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Abstract. We introduce a space-time interferometric array imaging functional that

provides statistically stable images in cluttered environments. We also present a

resolution theory for this imaging functional that relates the space-time coherence

of the data to the range and cross-range resolution of the image. Extensive numerical

simulations illustrate the theory and address some implementation issues.
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1. Introduction

Broadband array imaging of acoustic sources in a known, homogeneous or slowly varying

background is done efficiently with Kirchhoff migration

IKM(~ys) =
∑

~xr∈A

P (~xr, τ(~xr, ~y
s)) (1.1)

where P (~xr, t) are time traces of the signals emanating from the sources and recorded

by a passive array A with receivers located at ~xr. The imaging functional IKM(~ys) is

evaluated at a search point ~ys in the domain of the object to be imaged, and τ(~xr, ~y
s)

is the travel time from ~xr to ~ys. In a homogeneous medium it is distance over the

propagation speed c0, τ(~xr, ~y
s) = |~xr − ~ys|/c0. If a localized source around ~y emits a

short pulse then the functional IKM(~ys) will have a sharp peak when the search point

~ys is near ~y. From the location of this peak we get an estimate of the unknown source

location ~y, which is why IKM(~ys) is an imaging functional. When the array is active

then the reflectors to be imaged will produce echoes that are recorded at the array as

time traces P (~xs, ~xr, t), where ~xs denotes the probing signal source location in the array

and ~xr are the recorder locations. Kirchhoff migration is now done with the functional

IKM(~ys) =
∑

~xs,~xr∈A

P (~xs, ~xr, τ(~xs, ~y
s) + τ(~xr, ~y

s)), (1.2)
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which will have a peak when ~ys is near a reflector, thereby providing an estimate of its

location.

The Kirchhoff migration functionals and their numerous variants have been used

successfully in many applications in seismic imaging [9, 21], in non-destructive testing

[17, 38], in radar [29, 15, 39] and elsewhere. Some of the variants that have been

considered are (a) special array configurations such as zero-offset or synthetic aperture

arrays in which ~xs = ~xr [24, 9], (b) selective scatterer illumination using the singular

value decomposition [32], (c) iterated application of Kirchhoff (or full wave) migration

to capture nonlinear effects in the inversion, usually in homogeneous media and with

monochromatic data [23], and many others. While many studies consider imaging in

homogeneous media, migration applies also to smooth, variable velocity backgrounds.

In this case a velocity estimation process must be carried out [21, 19, 48, 47]. The

mathematical analysis of the imaging functionals (1.1) and (1.2), for large arrays and

broadband data, is carried out in [9, 8, 49]. We review briefly the resolution theory for

(1.1) in this paper, in Appendix A.

It has been known for a long time that if the objects to be imaged are in a richly

scattering environment then Kirchhoff migration does not work well. This is because the

echo from a reflector does not appear as a clean peak in the signals recorded at the array

but has instead a lot of delay spread, or coda, that is generated by the inhomogeneous

medium (as in Figure 6 below). Consequently, Kirchhoff migration leads to unreliable

images that change unpredictably with the detailed features of the clutter. The purpose

of this paper is to address this problem of imaging in inhomogeneous or cluttered media.

1.1. Matched field imaging

One way to deal with the delay spread that clutter introduces is to compute the cross

correlations of the time traces at the array and to migrate them, instead of migrating the

traces themselves as in (1.1) and (1.2). This idea is the basis for imaging with matched

field functionals [18, 1, 35]. There are many variants for this method depending on

what is known or can be estimated about the background from the data by techniques

similar, for example, to the ones used for velocity estimation in Kirchhoff migration.

Here, we suppose that we know the smooth part of the background velocity, which we

take as constant for simplicity, but we do not know the rapidly fluctuating part (the

clutter). If we knew the rapid fluctuations of the velocity, then we would effectively

know the Green’s function of the clutter and we could migrate the data with it, rather

than with travel times in a homogeneous medium. This is the same as doing physical

time reversal [30, 31, 25, 32, 44, 37], which is known to have focusing properties that

are much better than the ones in homogeneous media, and provides, therefore, better

resolution when used for imaging in clutter than what Kirchhoff migration gives in the

corresponding homogeneous medium. The catch is, of course, that we do not know
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the Green’s function of the cluttered medium, and it does not help if we know it only

approximately because the effective removal of the delay spread in the data requires that

we reconstruct accurately with migration the multiple scattering that produced it. The

essential point in migrating cross correlations of the data is that they tend to reduce

the delay spread and to enhance the peaks from the reflectors that we want to image,

without knowing anything about the clutter itself. The underlying assumption here is

that what we want to image has some regular structure that is encoded in the array

data while the clutter is irregular so that the delay spread in the data looks random. It

is therefore natural that when modeling the data and the imaging process, we use wave

propagation in random media in order to capture clutter effects.

Enhanced spatial focusing in physical time reversal in random media [26, 27, 25]

and the realization that it is statistically stable [10] in broadband regimes motivated

us to carry out a theoretical study of the imaging resolution of matched field functionals

in random media [11]. Statistical stability means that the physical time reversal process

is self-averaging with respect to the random fluctuations in the medium properties, the

clutter. This is not true in narrowband regimes because the interference patterns that

form near the point of focusing, the speckle patterns, do not average out as they do

in broadband regimes. Enhanced focusing in time reversal means that the cross range

resolution is λ0L/ae where λ0 is the central wavelength, L is the range and ae(L) is the

effective aperture of the array that is typically larger than the physical aperture a

and depends on the random medium as well as the range [10, 11]. The focal spot size

λ0L/ae in time reversal is therefore smaller in random media than in homogeneous ones

where it is given by the Rayleigh formula λ0L/a [16].

We showed in [11] that when we do not know the random medium, so that we cannot

image with time reversal and image instead with a matched field functional, which is also

called interferometry, the cross-range resolution is equal to ae(L). This is much worse

than in time reversal but it is the best that can be done when the random medium is

not known. We have thus two imaging functionals with extreme cross-range resolutions:

time reversal that uses full knowledge of the actual realization of the random medium

and matched field that uses no knowledge at all. Both time reversal and matched field

imaging are statistically stable, which is a key property for successful imaging, while

Kirchhoff migration is not.

1.2. Coherent interferometry

While interferometric or matched field imaging provides the best statistically stable

cross-range resolution that is possible with no knowledge of the random medium, it

provides no range resolution at all. To get range resolution with it we must either have

large arrays or several arrays widely separated from each other, so that we can use what

is essentially geometric triangulation [11]. The main result of this paper is to introduce
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a more general class of imaging functionals, the coherent interferometric functionals,

and to give a resolution theory for them that is a natural extension of the one in [11].

The main idea is to compute the cross correlations of the traces locally in time, and not

over the whole time interval, and to migrate them. By segmenting the traces into time

intervals and calculating the correlations locally in each interval we get range resolution

that is of the order of the time intervals multiplied by the propagation speed c0. The

shorter the time intervals the better the range resolution. In a homogeneous medium

they can be as short as the width Tp of the probing pulse. Depending on the shape

of the pulse and the way its width is defined, Tp is equal to a constant multiplied by

the reciprocal bandwidth B−1, which we denote by Tp ∼ B−1. This way we see that

the range resolution in a homogeneous medium is c0B
−1. We do not consider here the

issue of how to choose optimally the shape of the pulse beyond fixing its bandwidth

appropriately.

How large should the time segments be when there is delay spread? They should

be of the order of the delay spread Td. They should not be smaller because then

the correlations will not capture the delay spread and compress it, leading therefore

to unstable images. And they should not be larger because then we will lose range

resolution. If the local cross correlations of the traces are computed correctly, the range

resolution in coherent interferometric imaging will be c0Td. We show in Section 3 that the

reciprocal of Td is proportional to the decoherence frequency of the traces, Ωd. Since

Td > Tp we have that Ωd < B, so range resolution in random media is proportional

to c0Ω
−1
d and is worse than c0B

−1, the resolution in homogeneous media. We show

in Section 5 that expression c0Ω−1
d for the range resolution can be derived from first

principles for a large class of random media.

What about the cross-range resolution? By analogy to Ωd we introduce the

decoherence length Xd which is the distance between traces on the array over which

they become uncorrelated. We show in Section 3 that the cross-range resolution in

coherent interferometry is λ0L/Xd. This is worse than the Rayleigh resolution in a

homogeneous medium λ0L/a, because Xd ≤ a, in general. We will also see in Section 3

that the decoherence length Xd is comparable to the focal spot size in time reversal, so

that Xd = λ0L/ae. If we use this expression for Xd in the cross-range resolution formula

λ0L/Xd we see that it equals ae, which is the matched field cross-range resolution that

was derived in [11]. We show in Section 5 that this cross-range resolution can be derived

from first principles for a large class of random media.

This resolution theory for coherent interferometry in random media is the main

result of this paper.
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1.3. Outline of the paper

In Section 2 we state more precisely the imaging problem for passive and active arrays.

All of the analytical results in this paper are carried out only for passive array imaging.

The active array analysis is in principle very similar but does not follow directly

from the passive one and will be presented elsewhere. In Section 3 we introduce

the coherent interferometric functional, discuss its properties and compare it to other

imaging functionals. Our extensive numerical simulations, for both active and passive

arrays, are presented in Section 4. The resolution analysis is given in Sections 5 and

6, and it is followed by a brief Section 7 summarizing the results. In Appendix A we

review briefly the well known resolution analysis of the Kirchhoff migration functional

(1.1) and in Appendix B we give for completeness the derivation of the two-frequency

moment formula that we use in the resolution analysis of Sections 5 and 6.

2. The array imaging problem

In Section 2.1 we introduce the forward model for imaging a point or a distributed

source with a passive array of receivers in a cluttered environment. We also state the

inverse problem of imaging the source location or the source density. In Section 2.2 we

give the Born approximation model for imaging with an active array a point reflector

or reflectors with distributed reflectivity. We also state the inverse problem of imaging

the reflector location or the distributed reflectivity.

We use the term array imaging throughout because we assume that the transducer

locations ~xr are close enough, less than half a central wavelength apart, so that the

radiation field of the array is essentially that of an aperture whose size is determined by

the number of transducers.

2.1. Imaging in clutter with a passive array

In the schematic in Figure 1 a point source at ~y? emits a signal that is recorded by an

array of receivers located at ~xr. The signal is an initially spherical wave convolved with

the pulse function

f(t) = e−iω0tfB(t), (2.3)

where ω0 is the carrier frequency and 2B is the bandwidth of

f̂(ω) =

∫ ∞

−∞
ei(ω−ω0)tfB(t)dt = f̂B(ω − ω0). (2.4)

The Fourier transform of the baseband pulse f̂B is assumed to have support in the

interval [−B,B]. We will refer to B, rather than to 2B, as the bandwidth. The wave
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Array of transducers

~y?

f(t)

~xr

Figure 1. Schematic for the data acquisition by a passive array of receivers

propagates through a random medium and its amplitude at ~xr is given by the time

convolution of the pulse with the Green’s function

P (~xr, t) = e−iω0tfB(t) ? G(~xr, ~y?, t). (2.5)

In the frequency domain we have

P̂ (~xr, ω) = f̂B(ω − ω0)Ĝ(~xr, ~y?, ω). (2.6)

Here Ĝ is the outgoing Green’s function of the reduced wave equation

∆Ĝ(~x, ~y?, ω) + k2n2(~x)Ĝ(~x, ~y?, ω) = δ(~x − ~y?) (2.7)

in the random medium, where k = ω/c0 is the wavenumber. The index of refraction

n(~x) = c0/c(~x) is assumed to be a statistically homogeneous random process so that

n2(~x) = 1 + σ0µ

(
~x

l

)
. (2.8)

The mean of n2(~x) is one and the normalized fluctuation process µ is a stationary and

isotropic random field that is bounded and has rapidly decaying covariance

R(~x) = R(|~x|) = 〈µ(~x + ~x′)µ(~x′)〉 . (2.9)

Normalization here means that R(0) = 1 and
∫

R3

〈µ(~x)µ(0)〉d~x = 1

so that l is the correlation length and σ0 the standard deviation of the fluctuations

of n2(~x). This is a simple, mono-scale model for the random medium fluctuations

that allows for a relatively simple theoretical discussion. Imaging in a random medium

is influenced significantly by the properties of the fluctuation process, but we will not

consider this issue here. We will also not consider slowly varying backgrounds or random
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fluctuations that are statistically inhomogeneous. As we explain in Section 3.4, when

we use the coherent interferometric functional (3.21) and can determine adaptively the

smoothing or decoherence parameters Xd and Ωd in a stable way, then we can image in

the random medium which produced the noisy array data even though we do not know

anything about this random medium and how to model it. It is only when we want to

have a resolution theory in which the smoothing parameters are determined from first

principles that a detailed model for the fluctuations is needed.

Equation (2.5) relates the field amplitude recorded at the array to the source

location ~y?, so it is the forward model equation. The inverse problem for a point source

is to find the location ~y? of the point source given measurements P (~xr, t) at points ~xr

on the array.

Array of transducers

~y

~xr

D

Figure 2. Schematic for passive array data from a distributed source in D.

