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We design a new and efficient numerical method for the modelization of elastic wave propagation
in domains with complex topographies. The main characteristic is the use of the fictitious domain
method for taking into account the boundary condition on the topography: the elastodynamic
problem is extended in a domain with simple geometry, which permits us to use a regular mesh.
The free boundary condition is enforced introducing a Lagrange multiplier, defined on the boundary
and discretized with a non-uniform boundary mesh. This leads us to consider the first order
velocity-stress formulation of the equations and particular mixed finite elements. These elements
have three main non-standard properties: they take into account the symmetry of the stress
tensor, they are compatible with mass lumping techniques and lead to explicit time discretization
schemes, and they can be coupled with the Perfectly Matched Layer technique for the modeling of
unbounded domains. Our method permits us to model wave propagation in complex media such
as anisotropic, heterogeneous media with complex topographies, as it will be illustrated by several
numerical experiments.

1. Introduction

In this work, we present a fictitious domain method for modeling time dependent elastic

wave propagation in complex media such as heterogeneous anisotropic media of complex

geometries. From an industrial point of view, the main applications concerned by this work

are the study of seismic waves in media with complex topographies and the non-destructive

testing (diffraction by a crack of complex geometry). In this paper we will restrict ourselves

in the first application considering the elastodynamic problem in a domain with a complex

topography (see Fig. 1).

Among the possible methods for solving this problem, the finite difference method is

one of the most attractive. It uses a regular mesh with an explicit time discretization, and

therefore is very efficient from the computational point of view. Its main drawback is that

it produces spurious diffractions when the boundary does not fit the grid mesh (see Fig.

1-left). An alternative is to use finite elements with a non-uniform mesh, that can fit exactly
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Figure 1: Left: finite difference method (staircase approximation). Right: Finite elements

the complex geometry of the boundary, see Fig. 1-right. Nevertheless, other disadvantages

are introduced. The numerical implementation is much more difficult, the efficiency may be

decreased by the unstructured nature of the data, and finally the CFL stability is affected:

in order to fit the complex geometry of the boundary, the mesh may contain elements of

very small size, which implies, because of the CFL stability condition, the use of a very

small time step if one uses an explicit scheme.

In this work we propose the use of an alternative method, the fictitious domain method

(also called the domain embedding method) which combines the efficiency of the finite

difference method (regular meshes and explicit time discretization schemes) with a good

approximation of the topography. This method was initially developed for solving problems

with complex geometries2,17, particularly in the stationary case. The study of the fictitious

domain method for time dependent problems has started a few years ago18,12,15. Its principle

is to extend the solution to a simple shape domain independent of the boundary of complex

geometry (typically a rectangle in 2D), containing the domain of interest, and to impose

the boundary condition via the introduction of a Lagrange multiplier on the boundary.

The main point is that we have now two unknowns, the extended function, defined in

the enlarged simple shape domain and the auxiliary variable, defined on the boundary of

complex geometry, so that the mesh for computing the extended function can be chosen

independently of the geometry of the boundary. In particular, the use of regular grids allows

simple and efficient computations. Of course, we have to pay for this advantage in terms of

some additional computational cost due to the introduction of the new boundary unknown.

However, the final numerical scheme appears to be a slight perturbation of the scheme for

the problem without obstacle so that this cost may be considered as marginal.

In the problem we are interested in, the boundary condition is a free surface condition,

that is, the normal stress is zero on the surface: in order to consider this condition as an

equality constraint, we are led in a natural way to use the mixed velocity-stress formulation

for elastodynamics. Then the Lagrange multiplier can be interpreted as the jump of the

velocity through the surface. Another advantage of working with the first-order mixed

velocity-stress formulation is that it is well suited to the use of a new absorbing layer model

for bounding the computational domain: the Perfectly Matched Layers (PML), introduced
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by Berenger10 for the 2D Maxwell problem and that can be extended to elastodynamics.

This model has astonishing properties: the reflection coefficient at the interface between the

layer and the free medium is zero for all frequencies and angles of incidence. The extension

of this model to elastodynamics is natural when using the mixed velocity-stress formulation.

These considerations lead us to find an efficient approximation of the time domain mixed

velocity-stress formulation. In particular for stability reasons (conservation of energy), we

have decided to use a discretization procedure in space based on a variational formulation

of the velocity stress system, which is a first order hyperbolic system. At this stage, our

main requirement is to define a spatial discretization which allows us to obtain an explicit

time discretization scheme (mass-lumping).

Several mixed finite element methods are proposed in the literature especially for plane

elasticity. We refer for example to PEERS element introduced by D. N. Arnold, F. Brezzi

and J. Douglas1 and more recently to the work of R. Stenberg22 and M. Morley20. One of the

well known difficulties for mixed elements in elasticity is to take into account the symmetry

of the stress tensor. The method used in these papers 1,22,20 consists in working with a

space of non-necessarily symmetric tensors and imposing the symmetry in a weak way via

the introduction of a Lagrange multiplier. Although these methods are very interesting for

plane elasticity, we did not retain them as they lead to an implicit scheme in time.

That is why we have constructed an original mixed finite element (inspired from the

second Nédélec’s family21) using spaces of symmetric tensors for the stress6. These spaces

will fit our objectives. The error analysis of these mixed finite elements will not be discussed

here, we refer the reader to7,8, where a non-classical convergence theory is presented.

The present paper is organized as follows. In §2 we briefly recall the equations of elasto-

dynamics. In §3 we describe the fictitious domain method applied to elastodynamics, with

a free surface boundary condition. We explain in §4 how to apply the PML to the elasto-

dynamic problem. We introduce in §5.2 the new family of mixed finite elements for linear

elasticity, which permits us to make mass lumping. The dispersion and stability analysis of

the lowest order element is presented in §6 in the case of an homogeneous isotropic medium.

Finally, we show in §7 some numerical results.

2. The linear elastodynamic problem

We want to solve the linear elastodynamic problem with a complex topography (see Fig.

2-left). The solution is governed by the elastic wave equation in Ω and we impose the free

surface condition on ΓS . For the sake of simplicity a Dirichlet condition is assumed on the

exterior boundary ΓD but we will see in §4 how we can take into account the modelization

of an unbounded domain by an efficient absorbing layer model (PML).

Notations. We identify the space of 2 × 2 tensors with the space L(IR2) of linear appli-

cations from IR2 to IR2. We define the linear form, as(σ) = σ12 − σ21, and the subspace of
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symmetric tensors of L(IR2):

Ls(IR2) =
{
σ ∈ L(IR2) / as(σ) = 0

}
.

