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In many applications, and in particular in seismology, realistic propagation media disperse and
attenuate waves. This dissipative behavior can be taken into account by using a viscoacoustic
propagation model, which incorporates a complex and frequency- dependent viscoacoustic modulus
in the constitutive relation. The main difficulty then lies in finding an efficient way to discretize
the constitutive equation as it becomes a convolution integral in the time domain. To overcome
this difficulty the usual approach consists in approximating the viscoacoustic modulus by a low-
order rational function of frequency. We use here such an approximation and show how it can
be incorporated in the velocity-pressure formulation for viscoacoustic waves. This formulation is
coupled with the fictitious domain method which permit us to model efficiently diffraction by objects
of complicated geometry and with the Perfectly Matched Layer Model which allows us to model
wave propagation in unbounded domains. The space discretisation of the problem is based on a
mixed finite element method and for the discretisation in time a 2nd order centered finite difference
scheme is employed. Several numerical examples illustrate the efficiency of the method.
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1. Introduction

Real media attenuate and disperse propagating waves 1. Our aim in this paper is to develop

a numerical method to model such dissipative phenomena (dispersion plus attenuation)

in the time domain. To do so we consider the linear viscoacoustic equation which is a

convolution in the time domain, the viscoacoustic modulus being frequency dependent.

Therefore, incorporating any arbitrary dissipation law in time-domain methods is in general

computationally intense. The usual way to overcome this difficulty is to approximate the

viscoacoustic modulus by a low-order rational function 2,3,4,5. This leads to replacing the

convolution integral by a set of variables, usually referred to as memory variables, which

satisfy simple differential equations that can be easily discretized in the time domain.

Several methods have been proposed in the literature for incorporating realistic attenu-

ation laws (e.g. frequency-independent or weakly frequency-dependent viscoacoustic modu-

lus) into time-domain methods 2,3,5,4,6,7. We focus our attention in this paper on the methods

1
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proposed by Day and Minster (1984), Emmerich and Korn (1987), and Blanch, Robertson

and Symes (1995). All three methods use some approximation of the viscoacoustic mod-

ulus by a low-order rational function. The first approach is based on the standard Padé

approximation. The coefficients of the rational approximation are thus in principle known

analytically. Numerical results obtained using this method show that the approximation is

poor and the method provides satisfactory results only for relatively short (in terms of the

wavelength) propagation paths. The second approach is based on the rheological model of

the generalized Maxwell body, which gives a physical meaning to the coefficients of the ra-

tional approximation. They are interpreted as the relaxation frequencies and weight factors

of the classical Maxwell bodies, which form the generalized Maxwell body. This method pro-

vides good numerical results for long propagation paths, but some parameters, namely the

relaxation frequencies are semi-empirically determined. Finally, the third method is based

on the observation that for the frequency-independent case and for weakly attenuating ma-

terials the weight factors are only slowly varying and can be approximated by a constant.

This method provides good numerical results, but also involves a semi-empirical choice of

a parameter.

Although, the previous methods give satisfactory results in the case of weakly-

attenuating materials they fail in media with large attenuation. This case was considered

in a recent paper 8, where the authors propose an analytic method for computing the best

(optimal) rational approximation for the frequency independent case. They also propose a

generalization of the algorithm presented in 3 which leads to very good results in the case

of highly attenuating media and a frequency- dependent viscoacoustic modulus.

After a brief overview of the basic theory describing wave propagation in viscoacoustic

media (section 2), we describe in section 3 the approximations proposed in 2, 3 and 5.

Considering long propagation paths, we test the performance of the different approxima-

tions and find that the best method, using the smaller number of unknowns while providing

satisfactory numerical results and involving the least number of empirically determined val-

ues, is the one proposed by Emmerich and Korn (1987). We thus chose this method for

approximating the viscoacoustic modulus. Note that a slight variation of the method pro-

posed in 3 is used here, based on a different way of distributing the relaxation frequencies

in the bandwidth of the incident pulse.

In section 4 we incorporate this approximation in the velocity-pressure formulation for

viscoacoustic waves. Our choice of using the first-order-in-time system of equations, instead

of the more classical second-order one, is motivated by the use of the fictitious domain

method and the perfectly matched absorbing layer technique. In 9 the authors proposed a

similar approach using the mixed velocity-stress formulation for modeling wave propagation

in viscoelastic media.

The term fictitious domain method (also called domain embedding method) was initially

introduced by V.K. Saul’ev in 10, where the solution of an elliptic problem in a domain with

complex geometry was considered. The general idea of this method consists in replacing

the original problem by an equivalent one for which the solution is sought in an enlarged

domain (i.e., containing the initial one) with a simple geometry. The idea to use Lagrange
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multipliers in the framework of the fictitious domain method was first introduced in 11.

Since then the method has been used in several frameworks for solving problems involving

complex geometries 12,13,14,15, and, in particular, for wave propagation problems 16,17,18,19.

In the framework of seismic wave propagation we apply this method to model the boundary

condition on the surface of the earth (section 7). Its main feature is extending the solution

to a domain with simple shape, independent of the complex geometry, and to impose the

boundary conditions with the introduction of a Lagrange multiplier. Thus, the solution is

determined by two types of unknowns, the extended unknowns, defined in the enlarged

simple shape domain and the auxiliary variable, supported on the boundary of complex

geometry. The main advantage is that the mesh for computing the extended functions can

now be chosen independently of the geometry of the boundary.

The Perfectly Matched Layers (PML) technique was introduced by Bérenger 20,21 for

Maxwell’s equations and is now the most widely-used method for the simulation of electro-

magnetic waves in unbounded domains (cf. 22,23,24). It has also been extended to the case of

anisotropic acoustic waves 25, isotropic 26 and anisotropic elastic waves 27,25. This technique

consists in designing an absorbing layer, called a perfectly matched layer (PML), that has

the property of generating no reflection at the interface between the free medium and the

artificial absorbing medium. This property allows the use of a very high damping parame-

ter inside the layer, and consequently of a small layer width, while achieving a near-perfect

absorption of the waves. We apply here the PML model in the case of viscoacoustic waves

(section 8).

Another advantage of the first-order formulation over the second order one, is that it is

easier to implement in heterogeneous media, since it does not require an approximation of

spatial derivatives of the physical parameters. To discretize this formulation in space we use

a mixed finite-element method which is a modification of the method proposed in 28. More

precisely, in 28 the authors designed new mixed finite elements, the so-called Qdiv
k+1 − Qk

elements, inspired by Nédélec’s second family 29, which are compatible with mass lumping,

and therefore allow to construct an explicit scheme in time. A non-standard convergence

analysis of the Qdiv
k+1−Qk elements was carried out in 28. However, numerical results obtained

recently (cf. 30) show that, when coupled with the fictitious domain method, these elements

do not provide satisfactory results. This is why we use here instead the Qdiv
k+1−P k+1 elements

for which convergence of the fictitious domain method was obtained 30.

To show the efficiency and robustness of the method we present in section 9 several

numerical results. In particular, numerical and analytical results are compared and good

agreement is obtained between the two.

2. Viscoacoustic wave propagation

In an isotropic viscoacoustic medium occupying a domain Ω ∈ R
d, d = 1, 2, 3, the relation

between the pressure p(ω) = p(x, ω) and the displacement u(ω) = u(x, ω) in the frequency

domain is,

p(ω) = µ(x, ω)divu(ω). (1)
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Here, µ(x, ω) is the complex, frequency-dependent, viscoacoustic modulus.

The dissipative aspect of a material is often described by the quality factor Q, defined

as the ratio of the real and imaginary parts of the viscoacoustic modulus. It expresses

how attenuating a material is and corresponds to the number of wavelengths a wave can

propagate through the medium before its amplitude has decreased by e−π,

Q(x, ω) =
<(µ(x, ω))

=(µ(x, ω))
=

1

tan(φ(x, ω))
, (2)

where φ(x, ω) is the phase of µ(x, ω).