For a continuous distribution of sources in D (see figure 2) that emit the same signal

simultaneously, the recorded data at the array are modeled by

P (~xr, t) =

∫

D
ρ(~y)e−iω0tfB(t) ? G(~xr, ~y, t)d~y, (2.10)

where ρ(~y) is the source density in D. The inverse problem for the distributed source

is to find ρ(~y), and its support D in particular, from the data P (~xr, t) at the array.

2.2. Imaging with an active array

In Figure 3 we show a schematic for imaging with an active array, distributed reflectors

of reflectivity ρ(~y), occupying a region D. The array is active because it emits pulses

(2.3) from transducers at ~xs ∈ A and records the echoes with receivers at ~xr ∈ A.

We model the recorded field amplitudes using the Born approximation for scattering
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Array of transducers

~xs

D

~xr

~y

Figure 3. Schematic for imaging with an active array distributed reflectors in D.

between reflectors, but allow for full multiple scattering by the random medium. In the

frequency domain the model amplitudes are given by

P̂ (~xs, ~xr, ω) = k2f̂B(ω − ω0)

∫

D
d~yρ(~y)Ĝ(~y, ~xs, ω)Ĝ(~xr, ~y, ω). (2.11)

The forward model for the array data is thus a random linear transformation of the

reflectivity ρ(~y). It is random because the Green’s functions are the ones for the random

medium (2.7). The inverse problem is to estimate the reflectivity ρ(~y), and its support

D in particular, from data recorded at the array.

In the numerical simulations that we show in Section 4 we use only one illuminating

transducer for computational simplicity.

It is important to explain why when imaging in a cluttered environment the Born

approximation model (2.11) is quite sufficient. This is because when the random

inhomogeneities have a strong enough effect, the information from multiple scattering

between reflectors is completely lost in the delay spread in the data. This is very clearly

seen in Figure 6. The top right plot shows the recorded traces, with central illumination,

from three small reflectors. In addition to the three prominent hyperbolas that come

from the direct reflections, there are several fainter hyperbolas that come from multiple

scattering between the three reflectors. The bottom right plot in Figure 6 shows what

happens when there is clutter. The delay spread in the data obliterates the fainter

hyperbolas. Whatever image we do get will come only from the direct reflections, which

is what the model (2.11) contains.

3. Statistically stable imaging in clutter

The reason that the Kirchhoff migration functionals (1.1),(1.2) do not image well when

there is clutter, which we model with a random medium, is because we back propagate
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the recorded data in a deterministic, homogeneous or slowly varying medium. Ideally,

we would like to back propagate in the real medium, as in time reversal. However, we do

not know the randomly fluctuating background. We may know its statistical properties,

but we do not know its actual realization, which is what is needed if we are to back

propagate in it.

For a point source located at ~y? the signal received by the array at ~xr is modeled

in the frequency domain by

P̂ (~xr, ω) = f̂B(ω − ω0)Ĝ(~xr, ~y?, ω), (3.12)

where Ĝ(~x, ~y, ω) is the Green’s function in the random medium, that is, the solution of

the random Helmholtz equation (2.7). The Kirchhoff migration functional (1.1), which

we write again with the full deterministic Green’s function for the back propagation,

has the form

IKM(~ys) =
∑

~xr∈A

∫

|ω−ω0|≤B

dω P̂ (~xr, ω)Ĝ0(~xr, ~ys, ω), (3.13)

When we substitute the expression (3.12) for P̂ (~xr, ω) in (3.13) we get

IKM(~ys) =
∑

~xr∈A

∫

|ω−ω0|≤B

dω f̂B(ω − ω0)Ĝ(~xr, ~y?, ω)Ĝ0(~xr, ~ys, ω), (3.14)

The main difference between this expression and Kirchhoff migration in a homogeneous

medium (A.7), as reviewed in Appendix A, is that the phase cancellation that occurs in

the deterministic case when ~ys is close to the unknown source location ~y?, does not occur

in (3.14). The random phase of Ĝ(~xr, ~y?, ω) cannot be canceled with the deterministic

phase of Ĝ0(~xr, ~y
s, ω) so as to produce a peak in the Kirchhoff migration functional from

which the source location ~y? can be estimated. This is seen clearly in the numerical

simulations described in Section 4 and in Figure 8 in particular. What is also seen in

that figure is that for different realizations of the same random medium the Kirchhoff

migration functional produces very different images when the random fluctuations are

significant. This is the phenomenon of statistical instability that comes from the

random phase of Ĝ(~xr, ~y?, ω) in (3.14). The Kirchhoff migration functional (3.14) is

therefore unsuitable for imaging in clutter.

Can we find an imaging functional that can, when there is clutter, produce

an estimate of the unknown source location ~y? from the array data {P (~xr, t)} in a

statistically stable way? The image will, of course, be blurred by the clutter. However,

we want this blurred image to be statistically stable, that is, the sought after imaging

functional must be self-averaging with respect to the realizations of the random

medium. The image that is formed by a self averaging imaging functional can then

be processed further by deblurring methods, as we show in a companion paper [12]. In

the next sections, we consider three different types of self-averaging functionals. They

are: time reversal functionals, incoherent interferometric or matched field functionals,

and coherent interferometric functionals.
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3.1. Imaging and time reversal in random media

If we know the random medium between the array and the vicinity of the unknown

source, that is, if we know the random Green’s functions Ĝ(~xr, ~y, ω) for ~xr ∈ A and ~y

near ~y?, then we can image with the time reversal functional

ITR(~ys) =
∑

~xr∈A

∫

|ω−ω0|≤B

dω P̂ (~xr, ω)Ĝ(~xr, ~ys, ω). (3.15)

It is called the time reversal functional because it also represents the field near the

source ~y?, when the array time-reverses the signals received and re-emits them into the

(random) medium from which they came. This is physical time reversal [30, 31, 32].

It becomes an imaging functional if we know the random Green’s functions, because

then (3.15) can be computed numerically from the array data. The time reversal

functional ITR(~ys) is usually self-averaging, especially in broadband regimes [10], and

has better focusing properties in random media than in homogeneous media. Note that

ITR in homogeneous media is identical to the Kirchhoff migration functional IKM. The

enhanced focusing of time reversal in random media is called super resolution [26, 27, 25],

and it has been analyzed in detail in [10]. The super resolution phenomenon is due

to scattering that enhances the angular diversity of the back propagated waves near

the source, making the focal spot tighter than in a homogeneous medium. Statistical

stability is the result of good phase cancellation when the random Green’s function is

used for back propagation, as can be seen from the theoretical expression of the time

reversal functional

ITR(~ys) =
∑

~xr∈A

∫

|ω−ω0|≤B

dω f̂B(ω − ω0)Ĝ(~xr, ~y?, ω)Ĝ(~xr, ~ys, ω). (3.16)

In both deterministic and random media the range resolution of ITR is c0/B, which

is the width of the pulse times the homogeneous propagation speed. The cross-range

resolution in deterministic media is L/(k0a) in narroband cases, as is well known [16],

and c0L/(Ba) (see Appendix A.1) in broadband regimes. In random media it can be

much better because the effective aperture ae of the array, a quantity that depends on

the random medium, can be much larger than the physical aperture a [25]. The cross-

range resolution for ITR in random media is L/(k0ae) in relatively narrowband regimes,

[10]. The dependence of the cross-range resolution on the bandwidth is discussed in

[11].

The problem with ITR as an imaging functional is, of course, that we do not know

the clutter. It is because we do not know it that we model it as a random medium. We

emphasize that knowing the random medium means knowing its particular realization

that generated the data recorded by the array. Knowing this realization roughly, or

knowing only its statistical properties, does not help and using such information for

imaging can have a negative effect on statistical stability and on image resolution.
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3.2. The matched field functional and incoherent interferometry

Even though we cannot use time reversal for imaging in clutter we would still like to

exploit the remarkable properties of ITR, its statistical stability and super-resolution

in order to image. One way to exploit statistical stability is with the matched field or

incoherent interferometric functional which we now introduce.

We want to avoid the random phase problems in Kirchhoff migration imaging so

we mimic physical time reversal by computing cross-correlations of data traces, the

interferograms

P (~xr, ·) ∗t P (~xr′,−·)(t) =

∫ ∞

−∞
P (~xr, s)P (~xr′, s− t)ds. (3.17)

We back propagate the interferograms in the homogeneous medium and then, we sum

over the array

I INT(~ys) =
∑

~xr ,~xr′

P (~xr, ·) ∗t P (~xr′,−·)|τ(~xr ,~ys)−τ(~xr′ ,~y
s). (3.18)

Interferometric methods for imaging are considered in the recent work of Schuster et al

[46], which contains many references to the seismic imaging literature, as well as in [42].

Interferometric functionals for imaging in clutter are used in [20].

The interferograms are self-averaging and in (3.18) we are doing what amounts

to differential Kirchhoff migration on the lag of the interferograms, which is the back

propagation of correlations of traces. In the frequency domain, I INT has the form

I INT(~ys) =

∫
dω

∣∣∣∣∣
∑

~xr

P̂ (~xr, ω)e−iωτ(~xr ,~ys)

∣∣∣∣∣

2

(3.19)

This is the form of a matched field functional [18, 1, 35, 28], especially when the

exponential of the travel time is replaced by the deterministic Green’s function

I INT(~ys) =

∫
dω

∣∣∣∣∣
∑

~xr

P̂ (~xr, ω)Ĝ0(~xr, ~ys, ω)

∣∣∣∣∣

2

(3.20)

Since we take absolute values in (3.20) we can achieve some random phase cancellation

for P̂ , and because we integrate over the bandwidth we can expect statistical stability.

We discuss this further in the next section.

The imaging properties of the interferometric functional I INT were analyzed in detail

in [11] along with the presentation of the results of numerical simulations. The main

shortcoming of I INT is that it provides essentially no range resolution at all, except by

geometric triangulation if the array is large enough or when more than one array is used.

The loss of range information can be seen clearly from (3.18) because the correlations are

taken over all time so that information about absolute arrival times is lost. It can also

be seen from (3.19) where an overall phase is lost, which accounts for the loss of range

information. Cross correlations of traces are done over the whole array in (3.18), even
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though they may be negligible when there is clutter unless the distance between ~xr and

~xr′ is small. The way to avoid this difficulty is to consider interferometric functionals

in which the time-trace correlations are constructed over specific time segments that

correspond to information arriving from specific ranges. This is an intuitively appealing

idea but it is not easy to implement because the time segmentation of the data must be

done properly or else the results will not be much better than when no segmentation is

used. There is a delicate trade off between segmentations with relatively short segments,

which provide good range resolution, while they are also long enough so that the local

correlations are statistically stable. We consider this basic issue in the next section.

There is another way to recover range resolution from broadband, active array

data when the targets to be imaged are in a cluttered environment but sufficiently well

separated. This is done with the singular value decomposition, matched field functionals

and an arrival times analysis. It is described in detail in [13, 14].

3.3. The coherent interferometric functional

We see from the frequency domain form of I INT in (3.19) that data at only one frequency

are used in constructing the functional, before doing the integration over the bandwidth.

If there are correlations between P̂ (~xr, ω1) and P̂ (~xr′ , ω2) for two different frequencies

ω1 and ω2, they are not used in I INT. This is another way of saying that correlations

are taken over all time in (3.18), rather than over time segments, as we will see later

in this Section. We will first consider the imaging functionals in the frequency domain

because this is the form we use in the analysis and numerical simulations. Then, we

shall rewrite them in the time domain as stacked, migrated trace correlations.

The key idea in constructing good imaging functionals in random media is to

realize that there are two intrinsic, and characteristic, parameters in the data P̂ (~xr, ω)

that determine in a decisive way the quality of the image that is formed. One is the

decoherence frequency Ωd, and the other is the decoherence length Xd. They

can be estimated in principle from the data P̂ (~xr, ω). The decoherence frequency is

the difference in frequencies ω1 and ω2 over which P̂ (~xr, ω1) and P̂ (~xr, ω2) become

uncorrelated. The decoherence length is the difference in transducer locations ~xr and

~xr′ over which P̂ (~xr, ω) and P̂ (~xr′ , ω) become uncorrelated. While the estimation of Ωd

and Xd is possible, it is by no means a simple task and it is best done adaptively, as the

image is formed. We will not discuss adaptive estimation techniques here, as this is the

subject of a forthcoming paper [12]. We will discuss however the effect of Ωd and Xd on

image formation and resolution.

The decoherence length Xd can be related simply to the cross-range focusing

resolution in time reversal, which as noted above is given by L/(k0ae). This is because

of the reciprocity of the random Green’s functions which allow us to identify cross

correlations of the data P̂ (~xr, ω) and P̂ (~xr′, ω) with focusing in time reversal, as in
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(3.16). We may, in fact, set Xd = L/(k0ae). This is an interesting expression because

it relates two important length scales, Xd and ae, that can be estimated, in principle,

from different data sets.

We now introduce the coherent interferometric functional

ICINT(~ys; Ωd, Xd) =

∫ ∫

|ω1−ω2|≤Ωd

dω1dω2

∑ ∑
|~xr−~xr′ |≤Xd

P̂ (~xr, ω1)P̂ (~xr′ , ω2)

e−i(ω1τ(~xr ,~ys)−ω2τ(~xr′ ,~y
s)) (3.21)

This functional depends on the parameters Ωd and Xd, which are not determined at first.

