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Chapter 1

Introduction
to Partial Differential Equations

1.1 Introduction

A partial differential equation (PDE) is an equation involving an unknown function of two or more variables
with some of its partial derivatives. PDEs are of fundamental importance in applied mathematics and
physics, and have recently shown to be useful in as varied disciplines as financial modelling and modelling
of biological systems. More specifically, we have the following definition.

Definition 1.1 Let Ω ⊂ R
d be an open subset of R

d (called the domain of definition), for d > 1 a positive
integer (called the dimension), and denote by x = (x1, x2, . . . , xd) a vector in Ω. Let (unknown) function
u : Ω → R whose partial derivatives up to order k (for k positive integer)

∂u

∂x1
,

∂u

∂x2
, . . . ,

∂u

∂xd
,
∂u2

∂x2
1

,
∂u2

∂x2
2

, . . . ,
∂u2

∂x2
d

,
∂2u

∂x1∂x2
, . . . ,

∂2u

∂x1∂xd
,

. . . ,
∂uk

∂xk
1

,
∂uk

∂xk
2

, . . . ,
∂uk

∂xk
d

,
∂uk

∂xk−1
1 ∂x2

, . . . ,
∂uk

∂xd−1∂xk−1
d

exist. A partial differential equation of order k in Ω in d dimensions is an equation of the form:

F (x, u,
∂u

∂x1
,

∂u

∂x2
, . . . ,

∂u

∂xd
, . . . ,

∂uk

∂xd−1∂xk−1
d

) = 0, (1.1)

where F is a given function.

Example 1.2 Let x = (x1, x2) ∈ R
2 and a function u : R

2 → R. The equation

∂u

∂x1
= 0,

is a PDE of 1st order on R
2 in 2 dimensions.

Example 1.3 Let u : [0, 1]3 → R. The equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 3x3,

is a PDE of 2nd order on [0, 1]3 in 3 dimensions. (This is an instance of the so-called Poisson equation.)

Solution. Indeed, this is in accordance with Definition 1.1 with d = 3, x1 = x, x2 = y, x3 = z and Ω = R
3.

2
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Example 1.4 Let u : R
3 → R. The equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
,

is a PDE of 2nd order on R
3 in 3 dimensions. (This is an instance of the so-called heat equation.)

Example 1.5 Let u : R
2 → R, with u = u(t, x). The equation

∂u

∂t
+

1

2
x2σ2 ∂2u

∂x2
+ rx

∂u

∂x
− ru = 0,

is a PDE of 2nd order on R
2 in 2 dimensions. (This is the so-called Black-Scholes equation.)

Example 1.6 Let u : R
2 → R. The equation

∂2u

∂x2

∂2u

∂y2
−

( ∂2u

∂x∂y

)2

= 0,

is a PDE of 2nd order on R
2 in 2 dimensions. (This is the so-called Monge-Ampère equation.)

We shall be mostly interested in PDEs in two and three dimensions (as these are the ones most often
appearing in practical applications), and we shall confine the notation to these cases using (x, y) and (t, x)
or (x, y, z) and (t, x, y) to describe two- and three-dimensional vectors respectively (when the notation t is
used for an independent variable, this variable should almost always describing “time”). Nevertheless, many
properties and ideas described below apply also to the general case of d-dimensions for d > 3.

Also, to simplify the notation, we shall often resort to the more compact notation ux, uy, uxx, uxy, etc.,

to signify partial derivatives ∂u
∂x , ∂u

∂y , ∂2u
∂x2 , ∂2u

∂x∂y , etc., respectively.

1.2 Solution of PDEs

Studying and solving PDEs has been one of the central areas of research in applied mathematics during the
last two centuries.

Definition 1.7 Consider the notation of Definition 1.1. We call the general solution of the PDE (1.1), the
family of functions u : Ω ⊂ R

d → R that has continuous partial derivatives up to (and including) order k
and that satisfies (1.1).

Example 1.8 We want to find the general solution of the PDE in R
2:

∂u

∂x1
= x3

1.

Integrating with respect to x1, we get

u(x1, x2) =
x4

1

4
+ f(x2), (1.2)

for any differentiable function f : R → R. Indeed, if we differentiate this solution with respect to x1, we get
back the PDE. It is also not hard to see that if u is a solution of the PDE then it has to be of the form (1.2)
as this follows from the Fundamental Theorem of Calculus (Why?).

Solving PDEs is often a far more tricky pursuit than the previous example seems to indicate. Let us try
to see why. Consider, for example, the PDE

∂u

∂x1
+

∂u

∂x2
= 0.

It is not too hard to guess that any constant function u satisfies this PDE. However, there are more functions
that satisfy this PDE that just the constant ones. It is clear that an integration will not be of any help here
and more elaborate methods need to be introduced. Moreover, as we shall see below, there is no method
of solving PDEs that works in general : different methods work for different families of PDEs. Therefore, it
is important to identify such families of PDEs that admit similar properties and, subsequently to describe
particular methods of solving PDEs from each such family. This will be the content of the rest of this
chapter, where we shall classify PDEs in various families and present some of their properties.
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1.3 Classification of PDEs

To study PDEs it is often useful to classify them into various families, since PDEs belonging to particular
families can be characterised by similar behaviour and properties. There are many and varied classifications
for PDEs. Perhaps the most widely accepted and generally useful classification is the distinction between
linear and non-linear PDEs. In particular, we have the following definition.

Definition 1.9 If the PDE (1.1) can be written in the form

a(x)u + b1(x)ux1 + b2(x)ux2 + · · · + bd(x)uxd

+ c1(x)ux1x1 + · · · + c2(x)ux1x2 + · · · + cd2(x)uxdxd
+ · · · = f(x),

(1.3)

i.e., if the coefficients of the unknown function u and of all its derivatives depend only on the independent
variables x = (x1, x2, . . . , xd), then it is called a linear PDE. If it is not possible to write (1.1) in the form
(1.3), then it is called a nonlinear PDE.

Example 1.10 The PDEs in Examples 1.2, 1.3, 1.4, and 1.5 are linear PDEs.
Indeed, the PDE in Example 1.2, can be written in the form (1.3) with a(x) = 0, b1(x) = 1, f(x) = 0

and all the other coefficients of the derivatives equal to zero.
Similarly, for Example 1.3, we have f(x) = 3x3, the coefficients of the second derivatives uxx, uyy and

uzz are equal to 1 and all the other coefficients are zero.
Also, for Example 1.4, f(x) = 0, the coefficients of ut, uxx and uyy are equal to 1 and all the other

coefficients are zero.
Finally, for Example 1.5, f(x) = 0, the coefficients of ut, uxx, ux, and u depend only on the independent

variable x and do not depend of u.

Example 1.11 The PDE in Example 1.6 a nonlinear PDE. This is clear, since the coefficient of uxx is
equal to uyy (or to put it differently: the coefficient of uyy is equal to uxx) and the coefficient of uxy is equal
to uxy, i.e., the coefficients of at least one of the partial derivatives contain u or its derivatives.

Example 1.12 The inviscid Burgers’ equation

ut + uux = 0,

for an unknown function u = u(t, x) is a nonlinear PDE.

The family of nonlinear PDEs can be further subdivided into smaller families of PDEs. In particular we
have the following definition.

Definition 1.13 Consider a nonlinear PDE of order k with unknown solution u.

• If the coefficients of the k order partial derivatives of u are functions of the independent variables
x = (x1, x2, . . . , xd) only, then this is called a semilinear PDE.

• If the coefficients of the k order partial derivatives of u are functions of the independent variables
x = (x1, x2, . . . , xd) and/or of partial derivatives of u of order at most k − 1 (including u itself) , then
this is called a quasilinear PDE.

• If a (nonlinear) PDE is not quasilinear, then it is called fully nonlinear.

Clearly a semilinear PDE is also a quasilinear PDE.

Example 1.14 We give some examples of nonlinear PDEs along with their classifications.

• The reaction-diffusion equation
ut = uxx + u2,

is a semilinear PDE.

• The inviscid Burgers’ equation
ut + uux = 0,

is a quasilinear PDE and it is not a semilinear PDE.

3



• The Korteweg-de Vries (KdV) equation

ut + uux + uxxx = 0,

is a semilinear PDE.

• The Monge-Ampère equation
uxxuyy − (uxy)

2 = 0,

is a fully nonlinear PDE.

The above classification of PDEs into linear, semilinear, quasilinear, and fully nonlinear is, roughly
speaking, a classification of “increasing difficulty” in terms of studying and solving PDEs. Indeed, the
mathematical theory of linear PDEs is now well understood. On the other hand, less is known about
semilinear PDEs and quasilinear PDEs, and even less about fully nonlinear PDEs.

Problem

1. Consider the following PDEs:

1. the biharmonic equation: uxxxx − 2uxxyy + uyyyy = f(x, y), with u = u(x, y);

2. the sine-Gordon equation: utt − uxx + sinu = 0, with u = u(t, x);

3. the porous medium equation: ut = (unux)x, with u = u(t, x) and n positive integer.

What is the order of each PDE? Classify the PDEs.

4



1.4 First order linear PDEs

We begin our study of linear PDEs with the case of first order linear PDEs. To simplify the discussion ,we
shall only consider equations in 2 dimensions, i.e., for d = 2; the case of three or more dimensions can be
treated in a completely analogous fashion. We begin with an example.

Example 1.15 We consider the PDE in R
2:

ux + uy = 0. (1.4)

To find its general solution, we perform the following transformation of coordinates (also known as change
of variables in Calculus): we consider new variables (ξ, η) ∈ R

2 defined by the transformation of coordinates

(x, y) → (ξ, η) ,where ξ(x, y) = x + y and η(x, y) = y − x.

We can also calculate the inverse transformation of coordinates

(ξ, η) → (x, y),

by solving with respect to x and y, obtaining

x =
1

2
(ξ − η) and y =

1

2
(ξ + η). (1.5)

We write the PDE (1.4) in the new coordinates, using the chain rule from Calculus. Setting v(ξ, η) =
u(x(ξ, η), y(ξ, η)) we have, respectively:

ux = vξξx + vηηx, uy = vξξy + vηηy,

giving
ux = vξ − vη, uy = vξ + vη.

Putting these back to the PDE (1.4), we deduce

0 = ux + uy = vξ − vη + vξ + vη = 2vξ or vξ = 0. (1.6)

Integrating this equation with respect to ξ, we arrive to

v(ξ, η) = f(η),

for any differentiable function of one variable f : R → R. Using now the inverse transformation of coordinates
(1.5), we conclude that the general solution of the PDE (1.4) is given by:

u(x, y) = v(ξ(x, y), η(x, y)) = f(η(x, y)) = f(y − x).

We discuss some big ideas that are present in the previous example. The change of variables (x, y) → (ξ, η)
is essentially a clockwise rotation of the axes by an angle π

4 (there is also stretching of size
√

2 taking place
with this change of variables, but this is not really relevant to our discussion). Once the rotation is done,
the PDE takes the simpler form (1.6), which can be interpreted geometrically as: v is constant with respect
to the variable ξ, or in other words, the solution u is constant when x + y = c, for any constant c ∈ R. This
means that the solution remains constant as we move along straight lines of the form y = −x + c. Hence,
if the value of the solution u at one point (x0, y0), say, on the plane is known, then the value of u along
the straight line of slope −π

4 that passes through (x0, y0) is also known (i.e., it is the same value)! In other
words, the straight lines of the form y = −x + c “characterise” the solution of the PDE above; such curves
are called characteristic curves of a PDE, as we shall see below.

Next, we shall incorporate these ideas into the case of the general first order linear PDE. The general
form of a 1st order linear PDE in 2 dimensions can be written as:

a(x, y)ux + b(x, y)uy + c(x, y)u = g(x, y), for (x, y) ∈ Ω ⊂ R
2, (1.7)

where a, b, c, g are functions of the independent variables x and y only. We also assume that a, b have
continuous first partial derivatives, and that they do not vanish simultaneously at any point of the domain of
definition Ω. Finally ,we assume that the solution u of the PDE (1.7) has continuous first partial derivatives.

5



Consider a transformation of coordinates of R
2:

(x, y) ↔ (ξ, η),

with ξ = ξ(x, y) and η = η(x, y), which is assumed to be smooth (that is, the functions ξ(x, y) and η(x, y)
have all derivatives with respect to x and y well-defined) and non-singular, i.e., its Jacobian

∂(ξ, η)

∂(x, y)
:=

∣
∣
∣

ξx ξy

ηx ηy

∣
∣
∣ = ξxηy − ξyηx 6= 0, (1.8)

in Ω; (this requirement ensures that the change of variables is meaningful, in the sense that it is one-to-one
and onto). We also denote by x = x(ξ, η) and y = y(ξ, η) the inverse transformation, as it will be useful
below.

We write the PDE (1.7) in the new coordinates, using the chain rule. Setting v(ξ, η) = u(x(ξ, η), y(ξ, η))
we have, respectively:

ux = vξξx + vηηx, uy = vξξy + vηηy,

giving
(aξx + bξy)vξ + (aηx + bηy)vη + cv = g(x(ξ, η), y(ξ, η)), (1.9)

after substitution into (1.7). To simplify the above equation, we require that the function η(x, y) is such
that

aηx + bηy = 0; (1.10)

if this is the case then (1.9) becomes an ordinary differential equation with respect to the independent
variable ξ, whose solution can be found by standard separation of variables.

The equation (1.10) is a slightly simpler PDE of first order than the original PDE. To find the required η
we are seek to construct curves such that η(x, y) = const for any constant; these are called the characteristic
curves of the PDE (compare this with the straight lines of the example above).

Differentiating this equation with respect to x, we get

0 =
d const

dx
=

dη(x, y)

dx
= ηx

dx

dx
+ ηy

dy

dx
= ηx + ηy

dy

dx
,

where in the penultimate equality we made use of the chain rule for functions of two variables; the above
equality yields

ηx

ηy
= −dy

dx
, (1.11)

assuming, without loss of generality, that ηy 6= 0 (for otherwise, we argue as above with the rôles of the x
and y variables interchanged, and we get necessarily ηx 6= 0 from hypothesis (1.8)).

Using (1.11) on (1.10), we deduce the characteristic equation:

−a
dy

dx
+ b = 0, or

dy

dx
=

b

a
, (1.12)

assuming, without loss of generality that a 6= 0 near the point (x0, y0) (for otherwise, we have that necessarily
b 6= 0 near the point (x0, y0), as a, b cannot vanish simultaneously at any point due to hypothesis, and
we can apply the same argument as above with x and y interchanged). Equation (1.12) is an ordinary
differential equation of first order that can be solved using standard separation of variables to give a solution
f(x, y) = const, say. Setting η = f(x, y) and ξ to be any function for which (1.8) holds, we can easily see
that (1.10) holds also. Therefore, the PDE (1.7) can be written as

(aξx + bξy)vξ + cv = g(x(ξ, η), y(ξ, η)), or vξ +
c

(aξx + bξy)
v =

g(x(ξ, η), y(ξ, η))

(aξx + bξy)
,

which is an ordinary differential equation of first order with respect to ξ and can be solved using the (standard)
method of multipliers1 to find v(ξ, η). Using the inverse transformation of coordinates, we can now find the

1We recall the method of multipliers to solve this ordinary differential equation (ODE): we write the ODE in the form

vξ + Cv = G,

by dividing by (aξx + bξy), and we multiply both sides by e
R

C(s)ds, which gives

e
R

ξ C(s)dsvξ + Ce
R

ξ C(s)dsv = Ge
R

ξ C(s)ds, or (e
R

ξ C(s)dsv)ξ = Ge
R

ξ C(s)ds, or v = e−
R

ξ C(s)ds

Z ξ

G(τ)e
R

τ C(s)dsdτ.
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solution u(x, y) from v(ξ, η). This is the so-called method of characteristics in finding the solution to a first
order PDE.

Example 1.16 We use the method of characteristics described above to find the general solution to the PDE

yux − xuy + yu = xy.

We have a = y, b = −x, c = y and g = xy. To find the characteristic curves of this PDE, we solve the
ordinary differential equation (1.12), which in this case becomes

dy

dx
= −x

y
or

∫

ydy = −
∫

xdx, or
y2

2
= −x2

2
+ const, for xy 6= 0,

using separation of variables. We set

η(x, y) :=
x2 + y2

2
;

then we have η(x, y) = const as required by the method described above, i.e., the characteristic curves of this
PDE are concentric circles centred at the origin. If we also set ξ(x, y) := x, say, we have

∂(ξ, η)

∂(x, y)
= ξxηy − ξyηx = 1 × y − 0 × x = y 6= 0,

when xy 6= 0. Hence the transformation of coordinates (x, y) ↔ (ξ, η) is non-singular and smooth. The
inverse transformation is given by

x(ξ, η) = ξ and y(ξ, η) =







√

η − 1
2ξ2, if y ≥ 0;

−
√

η − 1
2ξ2, if y < 0.

giving the transformed PDE

vξ +
y(ξ, η)

y(ξ, η) × 1 + (−x(ξ, η)) × 0
v =

x(ξ, η)y(ξ, η)

y(ξ, η) × 1 + (−x(ξ, η)) × 0
, or vξ + v = x(ξ, η) = ξ.

Multiplying the last equation with the multiplier e
R

ξ 1ds = eξ, we deduce

(
eξv

)

ξ
= ξeξ, or v = e−ξ

∫ ξ

τeτdτ = · · · = ξ − 1 + f(η),

for any differentiable function f of one variable. Hence the general solution is given by

u(x, y) = v(ξ(x, y), η(x, y)) = ξ(x, y) − 1 + f(η(x, y)) = x − 1 + f
(x2 + y2

2

)
.

Problem

2. Use the method of characteristics to find the general solution of the first order linear PDE:

ux − 2uy = 0.

7



1.5 Second order linear PDEs

An important class of PDEs are the linear PDEs of 2nd order, which we shall be concerned in this section.
For simplicity, we shall consider only equations in 2 dimensions, i.e., for d = 2. The general form of a 2nd
order linear PDE in 2 dimensions can be written as:

auxx + 2buxy + cuyy + dux + euy + fu = g, for (x, y) ∈ Ω ⊂ R
2, (1.13)

where a, b, c, d, e, f, g are functions of the independent variables x and y only. We also assume that a, b, c
have continuous second partial derivatives, and that they do not vanish simultaneously at any point of the
domain of definition Ω. Finally, we assume that the solution u of the PDE (1.13) has continuous second
partial derivatives. We shall classify PDEs of the form (1.13) in different types, depending on the sign of the
discriminant defined by

D := b2 − ac,

at each point (x0, y0) ∈ Ω. More specifically, we have the following definition.

Definition 1.17 Let D = b2 − ac be the discriminant of a second order PDE of the form (1.13) in Ω ⊂ R
2

and let a point (x0, y0) ∈ Ω.

• If D > 0 at the point (x0, y0), the PDE is said to be hyperbolic at (x0, y0).

• If D = 0 at the point (x0, y0), the PDE is said to be parabolic at (x0, y0).

• If D < 0 at the point (x0, y0), the PDE is said to be elliptic at (x0, y0).

The equation is said to be hyperbolic, parabolic or elliptic in the domain Ω if it is, respectively, hyperbolic,
parabolic or elliptic at all points of Ω.

We give some examples.

Example 1.18 The so-called wave equation

utt − uxx = 0,

is hyperbolic in R
2. Indeed, for this equation we have a = 1, c = −1, and b = 0, giving D = −1 < 0 for all

(x, y) ∈ R
2.

Example 1.19 The so-called heat equation

ut − uxx = 0,

is parabolic in R
2. Indeed, for this equation we have c = −1 and a = b = 0, giving D = 0 for all (x, y) ∈ R

2.

Example 1.20 The so-called Laplace equation

uxx + uyy = 0,

is elliptic in R
2. Indeed, for this equation we have a = c = 1 and b = 0, giving D = −1 < 0 for all (x, y) ∈ R

2.

Example 1.21 The equation
uxx + x2uyy = 0,

is elliptic in the set {(x, y) ∈ R
2 : x 6= 0} and parabolic in the set {(x, y) ∈ R

2 : x = 0}. Indeed, for this
equation we have a = 1, c = x2 and b = 0, giving D = −x2 < 0 for all (x, y) ∈ R

2 such that x 6= 0 and
D = 0 when x = 0. (This equation sometimes referred to in the literature as Grušin equation.)

Example 1.22 The Tricomi equation
yuxx + uyy = 0,

is elliptic in the set {(x, y) ∈ R
2 : y > 0}, parabolic in the set {(x, y) ∈ R

2 : y = 0}, and hyperbolic in the set
{(x, y) ∈ R

2 : y < 0}. Indeed, for this equation we have a = y, c = 1 and b = 0, giving D = −y < 0 for all
(x, y) ∈ R

2 such that y > 0, D = 0 when y = 0 and D = −y > 0 when y < 0.
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The above classification of 2nd order linear PDEs can be very useful when studying the properties of
such equations. For instance, the next result shows that the type of a 2nd order linear PDE at a point
(i.e., if the PDE is hyperbolic, parabolic or elliptic), remains unchanged if we make a smooth non-singular
transformation of coordinates (also known as change of variables) on R

2. In particular, we have the following
theorem.

Theorem 1.23 The sign of the discriminant D of a second order PDE of the form (1.13) in Ω ⊂ R
2 is

invariant under smooth non-singular transformations of coordinates.

Proof. Consider a transformation of coordinates of R
2:

(x, y) ↔ (ξ, η),

with ξ = ξ(x, y) and η = η(x, y), which is assumed to be smooth (that is, the functions ξ(x, y) and η(x, y)
have all derivatives with respect to x and y well-defined) and non-singular, i.e., its Jacobian

∂(ξ, η)

∂(x, y)
:=

∣
∣
∣

ξx ξy

ηx ηy

∣
∣
∣ = ξxηy − ξyηx 6= 0, (1.14)

in Ω. We also denote by x = x(ξ, η) and y = y(ξ, η) the inverse transformation, as it will be useful below.
We write the PDE (1.13) in the new coordinates, using the chain rule. Setting v(ξ, η) = u(x(ξ, η), y(ξ, η))

we have, respectively:
ux = vξξx + vηηx, uy = vξξy + vηηy, (1.15)

giving

uxx = vξξξ
2
x + 2vξηξxηx + vηηη2

x + vξξxx + vηηxx,

uyy = vξξξ
2
y + 2vξηξyηy + vηηη2

y + vξξyy + vηηyy, (1.16)

uxy = vξξξxξy + vξη(ξxηy + ξyηx) + vηηηxηy + vξξxy + vηηxy.

Inserting (1.15) and (1.16) into (1.13), and factorising accordingly, we arrive to

Avξξ + 2Bvξη + Cvηη + Dvξ + Evη + fv = g, (1.17)

where the new coefficients A, B, C, D and E are given by

A = aξ2
x + 2bξxξy + cξ2

y ,

B = aξxηx + b(ξxηy + ξyηx) + cξyηy,

C = aη2
x + 2bηxηy + cη2

y, (1.18)

D = aξxx + 2bξxy + cξyy + dξx + eξy,

E = aηxx + 2bηxy + cηyy + dηx + eηy.

Thus the discriminant of the PDE in new variables (1.17), is given by

B2 − AC = (aξxηx + b(ξxηy + ξyηx) + cξyηy)2 − (aξ2
x + 2bξxξy + cξ2

y)(aη2
x + 2bηxηy + cη2

y)

= · · · = (b2 − ac)(ξxηy − ξyηx)2 = (b2 − ac)
( ∂(ξ, η)

∂(x, y)

)2

. (1.19)

This means that the discriminant B2 − AC of (1.17) has always the same sign as the discriminant b2 − ac

of (1.13), as ∂(ξ,η)
∂(x,y) 6= 0 from the hypothesis and, therefore,

( ∂(ξ,η)
∂(x,y)

)2
> 0. Since the discriminant of the

transformed PDE has always the same sign as the one of the original PDE, the type of the PDE remains
invariant. 2

Recalling now the methods of characteristics for the solution of first order linear PDEs presented in the
previous section, we can see the relevance of the above theorem: it assures us that applying a change of
variables will not alter the type of the PDE.

