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ABSTRACT

Coherent interferometry is an array imaging method in which we back propa-

gate, or migrate, crosscorrelations of the traces over appropriately chosen space-time

windows, rather than the traces themselves. The size of the space-time windows is

critical and depends on two parameters. One is the decoherence frequency, which

is proportional to the reciprocal of the delay spread in the traces produced by the

clutter. The other is the decoherence length, which also depends on the clutter. As

is usual, the clutter is modeled by random fluctations in the medium properties. In

isotropic clutter the decoherence length is typically much smaller than the array aper-

ture. In layered random media the decoherence length along the layers can be quite

large. We show that when the crosscorrelations of the traces are calculated adaptively

then coherent interferometry can provide images that are statistically stable relative

to small scale clutter in the environment. This means that the images we obtain are

not sensitive to the detailed form of the clutter. They only depend on its overall

statistical properties. However, clutter does reduce the resolution of the images by
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blurring. We show how the amount of blurring can be minimized by using adaptive

interferometric imaging algorithms, and discuss the relation between the coherence

properties of the array data and the loss in resolution caused by the blurring.

INTRODUCTION

In imaging, and in seismic imaging in particular, we wish to estimate the location

of one or more underground sources or reflecting structures with a passive or an active

array of receivers, respectively, lying on the surface, as shown in Figure 1, left and

right.

Imaging of sources or reflectors in smooth background media is done efficiently

with Kirchhoff migration (Claerbout and Doherty, 1972; Schultz and Claerbout, 1978;

Claerbout, 1985; Beylkin, 1985; Beylkin and Burridge, 1990; Nolan and Symes, 1997;

Kroode et al., 1998; Bleistein et al., 2001; Stolk and deHoop, 2002) when the back-

ground propagation velocity is known or can be estimated (Carazzone and Symes,

1991; Symes, 1991; Symes, 1993; Gockenbach, 1994; Stolk and Symes, 2003). How-

ever, in addition to the large scale features of the subsurface wave velocity, which are

not known but can be estimated, there are small scale inhomogeneities (clutter) that

can have a more or less layered structure, as is often the case in seismic imaging, (see

Figure 2) or a more isotropic one as in ultrasonic imaging inside concrete (see Figure

3), etc. In cluttered environments where there is significant multiple scattering, or

multipathing, migration, such as travel time or Kirchhoff migration, does not work

well. This is because it relies on relatively clean arrivals. However, when there is

clutter the recorded time traces have long and noisy codas that come from the mul-

tiple scattering by the inhomogeneities. Images obtained with Kirchhoff migration

look noisy and unstable with respect to the realization of the clutter, that is, differ-

ent realizations of the clutter with the same statistical properties produce different

images.

2



We have shown in (Borcea et al., 2003; Borcea et al., 2005b) (see also (Chan et al.,

1999)) that to stabilize the imaging process in cluttered environments one should do

interferometric migration. This means that it is the crosscorrelations of the traces,

the interferograms, that should be migrated, not the traces themselves.

Interferometric methods, that is, methods that use crosscorrelations of traces, have

been used before in various contexts: (1) In daylight seismic imaging (Claerbout, 1968;

Cole, 1995; Rickett and Claerbout, 1999), passive array traces at one or more receivers

are crosscorrelated for the purpose of simulating reflection data. This was done first

in horizontally layered media (Claerbout, 1968), and later for more general velocity

models (Cole, 1995; Rickett and Claerbout, 1999). (2) Crosscorrelations are also used

in (Lobkis and Weaver, 2001; Snieder, 2004), where passive traces at two receivers are

crosscorrelated to provide an estimate of the Green’s function between the two receiver

locations. (3) In (Schuster et al., 2004), the daylight imaging approach (Claerbout,

1968; Cole, 1995; Rickett and Claerbout, 1999) is extended to the estimation of

subsurface sources and receivers. In these works the aim is not to estimate the location

of strong sources or reflectors but rather to extract information about the medium

between the two receivers, the Green’s function in favorable circumstances. However,

in (Borcea et al., 2003; Borcea et al., 2005b), we have presented a detailed study of

interferometry as a statistically stable imaging method for sources and reflectors in

clutter.

Stable interferometric imaging in clutter works with crosscorrelations of nearby

traces that are separated by distances no greater than the decoherence length, which

is a clutter dependent parameter. This decoherence length is typically much smaller

than the array aperture in isotropic clutter, as in Figure 3, but it can increase in

anisotropic media and even become unbounded in the extreme case of a finely layered

medium with the layers parallel to the surface. Because in imaging we do not know

the clutter, it is important to be able to estimate the decoherence length from the

array data and this can be done well during the image formation process, as we
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explain in (Borcea et al., 2003; Borcea et al., 2005b).

