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Multifrequency Interferometric Imaging with Intensity-Only Measurements∗

Miguel Moscoso† , Alexei Novikov‡ , George Papanicolaou§ , and Chrysoula Tsogka¶

Abstract. We propose an illumination strategy for interferometric imaging that allows for robust depth recovery
from intensity-only measurements. For an array with colocated sources and receivers, we show
that all the possible interferometric data for multiple sources, receivers, and frequencies can be
recovered from intensity-only measurements provided that we have sufficient source location and
frequency illumination diversity. There is no need for phase reconstruction in this approach. Using
interferometric imaging methods we show that in homogeneous media there is no loss of resolution
when imaging with intensities only. If in these imaging methods we reduce incoherence by restricting
the multifrequency interferometric data to nearby array elements and nearby frequencies we obtain
robust images in weakly inhomogeneous background media with a somewhat reduced resolution.
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1. Introduction. Coherent array imaging when the phases of the signals received at the
array cannot be measured is a difficult problem because much of the information about the
sought image is contained in the lost phases. Imaging without phases arises in many appli-
cations such as crystallography [21, 30], ptychography [33], and optics [25, 19, 34, 36] where
images are formed from the spectral intensities. In most of these cases, the media through
which the probing signals propagate are assumed to be homogeneous.

The earliest and most widely used methods for imaging with intensity-only measurements
are alternating projection algorithms [13, 17]. The basic idea is to project the iterates on the
intensity data sequentially in both the real and the Fourier spaces. Although these algorithms
are very efficient for reconstructing the missing phases in the data, and performance is often
good in practice, they do not always converge to the true, missing phases. This is especially so
if strong constraints or prior information about the object to be imaged, such as spatial support
and nonnegativity, are not reliably available [14, 30]. We do not use phase retrieval methods
here. Instead, we exploit illumination diversity to recover all missing phase information and
then image holograpically. We assume that the missing phase information is largely coherent,
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Figure 1. General setup of an array imaging problem. The transducer at xs emits a probing signal and
the reflected intensities are recorded at xr. The scatterers located at yj, j = 1, . . . ,M , are at distance L from
the array and inside IW.

that is, it is not so corrupted by medium inhomogeneities and measurement noise so that
even when recovered it will not be useful in coherent imaging. We address in detail coherence
issues in this paper.

The array imaging problem. We consider an active array of size a consisting of N trans-
ducers separated by a distance h which is of the order of the central wavelength λ0 of the
probing signals. The transducers emit probing signals of different frequencies ωl, l = 1, . . . , S,
from positions ~xs and record the reflected intensities at positions ~xr, s, r = 1, 2, . . . , N (see
Figure 1).

The goal is to determine the positions ~yj and reflectivities αj ∈ C, j = 1, . . . ,M , of a set
of M point scatterers within a region of interest, called the image window (IW), which is at
a distance L from the array, as shown in Figure 1.

Holographic imaging. A holographic imaging approach with intensity-only measurements
is presented in [24, 23]. The main idea is to exploit illumination diversity by designing illu-
mination strategies that recover the missing phase information from intensity-only measure-
ments. It was shown in [24, 23] how, by using an appropriate protocol of illuminations and
the polarization identity, the single frequency matrix M(ω) = P (ω)∗P (ω) can be determined
from intensity-only measurements at that frequency. Here P (ω) = [P (~xr, ~xs;ω)]Nr,s=1 is the
full array response matrix of the imaging system, including phases, with ~xr, ~xs the receiver
and source locations, and ω the radian frequency. The matrix M(ω) is called the time rever-
sal matrix as it arises in ultrasonic time reversal experiments [15, 16] and has been studied
extensively there [5, 6]. We will refer to M(ω) as the single frequency interferometric data
matrix. Once we have this data matrix we can image with the DORT method [26] which
uses the eigenvectors of M(ω), or MUSIC [31, 20], which also uses the eigenvectors of M(ω).
Here DORT and MUSIC are the acronyms: Decomposition de l’Operateur de Retournement
Temporel (decomposition of the time reversal operator), and MUltiple SIgnal Classification,
respectively. These are phase-sensitive imaging methods that involve only phase differences
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contained in M(ω) and, therefore, they provide interferometric information. The illumination
strategies in [24, 23] are a form of digital holography [35, 18, 19, 36] since the resulting image
does have phase information. As already noted, we do not reconstruct phases from inten-
sity measurements, but rather we recover the missing phase information using illumination
diversity.

Imaging with M(ω) at a single frequency ω is not robust relative to small perturbations
in the unknown phases unless the array is very large [12]. The perturbations can come from
medium inhomogeneities or from the discretization of the IW. Having M(ωl) at multiple
frequencies ωl, l = 1, 2, . . . , S, still may not provide robustness with respect to depth in the
image.

Interferometric robust imaging. It is known [1, 2] that we can image robustly if we have
interferometric data

d((~xr, ~xr′), (~xs, ~xs′), (ω, ω
′)) = P (~xr, ~xs;ω)P (~xr′ , ~xs′ ;ω

′)(1.1)

at multiple frequency pairs (ω, ω′), receiver location pairs (~xr, ~xr′), and source location pairs
(~xs, ~xs′). The main result of this paper is that such data d((~xr, ~xr′), (~xs, ~xs′), (ω, ω′)) can be
recovered for pairs of arguments from intensity-only measurements. Here receivers and trans-
mitters are colocated in the same array. When the imaging system has separate transmitting
and receiving arrays then we can recover only single receiver elements, one receiver at a time,

d((~xr, ~xr), (~xs, ~xs′), (ω, ω
′)) = P (~xr, ~xs;ω)P (~xr, ~xs′ ;ω

′)(1.2)

for all pairs of frequencies, and source locations from intensity-only measurements.
In a homogeneous medium, imaging with d((~xr, ~xr′), (~xs, ~xs′), (ω, ω

′)) can be done by

IInterf (~ys) =
∑
~xs,~xs′

∑
~xr,~xr′

∑
ωl,ωl′

d((~xr, ~xr′), (~xs, ~xs′), (ωl, ωl′))

× G0(~xr, ~y
s;ωl)G0(~xs, ~y

s;ωl)G0(~xr′ , ~y
s;ωl′)G0(~xs′ , ~y

s;ωl′)

(1.3)

with G0(~xr, ~y
s;ωl) the free space Green’s function for the Helmholtz equation (see expres-

sion (2.2) below), and ~ys a point in IW. Replacing the data by its expression (1.1) we note
that IInterf (~ys) equals the square of the Kirchhoff migration imaging function

IInterf (~ys) =

∣∣∣∣∣∣
∑
~xs

∑
~xr

∑
ωl

P (~xr, ~xs;ωl)G0(~xr, ~y
s;ωl)G0(~xs, ~y

s;ωl)

∣∣∣∣∣∣
2

=
∣∣IKM (~ys)

∣∣2 .
(1.4)

Here, the Kirchhoff migration functional

IKM (~ys) =
∑
~xs

∑
~xr

∑
ωl

P (~xr, ~xs;ωl)G0(~xr, ~y
s;ωl)G0(~xs, ~y

s;ωl)(1.5)

is simply the back propagation of the array response matrix in a homogeneous medium, both
for source and receiver points. Note that it is the square of the Kirchhoff migration functional
that we obtain with intensity-only measurements.
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The main result of this paper can now be restated as follows. For colocated source and
receivers on a single array, we can obtain full phase, holographic images from intensity-only
measurements by exploiting illumination and frequency diversity. That is, in a homogeneous
medium there is no loss of resolution when imaging only with intensities if we have sufficient
source and frequency illumination diversity.