The scalar product in L(IR2) is defined by σ : τ = σijτij, for all (σ, τ) in L(IR2) and |σ| is

the associated norm. Finally, the divergence of a tensor is defined as:

div σ =




∂σ11

∂x1
+

∂σ12

∂x2

∂σ21

∂x1
+

∂σ22

∂x2


 .

The continuous displacement problem. We want to solve the elastodynamic problem:




%
∂2u

∂t2
− div σ(u) = g in Ω,

u = 0 on ΓD,

σ · n = 0 on ΓS ,

(2.1)

with some initial conditions at time t = 0 that we will systematically omit in the following.

In (2.1), u = (u1, u2)
t denotes the displacement, σ(u) is the stress tensor, % = %(x) is the

density and x = (x1, x2). Consider ε(u) the strain tensor, i.e.,

εij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

The stress tensor is related to the strain tensor by Hooke’s law

σ(u)(x, t) = C(x)ε(u)(x, t),

where C(x) is a 4 × 4 positive tensor having the classical properties of symmetry3. The

density is assumed to be bounded,

0 < %− ≤ %(x) ≤ %+ < +∞ p.p. x ∈ Ω,

We set A(x) = C(x)−1 and we suppose that A(x) satisfies :

∀σ ∈ Ls(IR2) 0 < α |σ|2 ≤ A(x)σ : σ ≤ M |σ|2 .

In the following, we assume that ΓS is a piecewise C1 Lipschitz curve which permits us to

define the Sobolev spaces Hs(ΓS) for any s < 3/2 (see 19).

3. The Fictitious domain method for the elastodynamic problem

In this section we apply the fictitious domain method for solving the elastodynamic

problem (2.1). As explained in the introduction, this method consists in extending the
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solution of problem (2.1) to a larger domain of simple geometry (see Fig. 2) and in taking

into account the boundary condition in a weak way, thanks to the introduction of a Lagrange

multiplier. To do so with the free surface condition (Neumann condition), σ has necessarily

to be one of the unknowns. Therefore, we have to write the elastodynamic problem (2.1)

as a first order hyperbolic system, the so called velocity-stress system.

Remark 1 More generally, the fictitious domain method can be used for the essential con-

ditions, i.e., conditions that can be taken into account in the functional space.

3.3.1. The mixed velocity-stress formulation

Problem (2.1) is equivalent to the mixed velocity-stress system :





%
∂v

∂t
− div σ = f in Ω (i)

A
∂σ

∂t
− ε(v) = 0 in Ω (ii)

v = 0 on ΓD (iii)

σ · n = 0 on ΓS (iv)

, (3.2)

where v =
∂u

∂t
is the velocity in Ω and f =

∂g

∂t
. Considering the spaces





X =
{
τ ∈ (H(div ,Ω))2, τ · ~n = 0 on ΓS

}
,

Xs = {τ ∈ X, τ symmetric} ,

M = (L2(Ω))2,

the variational formulation of problem (3.2) is :





Find (σ, v) ∈ Xs × M such that:

d

dt
a(σ, τ) + b(τ, v) = 0, ∀τ ∈ Xs,

d

dt
c(v, w) − b(σ,w) = (f, w), ∀w ∈ M,

(3.3)

where we have set :





a(σ, τ) =

∫

Ω
Aσ : τdx, ∀(σ, τ) ∈ Xs × Xs,

c(v, w) =

∫

Ω
%v · wdx, ∀(v, w) ∈ M × M,

b(τ, w) =

∫

Ω
div τ · wdx, ∀(τ, w) ∈ Xs × M.

(3.4)



6 Fictitious domains, mixed FE and PML for 2D elastodynamics

This system satisfies the classical energy estimate E(t) = E(0) +

∫ t

0
(f(s), v(s))Mds, the

energy being defined as

E(t) =
1

2
(Aσ, σ)H +

1

2
(ρv, v)M ≡ 1

2
a(σ, σ) +

1

2
c(v, v).

Remark 2 To obtain this formulation it is crucial to work in the space X s of symmetric

tensors : only in this space operators −ε and div are adjoint.

3.3.2. Application of the fictitious domain method to elastodynamics

We now extend solution of problem (3.2) to the solution, still denoted (v, σ) for simplicity,

of a problem posed in an enlarged domain C, which is a simple rectangle (see Fig. 2), with

Dirichlet conditions on the external boundary,





%
∂v

∂t
− div σ = f in C

A
∂σ

∂t
− ε(v) = ΛδΓS

in C

v = 0 on ∂C

σ · n = 0 on ΓS

, (3.5)

where Λ is the tensor of components Λij = λinj, λ being a new unknown, defined only on

the boundary ΓS . We introduce the spaces (denoted also X, X s and M for simplicity)

DΓ

Ω C

ΓS

Figure 2: Left: the original domain. Right: the enlarged domain





X =
{
τ ∈ (H(div , C))2

}
; Xs = {τ ∈ X, τ symmetric } ,

M = (L2(C))2 ; G = (H1/2(ΓS))2,
(3.6)

defined on the whole rectangle C. The variational formulation of (3.5) can be written
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as follows: 



Find (σ, v, λ) ∈ Xs × M × G such that:

d

dt
a(σ, τ) + b(τ, v) − s(τ, λ) = 0, ∀τ ∈ Xs (i)

d

dt
c(v, w) − b(σ,w) = (f, w), ∀w ∈ M (ii)

s(σ, µ) = 0, ∀µ ∈ G (iii)

(3.7)

the bilinear forms a(·, ·), b(·, ·), c(·, ·) being defined by (3.4) (with C instead of Ω), with

s(τ, λ) = 〈τ~n, λ〉ΓS
∀(τ, λ) ∈ Xs × G.

Actually the unknown λ can be interpreted as a Lagrange multiplier corresponding to [v]ΓS
.

Obviously, the restriction of (v, σ) to Ω still satisfies (3.2). Moreover, we can remark that

the restriction of the solution to Ω
c

(where Ω
c

denotes the complementary of Ω in C) also

satisfies (3.2) where Ω is replaced by Ω
c

(and ΓD denotes ∂C ∩ ∂Ω
c
). Now if we multiply

(3.2)-(ii) with a function τ ∈ Xs (Xs being defined by (3.6)), and integrate in Ω ∪ Ω
c
, an

integration by parts of the second term gives

−
∫

Ω∪Ωc
ε(v)τdx =

∫

Ω∪Ωc
v.divτdx −

〈
τ~n, v+ − v−

〉
ΓS

≡ b(τ, v) − s(τ, [v]ΓS
),

which yields (3.7-(i)), if we set λ = [v]ΓS
. Since the free surface boundary condition on ΓS

is not taken into account anymore in the new definition of space X, it has to be imposed

in the formulation, this is done with (3.7-(iii)).