A form of interferometric imaging, also known as matched field processing (Bucker,

1976; Krolik, 1992; Baggeroer et al., 1993), is a very efficient way of stabilizing images

when there is clutter, as well as reducing instrument noise, but it has no range (depth)

resolution at all (because it crosscorrelates the full traces without time windowing),

except for what comes from geometric triangulation when multiple or extended arrays

are available. Of course, matched field interferometry can be coupled with an arrival

time analysis, but this can be tricky in cluttered media where late arrivals from

deep reflectors are buried in the coda of earlier arrivals. What is shown in (Borcea

et al., 2005b) is that range resolution can be recovered if the crosscorrelations are

computed over appropriately chosen time windows that separate information from

different ranges in the cluttered medium. The size of the time window is critical

in achieving statistical stability and it depends on another key clutter dependent

parameter: the decoherence frequency, which is proportional to the reciprocal of

the delay spread in the traces. We call the crosscorrelations of traces over such

windows coherent interferograms and by coherent interferometric imaging we mean

the migration of the coherent interferograms.

The coherent interferograms achieve considerable cancellation of the random

phases in our data (i.e., diminishing of coda effects). The process of calculating

space-time windowed crosscorrelations can also be viewed as an efficient statistical

smoothing technique (Priestley, 1981; Borcea et al., 2005a), if we know the clutter

dependent decoherence length and frequency. If we underestimate the size of the

decoherence parameters, by taking a very fine space-frequency segmentation of our

data, then we have a stable result which is overly smoothed at the expense of res-

olution. On the other hand, overestimating the decoherence length and frequency

does not provide enough smoothing and the images are noisy and unstable. There

is, therefore, a delicate balance between achieving stable and well resolved images,

which requires a robust estimation of the clutter dependent decoherence length and
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frequency.

In principle, the decoherence parameters can be determined directly from the

traces, with some good statistical signal processing. However, since these parame-

ters affect the quality of the image in such an important way, we should estimate

them during the image formation process with an optimization criterion that seeks a

compromise between smoothing and resolution. This leads to what we call adaptive

coherent interferometry, where during the formation of the coherent interferograms

we adapt the space-frequency segmentation of our data to obtain the best quality

image. Naturally, the effect of the clutter is felt in our final image, which is a blurred

version of the Kirchhoff migration image that one would obtain if the clutter were

absent. The point is, however, that through adaptive coherent interferometry we ob-

tain the sharpest stable images that we can get in clutter and the amount of blurring

can be quantified explicitly and diminished subsequently with a deblurring process

(Borcea et al., 2005a).

In this paper, we review our results in (Borcea et al., 2005b) in both coherent

and adaptive coherent interferometry, in two very different cluttered media: First,

we look at isotropic clutter with weak fluctuations of the wave velocity and long

propagation distances so as to have significant multiple scattering that is mostly

in the forward direction. We then consider the case of finely layered media with

strong backscattering of the waves by the layers. In both cases we find that adaptive

coherent interferometry works very well and gives much better images than the usual

(prestack) Kirchhoff migration. This suggests that this imaging method could be

used in general, whenever there is significant clutter.
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INTERFEROMETRIC IMAGING IN CLUTTER

Formulation of the problem

In the simplest case of imaging a point source at an unknown, underground loca-

tion y we suppose that a pulse

f(t) = e−iωotfB(t), (1)

of carrier frequency ωo and bandwidth B, is emitted from y and propagates to the

surface where we record the time traces of the acoustic pressure P ,

P (xr, t), xr ∈ A, t ∈ [tm, tM ], r = 1, . . .N, (2)

at an array A of N transducers, over a time window [tm, tM ]. If we have many sources,

or a distributed one of support D, we take for simplicity the ideal situation of the

same pulse in equation 1 being sent simultaneously from all the source points, with

possibly variable intensity. In either case, we wish to image the support of the sources,

given the array data in equation 2.

When imaging reflectors, the pulse f(t) is sent from xs ∈ A, s = 1, . . . , NS, and

we record the scattered echoes

P (xr, t;xs), xr ∈ A, t ∈ [tm, tM ], r = 1, . . .N, (3)

at the array A on the surface. The inverse problem is to image the support of the

reflectors from the array data in equation 3. We base our imaging method on the

single scattering (Born) approximation of the waves by the unknown reflectors. We

do not, however, assume that only single scattering results from the clutter. In fact,

an important feature of our work is that we can image in cluttered environments in

regimes with significant multipathing, where the recorded traces have long and noisy

codas.
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The subsurface sound velocity c(x) consists of a smooth part co(x), that we assume

known, of the fluctuations (i.e., the clutter) that we do not know and we model as a

random process, and of the reflectors that we wish to image. We assume here that

the contrast between the reflectors and the known background profile co(x) is big

(infinite in the simulations considered in this paper) while the clutter fluctuations are

smaller (typically their strength is of the order of 3% for isotropic clutter and 30%

for the layered case).