Let us now consider some special transformations for PDEs of each type. What we shall see is that, given
certain transformation, it is possible to write (1.13) locally in much simpler form, the so-called canonical
form.
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Example 1.24 Consider the wave equation

uxx − yyy = 0,

which as we saw before is hyperbolic in R
2. Let us also consider the transformation of coordinates of R

2:

(x, y) ↔ (ξ, η), with ξ = x + y and η = x − y.

It is, of course, smooth as x + y and x − y are infinite times differentiable with respect to x and y, and it is
non-singular, as

∂(ξ, η)

∂(x, y)
= ξxηy − ξyηx = 1 × (−1) − 1 × 1 = −2 6= 0, for all (x, y) ∈ R

2.

To calculate the transformed equation, we can use the formulas (1.18), with a = 1, b = 0, c = −1, d = e =
f = g = 0, ξx = 1, ξy = 1, ηx = 1 and ηy = −1 to calculate A = 1 − 0 − 1 = 0, B = 1 − 0 + 1 = 2,
C = 1 − 0 − 1 = 0, D = E = 0 and, thus, the transformed equation is given by

4vξη = 0, or vξη = 0.

For this canonical form, we can in fact compute the general solution of the wave equation. Indeed, integrating
with respect to η, we arrive to

vξ = h(ξ),

for an arbitrary continuously differentiable function h. Integrating now the last equality with respect to ξ, we
deduce

v =

∫ ξ

h(s)ds + G(η).

If we set F (ξ) :=
∫ ξ

h(s)ds, to simplify the notation, we get

v(ξ, η) = F (ξ) + G(η),

for an arbitrary twice continuously differentiable function G, or equivalently

u(x, y) = F (x + y) + G(x − y),

for all twice continuously differentiable functions F and G of one variable.

In the previous example, we found a general solution for the wave equation using a particular transforma-
tion of coordinates. Note that the general solution of the wave equation involves unknown functions ! (Recall
that the general solution of an ordinary differential equation involves unknown constants; this might help
to draw an analogy. In the next sections we shall study some appropriate initial conditions and boundary
conditions that will be sufficient to specify the unknown functions and arrive to unique solutions.)

Problem

3. Consider the PDE:
(1 − M2)uxx + uyy = 0.

(This equation models the potential of the velocity field of a fluid around a planar obstacle; M is called the
Mach number.) What is the type of the above second order linear PDE for different values of M? If you
know what a “sonic boom” is, can you see a relation to it and the properties of the equation above?

10



We now investigate the following question: is it always possible to find transformations of coordinates
that make the general PDE (1.13) “simpler”? In Example (1.24) we saw that for the case of the wave
equation it is indeed possible to reduce the wave equation in the simpler PDE vξη = 0.

For the general PDE, we employ a geometric argument. We seek functions ξ(x, y) and η(x, y) for which
we have

aξ2
x + 2bξxξy + cξ2

y = 0 and aη2
x + 2bηxηy + cη2

y = 0; (1.20)

i.e., A = C = 0 for the coefficients of the transformed PDE (1.17). The equations (1.20) are PDEs of first
order, for which we are now seeking to construct curves such that ξ(x, y) = const for any constant. When
(x, y) are points on a curve, i.e, they are such that ξ(x, y) = const, they are dependent. Hence, differentiating
this equation with respect to x, we get

0 =
d const

dx
=

dξ(x, y)

dx
= ξx

dx

dx
+ ξy

dy

dx
= ξx + ξy

dy

dx
,

where in the penultimate equality we made use of the chain rule for functions of two variables; the above
equality yields

ξx

ξy
= −dy

dx
, (1.21)

assuming, without loss of generality, that ξy 6= 0 (for otherwise, we argue as above with the rôles of the x
and y variables interchanged, and we get necessarily ξx 6= 0 from hypothesis (1.14)). Now, we go back to
the desired equations (1.20), and we divide the first equation by ξ2

y to obtain

a
(ξx

ξy

)2

+ 2b
ξx

ξy
+ c = 0,

and, using (1.21), we arrive to

a
(dy

dx

)2

− 2b
dy

dx
+ c = 0, (1.22)

which is called the characteristic equation for the PDE (1.13). This is a quadratic equation for dy
dx , with

discriminant D = b2 − ac ! The roots of the characteristic equation are given by

dy

dx
=

b ±
√
D

a
. (1.23)

Each of the equations above is a first order ordinary differential equation that can be solved using standard
separation of variables to give (families of) solutions f1(x, y) = const and f2(x, y) = const, say. The curves
defined by the equations f1(x, y) = const and f2(x, y) = const are called the characteristic curves of the
second order PDE.

Therefore, if the original PDE (1.13) is hyperbolic, i.e., if D > 0, the characteristic equation has two
real distinct roots, giving two real distinct characteristics curves for the PDE. If the original PDE (1.13) is
parabolic, thereby D = 0, the characteristic equation has one double root, giving one real characteristic curve
for the PDE. Finally, if the original PDE (1.13) is elliptic, thereby D < 0, the characteristic equation has no
real roots, and therefore the PDE has no real characteristic curves, but as we shall see below it has complex
characteristic curves. The characteristic curves can be thought as the “natural directions” in which the PDE
“communicates information” to different points in its domain of definition Ω. With this statement in mind,
it is possible to see that each type of PDE models different phenomena and also admits different properties,
rendering the above classification into hyperbolic, parabolic and elliptic PDEs of great importance.

The case of hyperbolic PDE

Now we go back to the question of the possibility of simplification of the original PDE (1.13), assuming
that (1.13) is hyperbolic. Therefore, as we have seen above it will have two real distinct characteristics for
which the equation (1.22), and thus (1.20) holds too (by observing that all the steps followed above are in
fact equivalences). This means that for every (x0, y0) ∈ Ω there exists a local transformation of coordinates
(x, y) ↔ (ξ, η) with ξ = f1(x, y) and η = f2(x, y) such that A = C = 0 in (1.17) (i.e., we can use one
characteristic curve for each new variable, since both functions satisfy (1.22), and thus (1.20). Finally, we
check if this transformation of coordinates has non-zero Jacobian:

∂(ξ, η)

∂(x, y)
= ξxηy − ξyηx = ξyηy

(ξx

ξy
− ηx

ηy

)

== −ξyηy

(b +
√
D

a
− b −

√
D

a

)

= −ξyηy
2
√
D

a
6= 0,
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whereby the penultimate equality follows from (1.21). Thus, we have essentially proven the following theorem.

Theorem 1.25 Let (1.13) be a hyperbolic PDE. Then, for every (x0, y0) ∈ Ω there exists a transformation
of coordinates (x, y) ↔ (ξ, η) in the neighbourhood of (x0, y0), such that (1.13) can be written as

vξη + · · · = g, (1.24)

where “. . . ” are used to signify the terms involving u, ux, or uy. This is called the canonical form of a
hyperbolic PDE.

Proof. The proof essentially follows from the above discussion: since we are able to show that for every
(x0, y0) ∈ Ω there exists a local transformation of coordinates (x, y) ↔ (ξ, η) for which we have A = C = 0
in (1.17), then (1.17) becomes

2Bvξη + Dvξ + Evη + fv = g.

Dividing now the above equation by 2B (which is not zero, as it can be seen from (1.19)), (1.24) follows. 2

The above theorem shows that each second order linear hyperbolic PDE can be written in the (simpler)
canonical form (1.24).

Example 1.26 We shall calculate the characteristic curves of the wave equation (Example (1.18). In this
case we have a = 1, b = 0, and c = −1. Thus the characteristic equation reads:

(dy

dx

)2

− 1 = 0, or
dy

dx
= ±1,

from which we get two solutions y − x = C1 and y + x = C2, for C1, C2 ∈ R arbitrary constants. This yields
the transformation of coordinates ξ = y − x and η = y + x. Comparing this to (Example (1.18), we can see
that we have arrived to the same transformation of coordinates!

Example 1.27 We shall calculate the characteristic curves and the canonical form of the Tricomi equation

yuxx + uyy = 0

In this case we have a = y, b = 0, and c = 1. As we saw in Example (1.22), this equation is hyperbolic for
y < 0, parabolic for y = 0 and elliptic for y > 0. We first consider the case y < 0. Then the characteristic
equation reads:

y
(dy

dx

)2

+ 1 = 0, or
dy

dx
= ± 1√−y

,

from which we get two solutions in implicit form2 2
3 (−y)3/2 +x = C1 and 2

3 (−y)3/2−x = C2, for C1, C2 ∈ R

arbitrary constants. This yields the transformation of coordinates ξ = 2
3 (−y)3/2 + x and η = 2

3 (−y)3/2 − x.
Notice that for y = 0 (i.e., when the PDE is parabolic), we have ξ = η, i.e., the two characteristic curves
meet, i.e., we only have one characteristic direction! Moreover, ξ and η are not well defined for y > 0, which
is again consistent with the theory developed above, as when y > 0 the PDE is elliptic and, therefore, it has
no real characteristic curves! (More details about the last two cases can be found in the discussion below.)

Also, it is a simple (but worthwhile) exercise to verify that, with the above change of variables, the Tricomi
equation can be written in the canonical form (1.24) when y < 0.

The case of parabolic PDE

We now assume that (1.13) is parabolic, i.e., D = b2−ac = 0. Therefore, the equation (1.22) has one double
root given by

dy

dx
=

b

a
. (1.25)

which yields one family of characteristic curves, say f2(x, y) = const for which (1.25), and thus (1.20) holds.
We set η = f2(x, y) as before. As far as ξ is concerned, we now have flexibility in its choice: the only

2We remind the reader how an ordinary differential equation is solved using separation of variables: we have

dy

dx
= ± 1√−y

, or
√
−ydy = ±dx, or

Z √
−ydy =

Z

±dx, or − 2

3
(−y)3/2 = ±x + const.

12



requirement is that the Jacobian of the resulting transformation of coordinates (x, y) ↔ (ξ, η) is non-zero,
i.e.,

∂(ξ, η)

∂(x, y)
= ξxηy − ξyηx 6= 0. (1.26)

If the above are true, we have C = 0 (from the choice of ξ) in (1.17). Moreover, in this case we necessarily
have that B = 0, too. This is because the PDE is parabolic, i.e., D = 0, which from (1.19) and (1.26) implies
that B2 − AC = 0. But C = 0, giving finally B = 0 also. Thus, we have essentially proven the following
theorem.

Theorem 1.28 Let (1.13) be parabolic PDE. Then, for every (x0, y0) ∈ Ω there exists a transformation of
coordinates (x, y) ↔ (ξ, η) in the neighbourhood of (x0, y0), such that (1.13) can be written as

vξξ + · · · = g, (1.27)

where “. . . ” are used to signify the terms involving u, ux, or uy. This is called the canonical form of a
parablic PDE.

Proof. The proof essentially follows from the above discussion: since we are able to show that for every
(x0, y0) ∈ Ω there exists a local transformation of coordinates (x, y) ↔ (ξ, η) for which we have B = C = 0
in (1.17), then (1.17) becomes

Avξξ + Dvξ + Evη + fv = g.

Dividing now the above equation by A (which is necessarily non-zero from assumption (1.26)), the result
follows. 2

The above theorem shows that each second order linear parabolic PDE can be written in the (simpler)
canonical form (1.27).

The case of elliptic PDE

We now assume that (1.13) is elliptic, i.e., D < 0. Therefore, the equation (1.22) has no real roots and,
therefore, if (1.13) is elliptic then it has no real characteristic curves. Since complex variables (and the
theory of analytic functions) are beyond the scope of these notes, we shall only state the main result for
elliptic problems, without proof.

Theorem 1.29 Let (1.13) be an elliptic PDE. Then, for every (x0, y0) ∈ Ω there exists a transformation of
coordinates (x, y) ↔ (ξ, η) in the neighbourhood of (x0, y0), such that (1.13) can be written as

vξξ + vηη + · · · = g, (1.28)

where “. . . ” are used to signify the terms involving u, ux, or uy. This is called the canonical form of an
elliptic PDE.

The above theorem shows that each second order linear parabolic PDE can be written in the (simpler)
canonical form (1.28).

Remark 1.30 Notice that the whole discussion in this section about linear second order PDEs will still be
valid for the case of semilinear second order PDEs too! Indeed, since in second order semilinear PDEs the
non-linearities are not present in the coefficients of the second order derivatives, the calculations and the
theorems above will still be valid (as all the calculations above are done to control the coefficients of the
second order derivatives).

Problem

4. The Black-Scholes equation for a European call option with value C = C(τ, s) (τ the time variable and
s is the asset price), is given by

Cτ +
σ2

2
s2Css + rsCs − rC = 0, (1.29)
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where r is a positive constant (the interest rate). What type of 2nd order linear PDE is (1.29) and why?
Using the following transformation of coordinates of R

2:

(τ, s) ↔ (t, x), with τ = T − 2t

σ2
, and s = ex,

where T is a constant (the final time), show that (1.29) can be transformed into the following PDE in
canonical form:

vxx + (k − 1)vx − vt − kv = 0, (1.30)

where v(t, x) := C(τ(t, x), s(t, x)) = C(T − 2t/σ2, ex), and k := 2r/σ2. Setting now

v(t, x) = eαx+βtu(t, x),

for some function u = u(t, x), show that the transformed equation (1.30) can be written as

ut − uxx = 0,

when

α = −1

2
(k − 1), and β = −1

4
(k + 1)2,

i.e., the Black-Scholes equation can be transformed into the heat equation!
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1.6 The Cauchy problem and well-posedness of PDEs

In the previous sections, we studied the method of characteristics for the solution of first and second order
linear PDEs. We found that, normally, the general solutions of these PDEs contain unknown functions. We
also gave some heuristic arguments on the importance of characteristic curves in describing the properties
and the solution of PDEs. In particular, we mentioned that information “travels along characteristic curves”,
whenever these exist, i.e., the solution of the PDE has “preferred direction(s)” to relate its values from one
point in space to another.

In the theory of ordinary differential equations, we have seen that the general solution of an ODE involves
unknown constants, which can be determined when we equip the ODE with some “initial condition”, e.g.,
the ODE

du(t)

dt
= 3u(t),

has general solution given by u(t) = Ae3t, for all constants A ∈ R. If we add the requirement that the
solution of the above ODE must satisfy also the initial condition

u(0) = 5,

we find that necessarily A = 5, giving the solution u(t) = 5e3t.
In this section, we shall study some appropriate corresponding conditions for PDEs, that will be sufficient

to specify the unknown functions and arrive to unique solutions.

Definition 1.31 Consider a PDE of the form (1.1), of order k in Ω in d dimensions and let S be a
(given) smooth surface on R

d. Let also n = n(x) denote the unit normal vector to the surface S at a point
x = (x1, x2, . . . , xd) ∈ S. Suppose that on any point x of the surface S the values of the solution u and of
all its directional derivatives up to order k − 1 in the direction of n are given, i.e., we are given functions
f0, f1, . . . , fk−1 : S → R such that

u(x) = f0(x), and
∂u

∂n
(x) = f1(x), and

∂2u

∂n2
(x) = f2(x), . . . , and

∂k−1u

∂nk−1
(x) = fk−1(x). (1.31)

The Cauchy problem consists of finding the unknown function(s) u that satisfy simultaneously the PDE
and the conditions (1.31). The conditions (1.31) are called the initial conditions and the given functions
f0, f1, . . . , fk−1, will be referred to as the initial data.

The degenerate case of d = 1 and k = 1, i.e., the case of an ODE of first order with the corresponding
initial condition is given above. We now consider some less trivial examples.

Example 1.32 We want to find a solution to the Cauchy problem consisting of the PDE

ux + uy = 0, (1.32)

together with the initial condition
u(0, y) = sin y.

(Here the surface S in Definition 1.31 is implicitly given by the initial condition: we have S = {(x, y) ∈ R
2 :

x = 0}, i.e., the surface S (which is now just a curve as we are in R
2) is the y-axis on the Cartesian plane.)

In Example 1.15, we used the method of characteristics to deduce that the general solution to the PDE
(1.32) is

u(x, y) = f(y − x), for all (x, y) ∈ R
2.

If we set x = 0 we get, using the initial condition:

sin y = u(0, y) = f(y).

Hence a solution to the Cauchy problem is given by

u(x, y) = sin(y − x).

In Figure 1.1 we sketch S for this problem, along with some characteristic curves (which are of the form
y = x + c). Notice that S intersects all characteristic curves.

15



S

characteristic
curves

Figure 1.1: Example 1.32. Sketch of the Cauchy problem.

Example 1.33 We want to find a solution to the Cauchy problem consisting of the wave equation

uxx − uyy = 0, (1.33)

together with the initial conditions

u(x, 0) = sin x, and uy(x, 0) = 0.

(Again, here the surface S in Definition 1.31 is implicitly given by the initial condition: we have S = {(x, y) ∈
R

2 : y = 0}, i.e., the surface S (which is now just a curve as we are in R
2) is the x-axis on the Cartesian

plane.) In Example 1.24, we used the method of characteristics to deduce that the general solution to the
PDE (1.33) is

u(x, y) = F (x + y) + G(x − y), for all (x, y) ∈ R
2,

for some functions F, G; thus, if we set y = 0 we get, using the first initial condition:

sin x = u(x, 0) = F (x) + G(x). (1.34)

Differentiating the general solution with respect to y, we get

uy(x, y) = F ′(x + y)(x + y)y + G′(x − y)(x − y)y = F ′(x + y) − G′(x − y);

setting y = 0 and using the first initial condition, we arrive to

0 = uy(x, 0) = F ′(x) − G′(x), or F (x) − G(x) = c, (1.35)

for some constant c ∈ R. Solving the system (1.34) and (1.35) with respect to F (x) and G(x) (two equations
with two unknowns!), we get

F (x) =
1

2
(sin x + c), and G(x) =

1

2
(sin x − c).

Now that we have specified F and G, we can write the solution to the above Cauchy problem

u(x, y) = F (x + y) + G(x − y) =
1

2
(sin(x + y) + c) +

1

2
(sin(x − y) − c) =

1

2
(sin(x + y) + sin(x − y)).

Notice that S intersects all characteristic curves.

One question that arises is whether the solutions to the Cauchy problems in the previous examples are
unique. A partial answer to this question is given by the celebrated Cauchy-Kovalevskaya Theorem.

Theorem 1.34 (The Cauchy-Kovalevskaya Theorem) Consider the Cauchy problem from Definition
(1.31) for the case of a linear PDE of the form (1.3). Let x0 be a point of the initial surface S, which is
assumed to be analytic3. Suppose that S is not a characteristic surface at the point x0. Assume that all
the coefficients of the PDE (1.3), the right-hand side f , and all the initial data f0, f1, . . . , fk−1 are analytic
functions on a neighbourhood of the point x0. Then the Cauchy problem has a solution u, defined in the
neighbourhood of x0. Moreover, the solution u is analytic in a neighbourhood of x0 and it is unique in the
class of analytic functions.

The proof of the above Theorem is out of the scope of these notes; it can be found in any standard PDE
theory textbook.

3An analytic surface which can be described by a function g(x) = const for g analytic function. An analytic function is a
function that can be written as a (absolutely convergent) power series.
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Therefore, according to the Cauchy-Kovalevskaya Theorem (under the analyticity assumptions), the
Cauchy problem has a solution which is unique in the space of analytic functions. Showing existence and
uniqueness of solutions to PDE problems (i.e., PDEs together with some initial or boundary conditions) is,
undoubtedly, a task of paramount importance in the theory of PDEs. Indeed, once a PDE model is studied,
it is extremely useful to know if that model has a solution (for otherwise, we are wasting our efforts trying
to solve it). If it does have a solution, then it is very important to be able to show that the solution is also
unique (for otherwise, the same PDE problem will produce many different solutions, and this is not usually
natural in mathematical modelling).

Even if a PDE problem has a unique solution, this does not necessarily mean that the PDE problem
is “well behaved”. By well-behaved here we understand if the PDE problem changes “slightly” (e.g., by
altering “slightly” some coefficient), then also its solution should change only “slightly” also. In other words,
“well behaved” is to be understood as follows: “small” changes in the initial data or the PDE itself should
not result to arbitrarily “large” changes in the behaviour of the solution to the PDE problem.

Definition 1.35 A PDE problem is well-posed if the following 3 properties hold:

• the PDE problem has a solution

• the solution is unique

• the solution depends continuously on the PDE coefficients and the problem data.

If a PDE problem is not well-posed, then we say that it is ill-posed.

The concept of well-posedness is due to Hadamard4.

Example 1.36 The Cauchy problem consisting of the wave equation

uxx − uyy = 0,

together with the initial conditions

u(x, 0) = f(x), uy(x, 0) = 0,

for some known initial datum f , is an example of a well posed problem. Indeed, working completely analo-
gously to Example 1.33, we can see that a solution to the above problem is given by

u(x, y) =
1

2

(
f(x − y) + f(x + y)

)
.

The proof of uniqueness of solution is more involved and will be omitted (it is based on the so-called
energy property of the wave equation).

Finally, to show the continuity of the solution to the initial data, we consider also the Cauchy problem

ũxx − ũyy = 0, together with the initial conditions ũ(x, 0) = f̃(x), ũy(x, 0) = 0,

i.e., we consider a different initial condition f̃ for the Cauchy problem, giving a new solution ũ. Working as
above, we can immediately see that the solution to this Cauchy problem is given by

ũ(x, y) =
1

2

(
f̃(x − y) + f̃(x + y)

)
.

Now, we look at the difference of the solutions of the two Cauchy problems above. We have

u(x, y)−ũ(x, y) =
1

2

(
f(x−y)+f(x+y)

)
−1

2

(
f̃(x−y)+f̃(x+y)

)
=

1

2

((
f(x−y)−f̃(x−y)

)
+

(
f(x+y)−f̃(x+y)

))

.

Hence if the difference f(z) − f̃(z) is small for all z ∈ R, then the difference u − ũ will also be small! That
is the solution depends continuously on the PDE coefficients and the problem data.

We now consider an example of an ill-posed problem, which is also due to Hadamard.

4Jacques Salomon Hadamard (1865 - 1963), French mathematician
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Example 1.37 The Cauchy problem consisting of the Laplace equation

uxx + uyy = 0, for − π

2
< x <

π

2
, and y > 0,

(i.e., Ω = (−π/2, π/2) × (0, +∞)), together with the initial conditions

u(x, 0) = 0, uy(x, 0) = e−
√

n cos(nx), for − π

2
≤ x ≤ π

2

for every n = 1, 3, 5, . . . , and
u(−π/2, y) = 0 = u(π/2, y), for y ≥ 0.

As we shall see in Chapter 2, it is possible to calculate (using the method of separation of variables) that a
solution to the above problem is given by

u(x, y) =
e−

√
n

n
cos(nx) sinh(ny).

(It is easy to check that this is a solution to the Cauchy problem just by differentiating back and verifying
that it indeed satisfies the PDE and the initial conditions.)

Now we study what happens as we vary the odd number n appearing in the initial conditions. We can see
that

|uy(x, 0)| = |e−
√

n cos(nx)| ≤ e−
√

n,

i.e., as we increase n, the initial condition uy(x, 0) changes at an exponentially small manner. Also, recalling
the definition of the hyperbolic sine5, we have

u(x, y) =
e−

√
n

n
cos(nx) sinh(ny) =

e−
√

n+ny − e−
√

n−ny

2n
cos(nx).

Notice that when y 6= 0, the exponent of the first exponential is positive and thus, a change in n results to an
exponentially large change in u(x, y). Hence, a small change in the initial data (realised when changing the
constant n), result to exponentially large change in the solution u for y 6= 0! Hence the problem is ill-posed.