Inhomogeneous background medium and coherent interferometry. In a randomly inho-
mogeneous medium it is well known [1, 4] that Kirchhoff migration does not work well even if
we have the full array response matrix, phases included. The interferometric functional (1.3)
does not work either, since it is just the square of the Kirchhoff migration functional. For
weakly inhomogeneous random media we can image with the coherent interferometric (CINT)
functional, which has the form

ICINT (~ys) =
∑
~xs, ~xs′

|~xs − ~xs′ | ≤ Xd

∑
~xr, ~xr′

|~xr − ~xr′ | ≤ Xd

∑
ωl, ωl′

|ωl − ωl′ | ≤ Ωd

P (~xr, ~xs;ωl)P (~xr′ , ~xs′ ;ωl′)

× G0(~xr, ~y
s;ωl)G0(~xs, ~y

s;ωl)G0(~xr′ , ~y
s;ωl′)G0(~xs′ , ~y

s;ωl′),

(1.6)

assuming full phase information is available by the array response matrix P (~xr, ~xs;ωl).
We note that the CINT imaging functional uses the same data that we get from intensity-

only measurements, d((~xr, ~xr′), (~xs, ~xs′), (ωl, ωl′)), but now the sums are restricted to nearby
pairs of sources, receivers, and frequencies. The main idea in CINT is that since the waves
propagate in fluctuating media their phases are distorted and the multifrequency interfer-
ometric data d((~xr, ~xr′), (~xs, ~xs′), (ωl, ωl′)), given by (1.1), remain coherent only over small
frequency and space offsets. We call decoherence distance, Xd, and decoherence frequency,
Ωd, the largest spatial and frequency intervals, respectively, over which the multifrequency
interferometric data P (~xr, ~xs;ωl)P (~xr′ , ~xs′ ;ωl′) remain coherent. We mean by coherent that
the distortion of phases by inhomogeneities is weak. These decoherence parameters Xd and
Ωd are a priori unknown. They can be estimated directly from the data using statistical tech-
niques like the variogram [28]. However, optimal imaging results are obtained when Xd and
Ωd are estimated on the fly during the image formation process as in adaptive CINT [2].

Most importantly, what matters in imaging is that statistical stability is gained by this
appropriate restriction of the multifrequency interferometric data. The statistical stability of
CINT is shown in [4]. Specifically, this means that the variance of the image is small compared
to its mean square with respect to the realizations of the fluctuating medium. Therefore, the
imaging results do not depend on any particular realization of the random medium. However,
statistical stability comes at the cost of loss in resolution: cross-range resolution now becomes
λ0L/Xd instead of λ0L/a, and resolution in range or depth is c0/Ωd instead of c0/B, with a
being the array size and B the bandwidth. Typically, we have Ωd < B and Xd < a, and often
Ωd � B and Xd � a.

Single receiver interferometric (SRINT) imaging. Restricting the data to intensity-
only measurements at a single receiver, we obtain d((~xr, ~xr), (~xs, ~xs′), (ωl, ωl′)). Using only
data from a single receiver, we introduce the following single receiver interferometric imaging
(SRINT) functional
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ISRINT (~ys) =
∑
~xs, ~xs′

|~xs − ~xs′ | ≤ Xd

∑
ωl, ωl′

|ωl − ωl′ | ≤ Ωd

d((~xr, ~xr), (~xs, ~xs′), (ωl, ωl′))

× G0(~xr, ~y
s;ωl)G0(~xs, ~y

s;ωl)G0(~xr, ~y
s;ωl′)G0(~xs′ , ~y

s;ωl′) .

(1.7)

Note that there is no sum over receivers here. We only have one receiver at ~xr.
We use in this paper the SRINT imaging functional (1.7) in a computationally efficient

form involving only matrix multiplications (see (6.6) below). The key idea is the introduction
of a mask, i.e., a matrix that is composed of zeros and ones only, depending on the spacing
between the indices in the matrix so as to restrict the data d((~xr, ~xr), (~xs, ~xs′), (ωl, ωl′)) to
the ones satisfying the constraints |~xs − ~xs′ | ≤ Xd and |ωl − ωl′ | ≤ Ωd that should be used in
SRINT imaging.

The performance of the proposed interferometric method is explored with numerical sim-
ulations in an optical (digital) microscopy regime. We observe in the simulations that in
homogeneous media we can image with the same resolution as if phases where recorded and
the method is robust with respect to the discretization of the IW. When the ambient medium
is weakly inhomogeneous the interferometric approach removes some of the uncertainty in the
data due to the fluctuating phases, which tends to stabilize the images and this is seen clearly
in the simulations. We also compare the performance of the interferometric approach with
MUSIC which is shown to be sensitive to phase errors and does not provide robust results
unless the illuminating and receiving arrays are large [12]. The fact that the SRINT imag-
ing functional, which uses data obtained with intensity-only measurements, gives images that
are robust to weak fluctuations in the ambient medium is another main result in this paper.
It is surprising that such robust, holographic imaging can be obtained with intensity-only
measurements.

The paper is organized as follows. In section 2 we formulate our data model for intensity-
only measurements. In section 3 we formulate our single frequency data model for intensity-
only measurements. In section 4 we formulate our multifrequency data model for intensity-only
measurements. In section 5 we describe our illumination strategy for holographic imaging,
and in section 6 we describe the imaging algorithms of SRINT and MUSIC. In section 7,
we explore with numerical simulations the robustness of the imaging methods in an optical
(digital) microscopy regime. In section 8 we discuss aspects of imaging in inhomogeneous
background media. Section 9 contains our conclusions.

2. Single frequency data models and imaging with phases. We consider the array imag-
ing configuration of Figure 1, where an array consisting of N transducers is used to probe the
IW. Our goal is to reconstruct a sparse scene consisting of M point scatterers. The unknowns
are both the locations ~yj and the reflectivities αj ∈ C, j = 1, . . . ,M , of the scatterrers.

For imaging purposes the IW is discretized using a uniform grid of K points ~yk, k =
1, . . . ,K. We assume that K > N and often we have K � N . By pointlike scatterers we
mean very small scatterers compared to the central wavelength. We also assume that the
scatterers are far apart or are weak, so multiple scattering between them is negligible. We
refer to [11] for array imaging problems with multiple scattering.
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If the scatterers are far apart or the reflectivities are small, the interaction between them
is weak and the Born approximation is applicable. In this case, the response at ~xr (including
phases) due to a pulse of angular frequency ωl sent from ~xs, and reflected by the M scatterers,
is given by

P (~xr, ~xs;ωl) =
M∑
j=1

αjG(~xr, ~yj ;ωl)G(~yj , ~xs;ωl) ,(2.1)

where G(~x, ~y;ωl) denotes the Green’s function in a general, inhomogeneous medium that
characterizes the propagation of a signal of angular frequency ωl from point ~x to point ~y. In
a homogeneous medium we denote the Green’s function by G0(~x, ~y;ωl) and it is given by

G0(~x, ~y;ωl) =
exp{iωl|~x− ~y|/c0}

4π|~x− ~y|
,(2.2)

where c0 is the speed of propagation. We note that the number of pixels K in the IW is
typically large compared to the number of reflectors M , K > M , and we also assume that
M < N , the number of array transducers, so that K > N > M . Even though the data model
(2.1) that we use here is simple and somewhat stylized, it is quite flexible and can deal with
complex reflectors, not just widely spaced point reflectors, especially when multiple scattering
effects are included.

To write the single frequency data received on the array in a more compact form, we define
the array Green’s function vector g(~y;ωl) at location ~y and with frequency ωl as

g(~y;ωl) = [G(~x1, ~y;ωl), . . . , G(~xN , ~y;ωl)]
t ,(2.3)

where .t denotes transpose. This vector represents the signal of frequency ωl received at the
array due to a point source at ~y as illustrated in Figure 2. It can also be interpreted as the
illumination vector at the array that targets or beamforms to the position ~y in the IW.
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Figure 2. Schematic of the components of the array Green’s function vector g(~y;ωl) that represent the
signals received on the array elements when a point source located at ~y sends a unit amplitude at frequency ωl.
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We also introduce the generic reflectivity vector ρ = [ρ1, . . . , ρK ]t ∈ CK , whose entries
are given by the possible reflectivities on the IW grid. The generic reflectivities {ρj} are zero
except where the true reflectivity is not zero and then they equal {αj}. With this notation,
we write the full response matrix corresponding to a single frequency ωl as a sum of rank-one
matrices, so

P (ωl) = [P (~xr, ~xs;ωl)] =
M∑
j=1

αjg(~yj ;ωl)g
t(~yj ;ωl) =

K∑
k=1

ρkg(~yk;ωl)g
t(~yk;ωl).(2.4)

Using (2.3), we also define the N ×K single frequency sensing matrix

G(ωl) = [g(~y1;ωl) . . . g(~yK ;ωl)] ,(2.5)

whose column vectors are the signals received at the array due to point sources of frequency
ωl at the grid points ~yk, k = 1, . . . ,K. G(ωl) maps a distribution of sources of frequency ωl
in the IW to the data of the same frequency received on the array. Using (2.5), we write (2.4)
in matrix form as

P (ωl) = G(ωl) diag(ρ)Gt(ωl).(2.6)

For a fixed frequency ωl, this matrix is a linear transformation from the illumination space
CN to the data space CN . Indeed, for an illumination vector of frequency ωl,

f(ωl) = [f1(ωl), . . . , fN (ωl)]
t ,(2.7)

whose components are the signals f1(ωl), . . . , fN (ωl) sent from the transducers in the array,
Gt(ωl)f(ωl) is the vector of size K of signals of the same frequency at each grid point of the
IW. These signals are reflected by the scatterers on the grid, with reflectivities given by the
vector ρ, and then they are propagated back to the array by the matrix G(ωl).