If we do not know co(x), we can estimate it using, for example, the differential

semblance approach (Carazzone and Symes, 1991; Symes, 1991; Symes, 1993; Gock-

enbach, 1994; Stolk and Symes, 2003). Obviously, we cannot assume that we know the

clutter, and we cannot hope to estimate it in all its details. Instead, we think of the

clutter as a realization of a stationary random process with standard deviation σ and

correlation lengths (size of inhomogeneities) lx and lz in the cross-range and range di-

rections, respectively. Note that we use in this paper the terms cross-range and range

to refer to what is usually called lateral position and depth in exploration geophysics.

See Figure 3 for an illustration of an isotropic clutter, with lx = lz = 1.5 m, constant

mean sound speed co = 3 km/s and fluctuations strength σ = 3%. The size of the

domain is 270 m×270 m. Examples of horizontally layered media are given in Figure

8, where the fluctuations are stronger, σ = 30%, the cross-range correlation length lx

is infinite and the width of the layers is roughly lz = 30 m. The size of the domain is

6 km × 24 km.

Note that since our interest is in assessing the effect of the clutter on imaging, we

take a constant background co(x) = co and we avoid dealing with reflections at the

surface by using a perfect matching condition of the sound speed there.
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The interferometric imaging function and its connection to time reversal

In Kirchhoff migration we form an image by migrating traces, equation 2 or equa-

tion 3, to a search point ys where we expect that our sources or reflectors lie. As-

suming that the medium is smooth, that is, the speed changes over distances that are

long compared with wavelengths λ, we can use geometrical optics to migrate to ys.

Explicitly, we evaluate P (xr, t) at the travel time τ(xr,y
s), which in a homogeneous

medium with constant propagation speed co is |xr − ys|/co, and then sum over the

array to get the imaging function

IKM(ys) =
N∑

r=1

P (xr, τ(xr,y
s)) (4)

for passive array imaging. In case of reflection data, with illumination from location

xs in the active array A, we have

IKM(ys) =

N∑

r=1

P (xr, τ(xr,y
s) + τ(xs,y

s);xs). (5)

When the medium is cluttered but known, we can migrate by means of the

Green’s function G(x,ys, t) in the clutter. To simplify our arguments, let us assume

from now on that we image a small source at unknown location y. Extensions to

distributed sources and reflectors are straightforward and we show numerical results

for these cases later on. The migration by means of the Green’s function in clutter

gives

ITR(ys) =
∑

xr∈A

∫

|ω−ωo|≤B

dωP̂ (xr, ω)Ĝ(xr,ys, ω)

=
∑

xr∈A

∫

|ω−ωo|≤B

dωf̂B(ω − ωo)Ĝ(xr,y, ω)Ĝ(xr,ys, ω),
(6)

where hats denote Fourier transform and the bar indicates complex conjugate. The

function ITR(ys) represents the field at ys when the array time reverses the signals

received and re-emits them in the medium, so we call it the time-reversal function. It is

the ideal imaging function for two reasons: (1) it is usually self-averaging, especially in

broad-band regimes (Clouet and Fouque, 1997; Blomgren et al., 2002; Solna, 2002; Bal
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et al., 2002; Bal and Ryzhik, 2003; Fouque and Solna, 2003; Papanicolaou et al., 2004;

Fouque et al., 2005) and (2) it focuses much better in cluttered media1 (Fink, 1993;

Derode et al., 1995; Fink, 1997; Song et al., 1999; Fink et al., 2000; Blomgren et al.,

2002; Bal et al., 2002; Bal and Ryzhik, 2003), because by scattering from the clutter

the waves are distributed over a larger part of the medium, and behave as if they

came from a larger array. The function ITR is self-averaging because when ys is near

y there is significant random phase cancellation in the product Ĝ(xr,y, ω)Ĝ(xr,ys, ω)

and so, after integrating over the bandwidth, we get an efficient delay spread (coda)

reduction that leads to sharp and stable maxima at the support of the source.

The problem with ITR is that we do not know the clutter (i.e. G(xr,y
s, t)) in

detail. As a matter of fact, it is because we do not know the clutter that we model

it as a random process. Then, migrating the data in the homogeneous medium or

with some “approximation” of the Green’s function will not remove the coda and

the resulting images are noisy and unreliable. However, we can reduce the delay

spread without knowing the clutter by crosscorrelating nearby traces to produce the

interferograms, which we then migrate to the search location ys. This gives the

interferometric imaging point spread function

I INT(ys; Xd) =
∑

x
r′

, xr ∈ A

|x
r′

− xr | ≤ Xd

P (xr, t) ?t P (xr′,−t)|t=τ(xr ,ys)−τ(xr′ ,y
s) =

∑

x
r′

, xr ∈ A

|x
r′

− xr | ≤ Xd

∫

|ω−ωo|≤B

dω|f̂B(ω − ωo)|
2Ĝ(xr,y, ω)Ĝ(xr′,y, ω)e−iω[τ(xr ,ys)−τ(xr′ ,y

s)],

(7)

where we restrict the cross-range offset over which we calculate the interferograms

to the decoherence length Xd. If we crosscorrelate traces that are further apart, the

resulting interferograms are as noisy as the traces themselves, with little coherent

1This is true in most cluttered environments, but for example, in horizontally layered me-

dia, we do not get super-resolution because there is no cross-range diversity in the medium.
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structure. Smoothing is the process by which such crosscorrelations are excluded

from the interferometric imaging functional.