Remark 3 There is a strong link between the fictitious domain method and the boundary

integral equation method. The extended solution is chosen such that the normal stress

is continuous through ΓS and the new unknown corresponds to the unknown of the BIE

obtained using a double layer potential representation for v (see5).

3.3.3. Semi-discretization in space

Consider now finite dimension spaces X s
h ⊂ Xs, Mh ⊂ M and GH ⊂ G with classical

approximation properties, which will be specified in §5 for our particular choice of approx-

imation spaces. The semi-discretization in space of problem (3.7) can be written:





Find (σh, vh, λH) ∈ Xs
h × Mh × GH such that :

d

dt
a(σh, τh) + b(τh, vh) − s(τh, λH) = 0, ∀τ ∈ Xs

h,

d

dt
(vh, wh) − b(σh, wh) = (f, wh), ∀wh ∈ Mh,

〈σh~n, µH〉ΓS
= 0, ∀µH ∈ GH .

(3.8)
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We introduce here BN1
= {τi}N1

i=1, BN2
= {wi}N2

i=1 and BN3
= {µi}N3

i=1 the bases of Xs
h, Mh

and GH respectively (N1 = dim Xs
h, N2 = dim Mh and N3 = dim GH), [Σh] = (Σ1, ...,ΣN1

),

[Vh] = (V1, ..., VN2
) and [λH ] = (Λ1, ...,ΛN3

) the coordinates of σh, vh and λH in the bases

BN1
, BN2

and BN3
. In these bases, (3.8) can be written in the following matrix form:





Find (Σh, Vh, λH) ∈ L2(0, T ; IRN1) × L2(0, T ; IRN2) × L2(0, T ; IRN3) such that:

d

dt
AhΣh + B?

hVh − ShλH = 0,

Ch
dVh

dt
− BhΣh = Fh,

S?
hΣh = 0,

(3.9)

where M ? denotes the transpose of the matrix M . In practice, and this is the interesting

point in the fictitious domain method, we introduce two meshes: the volume unknowns

(Vh,Σh) are defined on a regular grid, Th made of squares of size h while the surface un-

known λH is computed on a non-uniform mesh on ΓS , TH made of segments of size Hj,

H = supj Hj, see Fig. 8-left. From the theoretical point of view, the well-posedness of (3.9)

and the convergence of the method is linked to the verification of a uniform inf-sup condi-

tion which leads to a compatibility condition between the boundary mesh and the uniform

mesh16 of the form H ≥ Ch (C ' 1.3 for our choice of approximation spaces (5.23),(5.24)).

At this point we can see the importance of mass-lumping: assume for the moment that we

can find appropriate finite element spaces and the adequate quadrature formulas in order

to achieve mass-lumping on the matrix Ah, we can then eliminate the unknown Σh (which

implies important savings in memory requests especially in the 3D case) and write system

(3.9) as the second order system in time :





Find (Vh, λH) ∈ L2(0, T ; IRN2) × L2(0, T ; IRN3) such that:

Ch
d2Vh

dt2
+ BhA−1

h B?
hVh − BhA−1

h ShλH =
dFh

dt
,

−S?
hA−1

h B?
hVh + S?

hA−1
h ShλH = 0.

(3.10)

We describe in §5.2 an appropriate choice for X s
h, Mh (the lowest-order element of a new

family of mixed finite elements6,7) which allows us to obtain mass-lumping for Ah.

3.3.4. Total discretization

For the time discretization of problem (3.10) we restrict ourselves to the classical second
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order centered finite differences approximation :





Find (V n+1
h , λn

H) ∈ IRN2 × IRN3 such that :

Ch
V n+1

h − 2V n
h + V n−1

h

∆t2
+ BhA−1

h B?
hV n

h − BhA−1
h Shλn

H =
F

n+1/2
h − F

n−1/2
h

∆t
(i)

S?
hA−1

h Shλn
H = S?

hA−1
h B?

hV n
h (ii)

(3.11)

This is an explicit scheme only if Ch is also a diagonal matrix, which, in practice, is not

difficult to achieve. This comes from the fact that Mh ⊂ L2 and thus can be constructed with

discontinuous functions and, from now on, we assume that Ch is diagonal . The additional

terms, coming from the coupling with the fictitious domain method are the terms containing

the unknown λn
H . This means that, without topography, we would have to solve

V n+1
h − 2V n

h + V n−1
h

∆t2
+ C−1

h BhA−1
h B?

hV n
h = C−1

h

F
n+1/2
h − F

n−1/2
h

∆t
(3.12)

which can be reinterpreted as a finite difference scheme (see §6) and is comparable from

the computational point of view to the classical finite difference scheme. Therefore, the

additional cost for taking into account the topography thanks to the fictitious domain

method, compared to the classical finite difference scheme, is due to the system (3.11)-

(ii). The matrix of this system is of small size (number of degrees of freedom on ΓS) and

independent of the step n, so that it can be factorized once and we only have to perform

a forward backward solve at each time step. Note that the term λn
H in equation (3.11)-(i)

can be interpreted as an additional source term located on the boundary.

Remark 4 • System (3.10) has the advantage of being a second-order system in time : it

is easier to get higher-order discretization in time, using the modified equation technique

(see14), than for the first-order system.

• The invertibility of the matrix S?
hA−1

h Sh of System (3.11)-(ii) (and thus the well posedness

of ((3.11)) is assured by the inf-sup condition already mentioned before (needed for the

convergence of the method).

An important point is that the CFL stability condition for (3.11) is the same as for (3.12),

i.e., for the discretized problem posed in the whole rectangle C without topography, which

means that the use of the fictitious domain method does not affect the stability condition.

Actually, assume that there is no source term (i.e., F = 0), then we can prove that, for the

solution of (3.11), the following quantity is conserved

En+1/2 = (Ch
V n+1

h − V n
h

∆t
,
V n+1

h − V n
h

∆t
) + (BhA−1

h B?
hV n+1

h , V n
h ),

which is exactly the discrete energy of (3.12) (see12 for more details).

We will see in §6.2 what is the stability condition for our particular choice of spaces X s
h

and Mh, in a case of a homogeneous, isotropic elastic medium.
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4. A new absorbing layer model (P.M.L)

A new absorbing layer model, the Perfectly Matched Layer model was introduced by

Berenger10 for the 2D Maxwell problem. This model has astonishing properties: the re-

flection coefficient at the interface between the layer and the free medium is zero for all

frequencies and angles of incidence. This model can be extended to general first order hy-

perbolic systems, and in particular to the first order velocity-stress formulation (see13 for

more details). In this section, we explain the basic principles of this model in the general

case of a first order hyperbolic system and then we extend this model to elastodynamics.