ICINT is equal to the square of the Kirchoff migration functional IKM (3.13) when Ωd = B

and Xd = a, that is, when there is no smoothing to account for the reduced coherence

in the data. In a deterministic medium this is appropriate because frequency coherence

of the traces persists over the bandwidth, as does spatial coherence of the traces across

the array. On the other hand, if the decoherence frequency is very short, Ωd ≈ 0, then

the coherent interferometric functional (3.21) reduces essentially to the incoherent one

(3.19), the matched field functional. We see, therefore, that (3.21) is a smoothed or

regularized version of the Kirchoff migration functional (3.13), in which the smoothing

or (statistical) regularization parameters are related to the intrinsic coherence of the

data. The interpretation of (3.21) as the back propagation of local trace correlations

will become clear from its time domain version.

Let us introduce a notation that we also use in Section 5. If range is measured

from a fixed point on the array, such as its center, then we write ~xr = (xr, 0). With this

notation, we also introduce the midpoint (sum) and offset (difference) variables:

xr = x̄ − x̃/2, xr′ = x̄ + x̃/2 (3.22)

as well as the sum or center frequency and the difference frequency variables

ω1 = ω̄ − ω̃/2, ω2 = ω̄ + ω̃/2 (3.23)

Here, the midpoint variable x̄ runs over all the recorder locations in the array A and

the offset variable runs over points for which xr and xr′ remain in the array. The center

frequency variable ω̄ runs over the bandwidth and the difference variable ω̃ is such that

ω1 and ω2 are inside the bandwidth.

Using the notation (3.22) and (3.23), we rewrite the coherent interferometric

functional (3.21) in the form

ICINT(~ys; Ωd, Xd) =

∫

|ω̄−ω0|≤B

dω̄
∑

x̄∈A

∫

|ω̃|≤Ωd

∑

|x̃|≤Xd

P̂ (x̄ − x̃

2
, ω̄ − ω̃

2
)P̂ (x̄ +

x̃

2
, ω̄ +

ω̃

2
)

eiω̄[τ(x̄+ x̃

2
,~ys)−τ(x̄− x̃

2
,~ys)]e

iω̃
2

[τ(x̄− x̃

2
,~ys)+τ(x̄+ x̃

2
,~ys)] (3.24)

where we do not show, for simplicity, edge restrictions in the range of the difference

variables x̃ and ω̃. Let us assume that the difference variables are small. We can then
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simplify the exponents in (3.24) to get

τ(x̄ +
x̃

2
, ~ys) − τ(x̄ − x̃

2
, ~ys) ≈ ∇x̄τ(x̄, ~ys) · x̃ (3.25)

and
1

2
[τ(x̄ − x̃

2
, ~ys) + τ(x̄ +

x̃

2
, ~ys)] ≈ τ(x̄, ~ys). (3.26)

If we now define the time-frequency and space-wavenumber, smoothed Wigner function

of the data

WD(x̄,p, t̄, ω̄; Ωd, Xd) =

∫

|ω̃|≤Ωd

dω̃
∑

|x̃|≤Xd

P̂ (x̄− x̃

2
, ω̄− ω̃

2
)P̂ (x̄ +

x̃

2
, ω̄ +

ω̃

2
)ei(p·x̃+t̄ω̃)(3.27)

we can write the coherent interferometric functional (3.21) in the simplified form

ICINT(~ys; Ωd, Xd) =

∫

|ω̄−ω0|≤B

dω̄
∑

x̄

WD(x̄, ω̄∇x̄τ(x̄, ~ys), τ(x̄, ~ys), ω̄; Ωd, Xd) (3.28)

It is important to note here that the smoothed Wigner function of the data (3.27) is

not statistically stable. Summing over the array and especially over the bandwidth is

what makes the coherent interferometric functional (3.28) statistically stable.

It is interesting to write the analog of the coherent interferometric functional (3.28)

in the time domain. This is easily done by inverting the Fourier transforms and then

doing the smoothing or regularization in the time domain. The result is

ITCINT(~ys;Td, Xd) =
∑

x̄∈A

∑

|x̃|≤Xd

∫

|t̄−τ(x̄,~ys)|≤Td

dt̄

∫

|t̃−∇x̄τ(x̄,~ys)·x̃|≤Tp

dt̃

P (x̄ − x̃

2
, t̄− t̃

2
)P (x̄ +

x̃

2
, t̄+

t̃

2
) (3.29)

where Td = π/Ωd is the decoherence time and Tp = π/B is the pulse width. Note that

ITCINT is not the exact transformation of (3.28), but rather its time domain analog. This

is because cutoffs in frequency become sinc kernels in the time domain. We have used

cutoffs in the time domain to underscore the parallel form that ICINT and ITCINT have.

In the analysis and in the numerical computations of Section 4, we use the frequency

domain version of the coherent interferometric functional.

We can now compare the coherent interferometric functional (3.29) to the matched

field functional (3.18). First, in (3.17), we have to integrate the variable t̄ over all

time, as in (3.29). Then, (in 3.18), we have to evaluate the variable t̃ at ∇x̄τ(x̄, ~ys) · x̃,

omitting the integration. This evaluation of t̃ corresponds to the differential migration

in (3.18), that is, the evaluation of the cross correlation at the difference of the travel

times. The integration over t̃ in (3.29) has no analog in (3.18). Finally in (3.18), we

have to integrate over all x̃, without restricting its length to be less than Xd, as is done

in (3.29). However, the main feature of the coherent interferometric functional (3.29) is

that trace correlations are computed locally in time. This affects the range resolution

in an essential way as we discuss next.
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3.4. Model independent resolution limits for coherent interferometry

The time domain version (3.29) of the coherent interferometric functional is particularly

well structured for doing a rough but basic resolution estimation. If the search point

~ys is close to the source ~y? then the uncertainty in range will come from the width of

the time interval used for calculating the correlations, |t̄ − τ(x̄, ~ys)| ≤ Td. This means

a rough estimate of the range resolution σR
R in a random medium is

σR
R = c0Td =

πc0
Ωd

(3.30)

where we have used the relation Td = π/Ωd that relates the decoherence time to the

decoherence frequency and the fact that travel time is range over propagation speed.

In the deterministic case, Ωd = B, the full bandwidth, so the range resolution is given

by σD
R = πc0/B. This agrees with the results of the Kirchhoff migration functional in

Appendix A.1.

We can get a rough estimate of the direction of arrival resolution σR
DOA from the

range of integration of the time lag t̃ in (3.29). Since x̃ is bounded in length by Xd, the

direction of arrival c0|∇x̄τ(x̄, ~ys)| is bounded by πc0/(BXd) so that

σR
DOA =

πc0
BXd

(3.31)

The cross-range resolution σR
CR is then given by LσR

DOA

σR
CR =

πc0L

BXd
(3.32)

When there is no randomness and Xd = a, the full array size, then the cross-range

resolution is the same as the one we obtain from the analysis of the Kirchhoff migration

functional in Appendix A, σD
CR = πc0L

Ba
.

In Section 5 we will analyze in detail, and from first principles, the coherent

interferometric functional (3.28) for a particular class of random media and in a

particular scaling regime. The result of this analysis is that the rough range and

cross-range resolution estimates (3.30) and (3.32) are, in fact, correct. We also show

in Section 5 how the decoherence frequency and length, Ωd and Xd, respectively, are

related to the statistical properties of the fluctuations in the random medium. What,

however, is especially interesting for imaging is that the rough range and cross-range

resolution estimates (3.30) and (3.32) are universal in the class of array data for which

the decoherence frequency and length Ωd and Xd are well defined. The resolution

estimates do not depend on any particular model or scaling regime for the random wave

propagation. They do depend, however, on being able to estimate from the data, in a

robust way, the coherence parameters Ωd and Xd. We have, therefore, a self consistent

way to assess when the resolution estimates (3.30) and (3.32) are expected to hold. This

new insight into the relationship between image resolution and array data coherence

plays an important role in the design of adaptive algorithms for stable image formation

[12].
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4. Numerical simulations

We present in this section the results of numerical simulations for imaging with the

coherent interferometric functional (3.21), for both the passive and the active array

configurations (cf. Sections 2.1 and 2.2).

4.1. The setup for the numerical simulations

The setup for the numerical experiments is shown in Figure 4 where the dimensions

of the problem are given in terms of the central wavelength λ0. We use an array of

185 transducers at a distance h = λ0/2 from each other. The object to be imaged

is at range L = 90λ0 and at zero cross-range, measured with respect to the center

of the array. In the passive array simulations the object is a configuration of three

point sources emitting the same pulse f(t) simultaneously and the distance between

these points is d = 6λ0. In the active array simulations the three sources are replaced

by three disks of radius λ0 whose centers are located at the same points. The disks

are non penetrable scatterers modeled with homogeneous Dirichlet boundary conditions

(acoustic soft scatterers). A probing pulse is emitted by the central array element. The

pulse f(t) is the time derivative of a Gaussian with central frequency ω0/(2π) = 1kHz

and bandwidth 0.6 − 1.3kHz (measured at 6dB). With a propagation speed of 3km/s

the central wavelength is then λ0 = 3m.

λ0

λ0λ0

λ0

100

100
Source

absorbing medium

ar
ra

y

L=90

d=6

d
a

Figure 4. The computational

setup. The dimensions of the

problem are given in terms of the

central wavelength λ0.

Figure 5. A typical realization

of the random sound speed c(x).

The location of the objects to be

imaged is shown as three black

dots. The horizontal axis is range

(in wavelenghts) and the vertical is

cross-range (in wavelenghts).

To simulate imaging in a cluttered medium, the objects to be imaged (sources

or scatterers) are embedded in a heterogeneous background medium with an index of

refraction n(~x) = c0/c(~x) given by (2.8). The fluctuations in the sound speed c(~x)

are modeled using a random Fourier series with mean c0 = 3.0km/s and a Gaussian
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correlation function. The correlation length is l = 1.5m and the standard deviation is

s = 3%. A typical realization of the random medium is shown in Figure 5 where the

units in the horizontal and vertical axes are given in terms of the central wavelength

and the scale of the color bar is in km/s.

To generate the array data we solve the acoustic wave equation, formulated as a first

order in time velocity-pressure system, using a mixed finite element method [4, 5]. The

propagation medium is considered to be infinite in all directions and in the numerical

computations a perfectly matched absorbing layer (PML) surrounds the domain.

In Figure 6 we show numerically generated data recorded at the array. We show

time traces in a homogeneous medium as well as in a random medium. It is clear from

Figure 6 that in the active array case the effect of the random medium is a lot stronger

as the waves travel twice the distance from the array to the scatterers. The coherent

interferometry images obtained for these data, with the functional (3.21), are presented

in the next section, where they are also compared with images obtained using Kirchhoff

migration.

Passive array Active array

Figure 6. Time traces recorded on the array Top: homogeneous medium. Bottom:

random medium with standard deviation s = 3%. The horizontal axis is time (in msec)

and the vertical is array transducer location (in m).

4.2. Imaging with coherent interferometry and with Kirchhoff migration

We show first in Figure 7 the images obtained with Kirchhoff migration in a homogeneous

medium. We note that coherent interferometry (3.21) with no smoothing, so thatXd = a

and Ωd = B, is the same as the square of the Kirchhoff migration functional (1.1,1.2).

For this reason, in the following, instead of showing the Kirchhoff migration images, we

show their square.

The search domain, which is also the domain over which we show the image, is a
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Passive array Active array

Figure 7. Kirchoff migration images in a homogeneous medium. The vertical axis

is cross-range and the horizontal axis is range. The correct location of the objects is

indicated with a star.

square of size 20λ0 × 20λ0, as in Figure 7. The vertical axis is the cross-range while the

horizontal axis is range. The pixel size in the image is λ0/2. In all the images that we

show, the search domain, the domain of ~ys, is fixed and equal to this one.

As expected, images with Kirchhoff migration are very good in homogeneous media

and, more generally, in smooth deterministic media. When the background medium is

randomly inhomogeneous, however, Kirchhoff migration images are no longer reliable

because they are noisy and statistically unstable. That is, the images change from

one realization of the random medium to another. This is clearly seen in Figure 8,

especially in the active array case. The randomness in the images is inherited from

the data recorded on the array and remains in them because there is no random phase

cancellation in IKM.

To obtain statistically stable images we use the coherent interferometric functional

(3.21). This corresponds to migrating cross-correlations of the array data over the

decoherence length Xd and frequency Ωd. The images obtained for different values of

Xd and Ωd are shown in Figures 9-11.

The true decoherence parameters Xd and Ωd are not known and depend on the

random medium which is also assumed unknown. In principle, we can estimate these

parameters directly from the data. However, this estimation can be rather delicate in

practice, especially in inhomogeneous random media where Xd and Ωd are not constant.

Instead of estimating Xd and Ωd directly from the data, we have introduced an algorithm

that finds the decoherence parameters by looking at the image itself, as it is formed

with (3.21). The essential idea is to minimize the spatial roughness of the image, as it

is being formed, while controlling the smoothing. The main advantage of this approach

is that the image that emerges is statistically stable while the data are not, and so

the smoothing parameters Xd and Ωd are easier to estimate from the image itself. The

detailed description of the algorithm is presented in [12]. Here we demonstrate with
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Figure 8. Kirchhoff migration images for three realizations of a random medium with

standard deviation s = 3%.