In seismic applications, Q is usually assumed to be frequency- independent or only slowly

frequency-dependent. In this case (i.e. when Q is constant in frequency), the viscoacoustic

modulus is given analytically by Kjartansson’s model 31,

µ(x, ω) = µref

(
iω

ωref

) 2
π

arctan(Q−1)

. (3)

This analytical formulation will be useful for validation of the numerical results in the next

sections.

In the time domain, the constitutive relation (1) is expressed in terms of a convolution

operator, denoted here by ?t,

p(x, t) = µ(x, t) ?t divu(x, t). (4)

The discretisation of this equation requires saving in memory the whole history of the

solution at all points of the computational domain and is thus very expensive. To overcome

this inconvenience, we approximate the viscoacoustic modulus by a rational function in

frequency, as was proposed in 2,3,4,5. It is convenient in the following to introduce the

relaxation function R(x, t), defined by, (see Figure 1),

µ(x, t) =
∂R(x, t)

∂t
; R(x, t) =

(
µR(x) + δµ(x)

∫ +∞

0
r(x, ω′)e−ω′tdω′

)
H(t), (5)

where µR is the relaxed modulus,

µR(x) = lim
t→+∞

R(x, t),

µU is the unrelaxed modulus,

µU (x) = µR(x) + δµ(x) = lim
t→0

R(x, t),

r(x, ω′) is the normalized relaxation spectrum satisfying

∫ +∞

0
r(x, ω′)dω′ = 1,

and H(t) is the Heaviside function.
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Fig. 1. Schematic example of the relaxation function R(t)

Using µ(x, t) defined by (5) in (4) gives,

p(x, t) = µU (x)divu(x, t) − δµ(x)

∫ t

−∞

∫ +∞

0
ω′r(x, ω′)e−ω′(t−τ)divu(x, τ)dω′dτ.

We now assume that the relaxation spectrum can be discretised by L single peaks of

amplitude αl at relaxation frequencies ωl, l ∈ [1...L],

r(x, ω) =
L∑

l=1

αl(x)δ(ω − ωl(x)) ;
L∑

l=1

αl(x) = 1,

In this case, we get,

R(x, t) ' Rl(x, t) =

(
µR(x) + δµ(x)

L∑

l=1

αl(x)e−ωl(x)t

)
H(t),

and

µ(x, ω) ' µl(x, ω) = µR(x)

(
1 +

L∑

l=1

yl(x)iω

iω + ωl(x)

)
. (6)

In (6), we introduced yl(x) defined by,

yl(x) =
δµ(x)

µR(x)
αl(x), with the normalization relation

L∑

l=1

yl(x) =
δµ(x)

µR(x)
.

Notice that equation (6) can be obtained if one assumes that µ(x, ω) can be approximated

by a rational function of (iω),

µ(x, ω) ' µl(x, ω) =
PL(x, iω)

QL(x, iω)
, (7)
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with PL and QL being polynomials of degree L in (iω). Then (6) can be interpreted as an

expansion of (7) into partial fractions 3. Thus approximating the viscoacoustic modulus by

a rational function is equivalent to approximating the relaxation spectrum by a discrete

one.

For computational reasons, it is natural to search for rational function approximations

of the viscoacoustic modulus, which minimize the ratio: number of unknowns/accuracy. We

therefore address in the following the question of finding an accurate low-order approxima-

tion of the viscoacoustic modulus.

3. Approximation of the viscoacoustic modulus

We now briefly introduce the different approximation methods previously proposed in the

literature.

3.1. Padé approximation method

The use of the simple Padé approximation in the framework of viscoacoustic wave propa-

gation was proposed in 2. Letting z = − 1

iω
and introducing,

χ(x, z) =

∫ +∞

0

ω′r(x, ω′)

1 − ω′z
dω′,

µ(x, ω) can be re-written in the following form,

µ(x, ω) = µU(x) + δµ(x)zχ(x, z).

The Padé approximation is then used for expanding χ(x, z) into a rational function with

numerator of degree L − 1 and denominator of degree L. Using the well-known (32,33)

relations between Padé approximations and orthogonal polynomials one gets,

χ(x, z) =

L∑

l=1

λl(x)

1 − ωl(x)z
,

where ωl are the zeros of the orthogonal polynomial PL, and λl are the residuals given by,

λl(x) =
kL

kL−1PL−1(ωl(x))P ′
L(ωl(x))

,

kL being the leading coefficient of PL and where the prime denotes the derivative of PL.

Recall that the orthogonal polynomials are defined by,

∫ Ω2

Ω1

Pn(ω′)Pm(ω′)ω′r(ω′)dω′ = δmn,

where δmn is the Kronecker symbol. When the quality factor is constant over a frequency

band, λl and ωl can be obtained in closed form. Moreover, when Q � 1, the relaxation
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spectrum r(x, ω) is proportional to ω−1. Assuming that r(x, ω) is zero outside the frequency

interval [Ω1,Ω2] we obtain the approximation,

µ(x, ω) ' µl(ω) = µU

(
1 − Ω2 − Ω1

πQ

L∑

l=1

νl(x)

iω + ωl(x)

)
, (8)

where ωl =
1

2
[xl(Ω2−Ω1)+Ω2+Ω1], xl and νl being respectively the zeros and weights of the

Legendre polynomials. Notice that the relaxation frequencies ωl are in this case equidistant

on a linear scale. The main advantage of this approximation is that all data are analytically

determined. For more details on this method the reader can refer to 2.

3.2. Generalized Maxwell Body approximation method

We describe here the method proposed in 3. First let us re-write (6) as,

µl(x, ω) = µR(x) + δµ(x)

L∑

l=1

αl(x)iω

iω + ωl(x)
. (9)

Each term of (9) can be interpreted as a classical Maxwell body with viscosity αl
δµ

ωl
and

elastic modulus αlδµ. The term µR in (9) represents an additional elastic element. The

Q-law for the generalized Maxwell body approximation can be obtained from (9),

Q(x, ω)−1 =
=(µ(x, ω))

<(µ(x, ω))
=

∑L
l=1 yl(x)

ω
ωl(x)

1+( ω
ωl(x)

)2

1 +
∑L

l=1 yl(x)
( ω

ωl(x)
)2

1+( ω
ωl(x)

)2

. (10)

Assuming now that δµ � µR, (10) becomes,

Q(x, ω)−1 w
δµ(x)

µR(x)

L∑

l=1

αl(x)

ω
ωl(x)

1 + ( ω
ωl(x))

2
. (11)

This means that Q(ω)−1 is approximately the sum of L Debye functions with maxima

αl
δµ

2µR
located at frequencies ωl. If Q is fairly constant in a frequency band, the most

natural choice for the relaxation frequencies ωl is a logarithmic equidistant distribution. In

this case, to obtain a good approximation of Q(ω)−1, the distance between two adjacent

relaxation frequencies should be chosen smaller or equal to the half-width of the Debye

function (1.144 decades). In 3 two ways for choosing ωl were proposed: ωl can be chosen

logarithmically-equidistant in the frequency band [Ω1,Ω2] or determined by ωl =
2ωdom

10l

where ωdom is the dominant (central) frequency of the source considered in the simulations.

In both cases, the coefficients yl are obtained by solving the overdetermined linear system

L∑

l=1

yl(x)ω̃k(x)
ωl(x) − Q̃−1(x, ω̃k(x))ω̃k(x)

ωl(x)2 + ω̃k(x)2
= Q̃−1(x, ω̃k(x)), k ∈ [1, 2, ..K = 2L − 1], (12)
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where, ω̃k are defined by

ω̃1 = Ω1,

ω̃k+1 = ω̃k(
Ω2

Ω1
)

1
2 .

Let us remark that the determination of ωl for this approximation is based on an empirical

study.