4.4.1. The PML model for a general first order hyperbolic system

Consider the following first order hyperbolic system, posed initially in the space IR2:





∂u

∂t
= A

∂u

∂x1
+ B

∂u

∂x2
, u ∈ IRm (a)

u(x1, x2, 0) = u0(x1, x2) (b)

(4.13)

Suppose that the support of initial data u0 is in the left half-space, we would like to substi-

tute problem (4.13) by an equivalent one posed in the left half-space. The basic principle

of the PML model is to couple the equation in the left half-space with an equation in the

right half-space such that there is no reflection at the interface and that the wave decreases

exponentially inside the layer. We first introduce the following system





u = u‖ + u⊥,

∂u‖

∂t
= B

∂u

∂x2
,

∂u⊥

∂t
= A

∂u

∂x1
,

(4.14)

where the index ‖ (resp. ⊥) means that we keep only the derivatives parallel to the interface,

i.e., the x2-derivatives (resp. orthogonal, i.e., the x1-derivatives). It is easy to see that

system (4.14) implies (4.13)-(a).

Secondly we define a new wave, v, solution of (4.14) in the left half-space and satisfying

a new system in the right half-space, involving a damping on the normal component :





v = v‖ + v⊥,

∂v‖

∂t
= B

∂v

∂x2
,

∂v⊥

∂t
+ d(x1)v

⊥ = A
∂v

∂x1
,

(4.15)

where the damping parameter d(x1) is positive and satisfies : d(x1) = 0, ∀x1 ≤ 0.
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Now, consider a plane wave u, solution of (4.13)-(a), i.e., of the form :

u(x1, x2, t) = u0 e−i(k1x1+k2x2−ωt), (4.16)

where u0 satisfies the dispersion relation :

u0 +
k1

ω
Au0 +

k2

ω
Bu0 = 0. (4.17)

We have the following theorem :

Theorem 1 There exists a unique plane wave, v, solution of system (4.15) of the form

v(x1, x2, t) = u0 e−i(k1x1+k2x2−ωt)eα(x1), (4.18)

satisfying :

• v ≡ u in the left half-space x1 ≤ 0 (no reflection)

• v is damped in the right half-space

• the damping coefficient in the absorbing layer is

| v(x1, x2, t) |
| u(x1, x2, t) |

= eα(x1) = exp

(
−k1

ω

∫ x1

0
d(ξ)dξ

)
, x1 > 0.

Proof: See13

Remark 5 Note that the damping is exponentially decreasing, depending on the direction

of propagation of the wave: it decreases very fast for a wave propagating normally to the

interface and more and more slowly as the direction approaches the parallel to the interface.

In practice, we introduce a boundary, with a Dirichlet condition at x1 = δ, to bound the

layer, and we solve (4.13)-(a) in the left half-space and (4.15) in the right half-space. This

δ

x

1

1

x

x

2

d(   )

δ0

Figure 3: The damping parameter

new boundary produces a reflection, but, since the wave decreases exponentially in the layer,

the reflection coefficient becomes quickly very small. This coefficient depends on the choice

of d(x1) and on the size δ of the layer. One has interest to choose a layer large enough in
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order to get a small reflection coefficient, but not too large in order to avoid increasing the

additional computational cost too much.

4.4.2. Application to elastodynamics

Now consider the 2D elastodynamic problem written as a first order hyperbolic system,

the velocity-stress system :




%
∂v

∂t
− div σ = 0 in Ω,

A
∂σ

∂t
− ε(v) = 0 in Ω.

(4.19)

We use the usual identification of tensor σ with the vector (still denoted by σ) defined as

σ1 = σ11 ; σ2 = σ22 ; σ3 = σ12.

We can write (4.19) in the following matrix form :




%
∂v

∂t
= D⊥ ∂σ

∂x1
+ D‖ ∂σ

∂x2
in Ω,

A
∂σ

∂t
= E⊥ ∂v

∂x1
+ E‖ ∂v

∂x2
in Ω,

(4.20)

with

D‖ =




0 0 1

0 1 0


 ; D⊥ =




1 0 0

0 0 1


 ; E‖ =




0 0

0 1

1 0




; E⊥ =




1 0

0 0

0 1




. (4.21)

Applying the previous result, we get the following system in the Perfectly Matched Layer




v = v‖ + v⊥, σ = σ‖ + σ⊥,

%
∂v‖

∂t
= D‖ ∂σ

∂x2
, %

∂v⊥

∂t
+ d(x1)v

⊥ = D⊥ ∂σ

∂x1
,

A
∂σ‖

∂t
= E‖ ∂v

∂x2
, A

∂σ⊥

∂t
+ d(x1)Aσ⊥ = E⊥ ∂v

∂x1
.

(4.22)

5. Choice of the approximation spaces

5.5.1. Approximation space for the Lagrange multiplier, GH

We denote by TH a triangulation of ΓS made of segments Sj of size Hj, and H = supj Hj.

In practice, we use for GH the space of piecewise continuous linear functions:

GH =
{
µH ∈ (C0(ΓS))2, /∀Sj ∈ TH , µH

∣∣∣Sj
∈ (P1(Sj))

2
}

, (5.23)
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which is the classical approximation of H1/2(ΓS) and satisfies the approximation properties:





∀λ ∈ G, lim
H→0

inf
µH∈GH

‖λ − µH‖G = 0,

∀λ ∈ H3/2−ε(ΓS) (ε > 0), inf
µH∈GH

‖λ − µH‖G ≤ CH3/2−ε ‖λ‖3/2−ε .

5.5.2. Approximation spaces for (σ, v): construction of the Qdiv
1 − Q0 mixed finite

element

As explained previously (see §3.2), in order to achieve mass lumping on matrix Ah we

have to find appropriate finite element spaces. As this is independent of the presence or not

of the boundary ΓS, we consider the problem without “obstacle”, i.e., problem (3.4), and

we assume that Ω is the square ]0, 1[×]0, 1[. We denote by Th a regular mesh of Ω composed

by squares (K) of side h = 1/N . Our aim is to use a space discretization method that can

lead after time discretization to an explicit scheme. To do so, we are led to construct a

new finite element method which fits our aim. For simplicity we present the lowest order

element, so-called Qdiv
1 − Q0 element, but this construction can be easily generalized to

higher orders and to the 3D problem8,7. We consider the approximate spaces:





Mh =
{
uh ∈ M/∀K ∈ Th, uh |K ∈ (Q0(K))2

}
,

Xh =
{
σh ∈ X/∀K ∈ Th, σh |K ∈ (Q1(K))4

}
,

Xs
h = {σh ∈ Xh/as(σh) = 0} ,

(5.24)

where Qk(K) denotes the space of polynomials on K of the form p(x1, x2) =
∑

0≤i,j≤k

cijx
i
1x

j
2.