Xd = a, Ωd = B Xd = X∗
d , Ωd = Ω∗
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d , Ωd < Ω∗
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Figure 9. Coherent Interferometry images in random media with s = 3%.
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numerical simulations that optimal smoothing (decoherence) parameters X?
d ,Ω

?
d exist,

by displaying in Figure 9 the images for Xd,Ωd smaller, equal and larger than X?
d ,Ω

?
d,

respectively. When the Xd and Ωd used in (3.21) are smaller than the optimal ones,

the estimated image is over-smoothed, that is, blurrier than the optimal image. In the

opposite direction, when Xd and Ωd in ICINT are over-estimated, then the image is noisy

and statistically unstable. Note in particular that the decoherence frequency plays a

crucial role in the statistical stability (see Figure 11).

Xd = a, Ωd = Ω?
d Xd = X?

d , Ωd = Ω?
d Xd < X?

d , Ωd = Ω?
d

Figure 10. Coherent Interferometry: The effect of Xd on image resolution. The value

of Ωd is fixed and Xd decreases from left to right with the optimal in the middle.

Xd = X?
d , Ωd = B Xd = X?

d , Ωd = Ω?
d Xd = X?

d , Ωd < Ω?
d

Figure 11. Coherent Interferometry: The effect of Ωd on image resolution. The value

of Xd is fixed and Ωd decreases from left to right with the optimal in the middle.

As we know from the analysis of time reversal in random media [22, 10, 40, 2, 3,

43, 33] another parameter that plays an important role in the statistical stability is

the bandwidth. In coherent interferometric imaging the bandwidth enters through the

summation over ω in (3.28). To illustrate how the average over frequency (sum over ω)

affects the stability of ICINT, we show in Figure 12 images obtained with and without

averaging over frequency.

The images shown in Figures 10-12 are for the active array case, with central

illumination. They clearly illustrate the role of Xd and Ωd in the resolution and the

stability of the images. We note in particular that when imaging in clutter the resolution
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Figure 12. Coherent Interferometry: The effect of bandwidth on the stability of the

images. The values of Xd and Ωd are the optimal ones. Top: with averaging over

frequency. Bottom: without averaging over frequency. Left to right: three different

realizations of the random medium.

of the image is no longer determined by the array aperture and the bandwidth of the

pulse, as is the case in deterministic media (compare Figure 11-middle with Figure

7-right). Instead, imaging resolution in random media depends on the decoherence

length Xd and frequency Ωd. In the following section, we present a theoretical analysis

of coherent interferometry which gives resolution estimates, in the passive array case.

As noted in Section 3.4, even though the analysis is done with a particular model in

a particular asymptotic regime, the numerical results presented in this section are in

qualitative agreement with the theoretical results. The numerical simulations are done

in a realistic physical setting without any approximations like the ones used in the

theoretical analysis.

5. Analysis of the coherent interferometric functional

In this section, we give a quantitative resolution analysis of the coherent interferometric

imaging method introduced in Section 3, in a parabolic (forward scattering) high

frequency asymptotic regime.

We assume that the size of the array is small in comparison with the range of the

source and introduce a system of coordinates centered in the middle of the array, as

shown in Figure 13. The array is taken, for simplicity, to be a square of aperture a in

the plane orthogonal to the z axis, which connects the source with the origin. In this
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~y?

f(t)

~xr

a

a

x1

x2

0

z?

z

Figure 13. The array, assumed planar and with aperture a, is centered at the origin of

the system of coordinates, at distance z? from the source.

system of coordinates we introduce the notation

~y? = (y? = 0, z?), ~xr = (xr, 0), (5.33)

where z? and y? are the range and the cross-range of the source, respectively. The later

is, by the choice of the coordinate system, the zero vector in R
2. Similarly, xr denotes

the location of the r-th transducer in the planar array.

We will use the parabolic approximation of the Green’s function and we write Ĝ as

Ĝ(~x, ~y?, ω) = eik|z−z?|ψ(~x, ~y?, ω), for an arbitrary ~x = (x, z) ∈ R
3,(5.34)

where the amplitude ψ satisfies the parabolic equation

2ikψz + ∆xψ + k2σ0µ
(x

l
,
z

l

)
ψ = 0, z < z?,

ψ = δ(x − y?), z = z?, (5.35)

and ∆x is the two-dimensional Laplace operator, with respect to the transverse

coordinates x. This approximation is valid when k|ψz| � |ψzz| or, equivalently, when

back scattering is negligible. This is usually the case with weak random inhomogeneities

in remote sensing regimes, with z? much larger than Lx, a transverse length scale given,

for example, by the aperture a of the array. Even though the random inhomogeneities

are weak, we do not use a single scattering approximation. Since the waves travel over

long distances from the source to the array, multiple scattering in the forward direction

is significant and taken into account by the random parabolic equation (5.34).

When the fluctuations are zero, σ0 = 0, the solution of (5.35) is

ψ0(~x, ~y?, ω) ∼ 1

|z − z?|
e

ik|x−y?|2

2|z−z?| , (5.36)
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where the subscript 0 indicates that the medium is homogeneous and ∼ is used,

throughout the paper, to denote equality up to a multiplicative constant. Thus, for

|z − z?| � |x − y?|,

Ĝ0(~x, ~y?, ω) =
1

4π|~x− ~y?|
eik|~x−~y?| ∼ 1

|z − z?|
e

ik

„
|z−z?|+ |x−y|2

2|z−z?|

«

, (5.37)

which is the parabolic approximation of the Green’s function in the homogeneous

medium, as expected. Naturally, when the random fluctuations are present, Ĝ and

ψ are random functions.

5.1. Scaling

We scale variables with a horizontal scale Lz ∼ z? along the main direction of

propagation of the waves, a transversal length Lx, the carrier wavenumber k0 = ω0/c0

and the carrier frequency ω0, respectively,

x = Lxx
′, z = Lzz

′, k = k0k
′, ω = ω0ω

′, B = ω0B
′. (5.38)

The scaled range of the source is

z′? =
z?

Lz

(5.39)

and, for a point ~xr = (xr, 0) in the array, the scaled distance to the source is

|~xr − ~y?|′ =
|~xr − ~y?|

Lz

=

[
(z′?)2 +

(
Lx

Lz

)2

|x′
r − y′

?|
2

] 1
2

≈ z′? +

(
Lx

Lz

)2 |x′
r − y′

?|2
2z′?

.(5.40)

In the remainder of this Section, all variables are scaled and we simplify the notation

by dropping the primes in (5.38)-(5.40).

Substituting (5.38) in (5.35) and neglecting the multiplicative constant in the initial

condition, the scaled parabolic equation is

2ikψz + θ∆xψ +
σδ

θ
√
ε
k2µ

(x

δ
,
z

ε

)
ψ = 0, z < z?,

ψ = δ(x − y?), z = z?, (5.41)

with the dimensionless parameters

ε =
l

Lz

, δ =
l

Lx

and σ =
σ0δ

ε3/2
(5.42)

depending on the random medium, and with the Fresnel number given by

θ =
Lz

k0L2
x

. (5.43)

Since we are interested in a remote sensing regime, with the source being a long

distance away from the receivers, as compared with the aperture of the array and the

correlation length, we order the length scales as

 Lz � Lx � l, or, equivalently, ε� δ � 1. (5.44)
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The particular choice σ0 = σε3/2/δ of the strength of the fluctuations is made so that, in

conjunction with ordering (5.44) of the length scales, we can take the white noise limit

ε→ 0 in (5.41). This asymptotic regime is used in Appendix B, together with the high

frequency θ � 1 approximation, to obtain simple expressions for the second moments

of ψ. We discuss the moment formula in Section 5.2. We then use it in Section 5.4 to

analyze the imaging functional for locating the source, given measurements (2.5) at the

array.

5.2. The moment formula

To find the source location ~y? we use a coherent interferometric functional (3.21) of the

traces P (~xr, t) and P (~xr′,−t), at receivers‡ r and r′. In the random medium, the traces

decorrelate rapidly, so we take receiver locations and frequencies, that are within a θ

neighborhood of each other.

We analyze the imaging functional (3.21) in Section 5.4. This involves the random

functions

P̂ (~xr, ω)P̂ (~xr′, ω′) = f̂B(ω − 1)f̂B(ω′ − 1)Ĝ(~xr, ~y?, ω)Ĝ(~xr′, ~y?, ω′). (5.45)

When the functional (3.21) is self-averaging we can analyze it using the expectation

of (5.45). The self-averaging property comes primarily from the smoothing with the

decoherence frequency Ωd. We do not examine this property in detail here and refer to

[40] for a systematic analysis of self-averaging issues for the random parabolic equation

(5.41).

We first change variables by defining

ω =
ω + ω′

2
, ω̃ =

ω′ − ω

θ
, (5.46)

x =
xr + xr′

2
, x̃ =

xr′ − xr

θ
, (5.47)

where we omit subscripts on the midpoint and offset variables x and x̃, respectively.

We also note that because of (5.38) the scaled wavenumbers satisfy

k = ω, k̃ = ω̃. (5.48)

In Appendix B we derive the moment formula〈
Ĝ(~xr, ~y?, ω)Ĝ(~xr′ , ~y?, ω′)

〉
≈ Ĝ0(~xr, ~y?, ω)Ĝ0(~xr′ , ~y?, ω′)

φ1(z?)e
−

ek2Df z?

2
−φ2(z?)

k
2

Dpz?|ex|2

6 ,
(5.49)

where

φ1(z) = cosh
1
2 (z

√
ik̃Dp)

z

√
ik̃Dp

sinh(z

√
ik̃Dp)

, (5.50)

‡ Here we use the prime to distinguish between different receiver locations or frequencies. The prime

does not refer to the scaling as all our variables are now dimensionless.
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φ2(z) =
3

ik̃Dpz




√
ik̃Dp

tanh(z

√
ik̃Dp)

− 1

z


 , (5.51)

and Dp, Df are given in terms of the covariance (2.9) of the fluctuations by

Dp = −σ
2

4
R′′

0(0), Df =
σ2δ2

4
R0(0), for R0(|x|) =

∫ ∞

−∞
R(|x|, z)dz. (5.52)

When k̃ = 0 this formula is well known [34]. It is also known in some special cases with

k̃ 6= 0, [45].

While one can do calculations with formula (5.49), we shall use the simplified version
〈
Ĝ(~xr, ~y?, ω)Ĝ(~xr′, ~y?, ω′)

〉
≈ Ĝ0(~xr, ~y?, ω)Ĝ0(~xr′, ~y?, ω′)e−

ek2Df z?

2
− k

2
Dpz?|ex|

2

6 , (5.53)

obtained from (5.49) by approximating φ1(z?) and φ2(z?) by one. This is a good

approximation in the weak fluctuation regime with σ � δ, where simple series

expansions of (5.50)-(5.51) give

φ1(z) = 1 +O(σ2) and (φ2(z) − 1)Dp = O

(
σ2

δ2

)
Df � Df . (5.54)

5.3. Space and frequency decoherence

¿From the moment formula (5.53) we can get a theoretical estimate of the space and

frequency decoherence parameters of the array data. We can set them equal to the

variance of the Gaussians in k̃ and in x̃ in (5.53)

|ω − ω′| ≤ Ωd =
θ√
Dfz?

(5.55)

and

|xr − xr′ | ≤ Xd(ω) =
θ

k

√
3

Dpz?
=
θz?

kae

. (5.56)

Here

ae =

√
Dpz3

?

3
(5.57)

is the effective aperture in the random medium [40], scaled by Lx. When we use (5.43)

in (5.56) and rearrange terms we get

LxXd(ω) =
Lzz?

k0kLxae

, (5.58)

which is, in dimensionless variables and scales, the equality of the decoherence length

Xd to the time reversal spot size [10, 40]. We also use the notation Xd(ω) to indicate

that the decoherence length depends on the central frequency.
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5.4. The imaging functional

Let us take a search point ~ys = (ys, zs) and define the imaging function

ICINT(~ys) =
∑

xr∈A

∫

|ω−1|≤B

dω

∫
|ω′ − 1| ≤ B

|ω − ω′| ≤ Ωd

dω′
∑

xr′ ∈ A

|xr − xr′ | ≤ Xd(ω)

P̂ (~xr, ω)P̂ (~xr′, ω′)×

Ĝ0(~xr, ~ys, ω)Ĝ0(~xr′ , ~y
s, ω′),

(5.59)

where A denotes the array. Here, we do a fictitious back propagation to ~ys, by means

of the homogeneous medium Green’s function (5.37), that in scaling (5.38) becomes

Ĝ0(~xr, ~y
s, ω) ∼ 1

zs
eik0Lzkzs+i

k|xr−ys|
2

2θzs =
1

zs
ei( Lz

Lx
)
2 k

θ
zs+

k|xr−ys|
2

2θzs . (5.60)

Of course, ICINT(~ys) depends on the random Green’s functions, so back propagating

with G0 cannot achieve perfect phase cancellation in (5.59), at ~ys = ~y?, as desired. This

leads to blurring of the image, as we now show.