3.3. The τ -method

This method, proposed in 5 is based on the observation that dissipation due to only one

“Maxwell Body” can be determined by a unique dimensionless parameter τ . More precisely,

for Q � 1 and L = 1, equation (11) becomes,

Q(x, ω)−1 =

ω
ω1(x)τ(x)

1 + ( ω
ω1(x))

2
,

where τ = y1 � 1. It is then easy to see (cf. 5), that ω1 essentially determines the frequency

behavior of Q while τ determines its magnitude. In the general case for L > 1, and when

one seeks an approximation of a constant Q value, yl are quasi-constant and equation (11)

can be approximated by,

Q(x, ω)−1 =

L∑

l=1

ω
ωl(x)τ(x)

1 + ( ω
ωl(x) )

2
. (13)

In (13), Q(ω)−1 is linear in τ . One can therefore find the best approximation, in the least-

squares sense, over a predefined frequency range to any Q0 by minimizing over τ the ex-

pression,

J =

∫ Ω2

Ω1

(Q−1(ω, ωl, τ) − Q−1
0 )2dω. (14)

The approximation of the viscoacoustic modulus in this case is,

µl(x, ω) = µR(x)

(
1 +

L∑

l=1

τ(x)iω

iω + ωl(x)

)
. (15)

The relaxation frequencies ωl are chosen, as for the “Generalized Maxwell Body” method,

equidistant on a logarithmic scale. Equation (15) leads in general to an over-estimation of

the value of Q. Thus the authors in 5 suggest to use in the definition of J (14) a value for

Q0 slightly smaller than the desired one. This value is also chosen empirically.
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3.4. Comparison of the different approximation methods

To test the accuracy of the different approximation methods previously presented, we com-

pute the response of a one-dimensional viscoacoustic homogeneous medium to the following

pulse,

s(t) = sin

(
2πt

T

)
− 0.5sin

(
4πt

T

)
for 0 < t < T , T = 0.3s. (16)

The solution is obtained by convolving the source function s(t) with the dissipation operator

D(t) (the Green’s function for the 1D problem). For an arbitrary dissipation law, the Fourier

transform D(ω) of D(t) is given by 3,

D(ω) = e
iωt?Q(ωr)

“

1−
c(ωr)
ν(ω)

”

, (17)

where c(ωr) is the phase velocity at the reference frequency ωr, ν(ω) the complex velocity,

and t? =
x

c(ωr)Q(ωr)
the dissipation time. For a frequency independent Q, the value of

c(ωr)

ν(ω)
=

( |µ(ωr)|
µ(ω)

)1/2

, can be determined from equation (3) combined with one of (8),

(15) or (6)-(12) depending on the approximation method used. We recall that all methods

have as common starting point relation (6) from where the Padé approximation leads to

(8) and the τ−method to (15). The maxwell body approximation is given by (6) with the

coefficients yl computed from (12).

In the numerical example, we want to approximate Q = 20 over the frequency range

[10−2, 102] Hz, like in 3. To better illustrate the results, we present in Figure 2 the evolution

of the correlation coefficient between the exact solution (the one obtained for the viscosity

modulus calculated from (3)) and the different approximated ones as a function of the

dissipation time.

More precisely in Figure 2 we compare the results obtained with the following approxi-

mations,

• Padé approximation with L = 5.

• Method 1: Maxwell Body approximation with L = 3. Although we want to approximate

Q = 20 over the frequency range [10−2, 102] Hz, we follow here the method proposed in 3

and choose the relaxation frequencies logarithmically-equidistant over the frequency range

[10−1.5, 101.5] Hz. The key point is that ideally ωj should be placed at distance smaller

or equal to half width of the Debey functions (1.144 decades) which is not possible with

L = 3 in the interval [10−2, 102]. Although this criterion is not satisfied with L = 3 in

[10−1.5, 101.5] either, the approximation obtained is fairly good.

• Method 2: Maxwell Body approximation with L = 3 and relaxation frequencies chosen

equidistant on a logarithmic scale, such that, ωl = 2ωdom

10l . This method was also proposed

in 3 and gives slightly better results than method 1. Note that in this case the criterion

on the maximum distance between ωj is respected.
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• The τ -method with Q0 = 17.6 (value proposed in 5 to model the propagation in a

viscoacoustic medium with Q = 20) and L = 3.

0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Dissipation time

Pade
τ −Cst
method 1
method2

Fig. 2. Comparison between the different approximation methods. Correlation coefficient between the exact
and the approximated solutions as a function of the dissipation time.

The results illustrated in Figure 2, show that the Padé approximant provides good accuracy

only for short dissipation times, as demonstrated in 3. The τ -method provides a good

accuracy/number of calculations ratio. However, we did not choose this method because

Q0 has to be calibrated empirically in order to get good results. The “Generalized Maxwell

Body” approximation method seems to be a good compromise between accuracy, number

of calculations, and implementation simplicity. As our aim is to simulate viscoacoustic wave

propagation in heterogeneous media for large dissipation times, we chose a method which

is a hybrid of the Maxwell approximation methods 1 and 2.

3.5. Proposed method

In practice, the source type used depends on the application of interest. In our case, the

main application of interest is seismic wave propagation for which a Ricker wavelet (or a

time deriativ of Ricker wavelet) is often used as source function,

f(t) = −2α2

(
1 − 2α2

(
t − 1

f0

)2
)

exp

(
−α2

(
t − 1

f0

)2
)

, for 0 < t ≤ 2

f0
, with α = πf0.(18)

In Figures 3 and 4 we display the source function (18) and its spectrum for two different

values of f0. Compared to the source function defined by (16), the Ricker wavelet has a
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Fig. 3. The Ricker wavelet f(t) for f0 = 2.5Hz (solid
line) and for f0 = 1Hz (dashed line).
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Fig. 4. The frequency spectrum of the Ricker wavelet
for f0 = 2.5Hz (solid line) and for f0 = 1Hz (dasged
line).

broader frequency spectrum and method 2 did not give as good results in this case as the

ones obtained with the source (16). Following the ideas in 3, we want to find a way to

choose the frequency band [Ω1,Ω2] as a function of the source type and then determine

the relaxation frequencies ωl logarithmically equidistant in this bandwidth. We found that

a good choice for a Ricker wavelet type of source is [Ω1,Ω2] = [
ωmax

100
, ωmax], where ωmax

is the maximal frequency of the employed source spectrum. To illustrate the improvement

in the results, we compare in Figure 5 the proposed method with method 2 for a Ricker

wavelet with f0 = 2.5Hz.

None of the above approximation methods is completely satisfactory in our opinion

because the choice of the relaxation frequencies is always empirical. To avoid this, one can

follow the approach proposed in 8 where a non-linear minimization problem is considered

which permits to determine all the coefficients (both yl and ωl ∀l ∈ [1, L]). However, this

method is more expensive and although it improves the accuracy of the solution for media

with high damping (Q ≤ 10) it provides quite similar results with the proposed method for

propagation in weakly attenuating media (Q ≥ 10) 8. As we are interested in media with

quality factors greater than 10, we will use in the following the linear minimization method

(system (12)).

4. The mixed velocity-pressure formulation

By incorporating (6) into (1) we get,

p(x, ω) = µR(x)div(u(x, ω)) + µR(x)
L∑

l=1

yl(x)iω

iω + ωl(x)
div(u(x, ω)). (19)
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Fig. 5. Comparison between the proposed method and method 2. We display the correlation coefficient
between the exact and the approximated solutions as a function of the dissipation time. The source used is
a Ricker wavelet with f0 = 2.5Hz.