In this case the approximation problem, associated to the mixed velocity-stress system for

elastodynamics, can be written in the following form :





Find (σh, vh) : IR+ → Xs
h × Mh such that :

d

dt
a(σh(t), τh) + b(τh, vh(t)) = 0 , ∀τh ∈ Xs

h,

d

dt
c(vh(t), wh) − b(σh(t), wh) = (f, wh) , ∀wh ∈ Mh.

(5.25)

We present in Fig. 4 the degrees of freedom in the new element. In Fig. 4-right we consider

a node of the mesh and we present the degrees of freedom (corresponding to the stress

tensor) that are associated to this node.

Remark 6

• One could think that the most natural choice for the construction of the space Xh would

be the lowest order Raviart Thomas element23,11 RT[0]:

XRT
h =

{
σh ∈ X/(σh1, σh2) ∈ (RT[0])

2
}

,

RT[0] = P1,0 × P0,1.
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Figure 4: Degrees of freedom for the Qdiv
1 − Q0 element.

The difficulty is that the space XRT
h ∩Xs is too small and thus is not a good approximation

space of Xs: if σh is a symmetric tensor in XRT
h , then σ12 is necessarily constant! (σ12 is

linear in x2 and constant in x1 while σ21 is linear in x1 and constant in x2).

• Another approach, which was developed for the stationary problem, and permits to avoid

this difficulty consists in imposing the symmetry of the stress tensor as(σ) = 0 in a weak

way and introducing the corresponding Lagrange multiplier. Following this approach for the

transitory problem, we can show that the continuous problem (3.3) is equivalent to :




Find (σ, v, γ) : IR+ → X × M × L such that :

d

dt
a(σ(t), τ) + b(τ, v(t)) + d(τ, γ(t)) = 0, ∀τ ∈ X s,

d

dt
c(v(t), w) − b(σ(t), w) = (f, w), ∀w ∈ M,

d(σ(t), µ) = 0, ∀µ ∈ L,

where γ corresponds to rot(v)/2, L = L2(Ω) and the bilinear form d(·, ·) is defined by

d(σ, µ) =

∫

Ω
as(σ) µ dx, ∀(σ, µ) ∈ H × M.

It is from this type of formulation, or more precisely from its equivalent for the stationary

problem, that PEERS element was constructed1. We did not follow this technique because

it does not lead to an explicit scheme after time discretization.

Our space Xs
h is constructed from the second family of mixed finite elements proposed

by Nédélec21 . It presents two advantages, the first one concerns the symmetry of the stress

tensor which is taken into account in a strong way (the symmetry is included in the approx-

imation space), the second one concerns obtaining an explicit time discretization scheme

using mass-lumping techniques.

Strong symmetry: Using the regular structure of the mesh, it is easy to see that, if

σh ∈ X and σh |K ∈ P(K), where P(K) is a set of polynomial functions on K, then σh
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satisfies the following continuity properties: (i) σ11 is continuous in the x1 direction (not

necessarily in the x2 one) and σ22 is continuous in x2 , therefore the vector (σ11, σ22)
t is

in H(div) (ii) on the other hand σ12 is continuous in x2 and σ21 is continuous in x1, thus

relation σ12 = σ21 implies that σ12 is continuous in Ω (namely it belongs to H1). This

remark has led us to choose for σ12 a Q1 continuous function. The choice of Q1 elements

for (σ11, σ22)
t follows from our requirement of mass lumping (see below).

Mass lumping: In order to obtain an explicit time discretization scheme we need to

use a mass lumping technique for the approximation of the mass matrix associated to the

bilinear form a(σh, τh) (the reader can verify that the matrix associated to c(uh, vh) is

already diagonal in the usual basis of Mh). We first remind that the basic principle of

mass-lumping consists in approximating the integrals appearing in the mass matrix using

a quadrature formula of the form:

∫

K
fdx ≈ IK(f) ≡

∑

i∈K

f(Mi)ωi,

where Mi are the quadrature points and ωi the associated weights. The key point is then

to find an adequate quadrature formula which will lead to a diagonal mass matrix. For

instance, if we wanted to approximate the scalar acoustic wave equation with the classical Q1

element, the integrals appearing in the mass matrix would be

∫

K
wiwjdx with wi(Mj) = δij

the Lagrange basis functions and Mj the nodes of the mesh (summits of the elements). One

can easily check that the use of the following quadrature formula:

∫

k
fdx ≈ IK(f) =

h2

4

∑

M summits of K

f(M) ∀f ∈ Co(K) (5.26)

leads now to a diagonal mass matrix. In our case, following the same principle, we are led

to approximate the mass matrix a(σh, τh) by :

ah(σh, τh) =
∑

K∈Th

IK(Aσh : τh),

where the use of the quadrature formula (5.26) on K leads now to a block diagonal mass

matrix. Each block is associated to a node of the mesh and its dimension is equal to the

number of degrees of freedom at this point (that is 5, see Fig. 4-right).

Approximation properties: for Mh, one has the classical properties:





∀v ∈ M, lim
h→0

inf
wh∈Mh

‖v − wh‖M = 0,

∀v ∈ (H1(Ω))2, inf
wh∈Mh

‖v − wh‖M ≤ Ch ‖v‖1 .
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On the other hand, one can show (see Remark below):




∀σ ∈ Xs, lim
h→0

inf
τh∈Xs

h

‖σ − τh‖Xs = 0,

∀σ ∈ (H1(div,Ω))2 ∩ Xs, inf
τh∈Xs

h

‖σ − τh‖Xs ≤ Ch ‖σ‖H1(div) .
(5.27)

Remark 7 In a recent paper8, the scalar version of this element is presented, for the ap-

proximation of the scalar anisotropic wave equation. In particular, it is explained why the

use of Raviart-Thomas elements do not allow to achieve mass-lumping while this element

does. For the analysis of this element, the difficulty is that it does not enter the classical

Babuska-Brezzi theory (compared to the choice RT[0], Q0 usually used for the pressure and

velocity, we have enriched the space of the pressures). That is why we have proposed a

modified abstract theory which permits us to get non-classical error estimates. However,

the theory developed there can not be directly applied to the elastodynamic problem, it has

to be again modified, see 7. In particular, approximation properties (5.27) follow from this

theory.

6. Stability and dispersion analysis of the Qdiv
1 − Q0 element in the case of a

homogeneous, isotropic medium.

We study the lowest order mixed finite element Qdiv
1 − Q0 for a homogeneous, isotropic

medium. In this case, the discretization scheme can be interpreted as a finite difference

scheme and thus can be analyzed by the usual techniques: dispersion and stability analysis.

Similar analysies have been performed for higher-order elements and in 3D24.