In view of the reciprocity of the Green’s functions, we note a striking similarity

between the time-reversal and the interferometric imaging functions in equation 6 and

equation 7. This allows us to identify the decoherence length Xd as the cross-range

focusing resolution in time-reversal. In cluttered media with rich cross-range diversity,

such as the isotropic clutter in Figure 3, the time-reversal focal spot is rather small,

certainly much smaller than most array apertures a (Fink, 1993; Derode et al., 1995;

Fink, 1997; Song et al., 1999; Fink et al., 2000; Blomgren et al., 2002; Bal et al.,

2002; Bal and Ryzhik, 2003). This means that interferometric imaging in clutter can

work only with interferograms over small cross-range offsets and this puts significant

limitations on its resolution, as we show next.

Resolution limits

It is well known that the range resolution of Kirchhoff migration images in a

uniform medium with sound speed co is proportional to the distance traveled by the

waves over the pulse width Tp ∼ π/B (Bleistein et al., 2001). Explicitly, we have range

resolution O (πco/B). The cross-range resolution is affected by the array aperture a

and it is O (πcoL/(Ba)), where L is the propagation distance (range) (Bleistein et al.,

2001). A more general way to estimate the resolution limits is presented in (Sheng

and Schuster, 2003).

In interferometric imaging in cluttered environments, it is not the array aperture

that determines the cross-range resolution. It is the decoherence length Xd. This

is because we cannot crosscorrelate traces that are further than Xd apart and get

a stable image. Therefore, the cross-range resolution in clutter is O (πcoL/(BXd))

(Borcea et al., 2003; Borcea et al., 2005b) and, as expected, in media with rich

cross-range diversity, the images are blurrier than what the deterministic Rayleigh
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resolution theory predicts.

Because the interferograms are crosscorrelations of nearby traces, over the whole

time interval, there is no direct arrival time information in I INT(ys) and the range

information is lost, unless we couple the interferometric imaging with an arrival time

analysis (Borcea et al., 2002a; Borcea et al., 2002b; Borcea et al., 2003). Range

resolution can also be retrieved by geometric triangulation, if large or multiple arrays

are available. However, in many cases there is a much more efficient way of recovering

range resolution. This is done by computing crosscorrelations of the traces locally in

time, as we do in coherent interferometry.

COHERENT INTERFEROMETRIC IMAGING IN CLUTTER

In order to recover range resolution in interferometric imaging, we segment first

the traces over time intervals of length Td and then we calculate correlations locally

in each time interval (Borcea et al., 2005b). This gives the coherent interferograms

that we then migrate to the search point ys.

Let Ωd = π/Td and introduce the notation x = (x⊥, z) that distinguishes between

the cross-range x⊥ and range z of an arbitrary point x in the three dimensional

space. Assuming a nearly flat surface, the transducer locations are xr = (x⊥
r , 0), so

we change our notation in the traces and travel times as P (xr, t) ; P (x⊥
r , t) and

τ(xr,y
s) ; τ(x⊥

r ,ys), for r = 1, . . . , N . We also introduce the midpoint and offset

variables

x⊥
r =

x⊥
r + x⊥

r′

2
, x̃⊥

r = x⊥
r′ − x⊥

r . (8)

The coherent interferometric (CINT) imaging function is defined by

ICINT(ys, Xd, Ωd)=

∫

|ω−ωo|≤B

dω

∫ Ωd

−Ωd

dω̃
∑

x⊥
r ∈A

∑

x
⊥
r′
∈A,|x̃⊥

r |≤Xd

P̂

(
x⊥

r −
x̃⊥

r

2
, ω −

ω̃

2

)
×

P̂
(
x⊥

r + x̃⊥
r

2
, ω + ω̃

2

)
exp

{
iω

[
τ

(
x⊥

r + x̃
⊥
r

2
,ys

)
− τ

(
x⊥

r − x̃
⊥
r

2
,ys

)]}
×

exp
{
i ω̃

2

[
τ

(
x⊥

r + x̃
⊥
r

2
,ys

)
+ τ

(
x⊥

r − x̃
⊥
r

2
,ys

)]}
.

(9)
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Note that x⊥
r sweeps the array aperture whereas x̃⊥

r is limited by the decoherence

length Xd. Similarly, ω sweeps the bandwidth while the offset frequency ω̃ is limited

by Ωd, which is a frequency decoherence parameter that is analogous to Xd.