We now introduce the memory variables ηl defined by,

(iω + ωl(x))ηl(x, ω) = µR(x)yl(x)div(v(x, ω)), (20)

where v is the velocity, i.e., the time derivative of the displacement u. Equation (20) in the

time domain becomes,

∂ηl(x, t)

∂t
+ ωl(x)ηl(x, t) = µR(x)yl(x)div(v(x, t)). (21)

Using the definition of ηl and multiplying (19) by (iω), we get,

(iω)p(x, ω) = µR(x)div(v(x, ω)) +
L∑

l=1

(iω)ηl(x, ω),

or equivalently in the time domain,

∂p

∂t
= µRdiv(v) +

L∑

l=1

∂ηl

∂t
. (22)
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Combining (22), (21) and the equation of motion, we obtain our final system of equations,





ρ
∂v

∂t
−∇p = f in Ω×]0, T ],

∂p

∂t
−

L∑

l=1

∂ηl

∂t
= µRdiv(v) in Ω×]0, T ],

∂ηl

∂t
+ ωlηl = µRyldiv(v),∀l in Ω×]0, T ],

(23)

together with initial conditions v(x, t = 0) = v0(x), p(x, t = 0) = p0(x), ηl(x, t = 0) = η0
l (x),

which are zero in the examples presented in this paper, and some boundary conditions on

∂Ω that will be precised in section 7.

Equivalently, one can choose to eliminate the pressure and obtain a second-order-in-

time equation for the displacement by introducing adequate memory variables 3. We prefer,

however, the first-order velocity-pressure formulation for the following reasons,

• It can be coupled with the fictitious domain method for taking into account diffraction

by objects of complicated geometry.

• A perfectly matched layer model (PML) can be written for this system. This permits us

to simulate efficiently wave propagation in unbounded domains.

• This system is easier to implement in heterogeneous media, since it does not require an

approximation of the spatial derivatives of the physical parameters.

An equivalent first-order velocity-pressure system is proposed in 4 and 5. In 4 the authors

used a pseudospectral method for the discretisation while in 5 a staggered finite difference

scheme was used. Our aim being to couple this system with the fictitious domain method,

we propose here instead the use of a mixed-finite element method on regular grids. A

similar approach was proposed in 9 where the authors use a mixed-finite element method

to discretise the velocity-stress formulation for viscoelastic wave propagation.

5. Discretisation

A mixed formulation associated to equations (23) is given by,




Find (v, p,H) :]0, T [7−→ X × M × (M)L s.t. :

d

dt
(ρv,w) + b(w, p) = (f ,w), ∀w ∈ X,

d

dt
(

1

µR
p, q) −

L∑

l=1

d

dt
(

1

µR
ηl, q) − b(v, q) = 0, ∀q ∈ M,

d

dt
(

1

µRyl
ηl, q) + (

ωl

µRyl
ηl, q) − b(v, q) = 0, ∀l, ∀q ∈ M,

(24)

where H is the L-dimensional vector with components ηl, and
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b(w, q) =

∫

Ω
q divw dx, ∀(w, q) ∈ X × M.

The functional spaces are X = H(div; Ω), and M = L2(Ω).

We now introduce some finite element spaces Xh ⊂ X and Mh ⊂ M with basis functions

BN1 = {wi}N1
i=1 and BN2 = {qi}N2

i=1 respectively (N1 and N2 being the dimension of Xh and

Mh). The coordinates of the discrete unknowns vh, ph and ηl
h in the bases BN1 and BN2 are

[Vh] = (V1, ..., VN1 ), [Ph] = (P1, ..., PN2 ) and [(Hh)l] = ((H1)l, ..., (HN2 )l). In these bases,

the semi-discretisation in the space of problem (24) can be written as,





(Vh, Ph,Hh) ∈ L2(0, T ; RN1) × L2(0, T ; RN2) × L2(0, T ; (RN2)L) s.t. :

Mv
dVh

dt
+ BhPh = Fh,

Mp
dPh

dt
−

L∑

l=1

Mp
d(Hh)l

dt
− BT

h Vh = 0,

M l
y

d(Hh)l
dt

+ M l
ω(Hh)l − BT

h Vh = 0, ∀l,

(25)

with

(Mv)ij = (ρwi,wj) , ∀i, j = 1, . . . N1

(Mp)ij =

(
1

µR
qi, qj

)
, ∀i, j = 1, . . . N2

(
M l

y

)
ij

=

(
1

µRyl
qi, qj

)
, ∀i, j = 1, . . . N2

(
M l

ω

)

ij
=

(
ωl

µRyl
qi, qj

)
, ∀i, j = 1, . . . N2

(Bh)ij = (divwi, qj) , ∀i = 1, . . . N1, j = 1, . . . , N2

and where BT
h denotes the transpose of Bh. In practice, we only consider regular domains

in R
d, d = 1, 2 that can be discretised with a uniform mesh Th composed by segments or

squares of size h, depending on the dimension of the problem. The finite element spaces we

use are

Xh =
{
wh in X / ∀K ∈ Th,wh |K ∈ (Q1)

d
}

,

and

Mh =
{
qh ∈ L2 / ∀K ∈ Th, qh|K ∈ P0(K)

}
.

This mixed finite element was introduced in 28 and is illustrated in Figure 6. In this case,

the degrees of freedom for the velocity, or in other words the elements of Vh, correspond

to the nodal values of the velocity components. More precisely, because the velocity is

not continuous we have two values for each component associated to each node. For vx
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at node (i, j) for example, we have (vx)uij corresponding to the limit of the value from

above ((vx)uij = limε→0(vx)(xi, yj + ε)) and vd
x corresponding to the limit of the value from

below ((vx)dij = limε→0(vx)(xi, yj − ε)). The degrees of freedom for the pressure field and

the memory variable in Mh correspond to their element values (i.e., the average of the

function over the element). When coupled with the fictitious domain method, this choice of

υx
d

υx

y
r

υy
l

u

υ

���
���
���
���

���
���
���
���

p ηl

Fig. 6. Finite element vh ∈ Xh, (ph, (ηl)h) ∈ Mh × Mh

finite elements presents some inconveniences. In particular, for the acoustic wave equation

problem we cannot prove the convergence of the method from the theoretical point of view.

Moreover, numerical results show that the method converges under restrictive conditions

on the discretisation parameters. Thus, when the method is coupled with the fictitious

domains, we replace Mh by M1
h defined by,

M1
h =

{
qh ∈ L2 / ∀K ∈ Th, qh|K ∈ P1(K)

}
.

This finite element is presented Figure 7. In this case the degrees of freedom are the ele-

ment values of the pressure field and its derivatives (p, ∂xp, ∂yp) (30). The convergence of

the method with this choice of discretisation spaces coupled with the fictitious domains is

studied in 30 for the acoustic problem.

For computational reasons, however, it is natural to seek a discretisation which uses

the least number of variables. In the proposed scheme pressure is thus discretised on the

space M 1
h and the memory variables ηl are discretised on Mh. The semi-discretisation of

the problem (24) in this case is, (N3 being the dimension of M 1
h)





(Vh, Ph,Hh) ∈ L2(0, T ; RN1) × L2(0, T ; RN3) × L2(0, T ; (RN2)L) s.t. :

Mv
dVh

dt
+ B1

hPh = Fh,

M1
p

dPh

dt
−

L∑

l=1

Mp
d(Hh)l

dt
− B1,T

h Vh = 0,

M l
y

d(Hh)l
dt

+ M l
ω(Hh)l − BT

h Vh = 0, ∀l,

(26)

where we introduced superscript 1 to indicate the matrices that involve the discretisation

space M 1
h . In both cases (pressure discretised on Mh or M1

h), we use a second order centered
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p η

p p

l

x y

Fig. 7. Finite element vh ∈ Xh, (ph, (ηl)h) ∈ M1

h
× Mh

finite difference scheme for the discretisation in time (here presented in the more general

case with the pressure discretised on M 1
h),





(V n+1
h , P

n+ 3
2

h ,H
n+ 3

2
h ) ∈ R

N1 × R
N3 × (RN2)L,

Mv
V n+1

h − V n
h

∆t
+ B1

hP
n+ 1

2
h = (Fh)n+1/2 ,

M1
p

P
n+ 3

2
h − P

n+ 1
2

h

∆t
−

L∑

l=1

Mp
(Hh)

n+ 3
2

l − (Hh)
n+ 1

2
l

∆t
− B1,T

h V n+1
h = 0,

M l
y

(Hh)
n+ 3

2
l − (Hh)

n+ 1
2

l

∆t
+ M l

ω

(Hh)
n+ 3

2
l + (Hh)

n+ 1
2

l

2
− BT

h V n+1
h = 0,∀l.