In Chapter 2, we shall consider appropriate conditions for each type of linear second order equations
(elliptic, parabolic, hyperbolic), that result to well-posed problems.

Problem

5. Find the solution to the Cauchy problem consisting of the wave equation

uxx − uyy = 0,

together with the initial conditions

u(x, 0) = 0, uy(x, 0) = g(x),

for some known initial datum g. Is this problem well-posed or ill-posed? Why?

5We recall that the hyperbolic sine and the hyperbolic cosine are defined as

sinh x :=
1

2
(ex − e−x), and cosh x :=

1

2
(ex + e−x)
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Chapter 2

Problems of Mathematical Physics

In this chapter we shall be concerned with the classical equations of mathematical physics, together with
appropriate initial (and boundary) conditions.

2.1 The Laplace equation

We begin the discussion with Laplace equation:

∆u = 0, for (x1, x2, . . . , xd) ∈ Ω ⊂ R
d, (2.1)

where ∆ := (·)x1x1+(·)x2x2+· · ·+(·)xdxd
denotes the so-called Laplace operator in d dimensions; in particular,

in two dimensions Laplace equation reads:

∆u = uxx + uyy = 0, for (x, y) ∈ Ω ⊂ R
2, (2.2)

where ∆ := (·)xx + (·)yy. The non-homogeneous version of the Laplace equation, namely

∆u = f in Ω (2.3)

for some known function f : Ω ⊂ R
d → R, is known as the Poisson equation.

Laplace and Poisson equations model predominately phenomena that do not evolve in time, typically
properties of materials (elasticity, electric or gravitational charge), probability densities of random variables,
etc.

As we saw in Chapter 1, Laplace (and therefore, Poisson) equation is of elliptic type. in fact, Laplace
equation is the archetypical equation of elliptic type (see also Theorem 1.29 for the canonical form of PDEs
of elliptic type).

Ω
∂Ω

∆u=0

Dirichlet b. c. u =f

(a) Dirichlet boundary value problem.

Ω
∂Ω

∆u =0

N eum an n b. c .
∂ u

∂ n
= f

n

(b) Neumann boundary value problem.

Figure 2.1: Dirichlet and Neumann boundary value problems.

For the problem to be well posed, we equip the Laplace equation with conditions along the whole of the
boundary ∂Ω of the domain Ω. We shall call these boundary conditions1. We shall consider two types of

1In the previous chapter, we talked about the Cauchy problem consisting of a PDE, together with initial conditions. The
term “initial conditions” is used for PDEs that model evolution phenomena (i.e., PDEs for which one variable is “time”), for
which the Cauchy problem is well posed. For elliptic PDEs, however, which model phenomena that do not evolve in time, it is
conventional to use the term “boundary conditions” instead.
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boundary conditions, namely the Dirichlet boundary condition:

u(x, y) = f(x, y), for(x, y) ∈ ∂Ω,

where f : ∂Ω → R is a known function, and the Neumann boundary condition:

∂u

∂n
(x, y) = f(x, y), for(x, y) ∈ ∂Ω,

where ∂u
∂n (x, y) is the directional derivative of u in the direction of the unit outward normal vector n at the

point (x, y) of the boundary ∂Ω. We shall refer to the Laplace equation together with the Dirichlet boundary
condition as the Dirichlet boundary value problem and to the Laplace equation together with the Neumann
boundary condition as the Neumann boundary value problem (see Figure 2.1 for an illustration).

Next, we shall be concerned with finding the solution to the Laplace equation with the above boundary
conditions.
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2.1.1 Separation of variables

For simplicity of the presentation, let Ω = [0, a] × [0, b] ⊂ R
2 be the rectangular region with vertices the

points (0, 0), (a, 0), (a, b), and (0, b). We seek the (unique) solution u : Ω → R to the Laplace boundary-value
problem

∆u = 0 in Ω, (2.4)

u(0, y) = u(a, y) = u(x, 0) = 0, for 0 ≤ x ≤ a, 0 ≤ y ≤ b, (2.5)

u(x, b) = f(x), for 0 ≤ x ≤ a, (2.6)

where f : [0, a] → R is a known function.
We begin by making the crucial assumption that the solution u of the problem (2.4) is of the form

u(x, y) = X(x)Y (y),

for some twice differentiable functions of one variable X and Y . (Indeed, if we find one solution to the
problem (2.4), it has to be necessarily the only solution, due to the uniqueness of the solution property
described above.) Then we have

uxx = X ′′(x)Y (y) and uyy = X(x)Y ′′(y).

Inserting this into the PDE ∆u = 0, we arrive to

X ′′(x)Y (y) + X(x)Y ′′(y) = 0, or
X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
= 0,

after division by X(x)Y (y), which we can assume to be non-zero without loss of generality (for otherwise,
the solution u is identically equal to zero which means that we found the solution if also f = 0, or that this
is impossible if f 6= 0). This gives

X ′′(x)

X(x)
= −Y ′′(y)

Y (y)
, (2.7)

that is, the left-hand side depends only on the independent variable x and the right-hand side depends only
on the independent variable y. Since x and y are independent variables, the only possibility for the relation
(2.7) to hold is for both the left- and the right-hand sides to be constant, say equal to λ ∈ R. From this we
get the ordinary differential equations

X ′′(x) − λX(x) = 0, and Y ′′(y) + λY (y) = 0.

Now from the the boundary conditions we get

X(0)Y (y) = X(a)Y (y) = 0 giving X(0) = X(a) = 0, and X(x)Y (0) = 0 giving Y (0) = 0.

Now we separate 3 cases: whether λ is positive, negative or zero.

The case λ > 0:

If λ > 0, then the two-point boundary value problem

X ′′(x) − λX(x) = 0, 0 < x < a, and X(0) = X(a) = 0,

has solution of the form
X(x) = A cosh(

√
λx) + B sinh(

√
λx),

for some constants A, B ∈ R, which can be determined using the boundary conditions X(0) = X(a) = 0.
We have

0 = X(0) = A cosh(0) = A, and 0 = X(a) = B sinh(
√

λa),

which implies that also B = 0. This means that if λ > 0, we get X(x) = 0 and thus, the only solution is the
trivial solution u(x, y) = 0, which is not acceptable as u(x, y) 6= 0 on the top boundary.
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The case λ = 0:

If λ = 0, then the two-point boundary value problem becomes

X ′′(x) = 0, 0 < x < a, and X(0) = X(a) = 0;

it has solution of the form
X(x) = Ax + B,

for some constants A, B ∈ R, which can be determined using the boundary conditions X(0) = X(a) = 0.
We have then

0 = X(0) = B, and 0 = X(a) = Aa,

implying also that A = 0. Hence if λ = 0 we again arrive to the trivial solution u = 0 which is not acceptable.

The case λ < 0:

If λ < 0, then there exists κ ∈ R such that λ = −κ2. The two-point boundary value problem

X ′′(x) + κ2X(x) = 0, for 0 < x < a, and X(0) = X(a) = 0,

has solution of the form
X(x) = A cos(κx) + B sin(κx),

for some constants A, B ∈ R, which can be determined using the boundary conditions X(0) = X(a) = 0.
We have

0 = X(0) = A cos(0) = A, and 0 = X(a) = B sin(κa);

this implies sin(κa) = 0, which means κa = nπ for any n = 1, 2, . . . integers. From this we find

κ =
nπ

a
,

and, thus, we obtain the solutions

X(x) = Bn sin
(nπx

a

)
,

for all n = 1, 2, . . . integers and Bn ∈ R. We now turn our attention to Y , which satisfies the two-point
boundary value problem

Y ′′(y) − κ2Y (y) = 0, for 0 < y < b, and Y (0) = 0, X(x)Y (b) = f(x).

As before, the solution of the ODE is of the form

Y (y) = C cosh(κy) + D sinh(κy),

for some constants C, D ∈ R, which can be determined using the boundary conditions. From the “left”
boundary condition, we get

0 = Y (0) = C cosh(0) = C,

giving the family of solutions

Y (y) = Dn sinh(κy) = Dn sinh
(nπy

a

)
,

for all n = 1, 2, . . . integers and Dn ∈ R. Hence all the functions of the form

un(x, y) := En sin
(nπx

a

)
sinh

(nπy

a

)
,

setting En = BnDn for all n = 1, 2, . . . , are solutions to the Laplace problem (2.4). Since the Laplace
equation is linear, it is not hard to see that if two functions are solutions to Laplace equation, then any
linear combination of these functions is a solution to the Laplace equation also2. Hence, we can formally
write that the solution of the Laplace problem (2.4) is of the form

u(x, y) =

∞∑

n=1

En sin
(nπx

a

)
sinh

(nπy

a

)
(2.8)

2This is the so-called Principle of Superposition, whereby the if two functions are solutions to a linear homogeneous PDE
then their linear combination is also a solution.
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(at this point the above equality is only formal, as we do not know if the above series converges). Notice
that the En’s are still not determined; this is to be expected as we have not yet made use of the remaining
boundary condition u(x, b) = X(x)Y (b) = f(x) which, in view of (2.8) can be written as

f(x) = u(x, b) =
∞∑

n=1

En sin
(nπx

a

)
sinh

(nπb

a

)
=

∞∑

n=1

Ẽn sin
(nπx

a

)
, (2.9)

where we have set Ẽn := En sinh
(

nπb
a

)
.

To conclude the solution, we need to determine all Ẽn’s such that (2.9) is satisfied. Describing how to
do that is the content of the next section.

Problem

6. Let Ω = [0, a] × [0, b] ⊂ R
2. We seek the (unique) solution u : Ω → R to the Laplace boundary-value

problem

∆u = 0 in Ω,

u(0, y) = u(x, 0) = 0, for 0 ≤ x ≤ a, 0 ≤ y ≤ b,

ux(a, y) = 0, for 0 ≤ y ≤ b,

ux(x, b) = g(x), for 0 ≤ x ≤ a,

where g : [0, a] → R is a known function. Using the method of separation of variables, calculate the solution
up to unknown constants, and give a condition that can enable us to calculate these unknown constants.
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2.1.2 Fourier series

In applied mathematics, it is often of great interest to be able to describe functions in terms of simpler
functions. For instance, the classical theory of Power Series is concerned with representing functions as
infinite sums of simpler polynomial functions, e.g., the exponential function is known to satisfy

ex = 1 + x +
x2

2
+

x3

6
+ · · · + xn

n!
+ · · · =

∞∑

n=1

xn

n!
,

i.e., the function f(x) = ex can be written as an infinite sum of multiples of powers of x! Such representations
can be very useful in various applications, such as in the solution of ordinary differential equations.

In this section, we investigate the question of describing functions in terms of simpler trigonometric
functions; these are the celebrated Fourier series expansions3. In physical terms they can be interpreted
as analysing a function into simple sine and cosine functions (waves) of different frequencies. This is a
very general and powerful idea; indeed, Fourier series are at the heart of many applications such as signal
processing and medical imaging.

Definition 2.1 For L > 0 constant, let f : [−L, L] → R be a function with at most finite number of
discontinuities in the interval [−L, L]. The Fourier series expansion associated with f is defined as

a0

2
+

∞∑

n=1

(

an cos
(nπx

L

)
+ bn sin

(nπx

L

))

,

where a0, an and bn, n = 1, 2, . . . , are called the Fourier coefficients and given by the formulas

an :=
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx, and bn :=

1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx.

We investigate the above definition with an example.

Example 2.2 We are seeking the Fourier series expansion of the function f : [−1, 1] → R, with f(x) = |x|.
We have L = 1, and we calculate the Fourier coefficients:

an =

∫ 1

−1

|x| cos(nπx)dx =

∫ 0

−1

(−x) cos(nπx)dx +

∫ 1

0

x cos(nπx)dx

=
[

− x
sin(nπx)

nπ

]0

−1
+

∫ 0

−1

sin(nπx)

nπ
dx +

[

x
sin(nπx)

nπ

]1

0
−

∫ 1

0

sin(nπx)

nπ
dx

= 0 +
[

− cos(nπx)

(nπ)2

]0

−1
+ 0 −

[

− cos(nπx)

(nπ)2

]1

0
= −1 − (−1)n

(nπ)2
+

(−1)n − 1

(nπ)2
= 2

(−1)n − 1

(nπ)2
,

and

bn =

∫ 1

−1

|x| sin(nπx)dx =

∫ 0

−1

(−x) sin(nπx)dx +

∫ 1

0

x sin(nπx)dx

=
[

x
cos(nπx)

nπ

]0

−1
−

∫ 0

−1

cos(nπx)

nπ
dx +

[

− x
cos(nπx)

nπ

]1

0
+

∫ 1

0

cos(nπx)

nπ
dx

=
(−1)n

nπ
−

[ sin(nπx)

(nπ)2

]0

−1
− (−1)n

nπ
+

[ sin(nπx)

(nπ)2

]1

0
= 0,

for n = 1, 2, . . . , and

a0 =

∫ 1

−1

|x|dx =

∫ 0

−1

(−x)dx +

∫ 1

0

xdx = 1.

Hence the Fourier series expansion of f(x) = |x|, x ∈ [−1, 1] reads

1

2
+

∞∑

n=1

2
(−1)n − 1

(nπ)2
cos(nπx).

3The name refers to the great French mathematician and physicist Jean Baptiste Joseph Fourier (1768 - 1830) who first
proposed solving PDEs using trigonometric series expansions.
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To see how does the Fourier expansion compares to the original function, we consider the partial sums

1

2
+

k∑

n=1

2
(−1)n − 1

(nπ)2
cos(nπx);

then, for k = 1, we get
1

2
− 4

π2
cos(πx),

for k = 3, we get
1

2
− 4

π2
cos(πx) − 4

9π2
cos(3πx),

and so on (notice that the terms for n even are zero). In Figure 2.2, we plot the function f(x) = |x| and the
partial sums of its Fourier expansion for k = 1, k = 3 and k = 7.
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(a) Graph of f(x) = |x|
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(d) Fourier expansion for k = 7

Figure 2.2: Fourier synthesis...

The first question that may spring to mind is: does it hold

f(x) =
a0

2
+

∞∑

n=1

(

an cos
(nπx

L

)
+ bn sin

(nπx

L

))

?

In the previous example, this seemed to be the case, as we take more and more terms in the series. The
following theorem gives an answer to the above question.

Theorem 2.3 Suppose that a function f : [−L, L] → R and its derivative f ′ are bounded and continuous
everywhere in [−L, L] apart from a finite number of points. Then, at every point x ∈ (−L, L) for which f is
continuous, we have

f(x) =
a0

2
+

∞∑

n=1

(

an cos
(nπx

L

)
+ bn sin

(nπx

L

))

,

at every point x ∈ (−L, L) that f has a jump discontinuity, we have

1

2

(
f(x+) + f(x−)

)
=

a0

2
+

∞∑

n=1

(

an cos
(nπx

L

)
+ bn sin

(nπx

L

))

,
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where f(x+) and f(x−) denote the limit values of f from the right and from the left of x, respectively 4;
finally, at the endpoints x = −L and x = L, we have

1

2

(
f((−L)+) + f(L−)

)
=

a0

2
+

∞∑

n=1

(

an cos
(nπx

L

)
+ bn sin

(nπx

L

))

.

The proof of this theorem is quite involved and somewhat outside the scope of these notes, so it is omitted.

Remark 2.4 Note that when f is continuous at a point x ∈ (0, L), then we have f(x+) = f(x−) = f(x),
and thus 1

2

(
f(x+) + f(x−)

)
= f(x), i.e., we go back to the first part of the theorem!

Example 2.2 revisited. We investigate the above theorem in conjunction with Example 2.2. The function
f(x) = |x| in Example 2.2 is continuous in (−1, 1) and, therefore, Theorem 2.3 implies

|x| =
1

2
+

∞∑

n=1

2
(−1)n − 1

(nπ)2
cos(nπx), for all x ∈ (−1, 1).

Moreover, at the endpoints x = ±1 of the interval [−1, 1], we calculate f((−1)+) = 1 and f(1−) = 1. Hence,
Theorem 2.3 implies

1 =
1

2
(f((−1)+) + f(1−)) =

1

2
+

∞∑

n=1

2
(−1)n − 1

(nπ)2
cos(nπ(±1)) =

1

2
+

∞∑

n=1

2
1 − (−1)n

(nπ)2
;

notice that in this case we have f((−1)+) = 1 = f(1−).

Example 2.5 We are seeking the Fourier series expansion of the function f : [0, 2] → R, with

f(x) =

{
1, if 0 ≤ x ≤ 1;
0, if 1 < x ≤ 2.

.

We notice that the domain of the function f is not of the form [−L, L] for some L > 0 and, therefore
the theory above does not apply as is. One way of overcoming this difficulty is to extend the definition of the
function f from [0, 2] to [−2, 2]. Of course, there are infinite possible extensions of a function and we shall
be seeking extensions that are “convenient” and “simple”. Below, we consider two possible extensions.

(a) Extension to an even function. We extend f to the even function5 f̃ : [−2, 2] → R, with

f̃(x) =

{
1, if −1 ≤ x ≤ 1;
0, if −2 ≤ x < −1 or 1 < x ≤ 2.

.

We have L = 2, and we calculate the Fourier coefficients:

an =
1

2

∫ 1

−1

cos
(nπx

2

)
dx =

[ sin
(

nπx
2

)

nπ

]1

−1
=

sin
(

nπ
2

)

nπ
− sin

(
− nπ

2

)

nπ
= 2

sin
(

nπ
2

)

nπ
,

and

bn =
1

2

∫ 1

−1

sin
(nπx

2

)
dx =

[

− cos
(

nπx
2

)

nπ

]1

−1
= −cos

(
nπ
2

)

nπ
+

cos
(
− nπ

2

)

nπ
= 0,

for n = 1, 2, . . . , and

a0 =
1

2

∫ 1

−1

dx = 1.

Hence the Fourier series expansion of f̃ , x ∈ [−2, 2] reads

1

2
+

∞∑

n=1

2
sin

(
nπ
2

)

nπ
cos

(nπx

2

)
.

4We recall that the limit values of f from the right and from the left of x are, respectively, defined as

f(x+) := lim
h→0
h>0

f(x + h), and f(x−) := lim
h→0
h>0

f(x − h).

5We recall that an even function is one for which f(−x) = f(x), i.e., it admits the y-axis as axis of symmetry.
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To see how does the Fourier expansion compares to the original function, we consider the partial sums

1

2
+

k∑

n=1

2
sin

(
nπ
2

)

nπ
cos

(nπx

2

)
.

In Figure 2.3, we plot the function f̃ and the partial sums of its Fourier expansion for k = 1, k = 3 and
k = 9 and k = 39.
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Figure 2.3: Fourier synthesis...

(b) Extension to an odd function. We extend f to the odd function6 f̂ : [−2, 2] → R, with

f̂(x) =







1, if 0 ≤ x ≤ 1;
−1, if −1 ≤ x < 0;
0, if −2 ≤ x < −1 or 1 < x ≤ 2.

.

We have L = 2, and we calculate the Fourier coefficients:

an = −1

2

∫ 0

−1

cos
(nπx

2

)
dx +

1

2

∫ 1

0

cos
(nπx

2

)
dx = −

[sin
(

nπx
2

)

nπ

]0

−1
+

[ sin
(

nπx
2

)

nπ

]1

0
= 0,

and

bn = −1

2

∫ 0

−1

sin
(nπx

2

)
dx +

1

2

∫ 1

0

sin
(nπx

2

)
dx = −

[

− cos
(

nπx
2

)

nπ

]0

−1
+

[

− cos
(

nπx
2

)

nπ

]1

0
= 2

1 − cos
(

nπ
2

)

nπ
,

for n = 1, 2, . . . , and

a0 = −1

2

∫ 0

−1

dx +
1

2

∫ 1

0

dx = 0.

Hence the Fourier series expansion of f̂ , x ∈ [−2, 2] reads

∞∑

n=1

2
1 − cos

(
nπ
2

)

nπ
sin

(nπx

2

)
.

6We recall that an odd function is one for which f(−x) = −f(x), i.e., it admits the origin as the centre of symmetry.
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To see how does the Fourier expansion compare to the original function, we consider the partial sums

k∑

n=1

2
1 − cos

(
nπ
2

)

nπ
sin

(nπx

2

)
.

In Figure 2.4, we plot the function f̂ and the partial sums of its Fourier expansion for k = 1, k = 3 and
k = 10 and k = 40.
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Figure 2.4: Fourier synthesis...

When we extended the function f : [0, 2] → R to an even function f̃ : [−2, 2] → R, the Fourier coefficients
bn vanished, yielding a Fourier series expansion consisting only of cosine functions – this is called a cosine
series expansion. On the contrary when we extended the function f : [0, 2] → R to an odd function

f̂ : [−2, 2] → R, the Fourier coefficients an vanished, yielding a Fourier series expansion consisting only of
sine functions – this is called a sine series expansion. In fact, this is a general observation: any function
f : [0, L] → R can be expressed in terms of either a cosine series or a sine series; this will be particularly
useful when solving PDEs as presented below.

We observe that the partial sums of Fourier series expansions develop oscillations near discontinuities.
This phenomenon is common whenever one tries to approximate discontinuous functions by continuous ones
and it is usually referred to as Gibbs phenomenon.

It is possible to see from Figures 2.3 and 2.4 that at points where the functions admit jump discontinuities
then the Fourier series expansions appear to converge to the average of the limit values at either side of each
discontinuity; this is in accordance with Theorem 2.3!

Problem

7. Compute the Fourier series expansion of the function f : [−1, 1] → R, with

f(x) =

{
−x, if x < 0;
0, if x ≥ 0.

What do you observe at the endpoints? Explain.
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2.1.3 Back to the Laplace problem

In the previous section we saw how to represent functions in terms of Fourier series expansions; this discussion
was motivated by the formula (2.9), which was resulted from solving the Laplace problem on a rectangular
domain using separation of variables.

Going back to (2.9), we are now in position to determine the Ẽn’s as the Fourier coefficients of the sine
series expansion of the function f : [0, a] → R (which is the Dirichlet boundary condition on the top part of

the rectangular boundary). More specifically, we extend f to an odd function in f̂ : [−a, a] → R, i.e., we set

f̂(x) :=

{
f(x), if 0 ≤ x ≤ a;
−f(−x), if −a ≤ x < 0;

then, we have

Ẽn =
1

a

∫ a

−a

f̂(x) sin
(nπx

a

)
dx = −1

a

∫ 0

−a

f(−x) sin
(nπx

a

)
dx +

1

a

∫ a

0

f(x) sin
(nπx

a

)
dx

=
1

a

∫ 0

a

f(y) sin
(
− nπy

a

)
dy +

1

a

∫ a

0

f(x) sin
(nπx

a

)
dx

=
1

a

∫ a

0

f(y) sin
(nπy

a

)
dy +

1

a

∫ a

0

f(x) sin
(nπx

a

)
dx =

2

a

∫ a

0

f(x) sin
(nπx

a

)
dx, (2.10)

using the change of variables y = −x in the penultimate equality, which is now computable provided we
know f(x)!

Example 2.6 We want to solve the Laplace problem (2.4), where a = 1 and f : [0, 1] → R is defined by

f(x) =

{
x, if 0 ≤ x ≤ 1

2 ;
1 − x, if 1

2 < x ≤ 1.

The method of solution of the Laplace problem using separation of variables is presented in Section 2.3.1,
where we arrived to the solution (2.8) with unknown coefficients En, n = 1, 2, . . . , which can be determined
from the boundary condition (2.9) after expanding f(x) into a sine series.

Using (2.10) with a = 1, we calculate

Ẽn = 2

∫ 1
2

0

x sin(nπx)dx + 2

∫ 1

1
2

(1 − x) sin(nπx)dx = · · · =
4 sin

(
nπ
2

)

(nπ)2
.