Assuming that Xd is small when scaled by the range, we can linearize the phase

in equation 9 and write the time domain analogue of ICINT (Borcea et al., 2005b)

ICINT(ys, Xd, Td) =
∑

x⊥
r ∈A

∑

x
⊥
r′
∈A,|x̃⊥

r |≤Xd

∫

|t̄−τ(x̄⊥
r ,ys)|≤Td

dt̄

∫

|t̃−x̃⊥
r ·∇

x̄
⊥
r

τ(x⊥
r ,ys)|≤Tp

dt̃ ×

P (x̄⊥
r − x̃

⊥
r

2
, t̄ − t̃

2
)P (x̄⊥

r + x̃
⊥
r

2
, t̄ + t̃

2
),

(10)

where Td = π/Ωd is the decoherence time and Tp = π/B is the pulse width. Note

that equation 10 is not the exact transformation of equation 9, but rather its time

domain analog. This is because cutoffs in frequency become sinc kernels in the time

domain. In the numerical computations, we use the frequency domain version of the

coherent interferometric functional.

It is now clear that there are two key parameters in coherent interferometry: the

decoherence length Xd and the time segmentation Td or its reciprocal, the decoherence

frequency Ωd. How long should Td be? It should be long enough, to capture enough

delay spread in the traces and then compress it, by the correlation. Then, the coherent

interferograms will be smooth and their downward migration leads to stable results.

However, the smoothing by time averaging over the windows of size Td (see the

t̄ integral in equation 10) comes at the expense of range resolution, which is now

O(coTd) = O(πco/Ωd). Therefore, we should choose Td as short as possible in order

to get the best resolution and yet, maintain statistical stability. We explain how to

do this in the adaptive coherent interferometry section.

The cross-range resolution in coherent interferometry comes from the integration

over the time lag t̃ and it is the same as in interferometry, O(πLco/(BXd)).
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Numerical results for coherent interferometry in isotropic random media

We present in this section results of numerical simulations for imaging with an

active array configuration using the coherent interferometric functional. The numeri-

cal setup is shown in Figure 4 where the dimensions are given in terms of the central

wavelength λ0. To image we use a linear array of 185 transducers located at depth

2λ0 and at distance h = λ0/2 from each other. The object to be imaged is at range

L = 90λ0 and at zero cross-range, measured with respect to the center of the array.

It is composed of three non penetrable disks of diameter λ0. The distance between

the centers of these disks is d = 6λ0. To simulate imaging in a cluttered medium, the

scatterers are embedded in a heterogeneous background where the fluctuations in the

sound speed c(x) are modeled with random Fourier series that have mean c0 = 3 km/s

and two correlation functions: (i) a mono-scale Gaussian one,

R(x1, x2) = R(|x1 − x2|) = exp(−|x1 − x2|
2/(2l2)), (11)

with correlation length l = λ0/2 and (ii) a correlation function with a range of scale

sizes,

R(x1, x2) = R(|x1 − x2|) = (1 + |x1 − x2|/l)exp(−|x1 − x2|/l), (12)

where l = λ0. For large spatial frequencies, the spectrum of equation 12 has power law

behavior as is typical in multiscale random media, and thus it gives a good and simple

way to assess the effect of a range of scale sizes in the random medium (Uscinski,

1985).

The data recorded on the array correspond to the following experiment: One of

the array elements sends a probing pulse f(t) and the response of the medium is

recorded at all array elements. The pulse used is a time derivative of a Gaussian with

central frequency ω0/(2π) = 1 kHz and bandwidth 0.6− 1.3 kHz (measured at 6 dB).

With a mean propagation speed of 3 km/s the central wavelength is λ0 = 3 m. The

probing pulse is sent sequentially from three array elements: the central one, and two
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others located at cross-range 23λ0 and −23λ0, respectively.

To generate the data we solve the acoustic wave equation, formulated as a first

order in time velocity-pressure system, using a mixed finite element method (Bécache

et al., 2000). The propagation medium is considered to be infinite in all directions and

in the numerical computations a perfectly matched absorbing layer (PML) surrounds

the domain. On the boundary of the three disks we use homogeneous Dirichlet

boundary conditions.

In Figure 5 we show numerically generated data recorded at the array, when the

probing pulse is sent by the central array element. For comparison, we also show in

Figure 5 the time traces in a homogeneous medium. Note that in the homogeneous

medium (Figure 5-left) the multiple reflections that occur between the scatterers

are clearly visible while in the heterogeneous medium they are lost in the multiple

scattering due to the fluctuations of the background (Figure 5-center and right).

The traces for the other two probing sources look similar. The coherent interfer-

ometry images obtained for these data, using the functional equation 9, are presented

in Figure 6. The domain in which we display the image is a square of size 20λ0×20λ0

centered on the scatterers. The optimal decoherence parameters Xd and Ωd are chosen

using the algorithm described briefly in the adaptive coherent interferometry section.

As suggested by the theory, these parameters do not depend on the probing source lo-

cation (when the distance to the object is not changing) and thus we use the same Xd

and Ωd for the different illuminations in the same medium. In Figure 6 we illustrate

the results obtained using the left, central and right probing source. Finally, we show

in Figure 7 the results given by combining the three illuminations with appropriately

chosen weights.