We recall from Section 5.2 that ICINT(~ys) is essentially deterministic (self-

averaging), so we can replace the random part in (5.59) by its expectation using the

moment formula (5.53). Let us assume small spacings between the receivers, so that we

can approximate the sums in (5.60) by integrals
∑

xr∈A

∑

xr′ ∈ A

|xr − xr′ | ≤ Xd(ω)

∼
∫

x∈A

dx

∫

θ|ex|≤Xd(ω)

dx̃, (5.61)

where discrete locations xr and x̃r have been replaced by the continuum varying x and

x̃, respectively. Equation (5.59) becomes, up to multiplicative constants,

ICINT(~ys) ∼
∫

x∈A

dx

∫

|ω−1|∈B

dω

∫

θ|ex|≤Xd(ω)

dx̃

∫

θ|eω|≤Ωd

dω̃ f̂B

(
ω − 1 − θω̃

2

)
f̂B

(
ω − 1 +

θω̃

2

)

Ĝ0

(
(x − θex

2
, 0), ~y?, ω − θeω

2

)
Ĝ0

(
(x + θex

2
, 0), ~y?, ω + θeω

2

)
e−

ek2Df z?

2
− k

2
Dpz?|ex|2

6

Ĝ0

(
(x − θex

2
, 0), ~ys, ω − θeω

2

)
Ĝ0

(
(x + θex

2
, 0), ~ys, ω + θeω

2

)
.

(5.62)

Using expression (5.60) of Ĝ0, we have

Ĝ0

(
(x − θex

2
, 0), ~y?, ω − θeω

2

)
Ĝ0

(
(x + θex

2
, 0), ~y?, ω + θeω

2

)
∼

1
z2
?
e

i( Lz
Lx

)
2 1

θ

h“
k− θek

2

”
z?−

“
k+ θek

2

”
z?

i

× e
i
“
k− θek

2

”
|x−y?− θ

2
ex|2

2θz?
−i

“
k+ θek

2

”
|x−y?+ θ

2
ex|2

2θz? .

(5.63)

For θ � 1 we can write

|x − y? − θ
2
x̃|2

2z?

+
|x − y? + θ

2
x̃|2

2z?

≈ |x − y?|2
z?

(5.64)
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and

|x−y?− θ
2

ex|2
2θz?

− |x−y?+ θ
2

ex|2
2θz?

≈ −x̃ · ∇x|x − y?|2
2z?

≈ −
(
Lz

Lx

)2

x̃ · ∇x|(x, 0) − ~y?|,

(5.65)

with the last approximation in (5.65) coming from (5.40).

Gathering the results (5.63)-(5.65) and recalling once more (5.40) we get

Ĝ0

(
(x − θex

2
, 0), ~y?, ω − θeω

2

)
Ĝ0

(
(x + θex

2
, 0), ~y?, ω + θeω

2

)
∼ 1

z2
?
×

e−i( Lz
Lx

)
2
[ek |(x,0)−~y?|+k ex·∇x|(x,0)−~y?|)]

(5.66)

and, similarly,

Ĝ0

(
x − θex

2
, 0), ~ys, ω − θeω

2

)
Ĝ0

(
(x + θex

2
, 0), ~ys, ω + θeω

2

)
∼ 1

z2
s
×

ei( Lz
Lx

)
2
[ek |(x,0)−~ys|+k ex·∇x|(x,0)−~ys|)].

(5.67)

Equation (5.62) becomes, after approximating the amplitude 1/(z?zs)
2 ≈ 1/z4

? ,

ICINT(~ys) ∼ 1
z4
?

∫

x∈A

dx

∫

|ω−1|∈B

dω
∣∣∣f̂B(ω − 1)

∣∣∣
2
∫

θ|eω|≤Ωd

dω̃

∫

θ|ex|≤Xd(ω)

dx̃

e−
k
2

Dpz?|ex|2

6
−

ek2Df z?

2 ei( Lz
Lx

)
2
[ek(|(x,0)−~ys|−|(x,0)−~y?|)+kex·(∇x|(x,0)−~ys|−∇x|(x,0)−~y?|)],

(5.68)

where we set

f̂B

(
ω − 1 ± θω̃

2

)
≈ f̂B (ω − 1) , (5.69)

assuming that Ωd is much smaller than the bandwidth B of the pulse. This is precisely

the setup in which coherent interferometry is expected to work well, since achieving

a stable imaging function requires averaging over ω spanning many decoherence

frequencies.

Recalling from Section 5.2 that the domains of integration over ω̃ and x̃ are chosen

as the essential support§ of the Gaussians in (5.68), we can approximate the integrals

over ω̃ and x̃ by extending them to the entire real axis and R
2 plane, respectively. The

result is

ICINT(~ys) ∼ 1
z5
?
√

z?

∫

|ω−1|∈B

dω
|f̂B(ω − 1)|2

ω4

∫

x∈A

dx e
−( Lz

Lx
)
4 |∇x

|(x,0)−~ys|−∇
x
|(x,0)−~y?||2

2Dpz?/3 ×

e
−( Lz

Lx
)
4 (|(x,0)−~ys|−|(x,0)−~y?|)2

2Df z? ,

(5.70)

§ While the Gaussians have infinite support, they are very small outside the essential support defined

as three standard deviations.
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where the extra factors of z? in the amplitude are due to the integration.

We can write (5.70) in a simpler form that makes the resolution of the coherent

interferometric point spread function ICINT(~ys) more transparent. Using the parabolic

approximation (5.40) we have
(
Lz

Lx

)2

(∇x|(x, 0) − ~ys| − ∇x|(x, 0) − ~y?|) ≈
x − ys

zs
− x − y?

z?
(5.71)

and

(|(x, 0) − ~ys| − |(x, 0) − ~y?|) ≈ zs − z? +

(
Lx

Lz

)2 ( |x − ys|2
2zs

− |x − y?|2
2zs

)
≈ zs − z?.

Using also (5.55) and (5.57) we can write the approximation to ICINT(~ys) in the form

ICINT(~ys) ∼ 1

z5
?

√
z?

∫

|ω−1|∈B

dω
|f̂B(ω − 1)|2

ω4

∫

x∈A

dx e
− |y?−

z?
zs

ys+( z?
ζs

−1)x|2
2a2

e
− (z?−zs)2

2r2
e , (5.72)

where

Lzre =
1

k0Ωd

(5.73)

is defined as the range resolution. It is given in terms of scales and dimensionless

variables and it is the distance traveled at speed c0 over the delay spread 1/(ωoΩd),

as discussed in Section 3.4. Thus, in dimensional variables the range resolution is

determined by c0/Ωd, and the larger the delay spread the poorer estimate of z? is.

Moreover, assuming that re � 1, we can simplify ICINT further to obtain

ICINT(~ys) ∼ 1

z5
?

√
z?

∫

|ω−1|∈B

dω
|f̂B(ω − 1)|2

ω4

∫

x∈A

dx e
− |y?−ys|

2

2a2
e

− (z?−zs)2

2r2
e , (5.74)

and note that the cross-range resolution is determined by the effective aperture ae.

5.5. Summary of the resolution analysis

In order to relate the results we have obtained above, with the discussion of Section 3.4

we write (5.74) in dimensional variables. By the convention of Section 5.1, all variables

in (5.74) should carry a prime because they are scaled. Restoring the scales gives

ICINT(~ys) ∼
∫

|ω−ω0|∈B

dω
|f̂B(ω − ω0)|2

ω4

∫

x∈A

dx e
− |y?−ys|

2

2(Lxae)2
− (z?−zs)2

2(Lzre)2 . (5.75)

As already noted above, the range resolution is

Lzre =
c0
Ωd
, (5.76)

where Ωd has been dimensionalized by multiplying (5.55) with ω0. Since Ωd is usually

much smaller than the bandwidth B, the range resolution in random media can be

considerably worse than in a homogeneous medium, where it is given by c0/B (see

Appendix A.1).
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The cross-range resolution is given by Lxae or, in dimensional variables, by ae. This

agrees with the result obtained in [11] for the cross-range resolution of the matched field

functional (3.18). Using (5.58) we also have that

Lxae =
c0Lz

ω0Xd(ω0)
, (5.77)

where Xd has been dimensionalized by multiplying (5.56) with Lx. Note that the product

ωXd(ω) is independent of the frequency, as seen from (5.58), so we used the carrier

frequency ω0 in (5.77).

The broadband cross-range resolution of Kirchhoff migration is given by c0Lz

Ba
, as

reviewed in Appendix A.1. Thus, we see from (5.77) that Ba is replaced by ω0Xd(ω0)

in coherent interferometry. Since Xd is usually smaller than Ba/ω0, the cross-range

resolution in random media is worse than it is in a homogeneous one. The images that

are obtained with the coherent interferometric functional are stable but blurred.

6. Interferometric imaging of extended sources

~xr

ax

ay

x

y

u z

~xr′

Ω

~y

~y′

Figure 14. Sources distributed continuously in D emit simultaneously a pulse which

propagates through the medium and is partially captured at an array of transducers

shown in the Figure.

In this section we extend the resolution analysis of Section 5 for a point source, to

a distributed source. The setup is described in Section 2.1 and the forward model is

given by (2.10). We use the assumptions and notation of Section 5.

To fix ideas we suppose that the support D of the source is much larger than θ,

in all directions. If the diameter of D is ≤ O(θ), then for all practical purposes the

source is like a point and the analysis of Section 5 applies. Of course, we can have a



Interferometric array imaging in clutter 30

thin domain D as well, but the analysis presented here extends easily to such particular

cases.

We image D with the coherent interferometric function (5.59), for arbitrary search

points ~ys. Using the forward model (2.10) and the self-averaging of ICINT, we have

ICINT(~ys) =
∑

xr∈A

∫

|ω−1|≤B

dω

∫
|ω′ − 1| ≤ B

|ω′ − ω| ≤ Ωd

dω′
∑

xr′ ∈ A

|xr − xr′ | ≤ Xd(ω)

f̂B(ω − 1)f̂B(ω′ − 1)×

∫

D
d~y

∫

D
d~y′ρ(~y)ρ(~y′)

〈
G(~xr, ~y, ω)G(~xr′, ~y′, ω′)

〉
G0(~xr, ~ys, ω)G0(~xr′ , ~y

s, ω′).

(6.1)

We proceed as in Section 5.4 by changing variables as in (5.46) and (5.47) and by

replacing the sums over the array with integrals over the aperture. This leads to the

replacement of the discrete location xr and x̃r in (6.1) with the continuously varying x

and x̃, respectively. We also define for two arbitrary points ~y = (y, z) and ~y′ = (y′, z′)

in D, new variables

y =
y + y′

2
, z =

z + z′

2
, (6.2)

ỹ =
y′ − y

θ
, z̃ =

z′ − z

θ
. (6.3)

Then, moment formula
〈
Ĝ(~x, ~y, ω)Ĝ(~x′, ~y′, ω′)

〉
≈ Ĝ0(~x, ~y, ω)Ĝ0(~x′, ~y′, ω′) exp{−k

2
Df |z′−z|

2θ2 }×

exp
{
−ek2Df z∧z′

2
− k

2
Dpz∧z′

6
(|x̃|2 + x̃ · ỹ + |ỹ|2)

}
,

(6.4)

derived in Appendix B, and the approximation (5.69) give

ICINT(~ys) ∼
∫

x∈A

dx

∫

|ω−1|≤B

dω

∫

θ|ex|≤Xd(ω)

|f̂B(ω − 1)|2dx̃
∫

θ|eω|≤Ωd

dω̃

∫

D
dz dy

∫
dz̃ dỹ×

ρ
(
y − θey

2
, z − θez

2

)
ρ

(
y + θey

2
, z + θez

2

)
G0

(
(x − θex

2
, 0), (y − θey

2
, z − θez

2
), ω − θeω

2

)
×

G0

(
(x + θex

2
, 0), (y + θey

2
, z + θez

2
), ω + θeω

2

)
G0

(
(x − θex

2
, 0), ~ys, ω − θeω

2

)
×

G0

(
(x + θex

2
, 0), ~ys, ω + θeω

2

)
e−

k
2

Df |ez|

2θ
−

ek2Df z∧z′

2
− k

2
Dpz∧z′

6 (|ex|2+ex·ey+|ey|2),

(6.5)

where

z ∧ z′ = min{z, z′}. (6.6)
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Further, we recall (5.60) and write

G0

(
(x − θex

2
, 0), (y − θey

2
, z + θez

2
), ω − θeω

2

)
G0

(
(x + θex

2
, 0), (y + θey

2
, z + θez

2
), ω + θeω

2

)
∼

1
(z− θez

2
)(z+ θez

2
)
exp

{
−ik0Lzkz̃/θ − iθk0Lzk̃z + i(k − θek

2
)
|x−y− θ(ex−ey)

2
|2

2θ(z− θez
2

)
−

i(k + θek
2

)
|x−y+

θ(ex−ey)
2

|2

2θ(z+ θez
2

)

}

and

G0

(
(x − θex

2
, 0), ~ys, ω − θeω

2

)
G0

(
(x + θex

2
, 0), ~ys, ω + θeω

2

)
∼ 1

z2
s
×

exp
{
iθk0Lzk̃zs − i(k − θek

2
)
|x−ys− θex

2
|2

2θzs
+ i(k + θek

2
)
|x−ys+

θex

2
|2

2θzs

}
.