In Figure 2.5, we plot the function f and the partial sums with 3, 9 and 39 first terms,respectively. Recalling
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Figure 2.5: Fourier synthesis...

now the definition of Ẽn := En sinh
(

nπb
a

)
, we conclude that the solution of (2.4) for a = 1 is given by the

series

u(x, y) =
∞∑

n=1

4 sin
(

nπ
2

)

(nπ)2 sinh(nπb)
sin(nπx) sinh(nπy).
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Problems

8. Find the solution of the boundary-value problem from Problem 6, for the case where the boundary
condition g : [0, a] → R is given by

g(x) =

{
x
a , if 0 ≤ x < a

2 ;
1 − x

a , if a
2 ≤ x ≤ a.

9. Suppose, we want find the solution to the Poisson equation with Dirichlet boundary conditions

∆u = f(x, y) in Ω,

u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0, for 0 ≤ x ≤ a, 0 ≤ y ≤ b.

Notice that the method of separation of variables, as described in the lecture, cannot be applied directly.
Explain why. How would you go about solving this problem?

2.2 The heat equation and the initial/boundary value problem

The heat equation (also known as the diffusion equation) is a paradigm of equations of parabolic type as we
saw in the previous chapter. In most applications the parabolic equations describe phenomena that evolve
in time; in the following, t will be denoting the “time”-variable, ranging between time 0 and some final time
T > 0. For (unknown) solution u : [0, T ]× Ω → R, the heat equation reads

ut = ∆u, for (x1, x2, . . . , xd) ∈ Ω ⊂ R
d, and t ∈ [0, T ], (2.11)

where ∆ is the Laplace operator in d dimensions; in particular, in one space dimension the hear equation
reads:

ut = uxx, for x ∈ Ω ⊂ R, and t ∈ [0, T ]. (2.12)

As we also saw in Problem Sheet 1, the heat equation can viewed as one canonical form of the Black-Scholes
equation of mathematical finance.

As we saw in Chapter 1, the heat equation is of parabolic type. Therefore, it admits one family of
characteristic curves and, at least intuitively, we can see that it requires Cauchy initial condition. Also, the
PDE for each fixed time t ∈ [0, T ] takes the form of the Poisson problem. Hence, again at least heuristically,
we can see that Dirichlet and/or Neumann type boundary condition(s) are required on the boundary of Ω,
for each time t, for the problem to be well posed. We shall refer to the heat equation together with the
Cauchy initial condition and the boundary conditions, as the initial/boundary value problem.

Next, we shall be concerned with finding the solution to the initial/boundary value problem, using the
separation of variables.

30



2.2.1 Separation of variables

For simplicity of the presentation, let Ω = [0, L] ⊂ R. We seek the (unique) solution u : [0, T ] × Ω → R to
the initial/boundary-value problem

ut(t, x) = uxx(t, x) in (0, T ]× [0, L],

u(0, x) = f(x), for 0 ≤ x ≤ L (2.13)

u(t, 0) = u(t, L) = 0, for 0 < t ≤ T,

where f : [0, L] → R is a known function.
We begin by making the crucial assumption that the solution u of the problem (2.13) is of the form

u(t, x) = T (t)X(x),

for some twice differentiable functions of one variable T and X . (Indeed, if we find one solution to the
problem (2.13), it has to be necessarily the only solution, due to the uniqueness of the solution property
described above.) Then we have

ut = T ′(t)X(x) and uxx = T (t)X ′′(x).

Inserting this into the PDE ut = uxx, we arrive to

T ′(t)X(x) = T (t)X ′′(x), or
T ′(t)

T (t)
=

X ′′(x)

X(x)
, (2.14)

after division by T (t)X(x), which we can assume to be non-zero without loss of generality (for otherwise,
the solution u is identically equal to zero which means that we found the solution if also f = 0, or that
this is impossible if f 6= 0). We notice that the left-hand side of (2.14) depends only on the independent
variable t and the right-hand side depends only on the independent variable x. Since t and x are independent
variables, the only possibility for the relation (2.14) to hold is for both the left- and the right-hand sides to
be constant, say equal to λ ∈ R. From this we get the ordinary differential equations

T ′(t) − λT (t) = 0, and X ′′(x) − λX(x) = 0.

Now from the the boundary conditions we get

T (t)X(0) = T (t)X(L) = 0 giving X(0) = X(L) = 0, and T (0)X(x) = f(x) for x ∈ [0, L].

Now we separate 3 cases: whether λ is positive, negative or zero.

The case λ > 0:

If λ > 0, then the two-point boundary value problem

X ′′(x) − λX(x) = 0, 0 < x < L, and X(0) = X(L) = 0,

has solution of the form
X(x) = A cosh(

√
λx) + B sinh(

√
λx),

for some constants A, B ∈ R, which can be determined using the boundary conditions X(0) = X(L) = 0.
We have

0 = X(0) = A cosh(0) = A, and 0 = X(L) = B sinh(
√

λa),

which implies that also B = 0. This means that if λ > 0, we get X(x) = 0 and thus, the only solution is the
trivial solution u(t, x) = 0, which is not acceptable as u(0, x) 6= 0, in general.

The case λ = 0:

If λ = 0, then the two-point boundary value problem becomes

X ′′(x) = 0, 0 < x < L, and X(0) = X(L) = 0;

it has solution of the form
X(x) = Ax + B,

for some constants A, B ∈ R, which can be determined using the boundary conditions X(0) = X(L) = 0.
We have then

0 = X(0) = B, and 0 = X(L) = AL,

implying also that A = 0. Hence if λ = 0 we again arrive to the trivial solution u = 0 which is not acceptable.
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The case λ < 0:

If λ < 0, then there exists κ ∈ R such that λ = −κ2. The two-point boundary value problem

X ′′(x) + κ2X(x) = 0, for 0 < x < L, and X(0) = X(L) = 0,

has solution of the form
X(x) = A cos(κx) + B sin(κx),

for some constants A, B ∈ R, which can be determined using the boundary conditions X(0) = X(L) = 0.
We have

0 = X(0) = A cos(0) = A, and 0 = X(L) = B sin(κL);

this implies sin(κL) = 0, which means κL = nπ for any n = 1, 2, . . . integers. From this we find

κ =
nπ

L
,

and, thus, we obtain the solutions

X(x) = Bn sin
(nπx

L

)
,

for all n = 1, 2, . . . integers and Bn ∈ R. We now turn our attention to T , which satisfies the first order
ODE:

T ′(t) − κ2T (t) = 0, for 0 < t < T, .

The solution of the ODE is of the form
T (t) = Ce−κ2t,

for some constant C ∈ R; giving the family of solutions

T (t) = Cne−n2π2t/L2

,

for all n = 1, 2, . . . and Cn ∈ R. Hence, setting Dn = BnCn, we deduce that all the functions of the form

un(t, x) := Dne−n2π2t/L2

sin
(nπx

L

)
,

are solutions to the problem (2.13). Since the heat equation is linear, it is not hard to see that if two functions
are solutions to the heat equation, then any linear combination of these functions is a solution to the heat
equation also. Hence, we can formally write the solution of the problem (2.13)

u(t, x) =

∞∑

n=1

Dne−n2π2t/L2

sin
(nπx

L

)
(2.15)

(at this point the above equality is only formal, as we do not know if the above series converges). Notice that
the Dn’s are still not determined; this is to be expected as we have not yet made use of the initial condition
u(0, x) = T (0)X(x) = f(x) which, in view of (2.15) can be written as

f(x) = u(0, x) =

∞∑

n=1

Dn sin
(nπx

L

)
. (2.16)

Expanding the function f(x) into a sine series, we have

f(x) =

∞∑

n=1

bn sin
(nπx

L

)
, where bn =

2

L

∫ L

0

f(x) sin
(nπx

L

)
dx,

as shown in (2.10). Hence, setting

Dn = bn =
2

L

∫ L

0

f(x) sin
(nπx

L

)
dx,

we finally conclude that the solution to the problem (2.13) is given by

u(t, x) =

∞∑

n=1

( 2

L

∫ L

0

f(x) sin
(nπx

L

)
dx

)

e−n2π2t/L2

sin
(nπx

L

)
.
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Example 2.7 We want to solve the problem (2.13), where L = 1 and f : [0, 1] → R is defined by

f(x) =

{
x, if 0 ≤ x ≤ 1

2 ;
1 − x, if 1

2 < x ≤ 1.

To calculate the solution (2.15), we compute the Fourier coefficients:

2

L

∫ L

0

f(x) sin
(nπx

L

)
dx = · · · =

4 sin
(

nπ
2

)

(nπ)2
,

(this was done in Example 2.6). The solution then is given by

u(t, x) =
∞∑

n=1

4 sin
(

nπ
2

)

(nπ)2
e−n2π2t/L2

sin(nπx).

Problem

10. We seek the (unique) solution u = u(t, x) : [0,∞) × [0, 1] → R to the initial/boundary-value problem

ut = uxx for t > 0 and 0 < x < 1,

ux(t, 0) = ux(t, 1) = 0, for t ≥ 0

u(0, x) = f(x), for 0 ≤ x ≤ 1,

where f : [0, 1] → R is a known function. Using the method of separation of variables, calculate the solution.

2.3 The wave equation and the initial/boundary value problem

The wave equation is a paradigm of equations of hyperbolic type as we saw in the previous chapter. As the
name suggest, the solutions to the wave equation model wave propagation. In most applications, hyperbolic
equations describe transport/propagation phenomena; in the following, t will be denoting the “time”-variable,
ranging between time 0 and some final time T > 0. For (unknown) solution u : [0, T ] × Ω → R, the wave
equation reads

utt = ∆u, for (x1, x2, . . . , xd) ∈ Ω ⊂ R
d, and t ∈ [0, T ], (2.17)

where ∆ is the Laplace operator in d dimensions; in particular, in one space dimension the hear equation
reads:

utt = uxx, for x ∈ Ω ⊂ R, and t ∈ [0, T ]. (2.18)

As we saw in Chapter 1, the wave equation is of hyperbolic type. Therefore, it admits two families
of characteristic curves. We also saw that, for the corresponding Cauchy problem to be well-defined, we
should require two Cauchy initial conditions. Also, the PDE for each fixed time t ∈ [0, T ] takes the form
of the Poisson problem. Hence, again at leat heuristically, we can see that Dirichlet and/or Neumann type
boundary condition(s) are required on the boundary of Ω, for each time t, for the problem to be well posed.

Next, we shall be concerned with finding the solution to the initial/boundary value problem (??), using
the separation of variables.

2.3.1 Separation of variables

For simplicity of the presentation, let Ω = [0, L] ⊂ R. We seek the (unique) solution u : [0, T × Ω → R to
the initial/boundary-value problem

utt(t, x) = uxx(t, x) in (0, T ]× [0, L],

u(0, x) = f(x), for 0 ≤ x ≤ L

ut(0, x) = g(x), for 0 ≤ x ≤ L (2.19)

u(t, 0) = u(t, L) = 0, for 0 < t ≤ T,

where f, g : [0, L] → R are known functions.
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We begin by making the crucial assumption that the solution u of the problem (2.13) is of the form

u(t, x) = T (t)X(x),

for some twice differentiable functions of one variable T and X . (Indeed, if we find one solution to the
problem (2.19), it has to be necessarily the only solution, due to the uniqueness of the solution property
described above.) Then we have

utt = T ′′(t)X(x) and uxx = T (t)X ′′(x).

Inserting this into the PDE utt = uxx, we arrive to

T ′′(t)X(x) = T (t)X ′′(x), or
T ′′(t)

T (t)
=

X ′′(x)

X(x)
, (2.20)

after division by T (t)X(x), which we can assume to be non-zero without loss of generality (for otherwise,
the solution u is identically equal to zero which means that we found the solution if also f = 0, or that
this is impossible if f 6= 0). We notice that the left-hand side of (2.20) depends only on the independent
variable t and the right-hand side depends only on the independent variable x; thus, the only possibility for
the relation (2.20) to hold is for both the left- and the right-hand sides to be constant, say equal to λ ∈ R.
From this we get the ordinary differential equations

T ′′(t) − λT (t) = 0, and X ′′(x) − λX(x) = 0;

from the the boundary conditions we get

T (t)X(0) = T (t)X(L) = 0 giving X(0) = X(L) = 0.

Now we separate 3 cases: whether λ is positive, negative or zero. Completely analogously to the discussion in
Section 2.2.1, we conclude that λ positive or zero yield only the trivial solution, which may not be admissible
due to the non-zero initial conditions. So we are left with the case λ < 0, for which we set λ = −κ2 for some
κ ∈ R. As in the case of the parabolic problem, the two-point boundary value problem

X ′′(x) + κ2X(x) = 0, for 0 < x < L, and X(0) = X(L) = 0,

has solutions
X(x) = Bn sin

(nπx

L

)
,

with κ = κn = nπ
L , for all n = 1, 2, . . . integers and Bn ∈ R. We now turn our attention to T , which satisfies

the second order ODE:
T ′′(t) + κ2

nT (t) = 0, for 0 < t < T,

which has the family of solutions

T (t) = Cn cos
(nπt

L

)
+ Dn sin

(nπt

L

)
,

for all n = 1, 2, . . . and Cn ∈ R. Hence, setting En = BnCn and Fn = BnDn , we deduce that all the
functions of the form

un(t, x) :=
(

En cos
(nπt

L

)
+ Fn sin

(nπt

L

))

sin
(nπx

L

)
,

are solutions to the problem (2.19). The wave equation is linear; thus the principle of superposition yields
that the solution of the problem (2.19) is (at least formally) of the form

u(t, x) =

∞∑

n=1

(

En cos
(nπt

L

)
+ Fn sin

(nπt

L

))

sin
(nπx

L

)
(2.21)

(at this point the above equality is only formal, as we do not know if the above series converges). Notice
that the En’s and the Fn’s are still not determined; this is to be expected as we have not yet made use of the
initial conditions u(0, x) = f(x) and ut(0, x) = g(x). In view of (2.21), the initial condition u(0, x) = f(x)
can be written as

f(x) = u(0, x) =

∞∑

n=1

En sin
(nπx

L

)
. (2.22)
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To apply the second initial condition ut(0, x) = g(x), we first calculate ut from (2.21):

ut(t, x) =

∞∑

n=1

(

− En
nπ

L
sin

(nπt

L

)
+ Fn

nπ

L
cos

(nπt

L

))

sin
(nπx

L

)
;

and we then set t = 0, to deduce

g(x) = ut(0, x) =

∞∑

n=1

Fn
nπ

L
sin

(nπx

L

)
. (2.23)

Expanding the functions f and g into sine series, we get

f(x) =

∞∑

n=1

an sin
(nπx

L

)
, where an =

2

L

∫ L

0

f(x) sin
(nπx

L

)
dx,

g(x) =
∞∑

n=1

cn sin
(nπx

L

)
, where cn =

2

L

∫ L

0

g(x) sin
(nπx

L

)
dx,

as shown in (2.10). Hence, setting En = an and Fn
nπ
L = cn, or Fn = Lcn

nπ we finally conclude that the
solution to the problem (2.19) is given by (2.21).

Example 2.8 We want to solve the problem (2.13), where L = 1 and f : [0, 1] → R and g : [0, 1] → R are
defined by

f(x) = sin(2πx), and g(x) = 0.

To calculate the solution (2.21), we compute the Fourier coefficients:

an =
2

L

∫ L

0

f(x) sin
(nπx

L

)
dx = 2

∫ 1

0

sin(2πx) sin(nπx)dx =

{
1, if n = 2;
0, othewise.

,

(the last equality is left as an exercise), and

cn =
2

L

∫ L

0

g(x) sin
(nπx

L

)
dx = 0,

giving E2 = 2, En = 0 for n 6= 2, and Fn = 0, for n = 1, 2, . . . . The solution is then given by

u(t, x) = cos(2πt) sin(2πx),

which is drawn in Figure 2.6.
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Figure 2.6: Example 2.8. The solution u(t, x) for various t.
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Chapter 3

Divided Differences

3.1 Divided Differences

In numerical analysis of differential equations we often approximate/represent derivatives with the so-called
divided differences.

3.1.1 Divided differences for first derivatives

Definition 3.1 Let f : [a, b] → R, for a < b, be a bounded function, let a point x, and let some spacing
h > 0. We define the forward divided difference of f on x with spacing h by

δh,+f(x) =
f(x + h) − f(x)

h
, (3.1)

provided that x+h ∈ [a, b]. Similarly, we define the backward divided difference of f on x with spacing h by

δh,−f(x) =
f(x) − f(x − h)

h
, (3.2)

provided that x − h ∈ [a, b].
We also define the central divided difference of f on x with spacing h by

δhf(x) =
f(x + h

2 ) − f(x − h
2 )

h
, (3.3)

provided that x − h
2 , x + h

2 ∈ [a, b].

Notice that, if we let h → 0, we obtain

lim
h→0+

δh,+f(x) = f ′
+(x), lim

h→0+
δh,−f(x) = f ′

−(x), and lim
h→0+

δhf(x) = f ′(x),

where f ′
+(x), f ′

−(x) and f ′(x) denote the right derivative, the left derivative and the (normal) derivative of the
function f at the point x, respectively (whenever, these derivatives are well-defined or, equivalently, whenever
these limits exist). Hence, it is reasonable to consider δh,+f(x), δh,−f(x) and δhf(x) as approximations to
f ′
+(x), f ′

−(x) and f ′(x), respectively. In these notes, the symbol “≈” should be understood as “approximation
of”; for instance, motivated by the above, we can write

δh,+f(x) ≈ f ′
+(x), δh,−f(x) ≈ f ′

−(x), and δhf(x) ≈ f ′(x). (3.4)

Of course, when the function f is differentiable, we have by definition that f ′
+(x) = f ′

−(x) = f ′(x) and,
therefore in that case, the above 3 divided differences constitute 3 different ways of approximating f ′(x),
viz.,

δh,+f(x) ≈ f ′(x), δh,−f(x) ≈ f ′(x), and δhf(x) ≈ f ′(x).

Two natural questions arise:

• How good are the above approximations?
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• Which of the 3 is the preferable approximation of f ′(x) (if any)?

The following result gives an answer to the first question and a partial answer to the second.

Lemma 3.2 Let f : [a, b] → R, for a < b, be twice differentiable with continuous second derivative, and let
a point x along with some spacing h > 0 as in Definition 3.1. Then, the following bound holds:

|δh,+f(x) − f ′(x)| ≤ h

2
max

ξ∈[a,b]
|f ′′(ξ)|. (3.5)

Similarly, we have

|δh,−f(x) − f ′(x)| ≤ h

2
max

ξ∈[a,b]
|f ′′(ξ)|. (3.6)

Assume further that f is three times differentiable with continuous third derivative; then, we have

|δhf(x) − f ′(x)| ≤ h2

24
max

ξ∈[a,b]
|f ′′′(ξ)|. (3.7)

Proof. Using Taylor’s theorem1, we have

δh,+f(x) =
f(x + h) − f(x)

h
=

f(x) + hf ′(x) + h2

2 f ′′(ξ) − f(x)

h
= f ′(x) +

h

2
f ′′(ξ),

for some ξ ∈ (x, x + h), from which the first bound follows, by taking the maximum over [x, x + h]; this
maximum is well defined as f ′′ is continuous on the compact set [x, x + h] (this set is a closed subset of R

and, therefore, it is compact). Similarly for the backward difference, we use again Taylor’s formula with h
replaced by −h this time, to obtain

δh,−f(x) =
f(x) − f(x − h)

h
=

f(x) − f(x) + hf ′(x) − h2

2 f ′′(ζ)

h
= f ′(x) − h

2
f ′′(ζ),

for some ζ ∈ (x− h, x); arguing as before, we conclude the second bound. Finally, for the last bound we use
Taylor’s Theorem with n = 2 and with h replaced by h

2 and −h
2 , respectively, to deduce

δhf(x) =
f(x + h

2 ) − f(x − h
2 )

h

=
1

h

(
f(x) +

h

2
f ′(x) +

h2

8
f ′′(x) +

h3

48
f ′′′(ξ1) − f(x) +

h

2
f ′(x) − h2

8
f ′′(x) +

h3

48
f ′′′(ζ1)

)

= f ′(x) +
h2

48

(
f ′′′(ξ1) + f ′′′(ζ1)

)
,

for some ξ1 ∈ (x, x + h
2 ) and some ζ1 ∈ (x − h

2 , x), and the result follows as before.
2

Hence, we see from the above bounds that the error of the approximations (3.4) can be quantified by a
constant times powers of h. In particular, we observe that the error of approximation of the derivative of f
at the point x by δh,+ or by δh,− decays linearly with respect to h, whereas the error of approximation by δh

decays quadratically (i.e., like h2). These observations can be used as an answer to the first question above.
So as we take smaller and smaller h, we should expect the central difference to provide us with a

more accurate approximation that either the forward or the backward difference. This could serve as a
partial answer to the second question above. However, this is not the end of the story, as both forward
and backward differences can be very useful in numerical analysis (recall Euler’s methods from elementary
Numerical Analysis!). For instance, if we want to approximate f ′(a) or f ′(b) (i.e., the derivative of f at
one of the endpoints of the interval), we are confined in using some form of forward or backward differences

1Taylor’s Theorem. Let a < b, n positive integer, x ∈ [a, b] and f : [a, b] → R continuous function such that the derivatives
up to order n + 1 (inclusive) exist at every point in [a, b]. Then, for every x ∈ [a, b], there exists ξ between x and x + h, for
some h ∈ R, with x + h ∈ [a, b], such that

f(x + h) =
n

X

k=0

hk

k!
f(k)(x) +

hn+1

(n + 1)!
f(n+1)(ξ). (3.8)
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respectively, as we may not be in possession of function values outside the interval [a, b]. Furthermore, and
perhaps more importantly, in many cases the problems we are seeking to use approximations of derivatives
have preferred directions (say we want to approximate solutions to differential equations modelling a fast
flowing river or the air flow around an airborne plane); in such cases it can be of crucial importance to use
ideas based on backward or forward differences for reasons of “stability” of the numerical methods, even if
we might lose in terms of accuracy. We shall see more of this in the discussion on numerical methods for
hyperbolic PDEs.

The decay with respect to the discretisation parameter h will be of central importance in what follows;
therefore, we shall give some formal definitions and we shall introduce some shorthand notation related to
this.

Definition 3.3 Let g : [a, b] → R, for a < b, be a bounded function and consider some approximation gh(x)
of g at the point x ∈ [a, b] with discretisation parameter h > 0. We say that gh(x) is convergent if

lim
h→0+

(
gh(x) − g(x)

)
= 0.

Now, assume that gh(x) is convergent. We say that gh(x) converges to g(x) with order p (or is p-th order
convergent to g(x)) with respect to h, for some p > 0, if

|gh(x) − g(x)| = O(hp),

whereby the symbol O(·) is understood as follows

w(h) = O(hp) ⇔ lim
h→0+

w(h)

hp
∈ R, (3.9)

for some function w defined in a neighbourhood of 0.

In light of this, and in view of Lemmas 3.2 and 3.5, we say that the forward and backward differences
δh,+ and δh,− are first order convergent to f ′(x) with respect to h, whereas the central difference δh is second
order convergent to f ′(x), for all x ∈ [a, b].

It can sometimes can be very useful to make use of forward or backward divided differences of order
higher than one (as it is the case for δ+ and δ−). To this end, we define the following divided differences:

δh,+,2f(x) := (δh,+ − h

2
δ2
h,+)f(x) =

f(x + h) − f(x)

h
− h

2
δh,+

(f(x + h) − f(x)

h

)

=
1

2h

(
− f(x + 2h) + 4f(x + h) − 3f(x)

)
, (3.10)

and

δh,−,2f(x) := −(δh,− +
h

2
δ2
h,−)f(x) = −f(x) − f(x − h)

h
− h

2
δh,−

(f(x) − f(x − h)

h

)

=
1

2h

(
− f(x − 2h) + 4f(x − h) − 3f(x)

)
. (3.11)

The following result describes the accuracy of these divided differences.