We note that the numbers used in this example (central frequency and material

properties) are relevant for non-destructive testing applications. The numerical re-

sults however are non-dimensionalized with respect to the wavelength and one can

obtain a setup which is relevant for geophysics: a central frequency of 50 Hz in which
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case the wavelength is 60 m and the propagation distance is of the order of 6 km.

Numerical results for coherent interferometry in randomly layered media

We present in this section imaging results obtained using the coherent interfero-

metric functional in the case of a passive array in a randomly layered medium. Several

source configurations are considered, from the simple one source case, which gives us

a numerical estimation of the point spread function, to the more complex case of an

extended source.

In Figure 8 we show the basic setup used in the numerical experiments in randomly

layered media. The active object (source) to be imaged is embedded in a randomly

fluctuating background medium with constant density and only z dependent velocity.

More precisely, the variations of c(z) are simulated with a random Fourier series,

with mean c0 = 3 km/s and a Gaussian correlation function. The correlation length

is l = 30 m and we consider the case of strong fluctuations with strength σ = 30%.

Three realizations of the layered medium are shown in Figure 8.

The array is located near the surface, at depth 2λ0. It is composed of 41 trans-

ducers at distance h = λ0/2 from each other. The four source configurations we

consider are the following: (i) one source located at (0, 78), i.e., at range 78λ0 and at

zero cross-range measured with respect to the central array element, (ii) two sources

located at (0,78) and (4,74) (iii) two sources located at (0, 78) and (0, 74), (iv) four

sources located at (0, 74), (4, 74), (2, 78) and (−2, 78). All the dimensions of the

problem are given in terms of the central wavelength λ0 which is 300 m. For the

extended sources we assume that all the points in the support of the source emit

simultaneously at time t = 0 the same pulse f(t) which is the time derivative of a

Gaussian with central frequency ω0/(2π) = 10 Hz and bandwidth 6−13 Hz (measured

at 6 dB).

In Figure 9 we show numerically generated time traces recorded at the array, for
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one realization of the layered medium (the one shown on the left in Figure 8) and for

the four source configurations considered.

The images obtained with the coherent interferometric functional are presented

in Figure 10, where they are also compared with images obtained using Kirchhoff

migration.

We note that the coherent interferometric images are smoother than the ones ob-

tained with Kirchhoff migration, as the theory suggests. The parameter that controls

the smoothing in the image is Ωd (Xd is in this case the whole array aperture). Its

size quantifies a trade-off between stability and resolution of the image. In the results

shown in this section we use the optimal Ωd as determined by the algorithm described

in the adaptive coherent interferometry section. Assuming that Ωd depends on the

range and the random medium realization, we perform one estimation of Ωd for the

one source case and then use the same Ωd for the other source configurations, in the

same medium. In this example Ωd = B/6.

To illustrate the stability of the coherent interferometry we show in Figure 11 imag-

ing results obtained for three different realizations of the randomly layered medium

and for the configuration with four sources. In practice the decoherence frequency Ωd

is not very sensitive on the particular realization of the random medium considered.

In all the examples shown in Figure 11 Ωd ≈ B/6 with a variance of 5%. The ob-

tained image does not change significantly for small variations of Ωd. It does change,

however, for larger variations of Ωd as for Ωd = B one obtains the Kirchhoff migration

results and for Ωd very small one would obtain an overly smoothed image.

Let us first note that the random shift in range is as predicted by the well known

O’Doherty-Anstey theory (O’Doherty and Anstey, 1971). This shift seems to be

constant along the array elements in these experiments as the array aperture is small

compared to the range. Note also that different shifts are observed for different

realizations of the layered medium. The trade-off between stability and resolution

is clearly seen in Figure 11. The images obtained using coherent interferometry are

16



consistently good and the four sources are reconstructed with the same quality in

resolution for all the realizations of the random medium. However, for Kirchhoff

migration the reconstruction depends on the realization of the layered medium. A

good and tight image is obtained, for example, for the second realization of the random

medium (right image, first row) as opposed to the other two where the sources in the

back are poorly reconstructed.

ADAPTIVE COHERENT INTERFEROMETRY

The coherent interferometric functional equation 9 depends in an essential way

on the choice of the smoothing or coherence parameters Xd and Ωd. We see this

clearly in the numerical simulations shown in Figure 12 for the isotropic random

medium, and Figure 10 and 11 for randomly layered media. This is particularly clear

in Figure 12 where we see the way the choice of Xd and Ωd quantifies the trade-off

between statistical stability and blurring. When there is no smoothing, as in Kirchhoff

migration on the top in Figure 12, the images depend on the realization of the random

medium (top left and right in Figure 12). No smoothing means that Ωd = B, the

full bandwidth, and Xd = a, the full array, in equation 9. This makes the coherent

interferometric functional equation 9 simply the square of the Kirchhoff migration

functional equation 5. When there is too much smoothing, that is, Xd and Ωd are too

small, then there is too much blurring as on the bottom in Figure 12. Note, however,

the statistical stability of the blurred image in this case, for there is little difference

between the blurred images for the two realizations (bottom left and right in Figure

12). When the smoothing or decoherence parameters Xd and Ωd are chosen optimally

then we get statistically stable images that are blurred minimally, as shown in the

central panel of Figure 12.