(27)

The numerical scheme (27) becomes explicit in time when an adequate quadrature formula

is used to approximate the matrix Mv. Note that the other mass matrices (Mp, M1
p , M l

y, and

M l
ω) are diagonal, since the spaces Mh and M1

h are composed of discontinuous functions.

For more details on the quadrature formulas used we refer the reader to 28.

6. Stability and dispersion analysis

For the continuous problem, the energy is defined by

ε =
1

2
(ρv,v) +

1

2

(
p −

L∑

l=1

ηl, p −
L∑

l=1

ηl

)
+

L∑

l=1

1

2ylµR
(ηl, ηl) . (28)

This quantity is positive (for yl positive) and we have,

∂ε

∂t
= −

L∑

l=1

wl

µRyl
||ηl||2 5 0. (29)

That is, the energy decreases as a function of time, which expresses the dissipative nature

of the problem.

In the discrete case a stability analysis based on energy techniques permits us to show

that the discrete scheme is stable under the following CFL condition (in homogeneous media
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and for both choices Mh and M1
h for the pressure discretisation),

∆t2

4

µR

ρ
||Bh||2

(
1 +

L∑

l=1

yl

)
5 1, (30)

with ||BT
h Bh|| =

4

h2
in 1D and ||BT

h Bh|| =
8

h2
in 2D. Note that these are the usual CFL

conditions obtained in the non-dissipative case multiplied by

(
1 +

L∑

l=1

yl

)
.

Furthermore, the dispersion relation also presents a similar aspect. For the the continuous

problem we have,

ω2 = k2c2

(
1 +

L∑

l=1

iωyl

iω + ωl

)
. (31)

For the discrete problem in 1D we obtain,

sin2

(
ω∆t

2

)
=

∆2
t c

2

h2

(
sin2

(
kh

2

))(
1 +

L∑

l=1

2iyl tan
(

ω∆t

2

)

∆tωl + 2i tan
(

ω∆t

2

)
)

, (32)

and in 2D we get (for both choices Mh and M1
h of the pressure discretisation),

sin2

(
ω∆t

2

)
=

∆2
t c

2

h2

(
sin2

(
kxh

2

)
+ sin2

(
kyh

2

))(
1 +

L∑

l=1

2iyl tan
(

ω∆t

2

)

∆tωl + 2i tan
(

ω∆t

2

)
)

. (33)

In figures 6 we have plotted the dispersion and attenuation curves as function of 1/N (N

being the number of points per wavelength used in the discretisation) for a plane incident

wave, whose incident angle is 0 or π
4 for the 2D case. Demonstration and details of the

calculations for the stability and the dispersion relations for the discrete problem are exposed

in the Appendix A and B.

7. The fictitious domain method

To model the free-surface boundary condition on the surface of the earth we use the fic-

titious domain method which has been developed for solving problems involving complex

geometries 34,12,13,14,15, and in particular for wave propagation problems 16,17,18,19.

We follow here the approach proposed in 19. Consider the viscoacoustic wave propagation

problem in a domain with a complex geometry such as the one described in Figure 9. The
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Fig. 8. Dispersion and attenuation curves for a plane incident wave, with incident angle 0 or π/4 for the 1D
and the 2D case (L = 3).

initial problem is posed in Ω with the free-surface boundary condition, v · n = 0 on Γ,




ρ
∂v

∂t
−∇p = f in Ω,

∂p

∂t
−

L∑

l=1

∂ηl

∂t
= µRdiv(v) in Ω,

∂ηl

∂t
+ ωlηl = µRyldiv(v),∀l in Ω,

v · n = 0, on Γ,

p = 0, on ΓD.

(34)

The main idea of the fictitious domain method is to extend the solution to a domain with

a simple shape, independent of the complex geometry of the boundary, and to impose the

boundary condition in a weak manner by introducing a Lagrange multiplier. Following this
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DΓ

n

Γ

Ω

DΓ

C

Fig. 9. Geometry of the problem: on the left the initial domain Ω and on the right the extended domain C.

idea, we extend the solution (v, p, ηl) by zero in the domain C (which is here a rectangle,

see Figure 9). We denote (ṽ, p̃, η̃l) the extended solution and have,

[ṽn]Γ = 0 ⇒ ṽ ∈ H(div, C), [p̃]Γ 6= 0, [η̃l]Γ 6= 0.

Thus, system (34) for the extended solution, can be written (in the distributional sense),





ρ
∂ṽ

∂t
−∇p̃ = f + [p̃]nδΓ in C,

∂p̃

∂t
−

L∑

l=1

∂η̃l

∂t
= µRdiv(ṽ) in C,

∂η̃l

∂t
+ ωlη̃l = µRyldiv(v),∀l in C,

ṽ · n = 0, on Γ,

p = 0, on ΓD.

(35)

In (35) we have two types of unknowns, the extended unknowns, defined in the simple

shape domain C and the auxiliary variable [p̃], defined on the boundary Γ. We introduce

λ = [p̃] as a new unknown defined on Γ. This unknown can be interpreted as a Lagrange

multiplier associated with the boundary condition on Γ. The variational formulation of the

problem can then be written as follows,
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Find (v, p,H, λ) :]0, T [7−→ H(div;C) × L2(C) × (L2(C))L × H1/2(Γ) s.t.

d

dt
(ρv,w) + b(w, p) − bΓ(λ,w) = (f ,w), ∀w ∈ H(div;C),

d

dt
(

1

µR
p, q) −

L∑

l=1

d

dt
(

1

µR
ηl, q) − b(v, q) = 0, ∀q ∈ L2(C),

d

dt
(

1

µRyl
ηl, q) + (

ωl

µRyl
ηl, q) − b(v, q) = 0, ∀l, ∀q ∈ L2(C),

bΓ(µ,v) = 0, ∀µ ∈ H1/2(Γ),

where

bΓ(µ,w) =

∫

Γ
µ w · nds, ∀(µ,w) ∈ H1/2(Γ) × H(div;C).

For the discretisation of this problem we consider a structured volume mesh Th on C,

and an irregular surface mesh Ghs
on Γ. The main advantage of this formulation is that the

mesh for computing the extended functions can now be regular while the surface mesh is

irregular and permits a good and efficient approximation of the geometry (see Figure 10).

h h s
DΓ

C

Γ Γ

Fig. 10. The two meshes used in the fictitious domain method: a structured volume mesh on the domain C
and an irregular surface mesh on Γ.

To discretise the volume unknowns (v, p,H) we use the finite element method described

in section 6 while for the Lagrange multiplier λ we use piecewise linear continuous functions

on Ghs
, i.e., the approximation space is,

Ghs
=
{

µhs
∈ H1/2(Γ) / ∀S(segment) ∈ Ghs

, µhs
|S ∈ P1(S)

}
.

To simplify the presentation, we considered in system (34) the homogeneous Dirichlet

boundary condition on the boundary ΓD. When the domain is infinite we use the perfectly

matched layer model which will be described in the following section.
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8. The PML method

The perfectly Matched Layer model was introduced by Bérenger 20,21 for Maxwell’s equa-

tions and is now the most widely-used method for simulating wave propagation in un-

bounded domains. The reader can refer to 22,23,24 for electromagnetic waves, to 25 for

anisotropic acoustic waves and to 27,25 for elastic waves. The popularity of this model is

due to its simplicity and efficiency. Its most astonishing property is that for the continuous

problem the reflection coefficient at the interface between the layer and the free medium

is zero for all frequencies and angles of incidence. To derive the PML for the viscoacoustic
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Fig. 11. PML in the x-direction: the physical medium is on the left and the absorbing medium is a layer of
width δ.

system (23) we follow the approach proposed in 27 which applies to any first-order linear

hyperbolic system. We present here the construction of a PML in the x-direction (see Figure

11). Deriving then the PML for the other boundaries and the corners of the computational

domain is a straightforward application of the same technique.