Lemma 3.4 Let f : [a, b] → R, for a < b, be three times differentiable with continuous third derivative, and
let a point x along with some spacing h > 0. Then, the following bound holds:

|δh,+,2f(x) − f ′(x)| ≤ h2 max
ξ∈[a,b]

|f ′′′(ξ)|, (3.12)

provided that x + 2h ∈ [a, b]. Similarly, we have

|δh,−,2f(x) − f ′(x)| ≤ h2 max
ξ∈[a,b]

|f ′′′(ξ)|, (3.13)

provided that x − 2h ∈ [a, b].

Proof. The proof of the second equalities in (3.10) and (3.11), as well as the bounds (3.12) and (3.13) are
left as an exercise.

2

Notice that the constants in the bounds (3.10) and (3.11) are bigger than the constant in (3.7). Notice
also, that for (3.10) we require 3 values of the function f at the points x, x+h, x+2h (and similarly for and
(3.11)), as opposed to the only 2 values at x + h

2 , x − h
2 required by (3.3) for the same order of accuracy.
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3.1.2 Divided differences for higher derivatives

We can use these developments to define also divided differences to approximate higher derivatives. One
of the most important divided differences, in what follows, is the second central divided difference of f at a
point x with spacing h, defined as

δ2
hf(x) := δh(δhf(x)) = δh

(f(x + h
2 ) − f(x − h

2 )

h

)

=

f(x+ h
2 + h

2 )−f(x−h
2 + h

2 )

h − f(x+ h
2 −

h
2 )−f(x−h

2 −h
2 )

h

h

=
f(x + h) − 2f(x) + f(x − h)

h2
, (3.14)

which is a (popular) approximation to f ′′(x) (where we have adopted the notational convention that powers
of divided difference operators are understood as composition). In particular, we have the following result.

Lemma 3.5 Let f : [a, b] → R, for a < b, be 4 times differentiable with continuous 4th derivative, and let a
point x along with some spacing h > 0 such that x − h, x + h ∈ [a, b]. Then, the following bound holds:

|δ2
hf(x) − f ′′(x)| ≤ h2

12
max

ξ∈[a,b]
|f (4)(ξ)|. (3.15)

Proof. Using Taylor’s formula for n = 3 with h, and with h replaced by −h, respectively, we have

δ2
hf(x) =

f(x + h) − 2f(x) + f(x − h)

h2
= · · · = f ′′(x) +

h2

24

(
f (4)(ξ) + f (4)(ζ)

)
, (3.16)

for some ξ ∈ (x, x + h) and for some ζ ∈ (x − h, x). The result follows by taking the maximum as before.
2

We observe that the approximation error of δ2
hf(x) to f ′′(x) decays quadratically with respect to h

(i.e., like h2) as h goes to zero and, therefore, we say that the second central difference δ2
h is second order

convergent to f ′′(x), for all x ∈ [a, b].
Next, we consider one-sided divided differences for the approximation of second derivatives – these could

be proven useful in the design of computational methods for second order PDEs near the boundaries of the
computational domains. For instance, suppose we want to approximate f ′′(a) and f ′′(b) with second order
divided differences that do not require any function values outside the interval [a, b]. An answer can be given
by the following result.

Lemma 3.6 Let f : [a, b] → R, for a < b, be 4 times differentiable with continuous 4th derivative, and let a
point x along with some spacing h > 0. Consider the divided difference

δh,rightf(x) := (δ2
h,+ − hδ3

h,+)f(x) =
1

h2

(
2f(x) − 5f(x + h) + 4f(x + 2h) − f(x + 3h)

)
, (3.17)

and

δh,leftf(x) := (δ2
h,− + hδ3

h,−)f(x) =
1

h2

(
2f(x) − 5f(x − h) + 4f(x − 2h) − f(x − 3h)

)
, (3.18)

with x + 3h ∈ [a, b] or with x − 3h ∈ [a, b], respectively. Then, the following bounds hold:

|δh,rightf(x) − f ′′(x)| ≤ 22

24
h2 max

ξ∈[a,b]
|f (4)(ξ)|, (3.19)

and

|δh,leftf(x) − f ′′(x)| ≤ 22

24
h2 max

ξ∈[a,b]
|f (4)(ξ)|. (3.20)

Proof. The proof of the second equalities in (3.17) and (3.18), as well as the bounds (3.19) and (3.20) are
left as an exercise.

2

As in the case of first derivatives above, notice that the constants in the bounds (3.19) and (3.20) are
bigger than the constant in (3.15). Notice also, that for (3.17) we require 4 values of the function f at the
points x, x+h, x+2h, x+3h (and similarly for and (3.18)), as opposed to the only 3 values at x, x+h, x−h
required by (3.14) for the same order of accuracy.
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3.1.3 Comments and further reading

There is a vast amount of literature devoted to the calculus of divided differences. An relatively short but
inspiring exposition of the basic concepts of the calculus of divided differences applied to the approximation
of derivatives is given in Chapter 7 of the book by Iserles.

Problems

11. Prove the second equalities in (3.10), (3.11) and Lemma 3.4.

12. Prove the second equalities in (3.17), (3.18) and Lemma 3.6.
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3.2 Difference methods for two-point boundary value problems

We shall be concerned with constructing a difference method for the the numerical approximation of the
solution of the following boundary value problem:

Find u : [a, b] → R function, such that − u′′(x) = f(x) and u(a) = 0, u(b) = 0. (3.21)

where f(x) is a known function. Obviously, by integrating the relationship −u′′(x) = f(x) twice and using
the boundary conditions u(a) = 0, u(b) = 0 we can find a solution to this problem; but in this instance
we suppose that we do not know how to do this, and we seek an approximation to the solution using the
following method.

We consider equally distributed points x0 < x1 < · · · < xN+1, at distance h between them, such that

a = x0, x1 = x0 + h, x2 = x1 + h, . . . , xN = xN−1 + h, xN+1 = b.

We approximate u′′(x) by the second central divided difference at the points xi, i = 1, . . . , n, i.e.,

u′′(xi) ≈
u(xi + h) − 2u(xi) + u(xi − h)

h2
=

u(xi+1) − 2u(xi) + u(xi−1)

h2
.

Motivated by this formal approximation, our aim is to find approximations ui of u(xi) (that is, the value of
the exact solution u at the point xi), for all i = 1, . . . , N , such that

ui+1 − 2ui + ui−1

h2
= −f(xi), i = 1, . . . , N. (3.22)

Notice, that the value of u at the points x0 = a and xN+1 = b is known from the boundary conditions, i.e.,
we set u0 = u(a) = 0 and uN+1 = u(b) = 0!

To find the approximations ui’s, i = 1, . . . , N , we solve the linear system of equations (3.22). This is a
linear system of N equations with N unknowns; in matrix form it can be written as












−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

...
. . .

. . .
. . . . . .

0 . . . 0 1 −2 1
0 . . . 0 0 1 −2












︸ ︷︷ ︸

A













u1

u2

...

...
uN−1

uN













︸ ︷︷ ︸

U

= −h2













f(x1)
f(x2)

...

...
f(xN−1)
f(xN )













︸ ︷︷ ︸

rhs

, (3.23)

after multiplication by h2. Solving this linear system we can obtain the approximations ui to u(xi), for all
i − 1, . . . , N .

Next, we consider the case of non-homogeneous Dirichlet boundary conditions. In particular, we are
interested in finding an approximation to the solution of the problem:

Find u : [a, b] → R function, such that − u′′(x) = f(x) and u(a) = c, u(b) = d.

where f(x) is a known function and c, d ∈ R known boundary values. Motivated by the discussion above,
we can construct a finite difference method of the form (3.22), with the difference that now we need to be
careful with the equations at the nodes i = 1 and i = N . In particular, for i = 1, we now have

u2 − 2u1

h2
= −f(x1) −

c

h2
,

and for i = N , we get
−2uN + uN−1

h2
= −f(xN ) − d

h2
.

Therefore, it is not too hard to see that, after a multiplication by h2, we arrive to the linear system of N
equations with N unknowns:

AU = −h2(f(x1) +
c

h2
, f(x2), . . . , f(xN−1), f(xN ) +

d

h2
)T ,
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recalling the notation above.
Finally, we consider the somewhat more involved case of Neumann boundary conditions. In particular,

we are interested in finding an approximation to the solution of the problem:

Find u : [a, b] → R function, such that − u′′(x) = f(x) and u(a) = 0, u′(b) = 0.

where f(x) is a known function. To construct a finite difference methods for this problem we work as follows.
The boundary condition at the left endpoint can be treated as above, i.e., by setting u0 = 0. The values

ui at the nodes xi, i = 1, . . . , N − 1 are set to satisfy equations of the form (3.22). In this case also uN+1 is
unknown, as it is not prescribed by the boundary conditions; hence, at the point xN , we require

uN+1 − 2uN + uN−1

h2
= −f(xN ).

Since we cannot represent exactly the Neumann boundary condition u′(b) = 0 due to the presence of the
derivative, we shall construct a divided difference approximation of u′ at the endpoint b. For reasons that
will be discussed in the error analysis below, we shall choose the second order central difference with spacing
2h (see (3.3) to approximate the first derivative u′ at the endpoint b. This means that we need an additional
approximation of the exact solution u at the point b + h, say uN+2, which is of course unknown. Then, from
the second order central difference with spacing 2h approximating u′(b), we get the equation

uN+2 − uN

2h
= 0, which implies uN+2 = uN . (3.24)

In this case, the value uN+1 (the approximation of u at the endpoint b = xN+1) is no longer given by the
boundary conditions, and thus it is also an unknown. Since we have also uN+2 at our disposal (due to the
implementation of the Neumann boundary conditions described above), we can request that the numerical
method also holds at the point b = xN+1, i.e., we require

uN+2 − 2uN+1 + uN

h2
= −f(b),

or, using (3.24)

−2uN+1 + 2uN = −h2f(b) or − uN+1 + uN = −h2

2
f(b).

Therefore, we arrive to the following linear system of N + 1 equations with N + 1 unknowns:














−2 1 0 0 . . . 0 0
1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
...

...
. . .

. . .
. . . . . .

0 . . . 0 1 −2 1 0
0 . . . 0 0 1 −2 1
0 . . . 0 0 0 1 −1




























u1

u2

...

...
uN−1

uN

uN+1















= −h2















f(x1)
f(x2)

...

...
f(xN−1)
f(xN )

f(b)
2















. (3.25)

Problem

13. Construct a difference method for the the numerical approximation of the solution of the following
boundary value problem:

Find u : [a, b] → R function, such that − u′′(x) = f(x) and u(a) = 0, u(b) = 0.

using a non-uniform grid of the form

a = x0, x1 = x0 + h1, x2 = x1 + h2, . . . , xN = xN−1 + hN , xN+1 = b,

i.e., hi = xi − xi−1 for i = 1, . . .N + 1. Write the resulting linear system. [Hint: Start by constructing the
2nd divided difference on a non-uniform grid.]
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3.2.1 Error analysis

We have studied a finite difference method for approximating the solutions to the two-point boundary-value
problem with various boundary conditions of Dirichlet and Neumann type. We now turn our attention in
estimating the quality of these approximations. In particular, we are interested in analysing the error of the
approximation. To this end, we define the truncation error of the finite difference scheme by

T (x) := f(x) +
u(x + h) − 2u(x) + u(x − h)

h2
. (3.26)

In other words, the truncation error is defined by substituting the exact solution into the finite difference
method, thereby representing how much the finite difference method fails to imitate the boundary-value
problem. Assuming that the exact solution u is 4 times differentiable, with continuous 4th derivative, and
using Taylor’s Theorem, we obtain

T (x) = f(x) +
u(x + h) − 2u(x) + u(x − h)

h2
= f(x) + u′′(x) − h2

24

(
u(4)(ξ) + u(4)(ζ)

)
,

for some ξ ∈ (x, x + h) and for some ζ ∈ (x − h, x). Using now the differential equation, we arrive to

T (x) = −h2

24

(
u(4)(ξ) + u(4)(ζ)

)
,

and, therefore, we deduce the following bound

|T (x)| ≤ h2

12
max

a≤ξ≤b
|u(4)(ξ)|. (3.27)

The bound (3.27) is potentially good news: it implies that T (x) → 0 as h → 0. This means that the numerical
scheme “approximates” the differential equation better and better as h → 0. However, the bound (3.27) is
not giving any information on how well the values u(xi) are approximated by the ui’s, for i = 1, ..., N (or,
for i = 1, ..., N + 1 for the case of the Neumann boundary conditions). To derive bounds for the error of the
approximation itself, we shall make use of the following discrete maximum principle.

Theorem 3.7 (Discrete Maximum Principle) Consider the finite difference approximation to the two-
point boundary-value problem (3.21) above and let A be the N + 2 × N + 2 version of the matrix defined in
(3.23). Let v ∈ R

N+2 with v = (v0, v1, . . . , vN , vN+1)
T . If (Av)i ≥ 0 for all i = 1, 2, . . . , N ; then we have

max
1≤i≤N

vi ≤ max{v0, vN+1, 0}, (3.28)

i.e., v cannot attain a non-negative maximum at an interior point.

Proof. We shall prove the result by contradiction. Suppose that (3.28) is not true, i.e., there exists
1 ≤ n ≤ N such that

vn = max
1≤i≤N

vi and vn > v0 and vn > vN+1, (3.29)

i.e., the maximum is attained at an interior point. Then, from the hypothesis of the theorem and the
structure of the matrix A, we have

0 ≤ (Av)n = vn−1 − 2vn + vn+1 or vn ≤ 1

2
(vn−1 + vn+1).

But vn ≥ vn−1 and vn ≥ vn+1, since vn is the maximum value; therefore, the previous inequality yields

vn ≤ 1

2
(vn−1 + vn+1) ≤ vn or vn =

1

2
(vn−1 + vn+1),

which readily implies that vn = vn−1 = vn+1. Thus also the neighbours of vn attain the maximum value.
Arguing in completely analogous manner, we deduce that the neighbours of the neighbours also attain the
maximum value, and so on. So we conclude that vi = vn for all i = 0, 1, . . . , N, N + 1. Hence (3.29) is false
and we arrive to a contradiction. 2

We are now ready to prove a bound for the error of the finite difference scheme for the two-point
boundary-value problem.
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Theorem 3.8 The finite difference method (3.23), employed to approximate the solution u of the two-point
boundary-value problem (3.21), satisfies the error bound:

|u(xi) − ui| ≤
h2

48
(b − a)2 max

a≤ξ≤b
|u(4)(ξ)|. (3.30)

Proof. We define
T := max

a≤ξ≤b
|T (ξ)|,

the maximum of the truncation error T (x), introduced above, over the interval [a, b]. From the definition of
the truncation error (3.26) and from the definition of the finite difference method (3.22) we get, respectively,

T (xi) = f(xi) +
u(xi+1) − 2u(xi) + u(xi−1)

h2
= −ui+1 − 2ui + ui−1

h2
+

u(xi+1) − 2u(xi) + u(xi−1)

h2
,

for i = 1, 2, . . . , N ; this can be rearranged to

h2T (xi) = (u(xi+1) − ui+1) − 2(u(xi) − ui) + (u(xi−1) − ui−1) = ei+1 − 2ei + ei+1, (3.31)

upon defining the nodal errors ei := u(xi) − ui, for i = 0, 1, . . . , N, N + 1. We can immediately see that
e0 = 0 = eN+1 from to construction of the finite difference method.

We define the auxiliary function φ(x) : [a, b] → R, with

φ(x) =
T

2

(
x − γ)2, where γ =

1

2
(a + b),

We also define a vector v ∈ R
N+2 with v := (v0, v1, . . . , vN , vN+1)

T by setting

vi := ei + φ(xi) for i = 0, 1, . . . , N, N + 1.

We check if the vector v satisfies the hypothesis of Theorem 3.7. Using (3.31), we deduce

(Av)i = vi−1 − 2vi + vi+1 = h2T (xi) + φ(xi−1) − 2φ(xi) + φ(xi+1)

= h2T (xi) +
T

2

(
xi − h − γ)2 − T

(
xi − γ)2 +

T

2

(
xi + h − γ)2 = h2(T (xi) + T ) ≥ 0,

since T is by definition the maximum (in absolute value) of the truncation error. Hence, from Theorem 3.7,
we conclude that

vi ≤ max{v0, vN+1, 0}, for all i = 1, 2, . . . , N. (3.32)

But

v0 = φ(a) =
T

8
(b − a)2 and vN+1 = φ(b) =

T

8
(b − a)2,

since e0 = eN+1 = 0, and thus (3.32) yields

vi ≤
T

8
(b − a)2,

or, using the definition of T and (3.27),

u(xi) − ui = ei ≤
T

8
(b − a)2 − φ(xi) ≤

T

4
(b − a)2 ≤ h2

48
max

a≤ξ≤b
|u(4)(ξ)|. (3.33)

The above is an one-sided bound. Setting

v̂i := −ei + φ(xi) for i = 0, 1, . . . , N, N + 1,

and following the same steps as above, we can deduce also that

ui − u(xi) ≤
h2

48
(b − a)2 max

a≤ξ≤b
|u(4)(ξ)|. (3.34)

Combining (3.33) and (3.34), we can conclude that (3.30) holds. 2

Remark 3.9 The bound (3.33) can be further improved to u(xi)−ui ≤ T
8 (b−a)2, by noticing that φ(xi) ≥ 0.

Problem

14. Consider the difference method from Problem 13. Define a suitable truncation error, calculate it, and
give a condition for this error to converge to zero.
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Chapter 4

Finite Difference Methods
for Parabolic Problems

We start our discussion on computational methods for parabolic PDEs by considering the problem of approx-
imating the solution to the heat equation (also known as the diffusion equation), together with corresponding
initial and boundary conditions.

4.1 Explicit Euler method

We begin by considering the initial/boundary value problem for the heat equation with homogeneous Dirich-
let boundary conditions. More specifically, consider the space-domain [a, b] ⊂ R, and the time-domain [0, Tf ],
for some final time Tf > 0. We want to find an approximation to the solution of the problem: find a function
u : [0, Tf ] × [a, b] → R with continuous second derivatives, such that

ut(t, x) = uxx(t, x) for all t ∈ [0, Tf ] and x ∈ [a, b], (4.1)

subject to the initial condition
u(0, x) = u0(x), for all x ∈ [a, b], (4.2)

for some known continuous function u0 : [a, b] → R, and subject to homogeneous boundary conditions

u(t, a) = u(t, b) = 0, for all t ∈ [0, Tf ]. (4.3)

Equation (4.1) is the archetype parabolic PDE and it is possible to show that this problem has a unique
solution.

We are concerned with the development of finite difference methods for the problem (4.1), (4.2), (4.3).
Using the ideas presented in the previous chapters, we can approximate the derivatives in (4.1) using divided
differences. To this end, we construct a grid as follows: we consider equally distributed subdivision x0 <
x1 < · · · < xNx+1, at distance h between them, such that

a = x0, x1 = x0 + h, x2 = x1 + h, . . . , xNx
= xNx−1 + h, xNx+1 = b,

in the space-direction, and an equally distributed subdivision t0 < t1 < · · · < tNt
, at distance τ between

them, such that

0 = t0, t1 = t0 + τ, t2 = t1 + τ, . . . , tNt−2 = tNt−1 + τ, tNt
= Tf ,

in the time-direction (see Figure 4.1); hence, we have h = (b − a)/(Nx + 1) and τ = Tf/Nt.
We formally make the following approximations, using forward difference for the time-derivative and

central second difference for the space-derivative

ut(t, x) ≈ δt
τ,+u(t, x) =

u(t + τ, x) − u(t, x)

τ
,

and

uxx(t, x) ≈ (δx
h)2u(t, x) =

u(t, x + h) − 2u(t, x) + u(t, x − h)

h2
,
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Figure 4.1: The grid for Nx = 4 and Nt = 5.

where we have adopted the notational convention that the superscript t, denotes that the divided difference
operator acts on the time variable t and correspondingly for x, giving

u(tn+1, xi) − u(tn, xi)

τ
− u(tn, xi+1) − 2u(tn, xi) + u(tn, xi−1)

h2
≈ ut(tn, xi) − uxx(tn, xi) = 0, (4.4)

using the equation (4.1).
Motivated by this formal reasoning, our aim is to find approximations un

i of the function values u(tn, xi),
we consider the following system of equations:

un+1
i − un

i

τ
− un

i+1 − 2un
i + un

i−1

h2
= 0,

for n = 0, . . . , Nt − 1 and i = 1, . . . , Nx which becomes, after multiplication by τ and rearrangement

un+1
i = µun

i+1 + (1 − 2µ)un
i + µun

i−1, for n = 0, . . . , Nt − 1, i = 1, . . . , Nx, (4.5)

where we have used the notation µ := τ/h2 and we shall refer to this quantity as the Courant number.
(Notice that here and in the sequel we shall denote the index related to time discretisation as a superscript
– i.e., n in un

i is not an exponent!– and the indices related to space discretisation as subscripts.) For (4.5) to
make complete sense, we need to clarify the values on the grid points residing on the boundaries, i.e., which
values we should choose for un

i when n = 0 and i = 1, . . . , Nx (i.e., the values on the grid points at initial
time {(0, x) : a ≤ x ≤ b}), and which values we should choose when i = 0 or Nx + 1 and n = 0, . . . , Nt (i.e.,
the values on the Dirichlet boundary grid points {(t, a) : 0 ≤ t ≤ T } and {(t, b) : 0 ≤ t ≤ T }). The values of
the solution u at initial time can be found from the initial condition (4.2), giving

u0
i = u0(xi) i = 1, . . . , Nx, (4.6)

and the values for the nodes residing on the Dirichlet boundary can be given using the boundary conditions
(4.3)

un
0 = 0 = un

Nx+1 n = 0, . . . , Nt. (4.7)

The finite difference method defined by the equations (4.5), (4.6) and (4.7), will be referred to as the explicit
Euler method (also known as in the literature as the explicit scheme, or as the explicit method).

The reason for the name can be traced at the following observation: given the initial and boundary values
(4.6) and (4.7), respectively, it is straightforward to find the values at each time level n explicitly! Indeed,
setting n = 0 in (4.5), we get

u1
i = µu0

i+1 + (1 − 2µ)u0
i + µu0

i−1, for i = 1, . . . , Nx,

i.e., each u1
i (that is, the approximation of the solution at the point xi in the next time level t1) can be

found as a linear combination of the three known values u0
i−1, u

0
i and u0

i+1 at the previous time level; the
same applies when setting n = 1 in (4.5), once all the values u1

i have been calculated, and so on.
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Example 4.1 We want to approximate the solution of the initial/boundary value problem above using the
explicit Euler method when a = 0, b = 1 and

u0(x) =

{
2x, 0 ≤ x ≤ 1/2;
2 − 2x, 1/2 < x ≤ 1.

After implementing the explicit Euler algorithm above in the computer, the approximate solutions can be seen
in Figures (4.2) and (4.3)
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(d) Approximation at n = 50

Figure 4.2: Approximation using explicit Euler method for Nx = 19 and Nt = 800, resulting to µ = 0.5.
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(d) Approximation at n = 50

Figure 4.3: Approximation using explicit Euler method for Nx = 19 and Nt = 770, resulting to µ = 0.52.

We observe that the solution looks reasonable in the first case, but not in the second, where it seems that
the approximation is not close to the exact solution. Indeed the solution seems to oscillate in the second case,
indicating that the oscillatory behaviour will get worse and worse in the next time-steps. In the sequel, we
shall investigate the source of this erratic behaviour of the approximations, leading to “instabilities”.

The previous example illustrates that we should always be very careful when designing computational
methods to approximate solution to PDEs, as it can lead to catastrophically inaccurate results! Therefore,
it is important to investigate further what are the causes of such oscillatory behaviour by analysing the
method; this will be the content of the next two sections.