How do we select the smoothing or decoherence parameters Xd and Ωd so as to get

the optimal trade-off between statistical stability and blurring? There are many ways

17



to do this, and we experimented with several possibilities. We have found that (a) the

selection of Xd and Ωd should be done based on the image as it is being formed, and

(b) a feature preserving norm should be used, such as the bounded variation or the

entropy. In our work we use the bounded variation (BV) norm of the image function

(Giusti, 1984)

||ICINT(·, Xd, Ωd)||BV =

∫

D

|∇ICINT(ys, Xd, Ωd)|dy
s+

∫
D|ICINT(ys, Xd, Ωd)|dy

s (13)

where the integration is done over a suitable region D around the object to be imaged

and where ICINT is normalized by its maximal value in D. In practice, region D is

a few wavelengths in diameter (20λ in the examples considered in this paper). The

smoothing parameters are chosen iteratively to minimize this norm. In this way large

scale features of the image are preserved, and the BV norm is essential for this, while

the noise is smoothed out. This is a new way to use the bounded variation norm in

imaging, or more accurately in image formation. It is very commonly used in image

deblurring, which is something that can be done here too (Borcea et al., 2005a) once

a stable-but-blurred image is formed, as in Figure 12 at center. But the use of the

bounded variation norm to smooth Kirchhoff migration with coherent interferometry,

as in equations 9, 13, is new and seems to be quite effective.

To solve the minimization one can use a code such as steepest descent. In the

results presented in this paper, however, we used the NOMADm software package

(Audet and Dennis, 2003; Abramson, 2002) for constrained, nonlinear, mixed variable

problems, that uses a mesh-adaptive direct search method. In practice, because the

BV norm may possess local minima, we first do some coarse grid search to find out

from where to start the minization algorithm.

We note that in the case of isotropic clutter the resolution of the coherent inter-

ferometry depends on Xd and not on the actual array size. We have shown in (Borcea

et al., 2005b) that the sum x⊥
r ∈ A has an influence only on the stability of the image

and not on its resolution. Moreover, what appears to be more important for the sta-
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bility is the averaging over frequency provided by the integral |ω − ω0| ∈ B. We may

conclude, therefore, that the size of the array is not so important when imaging in

isotropic clutter. In the layered case, however, Xd is infinite so the array size becomes

important.

CONCLUSIONS

We have shown that the coherent interferometric functional, along with an op-

timal selection of the smoothing parameters Xd and Ωd that minimize the bounded

variation norm of the interferometric image, gives very good results in cluttered en-

vironments. At the same time, the optimal smoothing parameters characterize the

resolution of the image obtained in a direct and simple manner. The range resolution

is proportional to co/Ωd and the cross-range resolution is proportional to coL/(BXd).

This is to be contrasted with the resolution in Kirchhoff migration in a homogeneous

medium where we have range and cross-range resolutions proportional to co/B and

coL/(Ba), respectively. Since in cluttered media the decoherence frequency Ωd and

the decoherence distance Xd are usually much smaller than the bandwidth B and

the array size a, respectively, we see clearly the loss of resolution due to the clutter.

Moreover, it is with the image formation process itself, when using coherent interfer-

ometry, that we get the best estimates for these two parameters that characterize so

well the effect of the clutter on the image.
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FIGURES

Figure 1. Schematic for passive (left) and active array imaging(right)

Figure 2. Acoustic velocity profile measured in a well log.

Figure 3. An illustration, from ultrasonic non-destructive testing, of an isotropic

cluttered medium. The speed of the waves in the clutter varies randomly about the

constant value of 3 km/s. The vertical and horizontal axes are range and cross-range

in units of carrier wavelength λo.

Figure 4. The computational setup. The dimensions of the problem are given in

terms of the central wavelength λ0. The array elements are indicated by the tiny

boxes at the top.

Figure 5. Time traces recorded on the array in a homogeneous background (left)

and in random background medium with standard deviation σ = 3% and correlation

function equation 11 (middle) and equation 12 (right). The horizontal axis is array

transducer location scaled by λ0 and the vertical is time scaled by the pulse-width.

Figure 6. Coherent interferometric images for the three probing sources left, central

and right (from top to bottom) in a random medium with the Gaussian correlation

function (left column) and the multiscale correlation function (right column). The

vertical and horizontal axes are range and cross-range in units of carrier wavelength

λo. The true support of the scatterers is indicated by black dots.

Figure 7. Coherent interferometric images with optimal weigthing of the illumi-

nations. Left: medium with Gaussian correlation function and right: medium with

the multiscale correlation function. The vertical and horizontal axes are range and
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cross-range in units of carrier wavelength λo. The true support of the scatterers is

indicated by black dots.