Summarizing, for a given illumination vector f (j)(ωl), the single frequency, full phase
N -vector array data model b(j)(ωl) is given by

b(j)(ωl) = P (ωl)f
(j)(ωl) , j = 1, 2, . . . ,ℵ ,(2.8)

whose components are

b(j)r (ωl) =
K∑
k=1

ρkG(~xr, ~yk;ωl)
N∑
s=1

G(~yk, ~xs;ωl)f
(j)
s (ωl), r = 1, 2, . . . , N .(2.9)

Here,
∑N

s=1G(~yk, ~xs;ωl)f
(j)
s (ωl) is the total illumination received at pixel ~yk which is mul-

tiplied by the reflectivity ρk and then propagated to the receiver ~xr on the array with the
Green’s function G(~xr, ~yk;ωl). Note that in this model (2.9), the data are a linear function
of both reflectivities ρ and illuminations f (j)(ωl). Introducing the operator Af (j)(ωl) that

transforms reflectivities ρ to data b(j)(ωl) we can also write the data in the following form,

b(j)(ωl) = Af (j)(ωl)ρ ,(2.10)
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where Af (j)(ωl) is defined as

[
Af (j)(ωl)

]
rk

= G(~xr, ~yk;ωl)

N∑
s=1

G(~yk, ~xs;ωl)f
(j)
s (ωl)(2.11)

for r = 1, 2, . . . , N and k = 1, 2, . . . ,K.

Single frequency imaging with phases. The single frequency, full phase imaging problem
can be stated as follows: given a set of illuminations {f (j)(ωl)}j=1,2,...,ℵ, determine the location
and reflectivities of the scatterers from the data (2.8). The representation (2.10) of the data
allows us to write the imaging problem as a linear system

A0
f (j)

(ωl)ρ = b(j)(ωl).(2.12)

Here, A0
f (j)

(ωl) is our model for the operator that transforms reflectivities to data in homo-

geneous media and, therefore, we use in its definition the Green’s function in a homogeneous,
reference medium G0(~xr, ~yk;ω) given by (2.2), i.e.,

[
A0
f (j)

(ωl)
]
rk

= G0(~xr, ~yk;ωl)

N∑
s=1

G0(~yk, ~xs;ωl)f
(j)
s (ωl) ,(2.13)

for r = 1, 2, . . . , N and k = 1, 2, . . . ,K.
Several approaches can be used for computing the solution of the linear system (2.12).

Kirchhoff migration consists in estimating the reflectivity by applying (A0
f (j)

(ωl))
∗ to the data

b(j)(ωl), where the superscript .∗ denotes conjugate transpose. That is,

ρKM = (A0
f (j)

(ωl))
∗b(j)(ωl) = (A0

f (j)
(ωl))

∗Af (j)(ωl)ρ .

We expect ρKM to be a good estimate of the true reflectivity ρ when the model A0
f (j)

(ωl)

is close to the true operator Af (j)(ωl). It is known that (A0
f (j)

(ωl))
∗A0

f (j)
(ωl) is close to a

diagonal matrix when the discretization of the IW conforms to the physical resolution limits
which are λ0L/a in cross range and λ0(L/a)2 in range (depth) in the single frequency case. A
better estimate of the reflectivity is the least squares solution of the linear system (2.12). This
is an `2 approach which is robust to additive uncorrelated noise and gives good results when
the system (2.12) is overdetermined, that is, for N > K. When the scene is sparse and the
system (2.12) is underdetermined, the reflectivity can be estimated accurately and efficiently
using the singular value decomposition of P (ωl) and an `1 minimization approach as in [10].

3. Single frequency intensity-only data and imaging. If only the single frequency in-
tensities βi(ωl) = |bi(ωl)|2 are recorded at the array, i = 1, . . . , N , the imaging problem is
to determine the location and reflectivities of the scatterers from the absolute values of each
component in (2.10), i.e., from

β(j)(ωl) = diag
((
Af (j)(ωl)ρ

)(
Af (j)(ωl)ρ

)∗)
= diag

(
Af (j)(ωl)ρρ

∗A∗
f (j)

(ωl)
)

(3.1)
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for j = 1, 2, . . . ,ℵ. The corresponding imaging problem consists in seeking a ρ solution of the
system

diag
(
A0
f (j)

(ωl)ρρ
∗
(
A0
f (j)

(ωl)
)∗)

= β(j)(ωl), j = 1, 2, . . . ,ℵ.(3.2)

This single frequency imaging problem is now nonlinear in the unknown reflectivities ρ.
There are several ways in which this intensities-only imaging problem can be addressed. One
is by convexification. Because coherent imaging without phases is a nonconvex, nonlinear
problem, an alternative convex approach has been considered when the signals propagate in
a homogeneous medium [9, 8]. In this approach, the original vector intensity-only, nonlinear
imaging problem is reformulated as a low-rank matrix linear imaging problem, which can be
solved by using nuclear norm minimization. This makes the intensity-only imaging problem
convex over the appropriate matrix vector space and, therefore, the unique true solution can
be found in the noise-free case [7, 27]. However, because the original vector of unknown re-
flectivities ρ is replaced by the rank-one matrix ρρ∗, the size of the resulting optimization
problem increases quadratically with the number of unknowns K. The computational cost
of this approach is prohibitively high except in very special cases where the a priori sup-
port and overall location of the reflectivities is known so that the window size K can be
reduced.

Another approach to address this nonlinear imaging problem is to to use alternating
projections [14], provided we are in the Fraunhofer regime or close to it, which means that the
data are the discrete Fourier transform of the reflectivities (up to scaling and an overall phase)
and the image is the discrete inverse Fourier transform of the data. With this approach we
reconstruct the missing phases with acceptable accuracy if there is enough prior information
such as support, positivity, symmetries, etc. This is the preferred approach when (i) the
ambient medium is inhomogeneous and even if we do have the phases, they are randomized and
cannot be used in (coherent) imaging, and (ii) we do not have the possibility of illumination
diversity so that a holographic method can be used, assuming that the missing phases are
coherent. It is the holographic approach that we address here, when there is coherence in the
phases and illumination diversity is available.

Imaging with MUSIC. We discuss briefly MUSIC, which is a subspace projection algo-
rithm that forms the images using the singular value decomposition of the single frequency,
full data array response matrix P (ω). It is an algorithm that is widely used to image the
locations of M < N point scatterers in a region of interest, restricted to an IW. As discussed
in [24, 23], MUSIC can also be applied when, instead of P (ω), only the single frequency in-
terferometric data matrix M(ω) is available for imaging. Therefore, MUSIC can be used to
form images with intensity-only measurements.

Indeed, let us consider MUSIC using the time reversal matrix M(ω). This matrix maps
illumination vectors to themselves and its eigenvectors Vj(ω), j = 1 . . . ,M , corresponding to
nonzero eigenvalues, are illumination vectors that beamform to the scatterers. They form the
signal subspace. The remaining eigenvectors Vj(ω), j = M+1, . . . , N , span the noise subspace.
The beamforming vectors g0(~ys;ω), defined by (2.3) with the homogeneous Green’s function
G0(~xr, ~y

s;ω), will be approximately orthogonal to the noise subspace only when ~ys is close to
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a scatterer location ~yj . In this case,
∑N

j=M+1 |gT0 (~ys;ω)Vj(ω)| is close to zero and it follows
that the scatterer locations must correspond to the peaks of the functional

I(~ys) =
1∑N

j=M+1 |gT0 (~ys;ω)Vj(ω)|2
.(3.3)

Often the number of scatterers is small so that the dimension of the signal subspace is much
smaller than that of the noise subspace. We, therefore, use the (normalized) equivalent
functional

IMUSIC(~ys) =
min1≤j≤K ‖PNg0(~yj ;ω)‖`2

‖PNg0(~ys;ω)‖`2
(3.4)

with the projection onto the noise subspace defined as

PNg0(~y;ω) = g0(~y;ω)−
M∑
j=1

(gT0 (~y;ω)Vj(ω))Vj(ω).(3.5)

We can also define the following imaging functional,

ISIGNAL(~ys) =
‖PSg0(~ys;ω)‖`2

max1≤j≤K ‖PSg0(~yj ;ω)‖`2
(3.6)

with the projection onto the signal subspace defined as

PSg0(~y;ω) =

M∑
j=1

(gT0 (~y;ω)Vj(ω))Vj(ω).(3.7)

We note that (3.4) is not robust to ambient medium inhomogeneities, unless the array is very
large [12]. Generalizations of MUSIC for multiple scattering and extended scatterers have also
been developed (see, for example, [20] and [22]).