Problem

15. Construct an explicit scheme for the approximation to the solution of the problem: find a function
u : [0, T ]× [a, b] → R, such that

ut(t, x) = uxx(t, x) for all t ∈ [0, T ] and x ∈ [a, b],

subject to the initial condition
u(0, x) = u0(x), for all x ∈ [a, b],
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for some known continuous function u0 : [a, b] → R, and subject to the boundary conditions

u(t, a) = 0, and ux(t, b) = 0 for all t ∈ [0, T ].
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4.1.1 Error analysis of the explicit Euler method

To analyse the error of approximation, we assume that the exact solution u is twice continuously differentiable
with respect to the time variables and four times continuously differentiable with respect to the space variable.
We define the truncation error for this method

T n
i :=

u(tn+1, xi) − u(tn, xi)

τ
− u(tn, xi+1) − 2u(tn, xi) + u(tn, xi−1)

h2
, (4.8)

for n = 0, . . . , Nt − 1, i = 1, . . . , Nx; i.e., the truncation error is given if we substitute the exact solution
into the numerical scheme. The following lemma describes how well the truncation error approximates the
original problem.

Lemma 4.2 For the explicit Euler method defined above, we have

|T n
i | ≤ τ

2
Mtt +

h2

12
Mxxxx, (4.9)

for all n = 0, . . . , Nt − 1, i = 1, . . . , Nx, where

Mtt := max |utt(t, x)|, and Mxxxx := max |uxxxx(t, x)|,

and the maxima are taken over all (t, x) ∈ [0, Tf ] × [a, b].

Proof. Using Taylor’s Theorem, we have

u(tn+1, xi) − u(tn, xi)

τ
=

u(tn + τ, xi) − u(tn, xi)

τ
= ut(tn, xi) +

τ

2
utt(ρn, xi),

for ρn ∈ (tn, tn+1), and

u(tn, xi+1) − 2u(tn, xi) + u(tn, xi−1)

h2
=

u(tn, xi + h) − 2u(tn, xi) + u(tn, xi − h)

h2

= · · · = uxx(tn, xi) +
h2

24

(
uxxxx(tn, ξi) + uxxxx(tn, ζi)

)
,

for ξi ∈ (xi−1, xi) and ζi ∈ (xi, xi+1), for all n = 0, . . . , Nt − 1, i = 1, . . . , Nx.
Thus, making use of the PDE ut = uxx at the point (tn, xi), we deduce

T n
i =

τ

2
utt(ρn, xi) −

h2

24

(
uxxxx(tn, ξi) + uxxxx(tn, ζi)

)
,

which implies that

|T n
i | ≤

τ

2
|utt(ρn, xi)| +

h2

24

(
|uxxxx(tn, ξi)| + |uxxxx(tn, ζi)|

)
≤ τ

2
Mtt +

h2

12
Mxxxx.

2

Notice that the truncation error converges to 0 when h, τ → 0, i.e., the numerical method approximates
the original initial/boundary value problem. For brevity, we shall use the following short-hand notation:

T :=
τ

2
Mtt +

h2

12
Mxxxx;

with this notation, (4.9) can be written as |T n
i | ≤ T .

The next theorem describes the error behaviour of the explicit Euler method.

Theorem 4.3 Consider the explicit Euler method defined defined by the equations (4.5), (4.6) and (4.7).
Let u be the exact solution of the initial/boundary value problem (4.1), (4.2), and (4.3). Assume that the
Courant number satisfies 0 ≤ µ ≤ 1

2 for every τ, h. Then we have the following error bound:

max
1≤i≤Nx

|u(tn, xi) − un
i | ≤ Tf (

τ

2
Mtt +

h2

12
Mxxxx), (4.10)

for n = 1, . . . , Nt.
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Proof. For brevity we shall denote by en
i := u(tn, xi) − un

i the error on each node (tn, xi); notice that
e0

i = u0(xi) − un
0 = 0. From the definition of the truncation error (4.8), we obtain

τT n
i = u(tn+1, xi) − u(tn, xi) − µ

(
u(tn, xi+1) − 2u(tn, xi) + u(tn, xi−1)

)
,

after multiplication of (4.8) by τ and using the definition of the Courant number µ; after rearrangement we
get

u(tn+1, xi) = µu(tn, xi+1) + (1 − 2µ)u(tn, xi) + µu(tn, xi−1) + τT n
i . (4.11)

for n = 0, . . . , Nt−1, i = 1, . . . , Nx. Using this identity and the definition of the explicit Euler method (4.5),
we can calculate

en+1
i = u(tn+1, xi) − un+1

i

= µu(tn, xi+1) + (1 − 2µ)u(tn, xi) + µu(tn, xi−1)
)
− τT n

i −
(
µun

i+1 + (1 − 2µ)un
i + µun

i−1

)

= µen
i+1 + (1 − 2µ)en

i + µen
i−1 − τT n

i ,

for n = 0, . . . , Nt − 1, i = 1, . . . , Nx, which implies

|en+1
i | ≤ µ|en

i+1| + |1 − 2µ| |en
i | + µ|en

i−1| + τ |T n
i |, (4.12)

Define
En := max

1≤i≤Nx

{|en
i |},

i.e., the maximum error at the n-th time-step. then taking the maximum with respect to i on the right-hand
side of (4.12), we arrive to

|en+1
i | ≤ µEn + |1 − 2µ|En + µEn + τT .

Since 0 ≤ µ ≤ 1/2, we have |1 − 2µ| = 1 − 2µ; thus we deduce

|en+1
i | ≤ En + τT ,

or, taking the maximum with respect to i,

En+1 ≤ En + τT ,

for n = 0, . . . , Nt − 1. This means that we have inductively

En ≤ En−1 + τT ≤ En−2 + 2τT ≤ En−3 + 3τT ≤ · · · ≤ E0 + nτT = nτT ,

as E0 = 0, being the maximum of e0
i = 0 with respect to i. Next we notice that we used that n ≤ Nt, and

thus nτ ≤ τNt = Tf , so we deduce En ≤ TfT . The result now follows from (4.9).
2

The above theorem tells us that the approximations un
i converge to the exact values of the solution

u(tn, xi) with first order with respect to the time-step τ and with second order with respect to the space
grid parameter h, provided that the Courant number µ = τ/h2 ≤ 1

2 . The restriction in the Courant number

implies that τ ≤ h2

2 . Using this, we can bound the error further to obtain from (4.10)

max
1≤i≤Nx

|u(tn, xi) − un
i | ≤

Tf

4
(Mtt +

1

3
Mxxxx)h2,

i.e., provided that the Courant number µ remains less or equal to 1
2 , the error is second order convergent

with respect to the grid parameter h. Notice that, to have µ ≤ 1
2 , we must make the time-step smaller and

smaller appropriately as h → 0.
Note also the condition µ ≤ 1

2 required in Theorem 4.3 to prove the convergence of the explicit Euler
method. Going back to Example 4.1, we can see that in the first case (Figure 4.2) the approximation appeared
reasonable, whereas in the second (Figure 4.3 case where the solution was oscillatory (or “unstable”), we
had µ = 0.52 > 1

2 ! Hence, the assumption µ ≤ 1
2 appears reasonable and of some significance. In the next

section, we shall investigate this issue further using tools from Fourier analysis.
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Problem

16. Consider the explicit Euler method, approximating the solution to the initial/boundary value problem

ut(t, x) = uxx(t, x) for all t ∈ [0, Tf ] and x ∈ [a, b],

u(0, x) = u0(x), for all x ∈ [a, b],

u(t, a) = u(t, b) = 0, for all t ∈ [0, Tf ].

Show that when the Courant number µ = 1
6 , the truncation error of the explicit Euler method is of second

order with respect to the time-step τ . Conclude that the error of approximation is second order accurate
with respect to the time-step τ .
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4.1.2 Stability Analysis

To motivate the discussion below, we recall the Definition 2.1 of a Fourier series expansion. Using Euler’s
formula

eιθ = cos θ + ι sin θ,

where ι =
√
−1 is the imaginary unit, we can rewrite the Fourier series expansion of a function f : [−L, L] →

R as

f(x) ∼
∞∑

m=−∞
cmeιmπx/L, with cm :=

1

2L

∫ L

−L

f(x)e−ιmπx/Ldx,

where am = cm + c−m and bm = ι(cm − c−m) for am, bm as in Definition 2.1; we shall refer to functions of
the form eιmπx/L as simple waves.

In Example 4.1, we saw that the difference method can develop non-physical oscillations, that pollute the
quality of the approximation, leading to “instabilities”. In particular, we notice that the “amplitude” of these
oscillations increases after each time step. We shall attempt to give an explanation for this phenomenon.

Consider the explicit Euler method defined by the recursive relation (4.5). For simplicity we shall consider
the problem on the whole real line for the space variable x (as opposed to x ∈ [a, b] as in the original problem);
that way we can make the discussion easier by not considering any boundary conditions at (t, a) and (t, b).
Thus, we consider a grid of the form (tn, xi), with tn = nτ and xi = ih for n = 0, . . . Nt, i = 0,±1,±2, . . . ,
with τ = Tf/Nt and h ∈ R, i.e., a grid with infinite points in the x-direction.

To see how the explicit Euler method propagates information in the time-variable (hoping to understand
why instabilities develop), we shall use simple waves as initial conditions, and calculate what happens after
each time-step. To this end, we set

u0
i = eιkxi ,

for k ∈ R, to be the initial value at the node (0, xi) (i.e., the nodes located on the x-axis), for i = 0,±1,±2, . . . .
Notice that since xi = ih, we have eιkxi = eιkih. We now use the recursive relation 4.5 to evolve one time-step;
then we get

u1
i = µu0

i+1 + (1 − 2µ)u0
i + µu0

i−1 = µeιk(i+1)h + (1 − 2µ)eιkih + µeιk(i−1)h =
(
µeιkh + 1 − 2µ + µe−ιkh

)
eιkih.

Observing now that

eιkh − 2 + e−ιkh =
(
eιkh − e−ιkh

)2
= −4 sin2(

1

2
kh), (4.13)

we deduce

u1
i =

(
1 − 4µ sin2(

1

2
kh)

)
eιkih. (4.14)

This means that, after one time-step, the solution is amplified by the factor λ ≡ λ(k) := 1 − 4µ sin2(1
2kh).

Inserting (4.14) into (4.5) to evolve to the next time-step, we obtain in completely similar fashion

u2
i = λ2eιkih,

and so on; at the n-th time-step, we get
un

i = λneιkih. (4.15)

We shall denote by | · | the size of a complex number. Hence, observing that |eιx| =
√

cos2 x + sin2 x = 1 for
any x ∈ R, we get

|un
i | = |λn| |eιkih| = |λn| = |λ|n.

Going back to the exact solution of the initial/boundary value problem with separation of variables
(just above Example (2.7) in Section (2.2.1)), we can see that, for some constant C, we have |u(t, x)| ≤ C
as t → ∞ for any initial condition f(x) which admits a Fourier series expansion, i.e., the solution to the
initial/boundary value problem remains bounded.1.

Hence, since we chose u0
i = eιkxi as initial conditions here (which, of course, admit Fourier series expan-

sion), we expect to observe that also |un
i | ≤ C as n → ∞; when this happens, we say that the numerical

method is stable. For this to happen we must require |λ|n ≤ C as n → ∞, which necessarily implies that
|λ| ≤ 1 is satisfied.

1More rigorously, we can say that the solution of the Cauchy problem ut = uxx with u(0, x) = f(x) for t ∈ (0,∞) and x ∈ R

satisfies |u(t, x)| ≤ C as t → ∞ for any initial condition f(x), provided that
R

∞

−∞
f2(x)dx < +∞. That way we are considering

the relevant initial value problem for the stability analysis, i.e., the problem defined in the domain [0, Tf ] × R, for any Tf > 0.
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We check validity of the condition |λ| < 1: we have

1 ≥ |λ| = |1 − 4µ sin2(
1

2
kh)|, or 1 ≥ 1 − 4µ sin2(

1

2
kh) ≥ −1, or 0 ≤ µ sin2(

1

2
kh) ≤ 1

2
,

which implies that 0 ≤ µ ≤ 1/2, since 0 ≤ sin2(1
2kh) ≤ 1 for any k ∈ R. Hence, we conclude that the explicit

Euler method is stable if and only if 0 ≤ µ ≤ 1/2 ! Notice that this is in accordance with the behaviour we
observed in Example (4.1). The above type of stability analysis using tools from Fourier analysis, is some
times called von Neumann analysis, in the honour of its inventor John von Neumann 2.

We finally remark that it would be possible to arrive to the same answer 0 ≤ µ ≤ 1/2, if we have set
directly un

i = λneιkxi and carried over the calculation to find λ on the n + 1-time level.

Problem

17. Consider the explicit Euler method, approximating the solution to the initial/boundary value problem
from Problem 1 above, with a = 0 and b = 1. The stability analysis for the explicit Euler method, presented
in Section 4.1.2 in the notes, does not take into account the effect of boundary conditions. One way of taking
into account the boundary conditions is to set

u0
i = sin(mπxi)

for m = 1, 2, 3 . . . , to be the initial conditions at node (0, xi), using the notation from Section 4.1.2. Why is
that? What is the restriction on the Courant number µ in this case for stability?

2John von Neumann (1903-1957)

54



4.2 Implicit Methods

Having seen the restrictions in the Courant number µ that the explicit scheme is subject to, we shall now
present some “implicit” schemes that are less prone to instabilities. The importance in having less restrictions
in the Courant number can be seen by the fact that to maintain 0 ≤ µ ≤ 1/2 in the explicit Euler method,
we had to take very small time-step τ compared the to space grid-size h, which is of course very demanding
in terms of computations.

4.2.1 Implicit Euler Method

We consider the same initial/boundary value problem (4.1), (4.2) and (4.3).
Again, we shall approximate the derivatives in (4.1) using divided differences. To this end, we construct

a grid as follows: we consider equally distributed subdivision x0 < x1 < · · · < xNx+1, at distance h between
them, such that

a = x0, x1 = x0 + h, x2 = x1 + h, . . . , xNx
= xNx−1 + h, xNx+1 = b,

in the space-direction, and an equally distributed subdivision t0 < t1 < · · · < tNt
, at distance τ between

them, such that

0 = t0, t1 = t0 + τ, t2 = t1 + τ, . . . , tNt−2 = tNt−1 + τ, tNt
= Tf ,

in the time-direction (see Figure 4.1); hence, we have h = (b − a)/(Nx + 1) and τ = Tf/Nt.
We formally make the following approximations, using backward difference for the time-derivative and

central second difference for the space-derivative

ut(t, x) ≈ δt
τ,−u(t, x) =

u(t, x) − u(t − τ, x)

τ
,

and

uxx(t, x) ≈ (δx
h)2u(t, x) =

u(t, x + h) − 2u(t, x) + u(t, x − h)

h2
,

giving

u(tn, xi) − u(tn−1, xi)

τ
− u(tn, xi+1) − 2u(tn, xi) + u(tn, xi−1)

h2
≈ ut(tn, xi) − uxx(tn, xi) = 0, (4.16)

using the equation (4.1).
Motivated by this formal reasoning, our aim is to find approximations un

i of the function values u(tn, xi),
for n = 1, . . . , Nt and i = 1, . . . , Nx, we consider the following system of equations:

un
i − un−1

i

τ
− un

i+1 − 2un
i + un

i−1

h2
= 0;

changing the numbering of the time-stepping, so that n is replaced by n + 1, the method becomes

un+1
i − un

i

τ
− un+1

i+1 − 2un+1
i + un+1

i−1

h2
= 0,

for n = 0, . . . , Nt − 1 and i = 1, . . . , Nx
3. After multiplication by τ and rearrangement, this becomes

−µun+1
i+1 + (1 + 2µ)un+1

i − µun+1
i−1 = un

i , for n = 0, . . . , Nt − 1, i = 1, . . . , Nx, (4.17)

where, again µ := τ/h2 is the Courant number for this method. For (4.17) to make complete sense, we need
to describe the initial condition (4.2) in the method, giving

u0
i = u0(xi) i = 1, . . . , Nx, (4.18)

and the values for the nodes residing on the Dirichlet boundary can be given using the boundary conditions
(4.3)

un
0 = 0 = un

Nx+1 n = 0, . . . , Nt. (4.19)
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Figure 4.4: Implicit Euler Method.

The finite difference method defined by the equations (4.17), (4.18) and (4.19), will be referred to as the
implicit Euler method (or the backward Euler method). In Figure 4.4, we can see a representation of the
implicit Euler method.

The name “implicit” can be justified by observing to compute the approximations un+1
i we now need

to solve a linear system at each time-step! Indeed, the un+1
i ’s cannot be calculated explicitly from the

previously computed un
i . Instead, writing the system (4.17) in matrix form (using the boundary conditions

(4.19)), we get












1 + 2µ −µ 0 0 . . . 0
−µ 1 + 2µ −µ 0 . . . 0
0 −µ 1 + 2µ −µ . . . 0
...

...
. . .

. . .
. . . . . .

0 . . . 0 −µ 1 + 2µ −µ
0 . . . 0 0 −µ 1 + 2µ












︸ ︷︷ ︸

D













un+1
1

un+1
2
...
...

un+1
Nx−1

un+1
Nx













︸ ︷︷ ︸

Un+1

=













un
1

un
2
...
...

un
Nx−1

un
Nx













︸ ︷︷ ︸

Un

, (4.20)

for n = 0, 1, . . .Nt−1; the values on the right-hand side for n = 0 are given by the initial condition. Therefore,
to compute the approximations un+1

i , we need to solve the linear system (4.20), since the right-hand side
vector contains the know values un

i ’s, computed in the previous time-step.
This method appears to be more computationally demanding that the explicit Euler method. Indeed

here, to compute the un+1
i ’s, a linear system has to be solved for each n, as opposed to the few direct

calculations needed for the explicit Euler method4.
In view of the additional computational cost for the implicit Euler method, it is natural to question its

relevance in practice. Since the forward and the backward divided differences are both first order accurate
(see Lemma (3.2)), we do not expect to achieve higher convergence rather for the implicit Euler method, as
opposed to the explicit Euler method. Indeed, the following lemma, shows that the truncation error is of
first order with respect to τ and of second order with respect to h.

Lemma 4.4 We define the truncation error for the implicit Euler method by

T n
i :=

u(tn, xi) − u(tn−1, xi)

τ
− u(tn, xi+1) − 2u(tn, xi) + u(tn, xi−1)

h2
.

Then, we have

|T n
i | ≤ τ

2
Mtt +

h2

12
Mxxxx, (4.21)

3the change n → n + 1 in the time-stepping is merely done for stylistic reasons, so that the comparison with the explicit
Euler method described above can be facilitated.

4In fact the difference in the computational cost is not as big as it appears initially. Indeed, given that the matrix D is
tridiagonal, inverting can be a very fast process. One such method is the so-called Thomas algorithm which is described in
Morton & Mayers’ book (Section 2.9).
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for all n = 0, . . . , Nt, i = 1, . . . , Nx, where

Mtt := max |utt(t, x)|, and Mxxxx := max |uxxxx(t, x)|,

and the maxima are taken over all (t, x) ∈ [0, Tf ] × [a, b].

Proof. The proof is left as an exercise.
2

Thus, there seems to be no real benefit in terms of error reduction for any of the two methods 5.
Let us now examine the stability properties of the implicit Euler method. To this end, ignoring the

boundary conditions (4.19), we consider a grid of the form (tn, xi), with tn = nτ and xi = ih for n = 0, . . .Nt,
i = 0,±1,±2, . . . , with τ = 1/Nt and h ∈ R, i.e., a grid with infinite points in the x-direction. We set

un
i = λneιkxi = λneιkih,

for k ∈ R, to be the approximate solution at the node (tn, xi). We now use (4.17) to evolve one time-step;
then we get

−µun+1
i+1 + (1 + 2µ)un+1

i − µun+1
i−1 = un

i ,

or
−µλn+1eιk(i+1)h + (1 + 2µ)λn+1eιkih − µλn+1eιk(i−1)h = λneιkih.

Dividing the last equation by λneιkih, we deduce

−µλeιkh + (1 + 2µ)λ − µλe−ιkh = 1,

which becomes
λ − µλ

(
eιkh − 2 + e−ιkh

)
= 1.

Using (4.13), we get

λ + 4µλ sin2(
1

2
kh) = 1,

which, finally implies that

λ =
1

1 + 4µ sin2(1
2kh)

.

For the numerical method to be stable, we must have |λ| ≤ 1, which is the case here for all µ ≥ 0, as
0 ≤ sin2(1

2kh) ≤ 1. Therefore, we conclude that the implicit Euler method is stable for all µ ≥ 0 ! A
method that is stable for all Courant numbers µ ≥ 0 is called unconditionally stable. Hence, the additional
computational cost to use the implicit Euler method is counterbalanced by its superior stability properties,
as now we are allowed to take larger time-steps, leading to smaller Nt; notice, however, that taking larger
time-step τ may result to slower convergence. The implicit Euler method is of great relevance in practice.

Problems

18. Write an implicit Euler method, to approximate the solution to the initial/boundary value problem

ut(t, x) = uxx(t, x) for all t ∈ [0, Tf ] and x ∈ [0, 1],

u(0, x) = u0(x), for all x ∈ (0, 1),

ux(t, 0) = u(t, 1) = 0, for all t ∈ [0, Tf ].

19. Prove Lemma 4.4.

5We shall not consider the error analysis of the implicit Euler method here, as this requires a relatively involved discrete
maximum principle which goes beyond the scope of these notes. We refer the interested reader to Section 2.11 of the book by
Morton & Mayers.
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4.2.2 The Crank-Nicolson Method

In the previous sections we presented both the explicit and the implicit Euler methods for the solution of
parabolic initial/boundary value problems. We saw that the explicit methods is first order accurate with
respect to the time-stepping τ (Theorem 4.3), and we have good reasons to believe that this is the case also
for the implicit Euler method (as the truncation error for the implicit method is of first order with respect
to τ ; see Problem 4 in Problem Sheet 5). The crucial difference between the aforementioned methods lies
in the superior stability properties of the implicit Euler method, that enables us to take larger time steps
without the danger of the development of non-physical oscillations.

Here, we shall combine both methods, hoping to construct a method that is stable and, hopefully, of
higher order in τ . Again, we consider the same initial/boundary value problem (4.1), (4.2) and (4.3).

We construct a grid as follows: we consider equally distributed subdivision x0 < x1 < · · · < xNx+1, at
distance h between them, such that

a = x0, x1 = x0 + h, x2 = x1 + h, . . . , xNx
= xNx−1 + h, xNx+1 = b,

in the space-direction, and an equally distributed subdivision t0 < t1 < · · · < tNt
, at distance τ between

them, such that

0 = t0, t1 = t0 + τ, t2 = t1 + τ, . . . , tNt−2 = tNt−1 + τ, tNt
= Tf ,

in the time-direction (see Figure 4.1); hence, we have h = (b − a)/(Nx + 1) and τ = Tf/Nt.
Our aim, as before, is to find approximations un

i of the function values u(tn, xi), for n = 1, . . . , Nt and
i = 1, . . . , Nx. We define the Crank-Nicolson method by the following system of equations:

un+1
i − un

i

τ
=

1

2

un
i+1 − 2un

i + un
i−1

h2
+

1

2

un+1
i+1 − 2un+1

i + un+1
i−1

h2
,

for n = 0, . . . , Nt−1 and i = 1, . . . , Nx; i.e., we can think of the Crank-Nicolson method as derived by taking
the average of the explicit and implicit Euler methods. After multiplication by 2τ and rearrangement, this
becomes

−µun+1
i+1 +(2+2µ)un+1

i −µun+1
i−1 = µun

i+1+(2−2µ)un
i +µun

i−1, for n = 0, . . . , Nt−1, i = 1, . . . , Nx, (4.22)

where, again µ := τ/h2 is the Courant number for this method. For (4.17) to make complete sense, we need
to describe the initial condition (4.2) in the method, giving

u0
i = u0(xi) i = 1, . . . , Nx, (4.23)

and the values for the nodes residing on the Dirichlet boundary can be given using the boundary conditions
(4.3)

un
0 = 0 = un

Nx+1 n = 0, . . . , Nt. (4.24)

In Figure 4.5, we can see a representation of the Crank-Nicolson method.
We can write (4.22) and (4.24) in matrix form as follows:

0

B
B
B
B
B
@

2 + 2µ −µ 0 . . . 0
−µ 2 + 2µ −µ . . . 0
...