(6.7)

The first exponential in (6.5) indicates a rapid loss of coherence for z̃ > O(θ) � 1

and, because of our assumptions on ρ, we can set z̃ = 0 in all the factors of the integrand

in (6.5) except the exponential

e−
k
2

Df |ez|

2θ
−ik0Lzkez/θ,

whose integral over z̃ is
∫
dz̃e−

k
2

Df |ez|

2θ
−ik0Lzkez/θ ≈ θ

∫ ∞

−∞
ds e−

k
2

Df |s|

2
−ik0Lzks =

4θDf

k
2
D2

f + 4k2
0L

2
z

= C(ω). (6.8)

Next, we note that moment formula (6.4) restricts the magnitude of θỹ to the

decoherence length Xd(ω), that coincides with the time reversal spot size. Since Xd(ω) =

O(θ) in our scaling, the assumptions on ρ allow us to write ρ
(
y ± θey

2
, z

)
≈ ρ (y, z) and

obtain

ICINT(~ys) ∼
∫

x∈A

dx

∫

|ω−1|≤B

dω C(ω)|f̂B(ω − 1)|2
∫

D
dydz

ρ2(y, z)

z2z2
s

∫

θ|ex|≤Xd(ω)

dx̃

∫

θ|ey|≤Xd(ω)

dỹ

∫

θ|eω|≤Ωd

dω̃ exp

{
ik0θLz k̃(zs − z) − k̃2Dfz

2
− k

2
Dpz

6

(
|x̃|2 + x̃ · ỹ + |ỹ|2

)
}
×

exp

{
i(k − θek

2
)
|x−y− θ(ex−ey)

2
|2

2θz
− i(k + θek

2
)
|x−y+ θ(ex−ey)

2
|2

2θz

}
×

exp
{
i(k − θek

2
)
|x−ys− θex

2
|2

2θzs
+ i(k + θek

2
)
|x−ys+

θex

2
|2

2θzs

}
.

(6.9)
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Now, in the scaling (5.38), we have

−θk0Lzk̃z +(k − θek
2

)
|x−y− θ(ex−ey)

2
|2

2θz
− (k + θek

2
)
|x−y+

θ(ex−ey)
2

|2
2θz

≈

−k(x̃ − ỹ) · ∇x
|x−y|2

2z
− k̃ |x−y|2

2z
− θk0Lzk̃z ≈

−
(

Lz

Lx

)2 [
k(x̃ − ỹ) · ∇x|(x, 0) − (y, z)| − k̃|(x, 0) − (y, z)|

]
(6.10)

and, similarly,

θk0Lzk̃zs −(k − θek
2

)
|x−ys− θex

2
|2

2θzs
+ (k + θek

2
)
|x−ys+

θex

2
|2

2θzs
≈

kx̃ · ∇x
|x−ys|2

2zs
+ k̃ |x−ys|2

2zs
+ θk0Lz k̃zs ≈

(
Lz

Lx

)2 [
k x̃ · ∇x|(x, 0) − ~ys| + k̃|(x, 0) − ~ys|

]
.

(6.11)

Using these expressions, equation (6.9) becomes

ICINT(~ys) ∼
∫

x∈A

dx

∫

|ω−1|≤B

dω C(ω)|f̂B(ω − 1)|2
∫

D
dy

ρ2(y)

z2z2
s

∫

θ|eω|≤Ωd

dω̃ exp

{
ik̃

(
Lz

L

)2

(|(x, 0) − ~ys| − |(x, 0) − (y, z)|) − k̃2Dfz

2

}

∫

θ|ex|≤Xd(ω)

dx̃ exp

{
ik

(
Lz

L

)2

x̃ · (∇x|(x, 0) − ~ys| − ∇x|(x, 0) − (y, z)|) − k
2
Dpz|x̃|2

6

}

∫

θ|ey|≤Xd(ω)

dỹ exp

{
ik

(
Lz

L

)2

ỹ · ∇x|(x, 0) − (y, z)| − k
2
Dpz

6

(
|ỹ|2 + ỹ · x̃

)
}
.

(6.12)

Because the domain of integration in ỹ is chosen as the essential support of the

Gaussian in (6.12) we can extend the integral over the whole R
2 and obtain

∫

θ|ey|≤Xd(ω)

dỹ exp

{
ik

(
Lz

L

)2

ỹ · ∇x|(x, 0) − (y, z)| − k
2
Dpz

6

(
|ỹ|2 + ỹ · x̃

)
}

∼

1

kz
exp

{
k

2
Dpz|x̃|2

24
− ik

2

(
Lz

L

)2

x̃ · ∇x|(x, 0) − (y, z)| − 3

2

(
Lz

Lx

)4 |∇x|(x, 0) − (y, z)||2
Dpz

}
.

Similarly, the integral over ω̃ is evaluated by extending it to the entire real line and the

result is ∫

θ|eω|≤Ωd

dω̃ exp
{
ik̃

(
Lz

L

)2
(|(x, 0) − ~ys| − |(x, 0) − (y, z)|) − ek2Df z

2

}
∼

1√
z

exp

{
−

(
Lz

Lx

)4 ||(x,0)−~ys|−|(x,0)−(y,z)||2
2Df z

}
.
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Finally, we calculate the integral over x̃
∫

θ|ex|≤Xd(ω)

dx̃ exp

{
ik

(
Lz

Lx

)2

x̃ ·
(
∇x|(x, 0) − ~ys| − 3

2
∇x|(x, 0) − (y, z)|

)
− k

2
Dpz|ex|2

8

}
∼

1
z

exp

{
−2

(
Lz

Lx

)4 |∇x|(x,0)−~ys|− 3
2
∇x|(x,0)−(y,z)||2

Dpz

}
.

Gathering all the results, we have

ICINT(~ys) ∼
∫

x∈A

dx

∫

|ω−1|≤B

dω
C(ω)

ω
|f̂B(ω − 1)|2

∫

D
dy dzρ2(y, z)

1

z4+1/2z2
s

×

exp

{
−3

2

(
Lz

Lx

)4 |∇x|(x,0)−(y,z)||2
Dpz

−
(

Lz

Lx

)4 ||(x,0)−~ys|−|(x,0)−(y,z)||2
2Df z

−

2
(

Lz

Lx

)4 |∇x|(x,0)−~ys|− 3
2
∇x|(x,0)−(y,z)||2

Dpz

}
.

(6.13)

Let us rewrite (6.13) in a simpler form that shows explicitly the resolution of the

imaging functional. The parabolic approximation (5.40) gives

|(x, 0) − ~ys| − |(x, 0) − (y, z)| ≈ zs − z (6.14)

and(
Lz

Lx

)2

∇x|(x, 0) − (y, z)| ≈ x − y

z
;

(
Lz

Lx

)2

∇x|(x, 0) − ~ys| ≈ x − ys

zs

, (6.15)

so (6.13) becomes

ICINT(~ys) ∼
∫

x∈A

dx

∫

|ω−1|≤B

dω
C(ω)

ω
|f̂B(ω − 1)|2

∫

D
dy dzρ2(y, z)

1

z4+1/2z2
s

×

exp

{
−3|x−y|2

2ae
2 − (zs−z)2

2r2
e

− 2| z
zs

(x−ys)− 3
2
(x−y)|2

3ae
2

}
.

(6.16)

Here re is given by (5.73) and

ae =

√
Dpz

3

3
(6.17)

is the effective aperture in the random medium for scaled distance z.

6.1. Summary of the resolution analysis

As we have seen in Section 5, the range resolution is determined by re, the distance

traveled at speed c0 over the delay spread. Assuming that re � 1, we can simplify

(6.16) further and obtain

ICINT(~ys) ∼ 1

z
6+1/2
s

∫

x∈A

dx

∫

|ω−1|≤B

dω
C(ω)

ω
|f̂B(ω − 1)|2

∫

D
dy dzρ2(y, z)×

exp
{
−2|ys−y|2

3ae
2 − (zs−z)2

2r2
e

− 5|x−y|2
3ae

2 − 2(y−x)·(y−ys)

3ae
2

}
.

(6.18)
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This result is similar to the point spread function derived in Section 5, in the sense that

the cross-range resolution is given by the effective aperture (6.17). Instead of recovering

the point value of ρ at ~ys we get an averaged ρ over a vicinity of the search point, of

size re in the range and ae in the cross-range.

The biggest influence on the imaging functional comes from the array locations

x in an O(ae) vicinity of y and therefore of ys. The integral over the array takes a

simple form when ys ∈ A and the aperture A is larger than ae. In this case the imaging

functional simplifies further

ICINT(~ys) ∼ 1

z
6+1/2
s

∫

|ω−1|≤B

dω
C(ω)

ω
|f̂B(ω − 1)|2

∫

D
dy dzρ2(y, z)e

− 3|ys−y|2

5ae2 − (zs−z)2

2r2
e .

We end with the final note that the blurring kernel in (6.18) is not the same as

that in (5.74). This comes from the forward model (2.10) and the moment formula that

depends on the scaled difference ỹ of two points in D. More precisely, the difference in

the kernel originates from the ỹ integral in (6.12), which assumes that the size of D is

larger than the time reversal spot size Xd(ω), for all frequencies ω in the bandwidth of

the pulse. In the case of small, point-like sources considered in Section 5, the domain of

the ỹ integral collapses to ỹ = 0, the moment formula (6.4) reduces to (5.53) and the

point spread function is given by (5.74).

7. Summary and conclusions

We have introduced the coherent interferometric functional (3.21) as an effective way to

image in clutter with array data, and we have compared it to Kirchhoff migration and

to matched field imaging. This functional depends on two parameters, the decoherence

length Xd and the decoherence frequency Ωd, that are not known and must be estimated

from the array data by the imaging process itself.

We have given three different and interrelated interpretations of these parameters.

First, they are smoothing or regularization parameters for the Kirchhoff migration

functional that produces unstable images in clutter. Second, they are decoherence

or decorrelation scales associated with the array data, although they cannot be

readily estimated directly from the data without the imaging process. Third, they

characterize the range and cross range resolution limits of the coherent interferometric

imaging functional. The resolution theory is obtained first in a phenomenological,

model independent, way in Section 3.4 and then, from first principles, in a particular

asymptotic regime, in Section 5.5.

We find that the range resolution is proportional to c0/Ωd, where c0 is the

background propagation speed, and it is worse than the corresponding one in a

homogeneous medium, c0/B, because Ωd is typically much smaller than B. The cross-

range resolution is proportional to L/Xd and is typically worse than c0L/(Ba), the



Interferometric array imaging in clutter 35

cross-range resolution in a homogeneous medium, since Xd < a. The decoherence length

can also be identified with the focal spot size in time reversal, Xd = λ0L/ae, where ae

is the effective apperture in the clutter. This makes the cross-range resolution of (3.21)

proportional to ae, as obtained in [11] for matched field functionals.

We have shown with numerical simulations, in Section 4, that the coherent

interferometric functional (3.21) does produce statistically stable but blurred images,

provided that the parameters Xd and Ωd are chosen adaptively in an optimal way. The

adaptive estimation of these parameters and the deblurring of the images is presented

in a companion paper [12].

Appendix

Appendix A. Kirchhoff migration

We review briefly the analysis of the Kirchhoff migration functional (1.1), [21, 41, 9,

7, 49]. It is very successful in imaging the support of sources or scatterers in smooth

and known backgrounds. For brevity, we focus attention on the inverse source problem

where we wish to determine the support D of an extended source, given the recorded

array data.

The Kirchhoff imaging functional for variable backgrounds is

IKM(~ys) =
∑

~xr∈A

P (~xr, τ(~xr, ~y
s)) , (A.1)

where A denotes the array and ~ys is a search point to which we back propagate (migrate)

P (~xr, t) by evaluating it at the travel time

τ(~xr, ~y
s) =

∫

Γ(~xr ,~ys)

ds

c(~x(s))
. (A.2)

This is the integral of the slowness c−1(~x) along the characteristic curve Γ(~xr, ~y
s),

connecting ~xr to ~ys. The underlying assumption in (A.1) is that the background

medium is smooth and known, so geometrical optics applies and travel times (A.2)

can be calculated. In our setup the background velocity c0 is a constant, and (A.2)

simplifies to

τ(~xr, ~y
s) = c−1

0 |~xr − ~ys|. (A.3)

In this case, we can redefine the migration function as

IKM(~ys) =
∑

~xr∈A

1

2π

∫

|ω−ω0|≤B

dω P̂ (~xr, ω)e−iωτ(~xr ,~ys)

∼
∑

~xr∈A

∫

|ω−ω0|≤B

dω P̂ (~xr, ω)Ĝ0(~xr, ~ys, ω),

(A.4)
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where ∼ stands for approximate equality up to an amplitude factor in the integrand that

plays essentially no role in imaging, and Ĝ0 is the Green’s function in the homogeneous

medium, at frequency ω,

G0(~xr, ~y
s) =

1

4π|~xr − ~ys|e
ik|~xr−~ys| , k =

ω

c0
. (A.5)

Let us suppose for now that there are no fluctuations in the medium so that the

forward model (2.10) is

P (~xr, t) =

∫

D
ρ(~y)e−iω0tfB(t) ? G0(~xr, ~y, t)d~y. (A.6)

Assume further that the receivers are closely spaced on the array, which lies on a surface

SA parameterized by u ∈ R
2. Using (A.6) in (A.4) we obtain the following theoretical

form of the Kirchhoff imaging functional

IKM(~ys) ∼
∫

D
ρ(~y)

∫

SA

du

∫

|ω−ω0|≤B

dω f̂B(ω − ω0)Ĝ0(~x(u), ~y, ω)Ĝ0(~x(u), ~ys, ω),

∼
∫

D
ρ(~y)

∫

SA

du

|~x(u) − ~y||~x(u) − ~ys|

∫

|ω−ω0|≤B

dω f̂B(ω − ω0)e
ik(|~x(u)−~y|−|~x(u)−~ys|).