4. Multifrequency data models. Now consider the case in which signals of different fre-
quencies can be used to probe the medium. We introduce the composite column vector of all
S illuminations at the different frequencies ωl, l = 1, . . . , S,

f = [f(ω1)t,f(ω2)t, . . . ,f(ωS)t]t ,(4.1)

whose dimension is N · S, and the full response matrix for multiple frequencies

P = [P (ω1),P (ω2), . . . ,P (ωS)] ,(4.2)

whose dimension is N × (N · S). With this notation, given a set of, say, ℵ composite vector
illuminations {f (j)}j=1,2,...,ℵ at multiple frequencies, the corresponding imaging problem is to
determine the location and reflectivities of the scatterers from the multifrequency array data,
vectors of dimension N ,

b(j) = Pf (j) , j = 1, 2, . . . , ℵ,(4.3)
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recorded at the array, including phases. All the information for imaging, including phases,
is contained in the full multifrequency response model matrix P . As noted, the size of this
matrix is N × (N · S). Assuming that reflectivities do not depend on frequency the rank of
this matrix is M ·S, the number of scatterers times the number of frequencies, as can be seen
from (2.4). This is so for scatterers in a general configuration in the discretized IW, and with
distinct frequencies. We note, however, that there are special configurations where the rank
can be smaller, although this does not influence the resolution theory that assumes a generic
configuration.

If only the multifrequency intensities β
(j)
i = |b(j)i |2 are recorded at the array, i = 1, . . . , N ,

j = 1, . . . , ℵ, the imaging problem is to determine the location and reflectivities of the scat-
terers from the absolute values of each component in (4.3), i.e.,

β(j) = diag
((
Pf (j)

)∗ (
Pf (j)

))
= diag

((
f (j)

)∗
P ∗Pf (j)

)
, j = 1, 2, . . . ,ℵ.(4.4)

Because the multifrequency interferometric data matrix (MFIDM)

M = P ∗P(4.5)

is involved in (4.4) we will use it directly for imaging as in [24]. Here the size of M is
N · S ×N · S, and P is given by (4.2).

The main result of this paper is that the matrix M can be obtained from intensity-only
measurements using an appropriate illumination strategy and the polarization identity

2 < ~x, ~y >= ‖~x+ ~y‖2 − ‖~x‖2 − ‖~y‖2 + i(‖~x− i~y‖2 − ‖~x‖2 − ‖~y‖2) .(4.6)

The polarization identity (4.6) allows us to find the inner product between two signals, and
hence its phase differences, from linear combinations of the magnitudes (squared) of these
signals. In the next section we show how phase information can be recovered using illumination
diversity and the polarization identity (4.6), that is, how to recover M in (4.5) from intensity-
only measurements. We then show how to image with this information, as already outlined
in the introduction.

5. Illumination strategy for holographic imaging. In [24, 23], it was shown that the single
frequency interferometric data matrix M(ω) = P (ω)∗P (ω), where P (ω) = [P (~xr, ~xs;ω)]Nr,s=1

is the full array response matrix, can be recovered when signals of the same frequency are used
for illuminations and only the intensities are measured at the receivers. This is equivalent to
recovering the inverse Fourier transform of M(ω), which is the data cross-correlation matrix,
when only the intensities are measured at the receivers. We therefore recover all phase dif-
ferences between the elements of the array response matrix P (ω) using suitable illumination
diversity and measuring only intensities. Next, we consider a generalization of this method-
ology and show how the MFIDM M defined by (4.5) can be obtained from intensity-only
measurements with suitable illuminations.

General case. We consider first the general case in which sources and receivers are not
necessarily colocated, that is, they are not placed at the same positions, and we recover the
elements of the MFIDM, M , associated with one receiver at location ~xr, which we denote by
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M r, using a suitable illumination strategy. We describe first the structure of M r. We note
that the rth row of the multifrequency array response matrix P , given by (4.2), has the form

P r = (pr1, pr2, . . . , prN ·S),(5.1)

where the entry prj with j = s+ (l− 1) ·N , denotes the received signal at ~xr when the source
at ~xs sends a signal with frequency ωl. With this notation, M r is the rank-one matrix

M r = P ∗rP r .(5.2)

Let êi = [0, 0, ..., 1, 0, ..., 0]T with i = i(s, l) be the illumination vector representing a signal
of magnitude one and frequency ωl sent from the source ~xs, and where i = s+(l−1) ·N . The
(i, j) entry ofM r, which is obtained from intensity measurements at ~xr when the illuminations
êi and êj are used is

mr
ij = priprj = (P rêi)

∗P rêj .(5.3)

The key point here is that (5.3) can be obtained from intensity-only measurements using the
polarization identity. Indeed, the polarization identity (4.6) gives us

Re(mr
ij) =

1

2

(
‖P rêi+j‖2 − ‖P rêi‖2 − ‖P rêj‖2

)
,(5.4)

Im(mr
ij) =

1

2

(
‖P rêi−ij‖2 − ‖P rêi‖2 − ‖P rêj‖2

)
,(5.5)

where êi+j = êi + êj , êi−ij = êi − iêj , where i =
√
−1. In (5.4) and (5.5), Re(·) and Im(·)

denote the real and imaginary parts of a complex number, respectively. Since all entries on
the right-hand side of (5.4) and (5.5) involve intensity-only measurements on the rth receiver,
we can recover all the entries mr

ij in M r.

Symmetric case. In the general case we recovered, from intensity-only measurements at
a single receiver ~xr, the rank-one matrix M r resulting from signals sent from different sources
and with different frequencies. Sources and receivers do not have to be colocated, but we
cannot obtain all the elements of M this way. In other words, we cannot recover MFIDM M
from the set of all matrices M r. This is so, because each rank-one matrix M r is obtained up
to a global phase that will be different for each receiver location ~xr. We now show that when
sources and receivers are placed at the same positions, the full MFIDM M can be recovered
from intensity-only measurements.

For colocated sources and receivers, the full array response matrix is symmetric for each
frequency block P (ωl). Let plij represent the signal measured at receiver ~xi due to a signal of
frequency ωl sent from source ~xj . Then,

plij = plji(5.6)

because of wave field reciprocity. Let cj = j + (l − 1) · N and ci = i + (l − 1) · N ; then, for
the full response matrix P , given by (4.2), the identity (5.6) becomes picj = pjci . Using these
symmetries and the notation (5.3) we can recover all products



INTERFEROMETRIC IMAGING WITH INTENSITY-ONLY 1017

pikpjn =
pikpi1pj1pjn

p1cip1cj

=
mi
k1m

j
1n

m1
cicj

(5.7)

for different sources, frequencies, and receivers and, therefore, we can recover the full
MFIDM M .

6. Interferometric imaging. We present in the next section a direct method to form the
images from intensity-only measurements at a single receiver with range (depth) and cross
range resolution equivalent to those that are obtained by migrating the full response matrix
including phases.

Single receiver interferometry (SRINT) imaging. We write the row-vector P r ∈ C(N ·S),
defined in (5.1), in the form

P r = ρtGr.(6.1)

Here, Gtr is the (N · S) ×K model matrix in a homogeneous or heterogeneous medium that
maps a distribution of scatterers in the IW to the data received at the array, i.e.,

Gtr =


G(~xr, ~y1;ω1)g(~y1;ω1) . . . G(~xr, ~yK ;ω1)g(~yK ;ω1)
G(~xr, ~y1;ω2)g(~y1;ω2) . . . G(~xr, ~yK ;ω2)g(~yK ;ω2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G(~xr, ~y1;ωS)g(~y1;ωS) . . . G(~xr, ~yK ;ωS)g(~yK ;ωS)

 .(6.2)

In this expression, G(~xr, ~yj ;ωl), j = 1, . . . ,K and l = 1, . . . , S, denote the Green’s function
with source at grid point ~yj , receiver at ~xr and frequency ωl, and g(~yi;ωl) defined by (2.3) is
the vector of illuminations from the array to grid point ~yi in the IW.