. . .
. . .

. . . . . .

0 . . . −µ 2 + 2µ −µ

0 . . . 0 −µ 2 + 2µ

1

C
C
C
C
C
A

| {z }

D

0

B
B
B
B
B
@

u
n+1
1

u
n+1
2

...
u

n+1
Nx−1

u
n+1
Nx

1

C
C
C
C
C
A

| {z }

Un+1

=

0

B
B
B
B
B
@

2− 2µ µ 0 . . . 0
µ 2− 2µ µ . . . 0
...

. . .
. . .

. . . . . .

0 . . . µ 2− 2µ µ

0 . . . 0 µ 2− 2µ

1

C
C
C
C
C
A

| {z }

E

0

B
B
B
B
B
@

u
n
1

u
n
2

...
u

n
Nx−1

u
n
Nx

1

C
C
C
C
C
A

| {z }

Un

,

for n = 0, 1, . . .Nt − 1; the values on the right-hand side for n = 0 are given by the initial condition.
We observe that the Crank-Nicolson method is also of implicit type, since to calculate the approximations

un+1
i we need to solve a linear system at each time-step; more specifically, to calculate the vector Un+1, we

have to solve the linear system DUn+1 = f , where f = EUn, the product of the matrix E with the vector
Un, which is known from the previous time-level (or, if n = 0, from the initial condition).

The error analysis of the Crank-Nicolson method will not be presented here, as it is quite involved (it is
based on a discrete maximum principle). We refer the interested reader to the book by Morton & Mayers
for a proof. Nevertheless, we can get an idea of the convergence rates by truncation error analysis.
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Figure 4.5: The Crank-Nicolson method.

Lemma 4.5 We define the truncation error for the Crank-Nicolson method by

T
n+ 1

2

i :=
u(tn+1, xi) − u(tn, xi)

τ
− 1

2

u(tn+1, xi+1) − 2u(tn+1, xi) + u(tn+1, xi−1)

h2

−1

2

u(tn, xi+1) − 2u(tn, xi) + u(tn, xi−1)

h2
.

Then, we have

|T n+ 1
2

i | ≤ τ2

12
Mttt +

h2

12
Mxxxx, (4.25)

for all n = 0, . . . , Nt − 1, i = 1, . . . , Nx, where

Mttt := max |uttt(t, x)|, and Mxxxx := max |uxxxx(t, x)|,

and the maxima are taken over all (t, x) ∈ [0, Tf ] × [a, b], whenever Mttt and Mxxxx are finite.

Proof. The proof is left as an exercise.
2

Therefore, it appears that the Crank-Nicolson method is of second order with respect to the time-step
τ . Therefore, we could choose τ = O(h) and still achieve second order convergence of the truncation error
(and, hopefully, of the error itself). Hence, we can choose larger time-steps and still obtain second order
accuracy!

We now examine the stability properties of the Crank-Nicolson method. To this end, ignoring the
boundary conditions (4.24), we consider a grid of the form (tn, xi), with tn = nτ and xi = ih for n = 0, . . .Nt,
i = 0,±1,±2, . . . , with τ = 1/Nt and h ∈ R, i.e., a grid with infinite points in the x-direction. We set

un
i = λneιkxi = λneιkih,

for k ∈ R, to be the value at the node (tn, xi). We now use (4.22) to evolve one time-step; then we get

−µun+1
i+1 + (2 + 2µ)un+1

i − µun+1
i−1 = µun

i+1 + (2 − 2µ)un
i + µun

i−1

or

−µλn+1eιk(i+1)h + (2 + 2µ)λn+1eιkih − µλn+1eιk(i−1)h = µλneιk(i+1)h + (2 − 2µ)λneιkih + µλneιk(i−1)h.

Dividing the last equation by λneιkih, we deduce

−µλeιkh + (2 + 2µ)λ − µλe−ιkh = µeιkh + 2 − 2µ + µe−ιkh,

which becomes
2λ − µλ

(
eιkh − 2 + e−ιkh

)
= 2 + µ

(
eιkh − 2 + e−ιkh

)
.
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Using (4.13), we get

2λ + 4µλ sin2(
1

2
kh) = 2 − 4µ sin2(

1

2
kh),

which, finally implies that

λ =
1 − 2µ sin2(1

2kh)

1 + 2µ sin2(1
2kh)

.

For the numerical method to be stable, we must have |λ| ≤ 1, which is the case here for all µ ≥ 0, as
0 ≤ sin2(kh) ≤ 1. Therefore, we conclude that the Crank-Nicolson method is stable for all µ ≥ 0, i.e., it
is unconditionally stable. Hence, the additional computational cost to use the Crank-Nicolson method is
counterbalanced by its superior stability properties and convergence properties, as now we are allowed to
take larger time-steps and still retain second order accuracy, without any stability loss.

Problem

20. Prove Lemma 4.5. [Hint: use Taylor’s theorem, expanding about the point (tn+1/2, xi), where tn+1/2 :=
tn + τ

2 .]
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4.3 Extensions to problems with non-constant coefficients

In the previous sections, we have seen various finite difference methods for the heat equation and the
corresponding initial/boundary value problem. Here we shall consider the case when the PDE has variable
coefficients. In particular, we seek an approximation to the solution of the problem: find a function u :
[0, Tf ] × [a, b] → R with continuous second derivatives, such that

ut(t, x) = a(t, x)uxx(t, x) − c(t, x)u(t, x) for all t ∈ [0, Tf ] and x ∈ [a, b], (4.26)

subject to the initial condition
u(0, x) = u0(x), for all x ∈ [a, b], (4.27)

for some known continuous function u0 : [a, b] → R, and subject to homogeneous boundary conditions

u(t, a) = u(t, b) = 0, for all t ∈ [0, Tf ]. (4.28)

Throughout this section, we assume that the functions a, c, f : [0, Tf ] × [a, b] → R are continuous and that
a(t, x) > 0 and c(t, x) ≥ 0, for all (t, x) ∈ [0, Tf ] × [a, b].

4.3.1 Explicit methods

We begin by considering an extension of the explicit Euler method for this problem. We construct a grid as
follows: we consider equally distributed subdivision x0 < x1 < · · · < xNx+1, at distance h between them,
such that

a = x0, x1 = x0 + h, x2 = x1 + h, . . . , xNx
= xNx−1 + h, xNx+1 = b,

in the space-direction, and an equally distributed subdivision t0 < t1 < · · · < tNt
, at distance τ between

them, such that

0 = t0, t1 = t0 + τ, t2 = t1 + τ, . . . , tNt−2 = tNt−1 + τ, tNt
= Tf ,

in the time-direction (see Figure 4.1); hence, we have h = (b − a)/(Nx + 1) and τ = Tf/Nt.
Our aim is to find approximations un

i of the function values u(tn, xi) for n = 0, . . . , Nt − 1 and i =
1, . . . , Nx, we consider the following system of equations:

un+1
i − un

i

τ
= an

i

un
i+1 − 2un

i + un
i−1

h2
− cn

i un
i ,

where an
i := a(tn, xi) and cn

i := c(tn, xi), which becomes, after multiplication by τ and rearrangement

un+1
i = µan

i un
i+1 + (1 − 2µan

i − τcn
i )un

i + µan
i un

i−1, for n = 0, . . . , Nt − 1, i = 1, . . . , Nx, (4.29)

where we have used the usual notation for the Courant number µ := τ/h2. For (4.29) to make complete
sense, we need to describe the initial condition (4.27) in the method, giving

u0
i = u0(xi) i = 1, . . . , Nx, (4.30)

and the values for the nodes residing on the Dirichlet boundary can be given using the boundary conditions
(4.28)

un
0 = 0 = un

Nx+1 n = 0, . . . , Nt. (4.31)

In an analogous fashion to the case of a(t, x) = 1, c(t, x) = 0 (i.e., the heat equation), presented in Section
4.1.1, one can prove the following result.

Theorem 4.6 Consider the explicit Euler method (4.29). Let u be the exact solution of the initial/boundary
value problem (4.26), (4.27), and (4.28). Assume that the Courant number satisfies

µan
i +

τ

2
cn
i ≤ 1

2
,

for every τ, h and for every n = 0, . . . , Nt − 1 and i = 1, 2, . . . , Nx. Then we have the following error bound:

max
1≤i≤Nx

|u(tn, xi) − un
i | ≤ Tf (

τ

2
Mtt +

h2

12
AMxxxx), (4.32)

for n = 1, . . . , Nt, where Mtt and Mxxxx defined as before, and A := max |a(t, x)|, where the max is taken
over [0, Tf ] × [a, b].
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Proof. The proof is left as an exercise.
2

Let us now examine the stability properties of the explicit Euler method. To this end, ignoring the
boundary conditions (4.31), we consider a grid of the form (tn, xi), with tn = nτ and xi = ih for n = 0, . . .Nt,
i = 0,±1,±2, . . . , with τ = 1/Nt and h ∈ R, i.e., a grid with infinite points in the x-direction. We set

un
i = λneιkxi = λneιkih,

for k ∈ R, to be the approximate solution at the node (tn, xi). We now use (4.29) to evolve one time-step;
then we get

λn+1eιkih = µan
i λneιk(i+1)h + (1 − 2µan

i − τcn
i )λneιkih + µλneιk(i−1)h.

Dividing the last equation by λneιkih, we deduce

λ = µan
i eιkh + 1 − 2µan

i − τcn
i + µe−ιkh.

Using (4.13), we get

λ = 1 − 4µan
i sin2(

1

2
kh) − τcn

i .

For stability, we require |λ| ≤ 1, which implies

−1 ≤ 1 − 4µan
i sin2(

1

2
kh) − τcn

i ≤ 1, or µan
i +

τ

4
cn
i ≤ 1

2
.

Hence, this method is stable if and only if µan
i + τ

4 cn
i ≤ 1

2 . In some cases, this can be restrictive in practice.

Problem

21. Prove Theorem 4.6

4.3.2 Implicit methods

Due to restrictions in the Courant number stemming from both the convergence and the stability require-
ments, the use of implicit methods can be more relevant in practical computations. To this end, we now
present some extensions of the Crank-Nicolson method for the initial/boundary value problem (4.26), (4.27),
and (4.28).

Our aim is to find approximations un
i of the function values u(tn, xi) for n = 0, . . . , Nt − 1 and i =

1, . . . , Nx, using the Crank-Nicolson method:

un+1
i − un

i

τ
=

1

2
αn

i

(un
i+1 − 2un

i + un
i−1

h2
+

un+1
i+1 − 2un+1

i + un+1
i−1

h2

)

− 1

2
γn

i

(
un+1

i + un
i

)
,

where

αn
i :=

1

2

(
a(tn, xi) + a(tn+1, xi)

)
, and γn

i :=
1

2

(
c(tn, xi) + c(tn+1, xi)

)
. (4.33)

This choice can be motivated by the fact that, for Crank-Nicolson-type methods it is preferable to expand the
truncation error about the point (tn+1/2, xi), where tn+1/2 := tn + τ/2; indeed, assuming the the coefficients
a and c are twice continuously differentiable with respect to t and applying Taylor’s theorem about the point
(tn+1/2, xi), we get

αn
i = a(tn+1/2, xi) +

τ2

8
atta(ρn, xi) +

τ2

8
atta(σn, xi),

for some ρn ∈ (tn, tn+1/2) and ρn ∈ (tn+1/2, tn+1), and similarly for γn
i .

After multiplication by 2τ and rearrangement, we get

−µαn
i un+1

i+1 + (2 + 2µαn
i + τγn

i )un+1
i − µαn

i un+1
i−1 = µαn

i un
i+1 + (2 − 2µαn

i − τγn
i )un

i + µαn
i un

i−1, (4.34)

for n = 0, . . . , Nt − 1, i = 1, . . . , Nx, together with (4.30) and (4.31).
We now examine the stability properties of the above method for this problem. To this end, ignoring the

boundary conditions (4.24), we consider a grid of the form (tn, xi), with tn = nτ and xi = ih for n = 0, . . .Nt,
i = 0,±1,±2, . . . , with τ = 1/Nt and h ∈ R, i.e., a grid with infinite points in the x-direction. We set

un
i = λneιkxi = λneιkih,
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for k ∈ R, to be the value at the node (tn, xi). We now use (4.34) to evolve one time-step; then we get

−µαn
i λn+1eιk(i+1)h + (2 + 2µαn

i + τγn
i )λn+1eιkih − µαn

i λn+1eιk(i−1)h

= µαn
i λneιk(i+1)h + (2 − 2µαn

i − τγn
i )λneιkih + µαn

i λneιk(i−1)h.

Dividing the last equation by λneιkih, we deduce

−µαn
i λeιkh + (2 + 2µαn

i + τγn
i )λ − µαn

i λe−ιkh = µαn
i eιkh + 2 − 2µαn

i − τγn
i + µαn

i e−ιkh,

which becomes

(2 + τγn
i )λ − µαn

i λ
(
eιkh − 2 + e−ιkh

)
= 2 − τγn

i + µαn
i

(
eιkh − 2 + e−ιkh

)
.

Using (4.13), we get

(2 + τγn
i )λ + 4µαn

i λ sin2(
1

2
kh) = 2 − τγn

i − 4µαn
i sin2(

1

2
kh),

which, finally implies that

λ =
2 − τγn

i − 4µαn
i sin2(1

2kh)

2 + τγn
i + 4µαn

i sin2(1
2kh)

.

For the numerical method to be stable, we must have |λ| ≤ 1, which is the case here for all µ ≥ 0. Therefore,
we conclude that the method is stable for all µ ≥ 0, i.e., it is unconditionally stable.

A more “natural” extension to the Crank-Nicolson method for the initial/boundary value problem (4.26),
(4.27), and (4.28), is given by the following. Our aim is to find approximations un

i of the function values
u(tn, xi) for n = 0, . . . , Nt − 1 and i = 1, . . . , Nx, using the Crank-Nicolson method:

un+1
i − un

i

τ
=

1

2

(

an+1
i

un+1
i+1 − 2un+1

i + un+1
i−1

h2
− cn+1

i un+1
i

)

+
1

2

(

an
i

un
i+1 − 2un

i + un
i−1

h2
− cn

i un
i

)

,

where an
i := a(tn, xi) and cn

i := c(tn, xi). That is, we consider “half” of the “differential operator” on the
n-th time step while the other “half” on the n + 1-st time step. It is an interesting exercise to give a bound
on the truncation error for this method, as well as perform stability analysis.

Problem

22. Find a bound for the truncation error of the Crank-Nicolson method for the initial/bounary value
problem with non-constant coefficients, described above. [Hint: use Taylor’s theorem, expanding about the
point (tn+1/2, xi), where tn+1/2 := tn + τ

2 .]
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Chapter 5

Finite Difference Methods
for Elliptic Problems

We shall now consider finite difference methods for elliptic problems. In particular, we shall be concerned
with approximating the solution to the Dirichlet problem for the Poisson equation on a (bounded, simply
connected, open) domain Ω ⊂ R

2, which reads: find a twice differentiable function u : Ω → R, such that

∆u(x, y) = f(x, y) for all (x, y) ∈ Ω, and u(x, y) = 0 for all (x, y) ∈ ∂Ω, (5.1)

for some known bounded function f : Ω → R, and with ∂Ω denoting the boundary of the domain Ω. We
shall refer to Ω as the computational domain, We recall the definition of the Laplace operator (also known
as Laplacian)

∆ ≡ ∂2

∂x2
+

∂2

∂y2
.

The PDE in (5.1) is the archetype elliptic PDE. It is possible to show that this problem has a unique
solution, provided that the domain Ω is “nice enough”. (We prefer at this point not to give further details
regarding the relation of the smoothness of the solution u with the “smoothness” of the boundary of Ω, as
it is outside the scope of these notes.) However, in most cases it is very difficult or even impossible to find
the solution u exactly, especially when the geometry of Ω is complicated. Therefore, the need to calculate
accurate approximations of u is evident, considering that the Poisson problem, or its generalisations, are
often met in many problems in mathematical modelling of various disciplines/phenomena.

To make matters simpler, suppose for the moment that Ω = (0, 1)2 ⊂ R
2 is the unit square in R

2. When
designing a finite difference method, the first step is to decide upon a finite number of points (xi, yj) ∈ Ω,
with i = 0, 1, 2, . . . , Nx + 1 and j = 0, 1, 2, . . . , Ny + 1, on which we shall be seeking approximations ui,j to
the exact values u(xi, yj). The set {(xi, yj) : i = 0, 1, 2, . . . , Nx + 1, j = 0, 1, 2, . . . , Ny + 1} will be referred
to, as the grid (also known in the literature as the mesh), and the points (xi, yj) will be referred to as the
grid points or as the nodes.

5.1 The five-point scheme

Going back to the problem (5.1) on Ω = (0, 1)2, we set Nx = Ny and we construct a grid as follows. We
consider equally distributed subdivision x0 < x1 < · · · < xN+1, at distance h between them, such that

0 = x0, x1 = x0 + h, x2 = x1 + h, . . . , xN = xN−1 + h, xN+1 = 1,

in the x-direction, and an equally distributed subdivision y0 < y1 < · · · < yN+1, at distance h between them,
such that

0 = y0, y1 = y0 + h, y2 = y1 + h, . . . , yN = yN−1 + h, yN+1 = 1,

in the y-direction; hence, we have h = 1/(N + 1). We note that it is easy to generalise the ideas presented
below when different number of nodes are used in each space direction; this is not done here for simplicity
of the presentation.
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Figure 5.1: The five-point scheme.

Inspired by the discussion on divided differences approximating derivatives from Section 3.1, we can
formally make the following approximations

∂2u

∂x2
(x, y) ≡ uxx(x, y) ≈ (δx

h)2u(x, y), and
∂2u

∂y2
(x, y) ≡ uyy(x, y) ≈ (δy

h)2u(x, y),

where we have adopted the notational convention that the superscript x, denotes that the divided difference
operator acts on the first variable and correspondingly for y, giving

∆u(x, y) ≈
(
(δx

h)2 + (δy
h)2

)
u(x, y) =

1

h2

(
u(x + h, y) + u(x − h, y) + u(x, y + h) + u(x, y − h) − 4u(x, y)

)
,

that is ∆u at any point (x, y) ∈ Ω can be approximated by 5 neighbouring values of u. Restricting this on
the nodes (xi, yj), we have formally

∆u(xi, yj) ≈ 1

h2

(
u(xi + h, yj) + u(xi − h, yj) + u(xi, yj + h) + u(xi, yj − h) − 4u(xi, yj)

)

=
1

h2

(
u(xi+1, yj) + u(xi−1, yj) + u(xi, yj+1) + u(xi, yj−1) − 4u(xi, yj)

)
,

for all i, j = 1, . . . , N . Making use of the governing equation (5.1) applied to the grid points, we have

1

h2

(
u(xi+1, yj) + u(xi−1, yj) + u(xi, yj+1) + u(xi, yj−1) + 4u(xi, yj)

)
≈ ∆u(xi, yj) = f(xi, yj).

Motivated by this formal approximation, and recalling that our aim is to find approximations ui,j of the
function values u(xi, yj) for i, j = 1, . . . , N , we consider the following system of equations:

1

h2

(
ui,j+1 + ui+1,j − 4ui,j + ui−1,j + ui,j−1

)
= f(xi, yj), 1 ≤ i, j ≤ N,

which becomes, after multiplication by h2,

ui,j+1 + ui+1,j − 4ui,j + ui−1,j + ui,j−1 = h2f(xi, yj), 1 ≤ i, j ≤ N ; (5.2)

(see Figure 5.1). Notice that the approximations ui,j are not the same as exact values u(xi, yj). For (5.2) to
make complete sense, we need to determine the values on the grid points residing on the boundary (notice
that when, for instance j = n, the first term on the left-hand side of (5.2) becomes ui,N+1 which cannot be
calculated from neighbouring values). But, this is not a problem, as we do not need to to find approximation
of u at the grid points residing on the boundary ∂Ω; the values of the solution u on these points are known
from the boundary condition u = 0 on ∂Ω! So, since we have from the boundary condition

u(x0, yj) = u(xN+1, yj) = u(xi, y0) = u(xi, yN+1) = 0,

65



for all i, j = 0, . . .N + 1, we can set

u0,j = uN+1,j = ui,0 = ui,N+1 = 0, (5.3)

for all i, j = 0, . . . , N+1. Now, it is not hard to see that (5.2) together with the conditions (5.3) give rise to an
algebraic system of N2 equations with N2 unknowns: the values ui,j for i, j = 1, . . . N . Solving this algebraic
linear system, we can calculate the approximations ui,j to the exact values u(xi, yj) for 0 ≤ i, j ≤ N . The
method (5.2) is often called the five point scheme.

From PDE theory (i.e., the fact that the problem (5.1) is well-posed and has unique solution, we un-
derstand that the value of the solution u at each (internal) point (x, y) ∈ Ω is completely determined by
the values of u on a neighbourhood of each point and, inductively, on the known values at the boundary
∂Ω. Hence, when designing a finite difference method for this problem, we aimed at imitating this principle;
indeed, the five-point scheme imitates the dependence of the value of of the solution u on its neighbours, and
its neighbours depend on their own neighbours, and so on, until the known boundary values are reached!

Let us study in greater detail the linear system of N2 equations with N2 unknowns, our aim being to
write the system in matrix form AU = h2F , where A is an N2 × N2 matrix, U is an N2-vector having
components the unknown values ui,j , i, j = 1, . . .N , and F is an N2-vector having components the values
of the forcing function on the grid points f(xi, yj) =: fi,j, for i, j = 1, . . .N . To do so, we should choose a
way of sorting the unknown values ui,j , i, j = 1, . . .N in the vector U . Let us agree for the moment, that
we sort ui,j by rows, from the bottom to the top of the grid, i.e., we choose

U = (u1,1, u2,1, . . . , uN,1, u1,2, u2,2, . . . , uN,2, . . . , u1,N , u2,N , . . . , uN,N)T ,

and, correspondingly, we let

F = (f1,1, f2,1, . . . , fN,1, f1,2, f2,2, . . . , fN,2, . . . , f1,N , f2,N , . . . , fN,N)T ;

then, we can write the method in matrix form AU = h2F , with












B I 0 0 . . . 0
I B I 0 . . . 0
0 I B I . . . 0
...

...
. . .

. . .
. . .

...
0 . . . 0 I B I
0 . . . 0 0 I B












︸ ︷︷ ︸

A

























u1,1

u2,1

...
uN,1

u1,2

...
uN,2

...
u1,N

...
uN,N

























︸ ︷︷ ︸

U

= h2

























f1,1

f2,1

...
fN,1

f1,2

...
fN,2

...
f1,N

...
fN,N

























︸ ︷︷ ︸

F

(5.4)

where 0 is the N × N zero matrix, I is the N × N identity matrix, and B is N × N matrix

B =












−4 1 0 0 . . . 0
1 −4 1 0 . . . 0
0 1 −4 1 . . . 0
...

...
. . .

. . .
. . . . . .

0 . . . 0 1 −4 1
0 . . . 0 0 1 −4












.