Following 27 we construct the PML model in two steps: (i) We split the solution

(v, p, {ηl}) into two parts (v‖, p‖, {η‖l }) and (v⊥, p⊥, {η⊥l }), with the parallel part being

associated with the derivatives in the y-direction (direction parallel to the interface be-

tween the PML and the physical medium), and the orthogonal part associated with those

in the x-direction. (ii) We introduce damping only on the orthogonal component of the

solution.

When applying the splitting step to (23) by remarking that v‖ = (0, vy) and v⊥ = (vx, 0),
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we obtain,





ρ
∂vy

∂t
=

∂p

∂y

∂p‖

∂t
−

L∑

l=1

∂η
‖
l

∂t
= µR

∂vy

∂y

∂η
‖
l

∂t
+ ωlη

‖
l = µRyl

∂vy

∂y
,

(36)

and




ρ
∂vx

∂t
=

∂p

∂x

∂p⊥

∂t
−

L∑

l=1

∂η⊥l
∂t

= µR
∂vx

∂x

∂η⊥l
∂t

+ ωlη
⊥
l = µRyl

∂vx

∂x
,

(37)

with
{

p = p‖ + p⊥

ηl = η
‖
l + η⊥l , ∀l.

(38)

To apply the damping on the orthogonal components it is simpler to consider system

(37) in the frequency domain. Then the PML consists in replacing the x-derivatives ∂x

by
iω

iω + d(x)
∂x (cf. 27). Following this approach, system (37) in the frequency domain be-

comes,





(i) ρ(iω + d(x))vx =
∂p

∂x

(ii) (iω + d(x))p⊥ −
L∑

l=1

(iω + d(x))η⊥l = µR
∂vx

∂x

(iii) (iω)(iω + d(x))η⊥
l + (iω + d(x))ωlη

⊥
l = (iω)µRyl

∂vx

∂x
,

(39)

where d(x) is the damping parameter which is equal to zero in the physical medium and

non-negative in the absorbing medium.

We now introduce new variables η̃l defined by,

iωη̃l = (iω + d(x))η⊥l , ∀l, (40)

or equivalently in time domain,

∂η̃l

∂t
=

∂η⊥l
∂t

+ d(x)η⊥l , ∀l.
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Using (40) in (39) and going in the time domain we get,




ρ
∂vx

∂t
+ ρd(x)vx =

∂p

∂x

∂p⊥

∂t
+ d(x)p⊥ −

L∑

l=1

∂η̃l

∂t
= µR

∂vx

∂x

∂η̃l

∂t
+ ωlη̃l = µRyl

∂vx

∂x
.

(41)

The final system of equations for the PML is (41) together with (36), with p being defined

by p = p‖ + p⊥. Note that the memory variables ηl do not appear, and only the component

η
‖
l and the variables η̃l do appear, in this system.

Using a plane wave analysis, it can be shown (cf. 27) that this model generates no

reflection at the interface between the physical and the absorbing medium and that the

wave decreases exponentially inside the layer. This property allows the use of a very high

damping parameter inside the layer, and consequently of a small layer width, while achieving

a near-perfect absorption of the waves. Note that for a finite-length absorbing layer there

is some reflection due to the outer boundary of the PML.

Remark 8.1. To discretise the PML we use the same scheme as for the interior domain.

Remark 8.2. The damping d(x) is zero in the physical domain and non negative in the

absorbing medium. In the numerical simulations it is defined as in 27,

d(x) =

{
0 for x < 0

log
(

1
R

) (n+1)
q

µR
ρ

2δ (x
δ )n for x ≥ 0

(42)

where R is the theoretical reflection coefficient, δ the width of the PML and n = 4.

In practice, we take R = 5.0 10−7, and δ ≈ 30∆x (depending on the wavelength).

9. Numerical results

9.1. Scattering from a circular cylinder

In order to validate the proposed numerical method we consider in this section the canoni-

cal problem of a plane wave (Ricker wavelet) striking a viscoacoustic homogeneous circular

cylinder. The geometry of the problem is displayed in Figure 12. A homogeneous viscoacous-

tic circular cylinder of radius a (domain Ω2) is surrounded by a homogeneous non-dissipative

medium (domain Ω1). We denote by Γ1 the interface between the two domains Ω1 and Ω2.

The physical characteristics of the media are ρ1 = 1000kg/m3, c1 = 1500m/s, Q1 = +∞ in

Ω1 and ρ2 = 1800kg/m3, c2 = 3050m/s and Q2 = 30 in Ω2. The source function used in this

example is given by (18) with f0 = 2.5Hz. For this problem, the solution can be computed

by an analytical method described in what follows (here with the Fourier transform defined

by p(x, t) =
∫∞
−∞ p(x, ω) exp (−iωt) dω, ∀t ∈ R).
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Fig. 12. The geometry of the problem: a homogeneous viscoacoustic cylinder of radius a (domain Ω2)
embedded in a non-dissipative homogeneous medium (domain Ω1).

Consider the following incident plane wave (with incident angle 0 ≤ θ i < 2π),

pi
1(x) = Ai

1

n=∞∑

n=−∞

e−in(θi+π
2
)Jn(k1r)exp(inθ); ∀x = (r cos(θ), r sin(θ)) ∈ Ω1. (43)

Using the partial wave expansion we can express the solutions pj ∈ Ωj , j = 1, 2 in the

following form,

p1(x) = pi
1(x) +

n=∞∑

n=−∞

a1nH(1)
n (k1r)exp(inθ), ∀x ∈ Ω1

p2(x) =

n=∞∑

n=−∞

b2nJn(k2(ω)r)exp(inθ), ∀x ∈ Ω2,

(44)

with H
(1)
n the first-kind Hankel function of order n , Jn the Bessel function of order n and

where the wave number in Ω2 is computed by (3),

k2(ω) = k2(x, ω) =
ω

cref

(−iω

ωref

)− 1
π

atan( 1
Q2

)

; with wref = 0.05. (45)

To compute the coefficients a1n and b2n we introduce the expressions for p1 and p2, i.e.,

equation (44) in the transmission boundary conditions on Γ1 (continuity of the pressure and

the normal component of velocity). After projecting the resulting system onto the Fourier
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basis

(
1

2π
exp(−imθ); m ∈ Z

)
we obtain,

a1n =
γ1J̇n(χ1)Jn(χ2) − γ2Jn(χ1)J̇n(χ2)

−γ1Ḣ
(1)
n (χ1)Jn(χ2) + γ2J̇n(χ2)H

(1)
n (χ1)

Ai
1e

−in(θi+π
2
)

b2n =
γ1J̇n(χ1)H

(1)
n (χ1) − γ1Jn(χ1)Ḣ

(1)
n (χ1)

γ2J̇n(χ2)H
(1)
n (χ1) − γ1Ḣ

(1)
n (χ1)Jn(χ2)

Ai
1e

−in(θi+π
2
),

(46)

with Żn(z) = dZn(z)
dz , χj = kja, and γj =

kj

ρj
. The insertion of these expressions into (44)

gives the final solution of the problem 35. Comparison of results between the analytical and

the numerical solution are displayed in Figure 13 where we can see that good agreement is

obtained between the two (the maximal relative error at R1 is 4%). In this computation the

space discretization step is h = 5m and the time discretization step is chosen with respect

to the CFL condition

∆t =

√
2h

2cmax
, cmax = max


c1, c2

√√√√
(

1 +

L∑

l=1

yl

)
 = c2

√√√√
(

1 +

L∑

l=1

yl

)
,

where the yl’s correspond to medium 2. In the numerical simulation, we assume that the
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Fig. 13. Comparison between the analytical solution (dashed line) and the numerical solution (continuous
line) at different observation points R1, R2 and R3. The location of the observation points is illustrated in
Figure 12. In the figures the x-axis is time (in s) and the y-axis is the pressure field.

problem is posed in the whole space and to solve it, we couple system (27) with the perfectly

matched absorbing layer model (PML). To test numerically the convergence rate of the

method we have carried out the following experiment. For different discretisation steps

h = 25m, 10m and 5m we compare the solution obtained numerically with the analytical one

at the three observation points Ri, i = 1, . . . , 3. More precisely, we introduce the following

measure of the error,

E =

√√√√√




∑

R1,R2,R3

∑

t

(Pan − Pnum)2dt


. (47)
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In figure 14 we plot the logarithm of E as a function of the logarithm of the discretisation

step h. The slope of the obtained curve gives us an indication of the convergence of the

method (here the slope is 1.9). The convergence of the method when coupled with the

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

log(h)

lo
g(

N
or

m
e)

Fig. 14. The logarithm of E as a function of the logarithm of h (log(E) = f (log(h))). The estimated slope
is 1.9.

fictitious domains is addressed in 30. In this case we observe numerically that the rate of

convergence is lower in the vicinity of the boundary Γ on which the fictitious domain method

is employed. This is intuitive as lower convergence rates are expected in the the elements

that Γ intersects, because the solution is less regular in those elements.