To form the image given the data mr
ij (5.3) corresponding to d((~xr, ~xr), (~xs, ~xs′), (ωl, ωl′))

for all source locations s, s′ = 1, . . . , N and frequencies l, l′ = 1, . . . , S, where i = s+(l−1) ·N
and j = s′+ (l′− 1) ·N , we compute the imaging functional (1.4) which for the single receiver
case can be rewritten in the following matrix form,

IInterf (~ys) = diag(G0rM rG∗0r)(~y
s) ,(6.3)

where G0r is the model matrix in a homogeneous medium. The imaging functional (6.3) can
be viewed as migrating the MFIDM. In fact, (6.3) corresponds to CINT for one receiver. More
precisely, since we have not yet introduced any thresholding, (6.3) is just the usual Kirchhoff
migration functional squared as explained in the introduction (see (1.4) and (1.5)).

Resolution. To understand the resolution of the imaging functional (6.3), we consider
scatterers in a homogeneous medium and we substitute (6.1) into (6.3),

IInterf (~ys) = diag(G0rG∗0r ρρt G0rG∗0r) ,(6.4)

which shows that, in a homogeneous medium, (6.3) produces sharp images if G0rG∗0r, is close to
a diagonal matrix, that is, if the columns of G0r are nearly orthogonal. The near orthogonality
of G0r is satisfied when the discretization of the IW is compatible with the resolution provided
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by the bandwidth and the array size, c/B in range or depth, and λ0L/a in cross range. In
theory this is the case when the distance between two adjacent grid points ~yk and ~yk′ is such
that

|~yk − ~yk′ | � max

{
λ0L

a
,
c

B

}
.(6.5)

In practice we can have a much finer discretization in the IW if we use an a-posteriori thresh-
olding to select image peaks.

We note that for reasonable discretizations of the IW the imaging functional (6.4) (and,
therefore, (6.3)) produces an image of diag(ρρt), which is just the complex conjugate of the
diagonal entries of the unknown matrix ρρ∗ in (3.2) that is found in [9] through a nuclear
norm minimization process.

Thresholding and masks. Thresholding was introduced in interferometric imaging in [1, 2]
so that frequency offsets and source and receiver location offsets are restricted to within
coherence limits. The resulting CINT has the form (1.6). There, it is assumed that the
full array response matrix P (ωl) = [P (~xr, ~xs;ωl)]

N
r,s=1, l = 1, 2, . . . , S, is recorded, including

phases. The frequency cutoff Ωd < B and the source or receiver cutoff Xd < a are not know in
advance, as noted in the introduction, but can be determined in the image formation process.
This thresholding removes noise and stabilizes the image at the expense of somewhat reduced
resolution [4, 3].

A main result in this paper is that the MFIDMM r in (5.2) can be obtained from intensity-
only measurements at a single receiver, as explained is section 5, and robust imaging can be
done interferometrically with SRINT as given by (1.7).

In the framework of SRINT the thresholding can be easily done by multiplying (in the
sense of elementwise multiplication) the matrix M r in (6.3) by a mask, that is a matrix that
has only zeros and ones depending on the spacing between the indices in the matrix so as
to restrict the data used in imaging. This is an efficient way of implementing CINT for one
receiver, that is, SRINT. Incorporating the mask in (6.3) leads to the following matrix form
of the SRINT imaging functional,

ISRINT (~ys) = diag(G0rZ �M rG∗0r)(~y
s) ,(6.6)

where Z denotes the mask. The product Z �M r denotes elementwise multiplication.
We put masks on the data to reduce anticipated decoherence of measurements that arise

if sources and/or receivers are far apart. Wide bandwidth also can lead to decoherence of
measurements, and masks that limit the frequency offset are also needed. The need for
masks can be understood as follows. If we send two signals of nearby frequencies ωl and
ωl′ from nearby sources at ~xs and ~xs′ respectively, then they travel through essentially the
same medium and will be affected in a similar way by the random inhomogeneities. This is
quantified by the distance between sensors on the array being smaller than the decoherence
distance so |~xs − ~xs′ | < Xd, and the frequency offset being smaller then the decoherence
frequency so |ωl − ωl′ | < Ωd. Thus, a mask is a matrix composed of zeros and ones that
restrict data only to the coherent nearby source locations and frequencies.
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Computational complexity. The computational complexity of SRINT is comparable to
the usual migration methods. As can be seen from (6.6) the SRINT imaging function can be
implemented in a form that involves only matrix multiplications. Hence, forming an image of
K pixels with SRINT requires 2K(N ·S)2 flops, where N is the number of transducers in the
array, and S is the number of frequencies used to probe the medium.

7. Numerical simulations. In this section, we present numerical simulations that illus-
trate the performance of the proposed interferometric method. We assume our array and
our scatterers lie on the same two-dimensional plane, because it is easier to visualize two-
dimensional images. The data, however, are generated using (2.1) with the three-dimensional
(3D) Green’s function (2.2) if the medium is homogeneous. If the medium is inhomogeneous
we use the random phase model whose 3D Green’s function is given below in (8.1).

We consider a regime in optical (digital) microscopy with a central frequency of f0 = 600
THz which corresponds to the central wavelength λ0 = 500 nm. All length scales are measured
in units of λ0. We will assume that we can make measurements for multiple frequencies
covering a total bandwidth of 120 THz. All wavelengths considered here are in the visible
spectrum and range from blue to green light. The size of the array that we use for imaging
is a = 500λ0 and has N = 81 equispaced transducers. The distance from the array to the
IW is L = 10000λ0. The size of the IW is 160λ0 × 80λ0 and the pixel size is 2λ0 × λ0 in
cross range and range (depth), respectively. In all the figures that follow, the true locations
of the point scatterers are indicated with white crosses. We note that these specifications do
not correspond to any specific device. They are broadly compatible with current spatial light
modulator technologies.

7.1. Robustness to IW discretization with a full array and full phase information. We
assume here that the phases can be recorded at the array and that the medium between the
array and the IW is homogeneous. In the single frequency case, signals are emitted from all
the elements in the array, one at a time, and the reflections are recorded at all of them as well.
Therefore, the data available for imaging are the full, single frequency N ×N array response
matrix P (ω) defined in (2.4).

To assess the robustness of the different imaging methods with respect to the discretization
of the IW we consider two configurations: one with the scatterers placed on the grid and a
second one where the scatterers are displaced with respect to the grid. More precisely, the
off-grid scatterers are displaced by half the grid size in both directions from a grid point.

Figure 3 shows the images obtained when there is no additive noise in the data. In the top
row of this figure all the scatterers are placed on the imaging grid, while in the bottom row the
scatterers are off-grid. Since the array size a is small with respect to the distance L (L/a = 20)
and we only have one frequency, we expect a cross-range resolution of λ0L/a = 20λ0 and a
range resolution of λ0(L/a)2 = 400λ0. We see this in the images shown in the left and
middle columns of Figure 3 obtained with IKM (left column), as defined in (1.5) for S = 1
corresponding to the single frequency f0, and ISIGNAL (middle column), as defined in (3.6),
no matter whether the scatterers are on or off the grid. On the other hand, IMUSIC , as
defined in (3.4), gives very precise estimates of the scatterer’s locations when these are on
the grid, as can be seen in the top right plot of this figure. However, when the scatterers are



1020 M. MOSCOSO, A. NOVIKOV, G. PAPANICOLAOU, AND C. TSOGKA

9960 9980 10000 10020 10040
−80

−60

−40

−20

0

20

40

60

80

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9960 9980 10000 10020 10040
−80

−60

−40

−20

0

20

40

60

80

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9960 9980 10000 10020 10040
−80

−60

−40

−20

0

20

40

60

80

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9960 9980 10000 10020 10040
−80

−60

−40

−20

0

20

40

60

80

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9960 9980 10000 10020 10040
−80

−60

−40

−20

0

20

40

60

80

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9960 9980 10000 10020 10040
−80

−60

−40

−20

0

20

40

60

80

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Single frequency full data, including phases. Homogeneous medium. Top row: Scatterers on the
grid. Bottom row: Scatterers off the grid. From left to right: IKM as defined in (1.5) with S = 1 corresponding
to the single frequency f0, ISIGNAL as defined in (3.6), and IMUSIC as defined in (3.4). No additive noise in
the data.

off-grid the MUSIC image deteriorates dramatically as it is shown in the bottom-right plot of
Figure 3. These simulations illustrate clearly the lack of robustness of the MUSIC algorithm
with respect to modeling errors such as off-grid displacements.