6.6.1. Interpretation as a finite difference scheme

We will describe here the numerical scheme obtained after space discretization of problem

(5.25) in a regular mesh. We can see that we have periodicity of two types of nodes (cf.
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Figure 5: Left: The mesh. Right: Degrees of freedom

Fig. 5-left). The points 1 and 2 will be respectively indexed by (i, j) and (i + 1/2, j + 1/2).
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At each point of type 1 correspond 5 degrees of freedom, see Fig. 5-right : σh
11, σb

11, σd
22, σg

22

and σ12. At each point of type 2 correspond 2 degrees of freedom, the two components of

the velocity: v1 and v2. After some calculations (we do not enter here into details), system

(5.25) can be rewritten as a finite difference scheme, and the unknown σ can be eliminated.

We end up with a second order scheme in time on the velocity, that can be written in matrix

form:

d2V

dt2
= IKhV with IKh =




V 2
p D2

α,1 + V 2
s D2

β,2 (V 2
p − V 2

s )D12

(V 2
p − V 2

s )D12 V 2
p D2

α,2 + V 2
s D2

β,1


 , (6.28)

where V = (v1, v2)
t and D2

α,1f(i, j) = αD2
1f(i, j − 1) + (1 − 2α)D2

1f(i, j) + αD2
1f(i, j + 1),

D2
1 being the discrete operator (classical second order, centered, finite differences operator):

D2
1f(i, j) =

f(i + 1, j) − 2f(i, j) + f(i − 1, j)

h2
.

We can remark that (6.28) defines a general class of second order numerical schemes, de-

pending on two parameters α and β with (0 ≤ α ≤ 1/2, 0 ≤ β ≤ 1/2). In particular,

α = 0, β = 0 correspond to the finite differences scheme, α = 1/6, β = 1/6 to the Q1

finite elements scheme and α = (V 2
p − 2V 2

s )2/(4V 4
p ), β = 1/4 to the Qdiv

1 − Q0 mixed finite

elements scheme. Note that, for the new scheme, α depends on the Poisson’s coefficient

ν = λ/(2(λ + µ)), which means that it is adapted to the considered elastic medium.

Remark 8 System (6.28) is an approximation of the elastodynamic problem, written in

displacement:

d2V

dt2
= IKV with IK =




V 2
p

∂2

∂x2
1

+ V 2
s

∂2

∂x2
2

(V 2
p − V 2

s )
∂2

∂x1∂x2

(V 2
p − V 2

s )
∂2

∂x1∂x2
V 2

p

∂2

∂x2
2

+ V 2
s

∂2

∂x2
1




. (6.29)

6.6.2. Stability condition

For the time discretization of problem (6.28) we use the classical second order centered

finite differences approximation and get the total discretized scheme:

V n+1 − 2V n + V n−1

∆t2
= IKhV n. (6.30)

The stability condition for this scheme is:

∆t2 ‖IKh‖
4

≤ 1.

In order to compute ‖IKh‖ we will use the Fourier transform in space :

∀f(x1, x2) ∈ L1(IR2) we have : f̂(k1, k2) =
1√
2π

∫

IR2
f(x1, x2) exp−i(k1x1+k2x2) dx1dx2.
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From Parseval’s identity, we get

‖IKh‖ = sup
~k

∥∥∥ÎKh(~k)
∥∥∥ = max

i=1,2
sup

(X1,X2)∈[0,1]2
λi(X1, X2), (6.31)

where λi(X1, X2), i = 1, 2 are the two eigenvalues of the symmetric matrix ÎKh, whose

components are expressed in terms of X1 = sin2(
k1h

2
) and X2 = sin2(

k2h

2
), and are:





ÎKh[1, 1] =
1

h2

(
4V 2

p X1(1 − 4αX2) + 4V 2
s X2(1 − 4βX1)

)
,

ÎKh[2, 2] =
1

h2

(
4V 2

p X2(1 − 4αX1) + 4V 2
s X1(1 − 4βX2)

)
,

ÎKh[1, 2] =
4

h2

(
V 2

p − V 2
s

)√
X1(1 − X2)

√
X2(1 − X1).

(6.32)

Theorem 2 The scheme (6.30) is stable under the CFL condition

VCFL∆t

h
≤ 1, with VCFL =

h

2
(max
i=1,2

max
(X1,X2)∈[0,1]2

λi(X1, X2))
1/2. (6.33)

The value of VCFL depends on parameters α and β, see Fig. 6:

• In domain I: VCFL =
√

V 2
p + V 2

s − 4(αV 2
p + βV 2

s ).

• In domain II, the value is constant: VCFL = Vp.

�������
�������
�������
�������

�������
�������
�������
�������

= 
V 

V 2

2

β

I

s

p

(1/4 -    ) 

II
1/4  

1/2  

1/2
 α β

α

Figure 6: Stability Domains

Proof: We only indicate the main steps of the proof (for more details, see24).

• We first study the characteristic polynomial and show that, if the maximum of the greater

eigenvalue is reached in the interior of the square, then it is on a point located on the diagonal

X1 = X2. In other terms, this maximum is reached either on the diagonal X1 = X2 or on

the border of the square [0, 1]2 .
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• The expressions of the eigenvalues are the following, for i = 1, 2

λi(X1, X2) =
2

h2

[
(V 2

p + V 2
s )(X1 + X2) − 8(αV 2

p + βV 2
s )X1X2

]

± 2

h2
(V 2

p − V 2
s )
√

(X1 − X2)2 + 4(X1 − X2
1 )(X2 − X2

2 )

(6.34)

We then prove that the maximum of the greater one is necessarily reached at a vertex of

the square and get the result.

For the finite differences scheme (α = β = 0) the maximum is in domain I, V FD
CFL =√

V 2
p + V 2

s , while for the Q1 finite elements as well as for the Qdiv
1 −Q0 mixed finite element

the maximum is in domain II, V Q1

CFL = V
Qdiv

1
−Q0

CFL = Vp < V FD
CFL, and therefore is better than

with finite differences. In the following, we will call CFL ratio the quantity αCFL = ∆t/h

and we denote by αFD
CFL, αQ1

CFL = α
Qdiv

1
−Q0

CFL the maximum allowed by the stability condition

for each scheme (i.e., αFD
CFL = 1/V FD

CFL < αQ1

CFL = 1/V Q1

CFL).