Figure 8. The setup for the numerical simulations in a randomly layered medium. We

show on the left the extended source configuration, composed of four point sources lo-

cated at (0, 74), (4, 74), (2, 78), (−2, 78). The length units are in terms of the carrier

wavelength λo and the distance d is 4. The array is composed of 41 transducers at a

distance h = λ0/2 apart, with the central transducer located at point (0, 2). The two

other figures (middle and right) correspond to two other realizations of the layered

medium.

Figure 9. Traces recorded across the array from left to right: for a single source,

two sources one behind the other, two sources located at (0, 78) and (4, 74) and four

sources. The ordinate in the pictures is time scaled by the pulse-width and the ab-

scissa is the array element position in λ0.

Figure 10. Images obtained using Kirchhoff migration on the top row and CINT

on the bottom one. From left to right: single source, two sources one behind the

other, two sources located at (0, 78) and (4, 74) and four sources. The vertical and

horizontal axes are range and cross-range in units of carrier wavelength λo. The true

support of the sources is indicated by green dots.

Figure 11. Migration images of four sources for three realizations of the random

medium. Top: Kirchhoff migration. Bottom: Coherent Interferometry. The vertical

and horizontal axes are range and cross-range in units of carrier wavelength λo. The

true support of the sources is indicated by green dots.

Figure 12. Coherent Interferometry images in isotropic random media with s = 3%
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and Gaussian correlation function equation 11. Two different realizations are shown

in the left and right columns, with Kirchhoff migration on the top, coherent interfer-

ometry with optimal selection of Xd and Ωd in the middle, and sub-optimal selection

that smooths too much on the bottom. The vertical and horizontal axes are range

and cross-range in units of carrier wavelength λo. The true support of the scatterers

is indicated by black dots.
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Figure 1. Schematic for passive (left) and active array imaging(right)
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Figure 2. Acoustic velocity profile measured in a well log.
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Figure 3. An illustration, from ultrasonic non-destructive testing, of an isotropic clut-

tered medium. The speed of the waves in the clutter varies randomly about the constant

value of 3 km/s. The vertical and horizontal axes are range and cross-range in units of

carrier wavelength λo.
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Figure 4. The computational setup. The dimensions of the problem are given in terms

of the central wavelength λ0. The array elements are indicated by the tiny boxes at the

top.
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Figure 5. Time traces recorded on the array in a homogeneous background (left) and

in random background medium with standard deviation σ = 3% and correlation function

equation 11 (middle) and equation 12 (right). The horizontal axis is array transducer

location scaled by λ0 and the vertical is time scaled by the pulse-width.
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Figure 6. Coherent interferometric images for the three probing sources left, central and

right (from top to bottom) in a random medium with the Gaussian correlation function (left

column) and the multiscale correlation function (right column). The vertical and horizontal

axes are range and cross-range in units of carrier wavelength λo. The true support of the

scatterers is indicated by black dots.
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Figure 7. Coherent interferometric images with optimal weigthing of the illuminations.

Left: medium with Gaussian correlation function and right: medium with the multiscale

correlation function. The vertical and horizontal axes are range and cross-range in units of

carrier wavelength λo. The true support of the scatterers is indicated by black dots.
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Figure 8. The setup for the numerical simulations in a randomly layered medium. We

show on the left the extended source configuration, composed of four point sources located

at (0, 74), (4, 74), (2, 78), (−2, 78). The length units are in terms of the carrier wavelength

λo and the distance d is 4. The array is composed of 41 transducers at a distance h = λ0/2

apart, with the central transducer located at point (0, 2). The two other figures (middle

and right) correspond to two other realizations of the layered medium.
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Figure 9. Traces recorded across the array from left to right: for a single source, two

sources one behind the other, two sources located at (0, 78) and (4, 74) and four sources.

The ordinate in the pictures is time scaled by the pulse-width and the abscissa is the array

element position in λ0.
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Figure 10. Images obtained using Kirchhoff migration on the top row and CINT on

the bottom one. From left to right: single source, two sources one behind the other, two

sources located at (0, 78) and (4, 74) and four sources. The vertical and horizontal axes are

range and cross-range in units of carrier wavelength λo. The true support of the sources is

indicated by green dots.
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Figure 11. Migration images of four sources for three realizations of the random medium.

Top: Kirchhoff migration. Bottom: Coherent Interferometry. The vertical and horizontal

axes are range and cross-range in units of carrier wavelength λo. The true support of the

sources is indicated by green dots.
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Figure 12. Coherent Interferometry images in isotropic random media with s = 3%

and Gaussian correlation function equation 11. Two different realizations are shown in the

left and right columns, with Kirchhoff migration on the top, coherent interferometry with

optimal selection of Xd and Ωd in the middle, and sub-optimal selection that smooths too

much on the bottom. The vertical and horizontal axes are range and cross-range in units

of carrier wavelength λo. The true support of the scatterers is indicated by black dots.
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