In a second numerical simulation, we consider probing signals with S = 16 different fre-
quencies equally spaced in the bandwidth B = [580, 620] THz. The data are now the multiple
frequency, N ×N · S response matrix P defined in (4.2). Figure 4 shows the imaging results.
As expected, MUSIC (as implemmented here) does not benefit from multiple frequencies since
the projection onto the null space is performed frequency by frequency. In other words, con-
ventional multiple frequency MUSIC corresponds to adding all the single frequency images
incoherently over frequencies and, hence, the bottom right MUSIC image in Figure 4, obtained
with 16 frequencies, is not any better than its single frequency counterpart in Figure 3. On
the other hand, KM performs very well when multiple frequencies are available, as is shown
in the top and bottom plots in the left column of Figure 4. We note that these images remain
unchanged showing the robustness of KM with respect to off-grid displacements. Indeed, what
matters is the point spread function of KM which determines the resolution of the image, that
is, λ0L/a = 20λ0 in cross range and C0/B = λ0f0/B = 15λ0 in range (we used f0/B = 15 in
this case).

While ISIGNAL and IMUSIC are both subspace projection algorithms, there is an impor-
tant difference between them that has considerable impact in the visualization of the images.
Indeed, ISIGNAL directly displays the norm of the data projected onto the signal subspace.
IMUSIC , however, first computes the norm of the data projected onto the noise subspace and
then displays its inverse, that is, it displays one over the norm of the data projected onto the
noise subspace. It is the “one over” that makes these two methods so different when there is
neither additive noise nor modeling errors due to off-grid placements. In these cases, IMUSIC
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Figure 4. Mutifrequency full data (including phases). Using 16 frequencies equally spaced in the bandwidth
[580, 620] THz. Homogeneous medium. Top row: Scatterers on the grid. Bottom row: Scatterers off the grid.
From left to right: IKM as defined in (1.5), ISIGNAL as defined in (3.6), and IMUSIC as defined in (3.4). No
additive noise in the data.

9960 9980 10000 10020 10040
−80

−60

−40

−20

0

20

40

60

80

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9960 9980 10000 10020 10040
−80

−60

−40

−20

0

20

40

60

80

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5. Single receiver multifrequency interferometric data. Homogeneous medium. Imaging with IInterf
as defined in (6.3) using 16 frequencies equally spaced in B = [580, 620] THz. For the left image the scatterers
are on the grid while for the right image the scatterers are off the grid.

gives exactly zero in the denominator at the scatterer’s locations and, therefore, it acts like
a sharp thresholding which, however, does not necessarily work in the presence of noise or
modeling errors.

7.2. Imaging with intensity-only measurements. Now, let assume that we have only the
intensities recorded at the array. As explained in section 5, if signals of multiple frequencies
are used to probe the medium, the MFIDMM r can be recovered from intensity measurements
at a single receiver ~xr using an appropriate illumination strategy. Then, images can be formed
by using the functional (6.6). In this subsection and in the rest of the section, the signals used
to recover the matrix M r are recorded at the receiver located at the center of the array.

7.2.1. Robustness and resolution in homogeneous media. First, we assume that the
medium between the array and the IW is homogeneous. In Figure 5, we consider the same
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Figure 6. Same as Figure 5 but doubling the array size and the bandwidth. Homogeneous medium. The
scatterers are off the grid. No additive noise in the data.

setup as in Figure 4 except that (i) we do not record phases and (ii) we only use one receiver.
We see that the images shown in Figure 5, obtained with IInterf as defined in (6.3), are of the
same quality as those in Figure 4, obtained with IKM as defined in (1.5), when phases are
recorded and all source/receiver elements of the array are used for imaging. This means that
imaging can be done just as well without phases if one controls the illuminations! Moreover,
the results do not deteriorate when the scatterers are off-grid, as can be seen in the right
plot of Figure 5. This robustness is important and, as we will see, it will persist even when
considering imaging in inhomogeneous, random media.

Indeed, there is a similarity between these two types of data uncertainties. They both
induce errors in the measured (or recovered) phases. The off-grid case, however, is a systematic
error, which is the same for all array elements, while the error induced by the random phase
model depends on the path that connects the scatterer to each array element (see (8.1) below).
We note that depending on the correlation length of the random medium, the errors in the
measured (or recovered) phases are more or less correlated across the array elements.

Before considering imaging in random media, we note that the resolution obtained with
the imaging functional (6.3) is, as for conventional imaging, of the order of λ0L/a in cross
range, and C0/B = λ0f0/B in range [1]. This is confirmed in Figure 6, where we show an
image obtained after doubling the array size and the bandwidth compared to Figure 5. In
Figure 6, we observe an improvement in resolution by a factor of 2 in both the cross-range
and range (depth) directions compared to Figure 5.

7.3. Robustness and resolution in inhomogeneous media. To study the performance of
the imaging functionals in heterogeneous media, we consider the setup shown in Figure 7. The
four scatterers (very close to each other to be seen) on the right are shown with black disks,
and the array elements on the left are indicated with black stars. The array response matrix
is computed using (2.4) and the random travel time model for the Green’s function (8.1) is
explained below. The medium fluctuations are modeled as in (8.3). The correlation length of
the fluctuations is l = 100λ0, and the amplitude of the fluctuations is σ = 4 10−4. Here, we
increase the bandwidth to the maximum available B = [540, 660] THz, and we discretize it
using 46 equally spaced frequencies. The size of the IW is 160λ0 × 80λ0, and the pixel size is
4λ0 × 2λ0 in cross range and range (depth), respectively.

We implement the interferometric imaging approach using masks as described in section
6 (see Eq. (6.6)) with Ωd = 0.12B and Xd = 0.25a. By reducing the distance between the
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Figure 7. One realization of the random medium used in the simulations.
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Figure 8. Multifrequency interferometric data. We use 46 frequencies equally spaced in the bandwidth
B = [540, 660] THz. Random medium. The scatterers are off the grid. From left to right: ISIGNAL as defined
on (3.6), IMUSIC as defined in (3.4), IInterf as defined in (6.3), and ISRINT as defined in (6.6) using a mask
with Ωd = 0.12B and Xd = 0.25a. From top to bottom three realizations of the random medium. Note that
for ISIGNAL and IMUSIC we add incoherently over the multiple frequencies while for IInterf and ISRINT the
image is constructed by adding coherently over the multifrequency data. Note also that to construct the images
in the first two columns we need to recover the full matrix M while for the last two columns only the single
receiver element matrix Mr is used.

sensors and the frequencies used for imaging, we gain stability but we lose some resolution.
The parameters Ωd and Xd can be obtained by an optimization procedure [2]. Here, however,
we experimented with different values of Ωd and Xd, and we picked the ones that provide a
good compromise between stability gain and resolution loss.

Figure 8 shows the images in three different realizations of a random medium. From left
to right we show the images obtained with ISIGNAL as defined on (3.6), IMUSIC as defined in
(3.4), IInterf as defined in (6.3), and ISRINT as defined in (6.6). The mask used in ISRINT
is displayed in the right plot of Figure 9. Both imaging functionals IInterf and ISRINT use
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Figure 9. Example of masks Z. On the left is the mask corresponding to single frequency data and limits
the interferometric data only in space. On the right is the mask used in the numerical simulations that limits
interferometric data to nearby frequencies and nearby sources. The values of the matrix are zeros and ones,
with ones plotted in white and zeros in black.

the MFIDM obtained from the intensities gathered at the receiver located at the center of the
array. Similar results, not shown here, are obtained for other receiver locations. The receiver
location does not really affect the imaging results. This is so because the array is small and
is located at a large distance from the IW.

In all the cases shown in Figure 8, the scatterers do not lie on the grid and hence, as
expected, neither ISIGNAL nor IMUSIC (first and second columns) are able to locate the
scatterers because the range resolution is lost, as was the case in a homogeneous medium
(see Figure 5). In addition, we now observe that when the medium is random, the estimated
cross range varies from one realization to another. This phenomenon is also noticeable in the
IInterf images shown in the third column. Although the resolution of the IInterf images is
far better than the one given by ISIGNAL and IMUSIC , the peaks obtained in the IInterf
images dance around the true locations of the scatterers, meaning that IInterf is not stable
and, therefore, it is not useful for imaging in regimes with significant wavefront distortions.
However, ISRINT (fourth column), that uses masked multifrequency interferometric data,
gives statistically stable results in these media. We also observe a significant loss in resolution
due to the use of the masks. Because Ωd = 0.12B and Xd = 0.25a, we only use a small part
of the available bandwidth and of the array aperture and, therefore, the resolution decreases
to λ0L/Xd and C0/Ωd in cross range and range, respectively (cf. [1]).