6.6.3. Dispersion Analysis for the total discretized scheme

For the continuous problem, the dispersion analysis consists in searching plane waves

solutions of system (6.29), i.e., waves of the following form:

U = Uo exp ı(k1x1 + k2x2 − ωt), Uo ∈ IR2, k = (k1, k2) ∈ IR2, ω ∈ IR, (6.35)

where k is the propagating direction and ω/k the phase velocity. To be a solution, U has

to verify the so called dispersion relation :

ω2Uo = ÎKUo where ÎK =




V 2
p k2

1 + V 2
s k2

2 (V 2
p − V 2

s )k1k2

(V 2
p − V 2

s )k1k2 V 2
p k2

2 + V 2
s k2

1


 . (6.36)

Equation (6.36) implies that ω2 is an eigenvalue of ÎK and Uo is the associated eigenvector.

Therefore, we have4

ω2
1 = V 2

p (k2
1 + k2

2), U1
o = (k1, k2),

ω2
2 = V 2

s (k2
1 + k2

2), U2
o = (−k2, k1),

(6.37)

where ω1 corresponds to a Pressure wave, propagating with the phase velocity Vp = ω1/ |k|
and ω2 corresponds to a Shear wave, propagating with the phase velocity Vs = ω2/ |k|.
Phase velocities Vp and Vs are independent of ω, we say that the elastodynamic equation

is non-dispersive. To study the dispersion relation of scheme (6.30) we search particular

solutions of (6.28) in the form:

Uij = Uoh exp ı(k1x
i
1 + k2x

j
2 − ωt), Uoh ∈ IR2, k = (k1, k2) ∈ IR2, ω ∈ IR. (6.38)
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We can prove the existence of numerical waves P and S which are dispersive. The dispersion

relation for scheme (6.30) is:

4

∆t2
sin2(

∆tωh

2
) Uoh = ÎKhUoh,

where ÎKh is the symmetric matrix defined by (6.32). We then obtain for i = 1, 2

4

∆t2
sin2(

∆tωi
h

2
) = λi(X1, X2), (λi defined in (6.34)). (6.39)

We set k = (k1, k2), where the components of k are related to the angle of propagation φ by

k1 = |k| cos φ, k2 = |k| sinφ. Let Vh =
ωh

|k| be the numerical phase velocity. We introduce

the adimensional quantity qp (resp. qs) which represents the ratio between the numerical

and the continuous phase velocity of the P (resp. S) waves :

qp =
ω1

h

|k| Vp
; qs =

ω2
h

|k| Vs
(6.40)

If we set K =
1

N
=

|k|h
2π

, with N the number of points per wavelength, we notice that qp

(resp. qs) depends on the discretization parameter K, on the angle of propagation φ, on the

Poisson’s coefficient ν =
λ

2(λ + µ)
and on the step size ∆t (or equivalently on the CFL ratio

αCFL). We compare the dispersion of the Qdiv
1 −Q0 mixed finite element scheme (red), the

dispersion of the classical Q1 finite element scheme (blue) and the dispersion of the classical

finite difference scheme (green). For each scheme, we plot qp and qs with respect to K, and

this for several values of the Poisson’s coefficient, for several angles and for the maximum

value of the CFL ratio αCFL allowed by the stability condition. Actually, we can check

that the dispersion error for P waves decreases as αCFL increases, we have thus chosen to

represent the best curves for the dispersion of P waves. We present in Fig. 9 the curves

obtained for ν = 0.1, and for the angles φ = 0, 15, 30 and 45 degrees, but the observations

we do here are the same for other values of ν. Concerning P waves: the Qdiv
1 − Q0 and Q1

elements have their worse dispersion for the diagonal direction φ = 45 and become better

when the direction becomes parallel to the grid axis φ = 0, and it is the contrary for the

FD scheme. For S waves, the Qdiv
1 − Q0 and Q1 elements have again a monotone behavior

with respect to the angle, which is inverted compared to P waves, i.e., they have their worse

dispersion for φ = 0 and become better for φ = 45. On the other hand, one cannot conclude

for the FD scheme, since the results change depending on the angle φ and on the value of

ν.

We represent in Fig. 10 the “worse” curves for each scheme, for two values of ν. We can

see that, in all cases, the new finite element Qdiv
1 − Q0 is always better than (or identical

to) the Q1 element (with the same CFL ratio). The comparison with FD is not so clear for

P waves: if we fix the number of points per wavelength, the FD can become in some cases

better than the Qdiv
1 − Q0 (e.g., ν = 0.4, P waves) but with a smaller CFL ratio, i.e., it is
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also more expensive. On the other hand, the Qdiv
1 − Q0 always gives a better (or identical)

dispersion than FD for S waves, which are slower than P waves (Vs < Vp) and thus more

difficult to approximate.

In conclusion, if we consider both stability and dispersion, our scheme has a better

behavior than Finite Differences and than Q1. This was not a priori expected since this

element was designed for different purposes (strong symmetry and mass lumping).

7. Numerical Results

We will present in this section three numerical experiments. In the first two examples,

without topography, we want to validate the lowest order new mixed finite element and the

absorbing layers in isotropic and anisotropic media. The last example shows the efficiency

of the coupling with the fictitious domain method in a heterogeneous medium. For the time

discretization we use the classical centered finite difference scheme of 2nd order. In each

case, we solve the elastodynamic problem with zero initial conditions, and with an explosive

source located at point S = (xs
1, x

s
2),

f(x1, x2, t) = F (t)g(r),

where 



F (t) =

{
−2π2f2

0 (t − t0)e
−π2f2

0
(t−t0)2 if t ≤ 2t0

0 if t > 2t0
,

t0 =
1

f0
, f0 =

Vs

h

1

NS
is the central frequency,

NS is the number of points per S wave length,

(7.41)

and ~g(r) is a radial function :




~g(r) =

(
1 − r2

a2

)3

1Ba ~e,

r =
√

(x1 − xs
1)

2 + (x2 − xs
2)

2, a = 5h ,

(7.42)

where 1Ba is one on Ba, the disk of center S and radius a, and zero elsewhere and ~e will be

precised in each experiment. The absorbing layer model is characterized by the length δ of

the layer, and the damping parameter (see Fig. 7-right)

d(x1) = d0

(
x1

δ

)2

, with d0 =

∣∣∣∣log
(

1

R

)∣∣∣∣
3Vp

2δ
, (7.43)

and R is the reflection coefficient predicted by the theory 13, δ and R being defined in each

case. The domain C is meshed with N × N squares of edge h. The time step is computed

following the CFL condition ∆t = h/Vp.