9.2. Simulation of the response to an incident cylindrical wave of a dike

on a flexible foundation embedded in a half-space

To illustrate the efficiency of the method we model in this section the response to an incident

cylindrical wave of a dike on a flexible foundation embedded in a half-space. This particular

problem was considered in 36 where it was solved using an expansion of the solution in

cylindrical wave functions in the case of non-dissipative media. In 36 the authors studied

this problem for different material parameters in order to determine how stiff the foundation

should be relative to the soil for the rigid foundation assumption in soil-structure interaction

models to be valid. They concluded that a foundation with the same mass density as the

soil but 50 times larger shear modulus behaves in rigid manner for this problem. However,

for ratios of shear moduli less than 16, the rigid foundation assumption is not valid. In this

case, soil-structure interaction models with a rigid-foundation assumption will not model

the differential motion of the ground and may underestimate the stresses in the structure

(cf. 36). We consider here a ratio of shear moduli equal to 4. Soil-structure interaction is

taken into account owing to the fact that we discretise the continuous problem.

The pulse associated with the incident wave is created by a line source of the form,

g(x, t) =
df(t)

dt

(
1 − r2

r2
s

)
1Bs , (48)

with f(t) defined by (18) and where r is the radius coordinate in the sagitale plane. 1Bs

is the characteristic function of the disc Bs centered at xs (location of the source) and
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Fig. 15. The geometry of the problem: a dike on a flexible foundation embedded in a half-space.

with radius rs. In (48), the function multiplying df(t)
dt is a smooth approximation of the

delta function δ(r). The radius rs is small, typically equal to a few discretisation steps.

The geometry of the problem is illustrated in Figure 15, where Γ denotes the free surface,

Ω0 the hard bedrock, Ω1 the flexible foundation and Ω2 the dike. The physical parameters

used in the simulation are ρ0 = 1000kg/m 3, c0 = 1450m/s, Q0 = +∞ in the bedrock,

ρ1 = 1000kg/m 3, c1 = 2900m/s, Q1 = 30 in Ω1 and ρ2 = 250kg/m 3, c2 = 725m/s,

Q2 = 100 in the dike. The angle θ is equal to π/2.

In Figure 16 we display snapshots of the solution (the pressure field) at different times.

Diffraction from the free surface is modeled by embedding the solution in a domain of a

simple shape using the fictitious domain method. To model wave propagation in the infinite

half-space the fictitious domain is surrounded by an absorbing medium using the PML

model. Although for this problem a semi-analytical method similar to the one used in 36

can be employed to compute the solution, the numerical method proposed in this paper is

more general in that it can be applied to any complicated geometry and/or propagation

media. Moreover, our numerical method can be of particular interest in cases where the

rigid foundation assumption is not valid as it can provide realistic values for the stresses in

the structure.

Conclusion

We employed a rational approximation of the frequency-dependent viscoacoustic modulus

in order to introduce dissipation into time-domain computations. To do so, we followed the

approach in 3 and chose relaxation frequencies wl(x) equidistant on a logarithmic scale in

the frequency range [wmax

100 ;wmax], where wmax is the maximal frequency of the used source

spectrum. This approach will be accurate for propagation in media with a quality factor

greater than 10. For media with high attenuation (Q < 10) it is necessary in order to obtain

accurate results to use a non-linear minimization method such as the one proposed in 8.

By introducing this approximation of the viscoacoustic modulus into the velocity-
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t = 2s t = 3s

t = 5s t = 8s

t = 9s t = 9.5s

Fig. 16. Snapshots of the solution: the pressure field in the computational domain at different times
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pressure formulation we obtained a first-order- in-time linear system of equations. To dis-

cretise this system we used a mixed finite-element method for the discretisation in space

and a second-order finite difference scheme in time.

The velocity-pressure formulation was coupled with the fictitious domain method in

order to model the free surface boundary condition on boundaries with complicated geome-

tries, and with the PML method to simulate wave propagation in unbounded domains. The

efficiency of the method was illustrated by numerical results.
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Appendix

A. Stability analysis

A.1. The continuous problem

We rewrite the continuous system in time with zero source term,

ρ
∂v

∂t
= ∇p, (A.1)

∂p

∂t
−

L∑

l=1

∂ηl

∂t
= µRdiv(v), (A.2)

∂ηl

∂t
+ ωlηl = µRyldiv(v),∀l. (A.3)

By taking the inner products (in L2) of (A.1) with v, (A.2) with

(
p −

L∑

l=1

ηl

)
, and (A.2)

with ηl we get
(

ρ
∂v

∂t
,v

)
= (∇(p),v) , (A.4)

(
∂

∂t

(
p −

L∑

l=1

ηl

)
,

(
p −

L∑

l=1

ηl

))
= µR

(
div(v),

(
p −

L∑

l=1

ηl

))
, (A.5)

(
∂ηl

∂t
, ηl

)
+ (ωlηl, ηl) = µRyl (div(v), ηl) . (A.6)

Then, summing (A.4) +
(A.5)

µR
+

L∑

l

(A.6)

ylµR
, we obtain,

(
ρ
∂v

∂t
,v

)
+

1

µR

(
∂

∂t

(
p −

L∑

l=1

ηl

)
,

(
p −

L∑

l=1

ηl

))
+

L∑

l=1

1

ylµR

(
∂ηl

∂t
, ηl

)
= −

L∑

l=1

ωl

µRyl
(ηl, ηl)(A.7)

Keeping in mind that the energy of the system is,

ε =
1

2
(ρv,v) +

1

2µR

(
(p −

L∑

l=1

ηl), (p −
L∑

l=1

ηl)

)
+

L∑

l=1

1

2ylµR
(ηl, ηl) (A.8)

we finally get,

∂ε

∂t
= −

L∑

l=1

ωl

µRyl
‖ηl‖2 ≤ 0. (A.9)

Which implies that the energy of the system is decreasing with time, when ωl, µR and yl are

positive quantities. The relaxation frequencies ωl are always positive and the same holds for

the relaxed modulus µR. The coefficients yl can in practice become negative if we do not
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solve a constraint minimization problem. However, we never encountered in practice a case

for which

−
L∑

l=1

ωl

µRyl
‖ηl‖2 ≥ 0,

and thus the problem becomes unstable (in the sense that the energy increases). To avoid

this instability a constraint minimization algorithm seeking for non-negative y l can be used.

A.2. The discrete problem

We consider here the more general case where the pressure field is discretised in M 1
h . Remark

that the discretisation space M 1
h admits the following orthogonal decomposition in L2,

M1
h = Mh ⊕ (Mh)⊥,

where Mh is the space of piecewise constant functions,

Mh =
{
qh ∈ L2 / ∀K ∈ Th, qh|K ∈ P0(K)

}
,

and (Mh)⊥ is its orthogonal complement in M 1
h (with respect to the inner product in L2).