In Figure 9 we display the mask Z used to produce the SRINT images in Figure 8. The
left plot is the monochromatic version of the mask which illustrates windowing only in the
spatial direction. We observe that Z is a band matrix whose bandwidth limits the correlations
used in ISRINT so that |~x− ~x′| � Xd. The right plot is the mask used in our simulations for
S = 46 frequencies and N = 81 array elements. Recall that the index of M r and, therefore,
of the mask as well, is defined as i = s + (l − 1) · N for source location s = 1, . . . , N and
frequency l = 1, . . . , S.

In order for SRINT to produce reliable results in inhomogeneous media there must be
some coherence in the recovered interferometric data matrix M r. This happens when the
fluctuations in the phases induced by the random phase model are of order one (or less).
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Figure 10. SRINT data. We use 46 frequencies equally spaced in the bandwidth B = [540, 660] THz.
Random medium. The scatterers are off the grid. We change here the propagation distance to L/2 and at
the same time we increase the strength of the fluctuations by a factor

√
2 (to keep σ

√
lL/λ0 constant). In

the top row we show the IInterf images and in the bottom the ISRINT images that use the masked data.
From left to right we illustrate results for three realizations of the random medium. The same mask with
Ωd = 0.12B and Xd = 0.25a as before is used. We do not show the MUSIC images because they are just as bad
as before.

From the discussion in section 8, it is seen that the standard deviation of the phases recorded
at the array is of order σ

√
lL/λ0 = σ/σ0 = ε. The numerical results shown in Figures 10

and 11 confirm this. We observe good images when we change the propagation distance to
L/2 (Figure 10) and L/3 (Figure 11) while multiplying the strength of the fluctuations by a
factor

√
2 and

√
3, respectively, to keep the parameter ε fixed. In our numerical simulations

we have ε = 0.2. Note that as the propagation distance is reduced, the resolution in cross
range improves, as seen by comparing Figure 8 with Figures 10 and 11.

8. Imaging in inhomogeneous background media. Imaging in inhomogeneous random
media is fundamentally different from imaging in homogeneous or smoothly varying media.
This is so because, when the medium is inhomogeneous, we know, at best, the large scale, but
we cannot know its detailed, small scale structure which is impossible to determine. Hence,
all imaging methods use a homogeneous medium (or smoothly varying one) as a reference
medium, even when the collected data are affected by the medium inhomogeneities. Indeed,
in randomly inhomogeneous media the data inherit the uncertainty of the fluctuations of the
media, resulting in wave distortions that lead to space-correlated multiplicative noise, which is
very different from additive uncorrelated noise usually taken into account in imaging. In fact,
many of the usual imaging methods used in homogeneous (or smoothly varying) media fail,
e.g. Kirchhoff migration, because the images change unpredictably with the detailed features
of the medium and, thus, they become unstable.

SRINT imaging deals with wave distortions by restricting, or thresholding, the data to
remove excessive incoherence as described in the introduction (see (1.7)) and in section 6 (see
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Figure 11. This is the same as Figure 10 but now we change the propagation distance to L/3 and multiply
the strength of the fluctuations by a factor

√
3 to keep σ

√
lL/λ0 constant.

(6.6)). This stabilizes the images. Note that the thresholding, captured by the parameters Ωd

and Xd, depends on the properties of the inhomogeneous, random medium. Using a random
phase model, we briefly describe next how these parameters emerge from the properties of
the random medium. This model, frequently used to account for weak phase distortions, is
analyzed in detail in [4], which we follow here.

The random phase model characterizes wave propagation in the high frequency regime
in random media with weak fluctuations and small correlation lengths l compared to the
wavelength λ0. It provides an analytical approximation for the Greens function between two
points ~x and ~y at a distance L from each other such that L � l � λ0. This approximation
is given by

G(~x, ~y;ω) = G0(~x, ~y;ω) exp [iων(~x, ~y)].(8.1)

Here, G0 denotes the Green’s function in a homogeneous medium (2.2), and ν(~x, ~y) is the
random function

ν(~x, ~y) =
σ|~x− ~y|

2c0

∫ 1

0
ds µ

(
~y

l
+ (~x− ~y)

s

l

)
,(8.2)

which accounts for the phase distortions induced by the random fluctuations of the wave speed
modeled as

1

c2(~x)
=

1

c2
0

(
1 + σµ(

~x

l
)

)
.(8.3)

In (8.3), c0 denotes the average speed, σ denotes the strength of the fluctuations with correla-
tion length l, and µ(·) is a stationary random process of a dimensionless argument with zero
mean and normalized autocorrelation function R(|~x− ~x′|) = E(µ(~x)µ(~x′)), so that R(0) = 1,
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and
∫∞

0 R(r)r2dr <∞. Here, we only consider weak fluctuations such that σ � 1. The prop-
agation distance L is large, though, so the cumulative scattering effects are O(1), but not too
large so the phases of the collected signals still maintain certain degree of coherence. Hence,
there is some degree of correlation between signals coming from sources whose locations and
frequencies are not very far away.

The model (8.1)–(8.3) is valid when (i) the wavelength λ0 is much smaller than the cor-
relation length l so the geometric optics approximation holds, (ii) the correlation length l is
much smaller than the propagation distance L so the statistics of the phase become Gaussian,
and (iii) the strength of the fluctuations σ is small, so the amplitude of the wave is kept
approximately constant, but large enough to ensure that the perturbations of the phases are
not negligible. The last condition holds when

σ2L3

l3
� λ2

σ2lL
∼ 1 ,(8.4)

as discussed in detail in [32, 29, 4]. Note that although we take weak fluctuations, the distortion
of the wavefronts caused by the inhomogeneities of the medium is observable because the waves
travel long distances. Comparing (8.1) to the homogeneous Green’s function (2.2) we see that,
in this regime, only the phases of the waves are perturbed by the random medium, while the
amplitudes remain unchanged.

The moments of the random function ν. Assume that ~y = (0, L) is in the IW and
~x = (x, 0) is at the array, then the distance between them is of order L, L � l. Suppose
µ(·) is statistically homogeneous and Gaussian, then one can show (see Lemma 3.1 in [4] or
Appendix A of this paper) that the random process

ν(x) := ν
(
~x = (x, 0), ~y = (0, L)

)
,(8.5)

has Gaussian statistics with mean zero and covariance function

E
{
ν(x)ν(x′)

}
≈ τ2

c C
(
|x− x′|

l

)
,(8.6)

where the variance is

τ2
c =

√
2πσ2lL

4c2
0

(8.7)

and

C(r) =
1

r

∫ r

0
du e−u

2/2.

Note that τc has dimensions of time. For a better understanding of the parameters that
are meaningful in the random phase model, we use adimensional variables. We scale all length
variables by the central wavelength λ0,

x̃ =
x

λ0
, ã =

a

λ0
, l̃ =

l

λ0
, L̃ =

L

λ0
,(8.8)
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and the frequency (respectively, time) by the central frequency ω0 = 2πc0/λ0 (respectively,
1/ω0),

ω̃ =
ω

ω0
, τ̃c = τcω0 .(8.9)

We also introduce the dimensionless parameter

σ0 = λ0/
√
lL = 1/

√
l̃L̃,(8.10)

which is a characteristic strength of the fluctuations of the inhomogeneities for which the
standard deviation of the random phase fluctuations of the collected signals is O(1). Note
that it is σ2

0/σ
2 that appears in (8.4) and should be close to one. We therefore define the

strength of the fluctuations σ in terms of σ0 and, thus, define the dimensionless parameter

ε =
σ

σ0
.(8.11)

Using these dimensionless variables and parameters, we have

τ̃2
c = π2

√
2πε2 ,(8.12)

which shows that the variance of the fluctuations of the random phases at the array only
depends on the standard deviation ε of the fluctuations of the wave speed measured in units of
σ0. This means, in turn, that τ̃c only depends on the product of the dimensionless parameters
l̃ and L̃.

The threshold parameters and moment formulas. The stability analysis of the imaging
functionals (1.7) or (6.6) relies on computations involving statistical moments of the Green’s
function (8.1). The detailed stability analysis is in [4] and will not be repeated here. We
will only show the first two moment formulas of the Green’s function where the threshold
parameters appear. Higher order moments are computed using the Gaussian property of the
random function ν. From the moment formulas we can see that thresholding in (1.7) or (6.6)
is a form of denoising. Another way to interpret thresholding is as the removal of relatively
incoherent data that will not contribute to stable image formation.