(A.7)

We will analyze this functional using the method of stationary phase [6]. It is a

high frequency asymptotic analysis that is justified physically by a scale separation

assumption [9, 49]. This means that the background medium is slowly varying (it is

constant in our case) relative to a typical wavelength, whereas ρ(~y) is “rough”, due to

its discontinuity at ∂D. The reference wavelength is λ0 = 2πc0/ω0.

¿From the method of stationary phase, the leading order term of the ω and u

integrals in IKM(~ys) comes from the vicinity of the stationary points satisfying

|~x(u) − ~y| − |~x(u) − ~ys| = 0,

∇u(|~x(u) − ~y| − |~x(u) − ~ys|) = 0.

These equations hold, without any restriction on u, if ~y = ~ys, so only the vicinity of

the search point ~ys counts. The amplitudes in IKM(~ys) play a negligible role in this

argument, so we can modify IKM(~ys) with amplitude weight factors

ĨKM(~ys)=

∫

SA

duM(u, ~ys)

∫

|ω−ω0|≤B

P̂ (~x(u), ω)Ĝ0(~x(u), ~ys, ω)

∼
∫

D
ρ(~y)

∫

SA

du
M(u, ~ys)

|~x(u) − ~y||~x(u) − ~ys|

∫

|ω−ω0|≤B

dω f̂B(ω − ω0)e
ik(|~x(u)−~y|−|~x(u)−~ys|).

(A.8)

The factor M will be defined later to simplify the asymptotic form of the functional.

By the stationary phase approximation the phase in (A.8) is given by

k (|~x(u) − ~y| − |~x(u) − ~ys|) ≈ ~ζ · (~y − ~ys), where ~ζ = ω∇~yτ(~x(u), ~ys),
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where τ is given by (A.3). We can also let ~y  ~ys in the amplitude of (A.8)

and then change variables from (u, ω)  ~ζ. The Jacobian of the transformation is

J(u, ~ys, ω) = ∇u,ω
~ζ and

| detJ(u, ~ys, ω)| = ω2J (u, ~ys) 6= 0, (A.9)

which is called the Beylkin determinant [7, 9], specialized to this calculation. If we let

M(u, ~ys) = |~x(u) − ~ys|2J (u, ~ys), (A.10)

we obtain from (A.8)

ĨKM(~ys) ∼
∫

D
ρ(~y)PKM(~y − ~ys)d~y, (A.11)

where the point spread function PKM is

PKM(~y − ~ys) =

∫
f̂B(ω(~ζ) − ω0)

ω2(~ζ)
ei

~ζ ·(~y−~ys)d~ζ (A.12)

with

ω(~ζ) =
~ζ · ∇~yτ(~x(u), ~ys)

|∇~yτ(~x(u), ~ys)|2
. (A.13)

Appendix A.1. Resolution of Kirchhoff migration images

It is clear from (A.12) that the Kirchhoff migration point spread function is determined

by the domain of integration in ~ζ or, equivalently, by the bandwidth B of the pulse

and the aperture of the array. In the ideal situation, the aperture and B are infinite

(i.e. f̂B/ω
2 = 1 for all ω ∈ R) so ~ζ spans the whole R

3, the point spread function

is PKM(~y − ~ys) ∼ δ(~y − ~ys) and ĨKM(~ys) ∼ ρ(~ys). This is never the case in practice,

however, so we do not have a precise estimate of ρ(~ys) but rather a blurrier version, given

by an average of ρ over a vicinity of ~ys. The size of this vicinity depends on the aperture

and the bandwidth and it is usually different in the range and cross-range directions.

To see this more clearly, consider a simpler set-up in which the array aperture a is small

compared to the range of the extended source, as in Figure 14, and the search point

is in front of the array. Using the notation ~y = (y, z) that distinguishes between the

range and cross-range coordinates z and y, respectively, and approximating the array

by a planar, square one, with ~x(u) = (x(u), 0), we have

~ζ · (~y − ~ys) = k
(

x(u)−ys

|~x(u)−~ys| ,
zs

|~x(u)−~ys |

)
· (y − ys, z − zs)

≈ k (x(u)−ys)
zs · (y − ys) + k(z − zs).

(A.14)

Thus, the component of ~ζ pointing in the range direction, is essentially k, and its

variation is restricted to the interval
(
k0 − B

c0
, k0 + B

c0

)
. Consequently, the range

resolution of ĨKM is proportional to c0
B

.



Interferometric array imaging in clutter 38

To estimate the cross-range resolution let us suppose that zs = z, so the right

hand-side in (A.14) reduces to

k

z
(x(u) − ys) · (y − ys) =

ω

c0zs
(xc − ys) · (y − ys) +

ω

c0zs
(x(u) − xc) · (y − ys), (A.15)

where ω ∈ (ω0 −B, ω0 +B), xc is the center point in the array and x(u) varies over the

array aperture a. Let us also integrate over the array aperture to obtain

PKM(y − ys, 0) ∼
∫ ω0+B

ω0−B

dω
f̂(ω)

ω2
e

i ω
c0z

(xc−ys)·(y−ys)×

sin
[

ωa
2c0z

(y − ys)1

]

(y − ys)1

sin
[

ωa
2c0z

(y − ys)2

]

(y − ys)2

,

(A.16)

where (y − ys)i, i = 1, 2 denote the components of y − ys (see Figure 14).

The expression (A.16) is rather complicated, but we can simplify it by taking

(y − ys)2 = 0 and assuming that |f̂(ω)|/ω is constant over the bandwidth. Equation

(A.16) becomes

PKM((y − ys)1, 0, 0) ∼ sin
n

B
c0z [(xc−ys)1+a

2 ](y−ys)1
o

[(xc−ys)1+a
2 ](y−ys)21

ei
k0
z [(xc−ys)1+a

2 ](y−ys)1−

sin
n

B
c0z [(xc−ys)1−a

2 ](y−ys)1
o

[(xc−ys)1−a
2 ](y−ys)21

ei
k0
z [(xc−ys)1−a

2 ](y−ys)1 ,

(A.17)

and we observe that

PKM((y − ys)1, 0, 0) = O

(
1

(y − ys)1

)
→ ∞, as (y − ys)1 → 0.

Moreover, the point spread function is large only in an interval of length

O
(

c0z
B(2|(xc−ys)1|+a)

)
, centered at (ys)1. Clearly, the same result applies to PKM(0, (y −

ys)2, 0) so the cross-range resolution is c0z
B(2|xc−ys|+a)

. In particular, if |xc − ys| � a, this

becomes c0z
Ba

.

We summarize our results with the following statement. Assuming a small array

of aperture a and a target at range z ∼ Lz, the resolution of the Kirchhoff migration

image in a homogeneous medium with constant wave speed c0 is given by c0/B in the

range direction and by c0Lz

Ba
in cross-range direction.

Appendix B. Derivation of the moment formula

We calculate here the expectation〈
Ĝ(~x1, ~y1, ω1)Ĝ(~x2, ~y2, ω2)

〉
, (B.1)

for points ~xi = (xi, 0) in the array and ~yi = (yi, zi) in the random medium. We use

the parabolic approximation (5.34) of the Green’s function and the scaling defined in

Section 5.1. We also assume that

|x1 − x2| = O(θ), |y1 − y2| = O(θ) and |ω1 − ω2| = O(θ). (B.2)
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When imaging a point source at ~y? we take ~y1 = ~y2 = ~y?, as in Section 5, whereas for

the distributed sources considered in Section 6, we let ~y1 and ~y2 be two arbitrary points

in D, the support of the source. Two-frequency moment calculations like the ones given

here have been done before [45] in special cases. We present the calculations in detail

for completeness.

Although in the context of Sections 5 and 6 we think of ~yj in (B.1) as source

locations, we may use reciprocity and assume that the Green’s function originates from

the array, that is, from ~xj, for j = 1, 2. This makes the notation of this appendix

more convenient and it gives for arbitrary ~x = (x, z) the parabolic approximation of the

Green’s function

Ĝ(~x,~ξ, ω) = eik0Lzkzψ(~x,~ξ, ω), (B.3)

with amplitude ψ satisfying

2ikψz + θ∆xψ +
σδ

θ
√
ε
k2µ

(x

δ
,
z

ε

)
ψ = 0, z > 0,

ψ = δ(x − ξ), z = 0. (B.4)

Here ~ξ = (ξ, 0) and it will be set equal to either ~x1 or ~x2 later.

Our derivation of the moment formulas (5.49) and (6.4) is based on the scale

ordering

ε� θ � δ � 1, (B.5)

and it involves two limits: the white noise limit ε→ 0 and then, the high frequency limit

θ → 0. The broad beam limit δ → 0 is not needed here, but it plays a key role in the

statistical stability of the imaging functional [40].

Let us change the notation in (B.4) by setting ψ  ψε,θ, to remind us that the

amplitude depends on the two parameters ε and θ that tend to zero. In the white noise

limit ε→ 0, ψε,θ converges weakly, in law [36, 40], to solution ψθ of the Ito-Schrödinger

equation

dψθ =

(
iθ

2k
∆xψ

θ − k2σ2δ2

8θ2
R0(0)ψθ

)
dz +

ikσδ

2θ
ψθdB

(x

δ
, z

)
, z > 0,

ψθ = δ(x − ξ), z = 0. (B.6)

Here B(x, z) is a Brownian motion field in z that is smooth in the transverse variable

x. The covariance of the Gaussian process B is

〈B(x1, z1)B(x2, z2)〉 = z1 ∧ z2R0(|x1 − x2|), (B.7)

where z1∧z2 denotes the minimum of z1, z2 and R0(x) is a smooth function of x, defined

in terms of the compactly supported covariance (2.9) of the fluctuations as

R0(|x|) =

∫ ∞

−∞
R(|x|, z)dz. (B.8)
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The expectation of ψθ follows immediately from (B.6), but we are interested in
〈
ψθ(~y1, ~x1, ω1)ψθ(~y2, ~x2, ω2)

〉
or

〈
ψθ

1ψ
θ
2

〉
, (B.9)

for points ~xi, ~yi and frequencies ωi = kic0, i = 1, 2, satisfying (B.2).

Appendix B.1. The moment formula for a fixed range

First, we derive the moment formula for the same range z1 = z2 = z. Then, we extend

the result to the general case, in Section Appendix B.2. By Ito’s formula [36], we have

d
(
ψθ

1ψ
θ
2

)
= iθ

2k1
∆x1ψ

θ
1ψ

θ
2dz − iθ

2k2
∆x2ψ

θ
1ψ

θ
2dz + k1k2σ2δ2

4θ2 R0

(
|x1−x2|

δ

)
ψθ

1ψ
θ
2dz−

(k2
1+k2

2)σ2δ2

8θ2 R0(0)ψθ
1ψ

θ
2dz + ik1σδ

2θ
ψθ

1ψ
θ
2dB(x1, z) − ik2σδ

2θ
ψθ

1ψ
θ
2dB(x2, z),

(B.10)

with initial condition

ψθ
1ψ

θ
2 = δ(y1 − x1)δ(y2 − x2) at z = 0. (B.11)

Equivalently, in terms of new variables

k =
k1 + k2

2
, k̃ =

k2 − k1

θ
, (B.12)

x =
x1 + x2

2
, x̃ =

x2 − x1

θ
, (B.13)

y =
y1 + y2

2
, ỹ =

y2 − y1

θ
, (B.14)

equation (B.10) becomes

d
(
ψθ

1ψ
θ
2

)
= iθ

2k−θek

(
1
4
∆x − 1

θ
∇x · ∇ex + 1

θ2 ∆ex
)
ψθ

1ψ
θ
2dz − iθ

2k+θek

(
1
4
∆x + 1

θ
∇x · ∇ex+

1
θ2 ∆ex

)
ψθ

1ψ
θ
2dz +

[“
k
2− θ2

4
ek2

”
σ2δ2

4θ2 R0

(
θ|ex|
δ

)
−

“
k
2
+ θ2

4
ek2

”
σ2δ2

4θ2 R0(0)

]
ψθ

1ψ
θ
2dz

+ iσδ
2θ

[(
k − θ

2
k̃
)
dB

(
x
δ
− θex

2δ
, z

)
−

(
k + θ

2
k̃
)
dB

(
x
δ

+ θex
2δ
, z

)]
.

In this form we can pass to the high frequency limit θ → 0. In principle, this means

having θ � 1, but, because we seek a simple moment formula, we ask that θ/δ � 1 and

we expand R0 and B (which are smooth functions of x) around 0. Note that θ/δ � 1

means
λ0

l
� ε

δ
� 1,

so this is a regime with very short wavelengths, typical of optical or infrared applications.