So that for any ph ∈ M1
h , we can write ph = p0

h +p1
h with p0

h, the projection of ph on Mh and

p1
h the projection of ph on M⊥

h . Moreover, if P , P0 and P1 are the coordinates of ph, p0
h and

p1
h in the basis of M 1

h , Mh and (Mh)⊥, then we have P = [P0, P1]. Note that the memory

variables are only discretised on Mh. In this case, we can rewrite the discrete system as,

(capital letters are used for the discrete unknowns and the subscript h is omitted)

ρMv
V n+ 1

2 − V n− 1
2

∆t
= −B0

hP n
0 − B1

hP n
1 (A.10)

M0
P n+1

0 − P n
0

∆t
− M0

L∑

l=1

Hn+1
l − Hn

l

∆t
= µRB0,T

h V n+ 1
2 , (A.11)

M1
P n+1

1 − P n
1

∆t
= µRB1,T

h V n+ 1
2 , (A.12)

M0
Hn+1

l − Hn
l

∆t
+ ωlM0

Hn+1
l + Hn

l

2
= µRylB

0,T
h V n+ 1

2 , (A.13)

with

(Mv)ij = (wi,wj) , ∀i, j, basis functions of Xh,

(M0)ij = (qi, qj) , ∀qi, qj, basis functions of Mh,

(M1)ij = (qi, qj) , ∀qi, qj, basis functions of (Mh)⊥.

Then considering the inner products ((A.10) at time (n+3/2)+((A.10) at time n+1/2))×

V n+ 1
2 , (A.11) ×

(
P n+1

0 −
L∑

l=1

Hn+1
l + P n

0 −
L∑

l=1

Hn
l

)
, (A.12) ×

(
P n+1

1 + P n
1

)
, and (A.13) ×

(
Hn+1

l + Hn
l

)
, we get,
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(
ρMvV

n+ 3
2 , V n+ 1

2

)
=
(
ρMvV

n+ 1
2 , V n− 1

2

)

−∆t
(
B0

h(P n
0 + P n+1

0 ), V n+ 1
2

)
− ∆t

(
B1

h(P n
1 + P n+1

1 ), V n+ 1
2

)
(A.14)

‖P n+1
0 −

L∑

l=1

Hn+1
l ‖2

M0
= ‖P n

0 −
L∑

l=1

Hn
l ‖2

M0

+∆t µR

(
B0,T

h V n+ 1
2 , P n+1

0 + P n
0

)
− ∆tµR

(
B0,T

h V n+ 1
2 ,

L∑

l=1

Hn+1
l + Hn

l

)
(A.15)

‖P n+1
1 ‖2

M1
= ‖P n

1 ‖2
M1

+ ∆tµR

(
B1,T

h V n+ 1
2 , P n+1

1 + P n
1

)
(A.16)

‖Hn+1
l ‖2

M0
= ‖Hn

l ‖2
M0

−ωl∆t
‖Hn+1

l − Hn
l ‖2

M0

2
+ µR∆tyl

(
B0,T

h V n+ 1
2 ,Hn+1

l + Hn
l

)
(A.17)

where the norms ‖ · ‖M0 and ‖ · ‖M1 are defined by

‖q‖2
M0

= (M0q, q), ‖q‖2
M1

= (M1q, q),

Summing (A.14) +
(A.15)

µR
+

(A.16)

µR
+

L∑

l=1

(A.17)

ylµR
, we get,

εn+1
h − εn

h

∆t
= −

L∑

l

ωl

µRyl

‖Hn+1
l + Hn

l ‖2
M0

4
, (A.18)

with the discrete energy being defined by,

2εn
h =

(
ρMvV

n+ 1
2 , V n− 1

2

)
+

1

µR
‖P n

1 ‖2
M1

+
1

µR
‖P n

0 −
L∑

l=1

Hn
l ‖2

M0
+

L∑

l=1

‖Hn
l ‖2

M0

µRyl
. (A.19)

Equation (A.18) shows that the discrete energy is also decreasing, under the same assump-

tions on yl as in A.1.

To show under which condition the quantity defined by (A.19) is positive and thus an

energy, we use the orthogonal decomposition of M 1
h to get,

2εn
h =

1

4

(
ρMv(V

n+ 1
2 + V n− 1

2 ), (V n+ 1
2 + V n− 1

2 )
)

+
‖P n‖2

M

µR
+

L∑

l=1

‖Hn
l ‖2

M0

µRyl
+

1

µR

(
M0

L∑

l=1

Hn
l ,

L∑

l=1

Hn
l

)
− 2

µR

(
DP n,

L∑

l=1

Hn
l

)
− ∆t2

4ρ
(BhP n, BhP n) ,

(A.20)
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with

‖q‖2
M ≡ (Mq, q) = (M0q0, q0) + (M1q1, q1),

(DP,Hl) = (M0P0,Hl),

BhP n = B0
hP n

0 + B1
hP n

1 .

From (A.20) we obtain,

2εn
h ≥ 1

µR



(

1 − ∆t2µR‖|Bh‖|2
4ρ

)
‖P n‖2

M +

∥∥∥∥∥

L∑

l=1

Hn
l

∥∥∥∥∥
M0

− 2

(
DP n,

L∑

l=1

Hn
l

)
+

L∑

l=1

‖Hn
l ‖2

M0

yl




with ‖|Bh‖|2 = sup
P

(BhP,BhP )

(MP,P )
. We rewrite this equation as a matrix associated with the

quadratic formulation and we prove that the eigenvalues of this matrix are positive under

the CFL condition, (with ‖|Bh‖|2 = 4
h2 in 1D and ‖|Bh‖|2 = 8

h2 in 2D)

∆t2

4

µR

ρ
‖|Bh‖|2

(
1 +

L∑

l=1

yl

)
5 1.

B. Dispersion analysis

B.1. The continuous problem

Suppose that v(x, t), p(x, t), and ηl(x, t)∀l, are plane waves,





v(x, t) = v0exp (i (ωt −Kx)),

p(x, t) = p0exp (i (ωt −Kx)),

ηl(x, t) = η0
l exp (i (ωt −Kx)),

Kx = kx in 1D and Kx = kxx + kyy = kcos(Φ)x + ksin(Φ)y, Φ being the incident angle of

the plane wave in 2D. Introducing this expression into (23), we get the dispersion relation,

ω2 = K2c2
R

(
1 +

L∑

l=1

iωyl

iω + ωl

)
(B.1)

with cR =
√

µR

ρ the relaxed velocity. If the medium is non-dissipative (i.e., yl = 0∀l), (B.1)

becomes the well-known relation ω2 = K2c2. Note that the dispersion relation (B.1) is no

longer explicit in ω.

B.2. The discrete problem

We are interested in the general formulation for which the pressure field is discretised in

M1
h and ηl in Mh. Considering that V , P , and Hl are plane waves, and employing the same
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notation as in A.2, we get,

sin2 (χt) =
∆t2c2

R

4

(
BhBT

h +
L∑

l=1

B0
hB0,T

h

2iyltan (χt)

∆tωl + 2itan (χt)

)
(B.2)

where χt = ω∆t
2 , ∆t being the time discretisation step. After some calculations we obtain,

sin2

(
ω∆t

2

)
=

∆2
t c

2
R

h2

(
sin2

(
kh

2

))(
1 +

L∑

l=1

2iyl tan
(

ω∆t

2

)

∆tωl + 2i tan
(

ω∆t

2

)
)

in 1D

sin2

(
ω∆t

2

)
=

∆2
t c

2
R

h2

(
sin2

(
kxh

2

)
+ sin2

(
kyh

2

))(
1 +

L∑

l=1

2iyl tan
(

ω∆t

2

)

∆tωl + 2i tan
(

ω∆t

2

)
)

in 2D

(B.3)

wherein h is the discretisation step in space.
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9. E. Bécache, A. Ezziani, and P. Joly. Mathematical and numerical modeling of wave propagation
in linear viscoelastic media. In G.C. Cohen, E. Heikkola, P. Joly, and P. Neittaanmäki, editors,
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