Assume, as before, that ~y = (0, L) is in the IW, and ~x = (x, 0), ~x′ = (x′, 0) are the
positions of two array elements. Then, we can show that (see Lemma 3.2 in [4] or Appendix B)

E
{
eiων(x)

}
= exp

{
−ω

2τ2
c

2

}
(8.13)

and

E
{
eiων(x)−iω′ν(x′)

}
= exp

{
−(ω − ω′)2τ2

c

2
− ωω′τ2

c

[
1− C

(
|x− x′|

l

)]}
.(8.14)

If, in addition, the array elements are nearby so that |x−x′| � l (and, thus, we can expand the
covariance function around zero so C(r) = 1− r2/6 +O(r4)), and the bandwidth is relatively
small so that ωω′ ≈ ω2

0, we get that
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E
{
eiων(x)−iω′ν(x′)

}
≈ exp

{
−(ω − ω′)2

2Ω2
d

− |x− x
′|2

2X2
d

}
(8.15)

with

Ωd =
1

τc
, Xd =

√
3l

ωoτc
.(8.16)

In dimensionless units, Ω̃d = 1/τ̃c ≈ 0.2/ε and X̃d =
√

3l̃/τ̃c ≈ 0.35 l̃/ε. We deduce that the di-
mensionless decoherence frequency Ω̃d only depends on ε, while the dimensionless decoherence
length X̃d also depends on the dimensionless correlation length l̃.

We note the following concerning the Green’s function between a point ~x = (x, 0) on the
array and a point ~y = (0, L) in the IW: the Green’s function G(~x, ~y;ω) that models wave
propagation between these two points is a random process with mean

E {G(~x, ~y;ω)} = G0(~x, ~y;ω)E
{
eiων(x)

}
= G0(~x, ~y;ω)e−

ω2τ2c
2(8.17)

and variance

V ar {G(~x, ~y;ω)} = |G0(~x, ~y;ω)|2
(

1− e−ω2τ2c
)
.(8.18)

Thus, according to (8.17) and (8.18), the mean of the Green’s function goes to zero when
ωτc is large, while the variance remains bounded. This instability will be inherited by any
imaging functional that backpropagates these data, as recorded on the array, in a homogeneous
background medium.

If, instead, we backpropagate interferometric data, we have to consider the random process
G(~x, ~y;ω)G(~x′, ~y;ω′). The mean and the variance of this random process is given by

E
{
G(~x, ~y;ω)G(~x′, ~y;ω′)

}
= G0(~x, ~y;ω)G0(~x′, ~y;ω′)E

{
eiων(x)−iω′ν(x′)

}
= G0(~x, ~y;ω)G0(~x′, ~y;ω′)exp

{
−(ω − ω′)2

2Ω2
d

− |x− x
′|2

2X2
d

}
(8.19)

and

V ar
{
G(~x, ~y;ω)G(~x′, ~y;ω′)

}
=
∣∣∣G0(~x, ~y;ω)G0(~x′, ~y;ω′)

∣∣∣2(1− exp

{
−(ω − ω′)2

Ω2
d

− |x− x
′|2

X2
d

})
,(8.20)

respectively. Hence, we observe that the variance goes to zero as |x−x′| → 0 and |ω−ω′| → 0.
Moreover, as |x− x′| → 0 and |ω − ω′| → 0 the expected value reduces to the corresponding
quantity in a homogeneous medium. This means, that the restricted multifrequency interfer-
ometric data converge to the corresponding deterministic quantities. Hence, if we use SRINT
with masks, so that |x−x′| � Xd and |ω−ω′| � Ωd, the multifrequency interferometric data
used for imaging are restricted appropriately to data that lead to statistically stable images.
The fact that we gain stability by thresholding but we also lose some resolution is discussed
in [4].
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9. Concluding remarks. In this paper, we introduce a holography-based approach for
imaging with intensity-only measurements. We show that by controlling the illuminations,
we can recover the MFIDM (5.2) from intensities recorded at a single receiver. The recovered
data matrix M r can then be used for imaging, which can be done by backpropagation. This
allows us to reconstruct a full 3D image, including depth information, from intensity-only
measurements. Moreover, we show that in homogeneous media there is no resolution loss
compared to imaging with full data, including phases. We also consider inhomogeneous media
where wavefront distortions can arise. To image in such media we restrict the interferometric
data to nearby frequencies |ω − ω′| ≤ Ωd and nearby receivers |x − x′| ≤ Xd. An efficient
matrix implementation of this thresholding operation is introduced, using a mask that sets
to zero all the entries in the MFIDM that do not satisfy the required coherence constraints.
The robustness of the interferometric approach with respect to the IW discretization as well
as in the case of wavefront distortions is explored with numerical simulations carried out in
an optical (digital) microscopy imaging regime.

Appendix A. Moments of the random process ν(x). Because µ is a zero-mean sta-
tionary random process, E{ν(x)} = 0. Next, we compute the second order moment of the
random process ν(x) = ν((x, 0), (0, L)). Assuming that |x| � L,

E
{
ν(x)ν(x′)

}
=
σ2L2

4c2
0

∫ 1

0
ds

∫ 1

0
ds′E

{
µ(
~y + s(~x− ~y)

l
)µ(

~y + s′(~x′ − ~y)

l
)

}

=
σ2L2

4c2
0

∫ 1

0
ds

∫ 1

0
ds′R

(
|s(~x− ~y)− s′(~x′ − ~y)|

l

)

=
σ2L2

4c2
0

∫ 1

0
ds

∫ 1

0
ds′ exp

{
−|s(

~x− ~y)− s′(~x′ − ~y)|2

2l2

}

=
σ2L2

4c2
0

∫ 1

0
ds

∫ 1

0
ds′ exp

{
−|sx− s

′x′|2

2l2
− (s− s′)2L2

2l2

}

=
σ2L2

4c2
0

∫ 1

0
ds

∫ 1−s

−s
ds′′ exp

{
−|sx− (s′′ + s)x′|2

2l2
− s′′2L2

2l2

}
.(A.1)

If L� l, the s′′ integral is approximately the integral of a Gaussian that can be extended to
the real line, and whose value is

√
2π l/L. Hence,

E
{
ν(x)ν(x′)

}
≈
√

2πσ2lL

4c2
0

∫ 1

0
ds exp

{
−s

2|x− x′|2

2l2

}

=

√
2πσ2lL

4c2
0

l

|x− x′|

∫ |x−x′|/l
0

du exp{−u2/2}

= τ2
c C(|x− x′|/l)(A.2)

with τ2
c =

√
2πσ2lL
4c20

and C(r) = 1
r

∫ r
0 du e

−u2/2.
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Appendix B. Moments of the random process eiων(x). To compute the first moment of
the random process eiων(x) we use that the expectation of an exponential function is E{eaX} =
ea

2/2 if X ∼ N(0, 1). Hence,

E
{
eiων(x)

}
= e−ω

2E{[ν(x)]2}/2 = e−ω
2τ2c /2 ,(B.1)

where we have used (A.2) with x = x′. To obtain the second order moment

E
{
eiων(x)−iω′ν(x′)

}
= e−E{[ων(x)−ω′ν(x′)]2}/2(B.2)

we compute the expectation

E
{

[ων(x)− ω′ν(x′)]2
}

= ω2E
{

[ν(x)]2
}

+ ω′2E
{

[ν(x′)]2
}
− 2ωω′E

{
[ν(x)ν(x′)]

}
= (ω − ω′)2E

{
[ν(x)]2

}
+ 2ωω′E

{
[ν(x)]2

}
− 2ωω′E

{
[ν(x)ν(x′)]

}
= (ω − ω′)2τ2

c + 2ωω′τ2
c − 2ωω′τ2

c C(|x− x′|/l) ,(B.3)

where we have used (A.2). Inserting (B.3) into (B.2) we obtain

E
{
eiων(x)−iω′ν(x′)

}
= e−(ω−ω′)2τ2c /2−ωω′τ2c (1−C(|x−x′|/l)) .(B.4)

If, in addition, |x−x′|/l� 1 so C(|x−x′|/l)) ≈ 1−|x−x′|2/6l2+· · · , and assuming ωω′ ≈ ω2
0,

we find that

E
{
eiων(x)−iω′ν(x′)

}
= e−(ω−ω′)2/2Ω2

d−|x−x
′|2/2X2

d(B.5)

with Ωd = 1/τc and Xd =
√

3l/ωoτc.
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