The limit amplitude ψ satisfies

d
(
ψ1ψ2

)
= − i

k
∇x · ∇exψ1ψ2dz + iek

2k
2 ∆exψ1ψ2dz −

(
k
2
Dp

2
|x̃|2 +

ek2Df

2

)
ψ1ψ2dz−

iekσδ
2
ψ1ψ2dB

(
x
δ
, z

)
− ikσ

2
ψ1ψ2d

[
x̃ · ∇xB

(
x
δ
, z

)]
,

(B.15)
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where we set ∇xR0(0) = 0, because R0 is an even function of x, and we define the

random medium parameters

Dp = −σ
2R′′

0(0)

4
, Df =

σ2δ2

4
R0(0). (B.16)

Next, Fourier transform over x̃

W =

∫
eip·exψ1ψ2dx̃ (B.17)

and obtain from (B.15) the Ito-Liouville equation

dW + p

k
· ∇xWdz + iek|p|2

2k
2 Wdz = k

2
Dp

2
∆pWdz − ek2Df

2
Wdz − iekσδ

2
WdB

(
x
δ
, z

)

−σk
2
d∇xB

(
x
δ
, z

)
· ∇pW, z > 0,

(B.18)

with initial condition

W =

∫
eip·exδ

(
x − y − θ

2
(x̃ − ỹ)

)
δ

(
x − y +

θ

2
(x̃ − ỹ)

)
dx̃

∼ eip·eyδ (x − y) at z = 0,

(B.19)

up to a multiplicative constant that we neglect. We take expectations in (B.18) and

Fourier transform with respect to x to get
∫
eix·q < W > dx = e−

ek2Df z

2 V. (B.20)

The new dependent variable V satisfies the partial differential equation

∂V

∂z
− ip · q

k
V +

ik̃|p2|
2k

2 V =
k

2
Dp

2
∆pV, z > 0,

V = ei(p·ey+q·y), z = 0. (B.21)

We can solve (B.21) in the form

V = A(z,q,y, ỹ)e
F (z)|p|2

2
+C(z,q,ey)·p, (B.22)

where, for z > 0,

∂ lnA

∂z
=
k

2
Dp

2
(F + |C|2), (B.23)

∂C

∂z
=
iq

k
+ k

2
DpFC, (B.24)

∂F

∂z
= − ik̃

k
2 + k

2
DpF

2, (B.25)

and, at z = 0. This leads to the ordinary differential equations

A = eiq·y, C = iỹ, F = 0. (B.26)
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A straightforward integration of (B.23)-(B.26) gives

A(z,q,y, ỹ) = cosh− 1
2 (z

√
ik̃Dp) exp

{
iq · y − k

2
Dp|ey|2

2

tanh(z
√

iekDp)√
iekDp

− ikq·ey
ek ×

[
cosh−1(z

√
ik̃Dp) − 1

]
+ i|q|2

2ek

[
z − tanh(z

√
iekDp)√

iekDp

]}
,

(B.27)

C = iỹ cosh−1(z

√
ik̃Dp) +

iq

k

tanh(z

√
ik̃Dp)

√
ik̃Dp

(B.28)

and

F (z) = −

√
ik̃Dp tanh(z

√
ik̃Dp)

k
2
Dp

. (B.29)

The moment formula follows from the inverse Fourier transform

〈
ψ1ψ2

〉
= e−

ek2Df z

2

∫
dp

(2π)2

∫
dq

(2π)2
A(z,q,y, ỹ)e

F (z)|p|2

2
+C(z,q,ey)·p−ip·ex−iqx.

We have
〈
ψ1ψ2

〉
= − k

2

4π2z2φ1(z) exp
{
− iek

2z
|x − y|2 − ik

z
(x̃ − ỹ) · (x − y) − ek2Df z

2

−k
2
Dpz

6
φ2(z)


|x̃|2 +

x̃ · ỹ

cosh(z

√
ik̃Dp)

+
|ỹ|2

cosh2(z

√
ik̃Dp)




+k
2
zDpφ3(z)x̃ · ỹ − k

2
zDpφ4(z)|ỹ|2

}
,

(B.30)

where

φ1(z) = cosh
1
2 (z

√
ik̃Dp)

z

√
ik̃Dp

sinh(z

√
ik̃Dp)

, (B.31)

φ2(z) =
3

ik̃Dpz




√
ik̃Dp

tanh(z

√
ik̃Dp)

− 1

z


 , (B.32)

φ3(z) =
1

2ik̃Dpz2


 3z

√
ik̃Dp

sinh(z

√
ik̃Dp)

− 1

cosh(z

√
ik̃Dp)

− 2


 , (B.33)

φ4(z) =
tanh(z

√
ik̃Dp)

2z

√
ik̃Dp


1 −

tanh(z

√
ik̃Dp)

z

√
ik̃Dp


 . (B.34)

Equivalently, letting

(
ψ1ψ2

)
0

= − k
2

4π2z2
e−

iek
2z

|x−y|2− ik
z

(ex−ey)·(x−y) (B.35)
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be the right hand side of (B.30) for Dp = Df = 0, we can rewrite our result as

〈
ψ1ψ2

〉
=

(
ψ1ψ2

)
0
φ1(z) exp

{
−ek2Df z

2
− k

2
Dpz
6

φ2(z)

[
|x̃|2 + ex·ey

cosh(z
√

iekDp)
+ |ey|2

cosh2(z
√

iekDp)

]
+

k
2
zDpφ3(z)x̃ · ỹ − k

2
zDpφ4(z)|ỹ|2

}
.

We note that

(
ψ1ψ2

)
0

= − lim
θ→0

(
k − θ

2
k̃
) (

k + θ
2
k̃
)

4π2z2
exp

[
i

2zθ

(
k − θ

2
k̃

) ∣∣∣∣x − y − θ

2
(x̃ − ỹ)

∣∣∣∣
2

− i
2zθ

(
k + θ

2
k̃
) ∣∣x − y + θ

2
(x̃ − ỹ)

∣∣2
]

= lim
θ→0

ψθ
0

(
(y − θ

2
ỹ, z), (x − θ

2
x̃, 0), ω − θ

2
ω̃

)
×

ψθ
0

(
(y +

θ

2
ỹ, z), (x +

θ

2
x̃, 0), ω +

θ

2
ω̃

)

= (ψ1)0(ψ2)0

(B.36)

so (B.35) is precisely the result in a homogeneous medium. Therefore, recalling the

parabolic approximation (B.3) and the change of variables (B.12)-(B.14), we have
〈
Ĝ(~y1, ~x1, ω1)Ĝ(~x2, ~y2, ω2)

〉
= Ĝ0(~y1, ~x1, ω1)Ĝ0(~x2, ~y2, ω2)φ1(z)×

exp

{
−ek2Df z

2
− k

2
Dpz
6

φ2(z)

[
|x̃|2 + ex·ey

cosh(z
√

iekDp)
+ |ey|2

cosh2(z
√

iekDp)

]

+k
2
zDpφ3(z)x̃ · ỹ − k

2
zDpφ4(z)|ỹ|2

}
.

(B.37)

Finally in the asymptotic regime of small fluctuations σ � δ,

cosh(z

√
ik̃Dp) = 1 +O(k̃Dpz

2) = 1 +O(σ2), (B.38)

φi(z) = 1 +O(k̃Dpz
2) = 1 +O(σ2), i = 1, 2, (B.39)

φi(z) = O(k̃Dpz
2) = O(σ2), i = 3, 4 (B.40)

so (B.37) reduces to
〈
Ĝ(~y1, ~x1, ω1)Ĝ(~x2, ~y2, ω2)

〉
≈ Ĝ0(~y1, ~x1, ω1)Ĝ0(~y2, ~x2, ω2)×

e−
ek2Df z

2
− k

2
Dpz

6 (|ex|2+ex·ey+|ey|2).

(B.41)

Using the reciprocity of the Green’s function, we obtain moment formula (5.49) and its

simplification, given by (B.37) and (B.41), respectively, for ỹ = 0 and z = z?.
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Appendix B.2. The general moment formula

Let us address the general case z1 6= z2. To fix ideas, suppose that z2 > z1 and return

to the second moment (B.9). Using conditional expectations, we have
〈
ψθ(~y1, ~x1, ω1)ψθ(~y2, ~x2, ω2)

〉
=

〈
ψθ(~y1, ~x1, ω1)〈ψθ(~y2, ~x2, ω2)|Fz1〉

〉
, (B.42)

where ~yi = (yi, zi), ~xi = (xi, 0), for i = 1, 2 and {Fz}z≥0 denotes the Brownian σ-field

up to z. For arbitrary points ~x = (x, z), ~ξ = (ξ, 0) we see from (B.6) and (B.16) that

ψθ(~x,~ξ, ω) satisfies

dψθ =

(
iθ

2k
∆xψ

θ − k2Df

2θ2
ψθ

)
dz +

ikσδ

2θ
ψθdB

(x

δ
, z

)
for z > 0. (B.43)

Next, take expectations and obtain, for z > z1,

∂
∂z

〈
ψθ((x, z),~ξ, ω)|Fz1

〉
=
iθ

2k
∆x

〈
ψθ((x, z),~ξ, ω)|Fz1

〉

−k
2Df

2θ2

〈
ψθ((x, z),~ξ, ω)|Fz1

〉
,

(B.44)

whereas at z = z1,
〈
ψθ((x, z1),~ξ, ω)|Fz1

〉
= ψθ((x, z1),~ξ, ω). (B.45)

The conditional expectation can be calculated by substituting
〈
ψθ((x, z),~ξ, ω)|Fz1

〉
= e−

k2Df (z−z1)

2θ2 φ((x, z),~ξ, ω) (B.46)

in (B.44) and Fourier transforming in x. This gives

φ̂ = e−
iθ
2k

(z−z1)|p|2
∫
ψ((u, z1),~ξ, ω) eip·udu (B.47)

and therefore

〈
ψθ((x, z),~ξ)|Fz1

〉
= e−

k2Df

2θ2 (z−z1) 1
4π2

∫
dp

∫
due−ip·(x−u)− iθ

2k
(z−z1)|p|2ψ((u, z1),~ξ, ω)

= − ik
2πθ(z−z1)

e−
k2Df (z−z1)

2θ2

∫
ψ((u, z1),~ξ, ω)e

ik|x−u|2

2θ(z−z1)du.

We are interested in the high frequency regime θ � 1, when the integrand in (B.47)

is highly oscillatory and we can use a stationary phase argument [6] to get the main

contribution to (B.47) from u satisfying

∇u|x − u|2 = 0 =⇒ x = u.

Then,
〈
ψθ((x, z),~ξ, ω)|Fz1

〉
≈ − ik

2πθ(z−z1)
e−

k2Df (z−z1)

2θ2 ψ((x, z1),~ξ, ω)

∫
e

ik|x−u|2

2θ(z−z1)du

= e−
k2Df (z−z1)

2θ2 ψ((x, z1),~ξ, ω)

(B.48)
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and, setting z = z2, x = y2, ~ξ = ~x2 and ω = ω2, we get from (B.42) and (B.48) that

〈
ψθ((y1, z1), ~x1, ω1)ψθ((y2, z2), ~x2, ω2)

〉
≈ e−

k2
2Df (z2−z1)

2θ2 ×

〈
ψθ((y1, z1), ~x1, ω1)ψθ((y2, z1), ~x2, ω2)

〉
,

for z2 > z1.

Obviously, the same argument applies to the case z1 > z2, so we can write directly

the general result
〈
ψθ((y1, z1), ~x1, ω1)ψθ((y2, z − 2), ~x2, ω2)

〉
≈ e−

k
2

Df |z2−z1|

2θ2 ×

〈
ψθ ((y1, z1 ∧ z2), ~x1, ω1)ψθ ((y2, z1 ∧ z2), ~x2, ω2)

〉
,

(B.49)

where we approximated the wavenumber k1 or k2 in the exponential, given by k∓ θk̃/2,

by k. Thus, the general moment formula is given by the simpler one, at fixed range, and

an exponential factor that indicates a rapid loss of coherence at different ranges. The

fixed range moment formula is given by (B.36) and, in the asymptotic regime of small

fluctuations, (B.49) simplifies to
〈
Ĝ ((y1, z1), ~x1, ω1) Ĝ ((y2, z2), ~x2, ω2)

〉
≈ Ĝ0 ((y1, z1), ~x1, ω1) Ĝ0 ((y2, z2), ~x2, ω2)×

exp

{
−k

2
Df |z2−z1|

2θ2 − ek2Df z1∧z2

2
− k

2
Dpz1∧z2

6
(|x̃|2 + x̃ · ỹ + |ỹ|2)

}
,

(B.50)

with the notation (B.12)-(B.14). Finally, using reciprocity of the Green’s functions, we

get the moment formula (6.4).

Acknowledgments

The work of L. Borcea was partially supported by the Office of Naval Research, under

grant N00014-02-1-0088 and by the National Science Foundation, grants DMS-0305056,

DMS-0354658. The work of G. Papanicolaou was supported by grants AFOSR F49620-

01-1-0465, ONR N00014-02-1-0088 and 02-SC-ARO-1067-MOD 1. The work of C.

Tsogka was partially supported by the Office of Naval Research, under grant N00014-

02-1-0088 and by 02-SC-ARO-1067-MOD 1.
[1] A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky. An overview of matched field methods

in ocean acoustics. IEEE J. Ocean Eng., 18:401–424, 1993.

[2] G. Bal, G. Papanicolaou, and L. Ryzhik. Self-averaging in time reversal for the parabolic wave

equation. Stochastics and Dynamics, 2:507–531, 2002.

[3] G. Bal and L. Ryzhik. Time reversal and refocusing in random media. SIAM J. Appl. Math.,

63(5):1475–1498, 2003.
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