i∈T

αiai.1091

Then, defining α as the vector in CK whose components are zero except the ith1092

components with i ∈ T that are equal to αi, we get1093

∣∣‖z‖2`2 − ‖α‖2`2∣∣ =

∣∣∣∣∣∣
∑

i,j∈T,i 6=j

ᾱiαj〈ai,aj〉

∣∣∣∣∣∣ 6 ε‖α‖2`2 ,1094

and1095

(1− ε)‖α‖2`2 6 ‖z‖2`2 6 (1 + ε)‖α‖2`2 .1096

For any j ∈ T we have1097

(Ã∗z)j =
∑
i∈T

αi〈aj ,ai〉 ,1098

and, therefore,1099

‖(Ã∗z)T ‖2`2 =
∑

i,j,k∈T

ᾱjαi〈ak,ai〉〈ak,aj〉 .1100

Hence,1101 ∣∣∣‖(Ã∗z)T ‖2`2 − ‖α‖
2
`2

∣∣∣ 6
∣∣∣∣∣∣

∑
i,j,k∈T,i 6=j

ᾱjαi〈ak,ai〉〈ak,aj〉

∣∣∣∣∣∣1102

1103

6
∑

i,j∈T,i 6=j

|αj |2 + |αi|2

2
ε

(
2

M
+

ε

M

)
6 3 ε‖α‖2`2 .1104

Therefore,1105

(1− 3 ε)‖α‖2`2 6 ‖(Ã∗z)T ‖2`2 6 (1 + 3 ε)‖α‖2`2 ,1106

and we obtain1107
1− 3 ε

1 + ε
‖z‖2`2 6 ‖(Ã∗z)T ‖2`2 6

1 + 3 ε

1− ε
‖z‖2`2 ,1108
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which implies (B.4).1109

In order to compute the smallest nonzero singular value of B we observe that1110

min
z∈R(B),||z||`2=1

z∗BB∗z = min
z∈R(B),||z||`2=1

(Ã∗z)∗TXTLTL
∗
T X̄T (Ã∗z)T1111

1112
> (1− 3ε)2 min

y∈CM ||y||`2=1
y∗XTLTL

∗
T X̄Ty > (1− 3ε)2x2

m(σTm)2 ,1113

where we have used the condition (B.1). Since σmax(Bδ − B) 6 δ, we conclude that1114

Bδ = Qδ + Qδ0, where Qδ has M nonzero singular values, with smallest nonzero1115

singular value1116

σmin(Qδ) > xmσ
T
m(1− 3ε)− δ ,1117

and Qδ0 has largest singular value1118

σmax(Qδ0) 6 δ.1119

If (B.2) holds, then we can discard Qδ0 by truncation of the singular values smaller1120

than the noise level. We now apply Theorem 2.5 to obtain (B.3).1121
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