Remark 9 In a heterogeneous medium, we choose

f0 =
minVs

h

1

NS
, d0 =

∣∣∣∣log
(

1

R

)∣∣∣∣
3max Vp

2δ
, and ∆t =

h

maxVp
,

where the max and the min are the extremal values of the velocities on the whole domain.
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7.7.1. Rayleigh waves and PML

In the first example we consider the elastic wave propagation problem in the homogeneous

isotropic half plane (x2 < 0) where the source point S is near the free surface. We have

chosen this problem in order to test the efficiency of the PML model on the Rayleigh wave,

which is particularly difficult to absorb. In order to approximate this problem we consider

a bounded domain C = [0, 100] × [−100, 0] with absorbing layers (PML) on the artificial

boundary ΓA (see Fig. 7-left). The velocities in the medium are Vp =
√

5, Vs =
√

2. The

σ . n = 0
������

δ

S

PML model

ΓΑ

C
elastic medium

0

0.5

1.0

1.5

2.0

2.5

0 1.0 2.0 3.0 4.0 5.0
d(

x 1
)

x1

Figure 7: Left: The bounded domain problem. Right: The damping coefficient d(x)

uniform grid on C is composed of squares of edge h = 0.5. To complete the characteristics

of the source, given in (7.41) and (7.42), we choose ~e = (
x1 − xs

1

r
,
x2 − xs

2

r
) and the point

source S = (50, 97). The length of the absorbing layer is δ = 10h and the theoretical

reflection coefficient is R = 0.001. In Fig. 11, we represent the solution of this problem at

different times. We can see two cylindrical waves propagating with two different velocities

(Pressure wave and Shear wave) and we can also observe the Rayleigh wave propagating

along the surface with a velocity roughly equal to the velocity of shear waves. We can

remark that PML model absorbs efficiently the cylindrical waves P, S and the Rayleigh

wave. More precisely the reflection coefficient is in this case R = 0.001: this is the value

predicted by the theory, and looking carefully on the figures (change of scale), we can check

that this is also approximately the numerical value.

7.7.2. Homogeneous, anisotropic elastic medium.

We consider here a homogeneous, anisotropic, elastic medium: the apatite. Again the

computational domain is a square C surrounded by absorbing layers on all four boundaries.

The characteristics of the problem are: N = 240, h = 0.33m, NS = 10. We use a x2-

directional point load source, ~e = (0, 1). The source is located at the center of the frame

S = (40m, 40m). The length of the absorbing layers is δ = 5h and the reflection coefficient

R = 0.01. The material is characterized by its density and the matrix of elastic coefficients:

C =




16.7 6.6 0.
6.6 14. 0.
0 0 6.63


 1011Pa ; ρ = 3.2gr/cm3
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In a 2D anisotropic medium, there are two waves propagating, the Quasi-Pressure wave

(QP) and the Quasi-Shear wave (QS). Before giving the numerical results, we present in

Fig. 12 the theoretical wave fronts curves for the Apatite and the amplitudes of the QP and

QS waves for a x2-directional point load source. In Fig. 13, we represent the solution of this

problem at different times. We can remark that the wave front curves and the amplitude of

the Quasi-Pressure and the Quasi-Shear wave computed numerically show the characteris-

tics predicted theoretically : the Quasi-Pressure wave is weaker than the Quasi-Shear wave,

the amplitude of the Quasi-Pressure wave is weaker in the x1-direction while the amplitude

of the Quasi-Shear wave is weaker in the x2-direction.

7.7.3. Coupling with the fictitious domain method: the case of a heterogeneous elastic

medium with complex topography

We consider now the elastic wave propagation problem in a heterogeneous, isotropic

medium with complex topography. To approximate this problem we consider a bounded

domain C = [0, 80]× [0, 80] with absorbing layers (PML) on the artificial boundary ΓA (see

Fig. 8). As we can see in Fig. 8 the mesh on the domain C is independent of the mesh

on ΓS . The heterogeneous elastic medium considered here is characterized by the velocity

Γλ ���� ����
�	


� ������

����
������ ���������

A

⊥

=

v v v+=

=

σσσ ⊥+=

S

n
PML model

elastic medium

v Γ

below 0.63
0.63 - 0.68
0.68 - 0.72
0.72 - 0.77
0.77 - 0.81
0.81 - 0.86
0.86 - 0.90
0.90 - 0.95
0.95 - 0.99
0.99 - 1.04
1.04 - 1.08
1.08 - 1.13
1.13 - 1.17
1.17 - 1.21
1.21 - 1.26
1.26 - 1.30
above 1.30

Profil Vp(=1.6 Vs)

Figure 8: Left: The two meshes. Right: The velocity model for the heterogeneous medium,
max Vp/min Vp = 2.1 and Vp = 1.6Vs.

model presented on Fig. 8-right, we have maxVp/minVp = 2.1 and Vp = 1.6Vs. For the

discretization we take Vp and Vs piecewise constants (one value per element). The step of the

uniform grid on C is h = 1/3, and the number of points per S wavelength (for the minimum

S velocity, see Remark 9) is NS = 10. The source is determined by ~e = (
x1 − xs

1

r
,
x2 − xs

2

r
)

and the point source is located at S = (36.67, 56.67). On the free surface ΓS we use an 1D

irregular mesh. The length of the absorbing layer is δ = 10h and the damping parameter

is chosen according to (7.43) and Remark 9 with a reflection coefficient R = 0.01. In Fig.

14, we represent the norm of the velocity at different times. We can observe that the wave

fronts are not circular, because of the heterogeneities, and the energy is localized in some
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regions. Although the phenomena are more complicated than in a homogeneous medium,

one can see P and S waves reflected by the topography (the P wave being faster than the S

one), and one can also see a diffraction by the wedge. There is a surface wave propagating

along the topography, which is again very well absorbed by the PMLs.
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8. Conclusion

We have presented a new method for solving the elastodynamic problem in anisotropic,

heterogeneous media, with topographies of complex geometries. The numerical results,

obtained with the lowest order element, show its efficiency in several situations. Let us

mention that this method can also be applied in media containing cracks (see9). The new

elements can be extended in a natural way to higher orders24 and to 3D. A forthcoming paper

is in preparation for the 3D case, where we treat, in particular, the additional difficulties

linked to the interaction between the boundary mesh and the volume mesh, which involves

much more geometry than in 2D.
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Figure 9: Phase velocity, ν = 0.1.

ν = 0.1 - P waves ν = 0.1 - S waves ν = 0.4 - P waves ν = 0.4 - S waves
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Figure 10: Comparison between the worse curves for ν = 0.1 and ν = 0.4

Figure 11: |~v| =
√

v2
1 + v2

2 at times between t = 13.44s (left) and t = 26.88s (right).
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Figure 12: Left: Wave front curves for the apatite. Right: amplitude of the P wave (left)
and S wave (right)

Figure 13: |~v| =
√

v2
1 + v2

2 at t = 11.67 s, 17.51 s and 23.35 s

Figure 14: |~v| =
√

v2
1 + v2

2 at t = 19.35 s, 32.25 s, 45.15 s, 70.95 s and 96.75 s