Notice that the discretisation parameter h does not appear explicitly on the left-hand side of (7.15), but
it appears on the right-hand side. This might seem strange at first sight, but a closer look reveals that the
matrix A is implicitly dependent on h: indeed, as h = 1/(N + 1), we can see that the size of the matrix A
can be parametrised by h, as N = 1/h − 1. More importantly, we see that as we make h smaller the size
of the linear system (7.15) grows and, therefore, the use of computers becomes a necessity: suggestively, we
can see that with a modest 100× 100 grid, we would need to solve a system of 10, 000 equations with 10, 000
unknowns, which is far beyond the human capabilities.
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5.2 Error analysis

For a numerical method to to be deemed useful, we must be confident enough that it provides us with
good approximations of the exact solution to our problem. This confidence usually comes by analysing the
convergence properties of the method. Generally speaking, by convergence of a numerical method we mean
that the approximation should converge to the exact solution (in an appropriate way of defining distance),
as the magnitude of the discretisation parameter(s) (e.g., the parameter h above) decreases to zero.

Let us begin, by trying to get a feeling on how well the numerical method (5.2) imitates the original
problem (5.1). A way of doing so is to estimate the truncation error, which in this case is defined as

Ti,j :=
1

h2

(
u(xi+1, yj) + u(xi−1, yj) + u(xi, yj+1) + u(xi, yj−1) − 4u(xi, yj)

)
− f(xi, yj).

The truncation error of a numerical method is defined by substituting the exact solution into the numerical
method, thereby representing how much the numerical method fails to imitate the exact boundary-value
problem.

Lemma 5.1 Let u, the exact solution to (5.1), be smooth enough so that the quantities

Mxxxx := max
(x,y)∈Ω̄

|uxxxx(x, y)|, and Myyyy := max
(x,y)∈Ω̄

|uyyyy(x, y)|,

are finite, and let the truncation error Ti,j be defined as above, for all i, j = 1, . . . , n, where Ω̄ defines the
closure of Ω (i.e., Ω̄ = Ω ∪ ∂Ω). Then we have the bound:

|Ti,j | ≤
h2

12

(
Mxxxx + Myyyy

)
, (5.5)

for all i, j = 1, . . . , N .

Proof. We use Taylor’s Theorem:

Ti,j =
1

h2

(
u(xi + h, yj) + u(xi − h, yj) + u(xi, yj + h) + u(xi, yj − h) + 4u(xi, yj)

)
− f(xi, yj)

= uxx(xi, yj) +
h2

24

(
uxxxx(ξ1, yj) + uxxxx(ζ1, yj)

)

+uyy(xi, yj) +
h2

24

(
uyyyy(xi, ξ2) + uyyyy(xi, ζ2)

)
− f(xi, yj),

for some ξ1, ζ1 ∈ [xi−1, xi+1], and for some ξ2, ζ2 ∈ [yi−1, yi+1], using (3.16) for the first and second variable,
respectively. Now, since u is the exact solution to (5.1), we can use the PDE ∆u(xi, yj) = f(xi, yj) on the
point (xi, yj) to obtain

Ti,j =
h2

24

(
uxxxx(ξ1, yj) + uxxxx(ζ1, yj)

)
+

h2

24

(
uyyyy(xi, ξ2) + uyyyy(xi, ζ2)

)
,

which can be finally bounded from above:

|Ti,j | ≤
h2

12

(
max

(x,y)∈Ω̄
|uxxxx(x, y)| + max

(x,y)∈Ω̄
|uyyyy(x, y)|

)
,

which gives the result.
2

The above result is potentially good news: the bound (5.5) says that Ti,j → 0 as h → 0, i.e., that the
numerical scheme approximates the PDE as h → 0! Unfortunately, though, this does not imply also that
the numerical approximation ui,j converges to u(xi, yj) also, as h → 0. Nevertheless, this is also the case, as
the following result reveals.

Theorem 5.2 Let Ω and the grid as above. Consider the five-point scheme approximation ui,j at the point
(xi, yj) of the exact solution u(xi, yj) of the problem (5.1), and suppose that the forcing function f is smooth
enough. Then, the following bound holds

|ui,j − u(xi, yj)| ≤
h2

96

(
Mxxxx + Myyyy

)
, (5.6)

for all i, j = 1, . . . , N , with Mxxxx and Myyyy as in Lemma 5.1.
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Proof. The proof is beyond the scope of these notes; a proof (using the discrete maximum principle) for
general domains Ω can be found in Morton and Mayers (Section 6.2). Another proof (for the case Ω = (0, 1)2)
can be found in Iserles (Theorem 7.2) using the eigenvalue/eigenvector decomposition of the matrix A above.

2

The above theorem implies that ui,j → u(xi, yj), as h → 0. Moreover, it says that ui,j → u(xi, yj) like
O(h2), i.e., every time we half the grid-size h, we should expect the error on the left-hand side of (5.6) to
decrease about 4 times.
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5.3 Finite difference methods for general elliptic problems

We want to construct a finite difference method for the general 2nd order linear elliptic PDE in 2 dimensions:

auxx + 2buxy + cuyy = f, for (x, y) ∈ Ω ⊂ R
2 and u = 0 on ∂Ω,

where a, b, c, f are functions of the independent variables x and y only, such that D = b2 − ac < 0. In
the previous section, we considered the case a = 1 = c, b = 0. The partial derivatives uxx and uyy can be
approximated by second central divided differences as done in the previous section. Therefore, the remaining
challenge is to construct a finite difference approximation of the mixed derivative uxy.

Let us first revisit the elementary divided differences considered in Section 3.1. The second central divided
difference

δ2
hf(x) =

f(x + h) − 2f(x) + f(x − h)

h2
,

for a function of one variable f : R → R was defined through two successive applications of the first central
difference δh (see equation (3.14) for details). Hence, we can construct a second central divided difference
for uxy = (ux)y by successive application of first central difference of spacing 2h in the x-direction, followed
by a first central difference of spacing 2h in the y-direction, i.e.,

δy
2hδx

2hu(x, y) = δy
2h

(
δx
2hu(x, y)

)
= δy

2h

(u(x + h, y) − u(x − h, y)

2h

)
=

1

2h

(
δy
2hu(x + h, y) − δy

2hu(x − h, y)
)

=
1

2h

(u(x + h, y + h) − u(x + h, y − h)

2h
− u(x − h, y + h) − u(x − h, y − h)

2h

)

=
1

4h2

(
u(x + h, y + h) − u(x + h, y − h) − u(x − h, y + h) + u(x − h, y − h)

)
. (5.7)

Hence, we can make the following approximation

uxy ≈ δy
2hδx

2hu(x, y),

which, together with the known approximations for uxx and uyy

uxx(x, y) ≈ (δx
h)2u(x, y), and uyy(x, y) ≈ (δy

h)2u(x, y)

(considered in the previous section), gives formally

f = auxx + 2buxy + cuyy ≈ a(δx
h)2u(x, y) + 2bδy

2hδx
2hu(x, y) + c(δy

h)2u(x, y). (5.8)

We now consider a grid, assuming for simplicity that Ω = (0, 1)2. We construct a grid as follows: we consider
equally distributed subdivision x0 < x1 < · · · < xN+1, at distance h between them, such that

0 = x0, x1 = x0 + h, x2 = x1 + h, . . . , xN = xN−1 + h, xN+1 = 1,

in the x-direction, and an equally distributed subdivision y0 < y1 < · · · < yN+1, at distance h between them,
such that

0 = y0, y1 = y0 + h, y2 = y1 + h, . . . , yN = yN−1 + h, yN+1 = 1,

in the y-direction, giving hence, we have h = 1/(N + 1). Therefore, the formal approximation (5.8) motives
the following finite difference method: find approximations ui,j of the exact solution u(xi, yj), such that

ai,j

h2

(
ui+1,j−2ui,j+ui−1,j

)
+

bi,j

2h2

(
ui+1,j+1−ui+1,j−1−ui−1,j+1+ui−1,j−1

)
+

ci,j

h2

(
ui,j+1−2ui,j+ui,j−1

)
= fi,j ,

for all 1 ≤ i, j ≤ N , where ai,j := a(xi, yj), bi,j := b(xi, yj), ci,j := c(xi, yj) and fi,j := f(xi, yj); after
multiplication by h2 and rearrangement, this becomes

bi,j

2
ui−1,j−1 + ci,jui,j−1 −

bi,j

2
ui+1,j−1

+ ai,jui−1,j − 2(ai,j + ci,j)ui,j + ai,jui+1,j (5.9)

− bi,j

2
ui−1,j+1 + ci,jui,j+1 +

bi,j

2
ui+1,j+1 = h2fi,j . (5.10)
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Figure 5.2: The finite difference method for the general 2nd order elliptic problem.

The schematic representation of this method is given in Figure 5.2. For (5.9) to make complete sense, we
need to include the homogenous Dirichlet boundary conditions, by setting

u0,j = uN+1,j = ui,0 = ui,N+1 = 0, (5.11)

for all i, j = 0, . . . , N + 1.
We study in greater detail the linear system of N2 equations with N2 unknowns, our aim being to write

the system in matrix form AU = h2F , where A is an N2×N2 matrix, U is an N2-vector having components
the unknown values ui,j, i, j = 1, . . .N , and F is the right-hand side N2-vector. To do so, we should choose
a way of sorting the unknown values ui,j , i, j = 1, . . .N in the vector U . Let us agree for the moment, that
we sort ui,j by rows, from the bottom to the top of the grid, i.e., we choose

U = (u1,1, u2,1, . . . , uN,1, u1,2, u2,2, . . . , uN,2, . . . , u1,N , u2,N , . . . , uN,N)T ,

and, correspondingly, we let

F = (f1,1, f2,1, . . . , fN,1, f1,2, f2,2, . . . , fN,2, . . . , f1,N , f2,N , . . . , fN,N)T ;

then, we can write the method in matrix form AU = h2F , with












B1 D1 0 0 . . . 0
C2 B2 D2 0 . . . 0
0 C3 B3 D3 . . . 0
...

...
. . .

. . .
. . .

...
0 . . . 0 CN−1 BN−1 DN−1

0 . . . 0 0 CN BN












︸ ︷︷ ︸

A

























u1,1

u2,1

...
uN,1

u1,2

...
uN,2

...
u1,N

...
uN,N

























︸ ︷︷ ︸

U

= h2

























f1,1

f2,1

...
fN,1

f1,2

...
fN,2

...
f1,N

...
fN,N

























︸ ︷︷ ︸

F

(5.12)

where 0 is the N ×N zero matrix, Bj for j = 1, 2, . . . , N , Cj for j = 2, 3, . . . , N , and Dj for j = 1, . . . , N −1,
are the N × N matrices, defined by

Bj =











−2(a1,j + c1,j) a1,j 0 . . . 0 0
a2,j −2(a2,j + c2,j) a2,j 0 . . . 0
0 a3,j −2(a3,j + c3,j) a3,j . . . 0
...

...
. . .

. . .
. . . . . .

0 . . . 0 aN−1,j −2(aN−1,j + cN−1,j) aN−1,j

0 . . . 0 0 aN,j −2(aN,j + cN,j)











,
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Cj =











c1,j − b1,j

2 0 0 . . . 0
b2,j

2 c2,j − b2,j

2 0 . . . 0
...

...
. . .

. . .
. . . . . .

0 . . . 0
bN−1,j

2 cN−1,j − bN−1,j

2

0 . . . 0 0
bN,j

2 cN,j











,

and

Dj =











c1,j
b1,j

2 0 0 . . . 0

− b2,j

2 c2,j
b2,j

2 0 . . . 0
...

...
. . .

. . .
. . . . . .

0 . . . 0 − bN−1,j

2 cN−1,j
bN−1,j

2

0 . . . 0 0 − bN,j

2 cN,j











.

Finally, we remark that it is possible to show that the divided difference approximation for the mixed
derivative uxy described above, converges with second order with respect to the grid parameter h (see
problem below).

Problem

23. Show that the divided difference approximation for the mixed derivative uxy

δy
2hδx

2hu(x, y)

converges with second order with respect to the grid parameter h.
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Chapter 6

Finite Difference Methods
for Hyperbolic Problems

Having considered finite difference methods for parabolic and for elliptic problems, we now focus to the case
of hyperbolic PDEs, together with the corresponding initial/boundary value problems.

The usual example of a 2nd order hyperbolic PDE is the wave equation, which in two dimensions reads

utt − uxx = 0,

considered together with some initial and/or boundary conditions.
Instead, let v = v(t, x) and consider the following system of equations

ut + vx = 0, and ux + vt = 0.

Differentiating the first equation with respect to t, and using the second equation, we deduce, respectively:

0 = utt + vxt = utt + vtx = utt + (vt)x = utt + (−ux)x = utt − uxx,

i.e., u satisfies the wave equation! (The same applies for v, too.)
It is possible to rewrite the above system of equations in matrix form. Defining U := (u, v)T , and using

the convention that partial derivatives of U are understood as the vector of the same partial derivatives of
the components, we have

Ut + AUx = 0, where A :=

(
0 1
1 0

)

.

Before arriving to systems of PDEs, it is natural to consider the simpler case of single (scalar) PDEs.
Therefore it is of interest to consider the first order advection equation

ut + ux = 0, (6.1)

equipped with initial condition
u(0, x) = u0(x), (6.2)

for some u0 : R → R known function. We have seen in Section 1.6 that this Cauchy problem is well
posed. Clearly it is possible to find the exact solution to this problem using the method of characteristics,
as described in Example 1.32; the exact solution then reads

u(t, x) = u0(x − t),

i.e., the solution is constant along each line t = x + const. In other words the characteristic curves “carry”
the initial value u(0, x0) = u0(x0) along the line t = x − x0.

Even though the exact solution is available, we shall construct finite difference methods for this problem,
as studying this problem can give crucial insights on the design of computational methods for hyperbolic
problems.
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Figure 6.1: The finite difference method (6.4).

6.1 The CFL condition

To make matters simple, suppose that (t, x) ∈ [0, Tf ] × R, i.e., we do not include any boundary conditions.
When designing a finite difference method, the first step is to decide upon a finite number of points (tn, xi) ∈
[0, Tf ] × R, with tn = nτ for n = 0, 1, . . . , Nt, where τ = 1/Nt and xi = ih, i = 0,±1,±2, . . . , for some
h ∈ R. On this (infinite in the x-direction) grid, we shall be seeking approximations un

i to the exact values
u(tn, xi).

We formally make the following approximations, using forward difference for the time-derivative and
backward difference for the space-derivative

ut(t, x) ≈ δt
τ,+u(t, x) =

u(t + τ, x) − u(t, x)

τ
,

and

ux(t, x) ≈ δx
h,−u(t, x) =

u(t, x) − u(t, x − h)

h
,

where we have adopted the notational convention that the superscript t, denotes that the divided difference
operator acts on the time variable t and correspondingly for x, giving

u(tn+1, xi) − u(tn, xi)

τ
+

u(tn, xi) − u(tn, xi−1)

h
≈ ut(tn, xi) + ux(tn, xi) = 0, (6.3)

using the equation (6.1).
Motivated by this formal reasoning, we consider the following system of equations:

un+1
i − un

i

τ
+

un
i − un

i−1

h
= 0,

which becomes, after multiplication by τ and rearrangement

un+1
i = (1 − ν)un

i + νun
i−1, for n = 0, . . . , Nt − 1, i = 0,±1,±2, . . . , (6.4)

where we have used the notation ν := τ/h and we shall refer to this quantity as the Courant number for this
problem. The values of the solution u at initial time can be found from the initial condition (6.2), giving

u0
i = u0(xi) i = 0,±1,±2, . . . . (6.5)

The schematic representation of the method (6.4) is shown in Figure 6.1.
Hence, the value of the approximation un+1

i depends only on the values un
i and un

i−1, which in turn they

depend only on the values un−1
i , un−1

i−1 and un−1
i−2 , and so on. If we continue this down to n = 0, we conclude

that the value of the approximation un+1
i depends on the initial values u0

j for j = i − n, i − n + 1, . . . , i.

In Figure 6.2, we have drawn two line segments: one starting from un+1
i and finishing at u0

i−n and one

starting from un+1
i and finishing at u0

i . The values of the approximation at the nodes located in and inside
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Figure 6.2: The domain of dependence of the finite difference method (DDFDM).

the area between the two line segments are the values that played a role in calculating un+1
i . This area is

known as the domain of dependence of the finite difference method. This in turn means that the value of
the approximation un+1

i depends only on the values of the initial condition u0(x) when x is in the interval
[xi−n, xi]!

Let us know consider the characteristic curve running through the point (tn+1, xi); we saw before that
the value of the exact solution u(tn+1, xi) will be equal to u0(xi − tn+1); the characteristic curve running
through the point (tn+1, xi) will be referred to as the domain of dependence of the problem.

To ensure that the information is “carried over” correctly by our finite difference method from the initial
condition to the point un+1

i , we should make sure that the characteristic curve lies inside the domain of
dependence of the finite difference method. In other words: the domain of dependence of the problem must
lie within the domain of dependence of the finite difference method ; this is the infamous CFL condition,
named after its inventors Courant, Friedrichs and Lewy. Notice that if the CFL condition holds then we
have u(tn+1, xi) = u0(xi − tn+1) ∈ [xi−n, xi], i.e., the value of the initial condition that determines the value
of the PDE at the point (tn+1, xi) is included in the interval [xi−n, xi]; the value of the initial condition in
the interval [xi−n, xi] determines the value of the approximation un+1

i !
Recall that the slope of the all the characteristic curves t = x+ const is equal to 1, including the slope of

the (interesting for us) characteristic curve passing through the point (tn+1, xi). On the other hand, notice
that the slope of the “left” line segment in Figure 6.2 is equal to ν = τ/h. Assume for the moment that
ν ≤ 1. Hence, if ν ≤ 1, the characteristic curve of interest will pass between the two line segments described
above. Therefore, the domain of dependence of the problem lies within the domain of dependence of the
finite difference method, and the CFL condition is satisfied. Notice that this is not the case when ν > 1.

The CFL condition is an easy method of checking if a finite difference method we design has any chance
of being “good’, i.e., stable; this is done just be comparing the the domains of dependence of problem and
of the finite difference method. Unfortunately, it is only a necessary condition for stability, as the following
example shows.

On the same semi-infinite grid as above, we formally make the following approximations, using forward
difference for the time-derivative and first central difference for the space-derivative

ut(t, x) ≈ δt
τ,+u(t, x) =

u(t + τ, x) − u(t, x)

τ
,

and

ux(t, x) ≈ δx
2hu(t, x) =

u(t, x + h) − u(t, x − h)

2h
,

giving
u(tn+1, xi) − u(tn, xi)

τ
+

u(tn, xi+1) − u(tn, xi−1)

2h
≈ ut(tn, xi) + ux(tn, xi) = 0, (6.6)

using the equation (6.1). Motivated by this formal reasoning, we consider the following system of equations:

un+1
i − un

i

τ
+

un
i+1 − un

i−1

2h
= 0,
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Figure 6.3: The finite difference method (6.7).

which becomes, after multiplication by τ and rearrangement

un+1
i =

ν

2
un

i−1 + un
i − ν

2
un

i+1, for n = 0, . . . , Nt − 1, i = 0,±1,±2, . . . , (6.7)

where, again, we have used the notation ν := τ/h. The values of the solution u at initial time can be found
as in (6.5). The schematic representation of the method (6.7) is shown in Figure 6.3.

The CFL condition for this problem is satisfied for ν ≤ 1, as the domain of dependence of this finite
difference method contains the domain of dependence of the finite difference method (6.4). To check the
stability of this method, we set

un
i = λneιkxi = λneιkih,

for k ∈ R, to be the approximate solution at the node (tn, xi). We now use (6.7) to evolve one time-step;
then we get

λn+1eιkih =
ν

2
λneιk(i−1)h + λneιkih − ν

2
λneιk(i+1)h.

Dividing the last equation by λneιkih, we deduce

λ =
ν

2
e−ιkh + 1 − ν

2
eιkh = 1 − νι sin(kh).

Hence

|λ| =
√

12 + (−ν sin(kh))2 =

√

1 + ν2 sin2(kh),

which implies that |λ| > 1 for all values of kh 6= mπ, for some integer m, i.e., the method is always unstable!
Therefore, we conclude that, even if the CFL condition is satisfied, we have no guarantee for stability.

On the other hand, if the CFL condition is not satisfied, we have no hope for stability!

Problem

24. Construct a stable finite difference method that satisfies the CFL condition for the problem

ut − ux = 0 for all t ∈ [0, Tf ] and x ∈ [0, 1],

u(0, x) = u0(x), for all x ∈ [0, 1],

u(t, 1) = 0, for all t ∈ [0, Tf ],

where u0 : [0, 1] → R is a known function.
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6.2 The upwind method

Let us now consider the general advection Cauchy problem

ut + aux = 0, (6.8)

equipped with initial condition
u(0, x) = u0(x), (6.9)

for some a ≡ a(t, x) : [0, Tf ]×R → R, with a 6= 0, and for some u0 : R → R known functions. The coefficient
a is sometimes referred to as the wind or the drift. We have seen in Section 1.6 that this Cauchy problem
is well posed, and as before it is possible to find the exact solution to this problem using the method of
characteristics, which is given by

u(t, x) = u0(x − at),

i.e., the solution is constant along each curve x − at = const. Even though the exact solution is available,
we shall construct finite difference methods for this problem.

For simplicity, suppose that (t, x) ∈ [0, Tf ] × R, i.e., we do not include any boundary conditions. When
designing a finite difference method, the first step is to decide upon a finite number of points (tn, xi) ∈
[0, Tf ] × R, with tn = nτ for n = 0, 1, . . . , Nt, where τ = 1/Nt and xi = ih, i = 0,±1,±2, . . . , for some
h ∈ R. On this (infinite in the x-direction) grid, we shall be seeking approximations un

i to the exact values
u(tn, xi).

In the previous section, we saw that, for a finite difference method the CFL condition is necessary for
stability. We also verified that the finite difference method defined in (6.4) for the case a(t, x) = 1, satisfies
the CFL condition; this is due to the choice we made of using the first backward difference to approximate
ux. Indeed, if we had used the first forward difference instead, the CFL condition would not be satisfied, as
in this case the characteristic curve going through the grid point under consideration will have slope equal
to 1/a which is positive for positive a; thus, the domain of dependence of the finite difference method with
forward difference for ux would only include lines of non-positive slope going though the grid point under
consideration, which violates the CFL condition. Similarly if a < 0, we should use the forward difference to
approximate ux, for the CFL condition to be satisfied.

Hence, the slopes of the characteristic curves dictate the choice of the type of first divided difference that
should be used to approximate ux. We therefore, formally make the following approximations:

ut(t, x) ≈ δt
h,+u(t, x), and ux(t, x) ≈

{
δx
τ,−u(t, x), if a > 0;

δx
τ,+u(t, x), if a < 0.

giving

u(tn+1, xi) − u(tn, xi)

τ
+ a(tn, xi)

u(tn, xi) − u(tn, xi−1)

h
≈ ut(tn, xi) + ux(tn, xi) = 0, (6.10)

if a > 0 and

u(tn+1, xi) − u(tn, xi)

τ
+ a(tn, xi)

u(tn, xi+1) − u(tn, xi)

h
≈ ut(tn, xi) + ux(tn, xi) = 0, (6.11)

if a < 0, using the equation (6.8).
Motivated by this formal reasoning, we consider the following system of equations:

un+1
i − un

i

τ
+ an

i

un
i − un

i−1

h
= 0,

with an
i := a(tn, xi), if a > 0, and

un+1
i − un

i

τ
+ an

i

un
i+1 − un

i

h
= 0,

if a < 0. After multiplication by τ and rearrangement, we can write the above in the more compact form

un+1
i =

{
(1 − an

i ν)un
i + an

i νun
i−1, if a > 0;

(1 + an
i ν)un

i − an
i νun

i+1, if a < 0,
(6.12)
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(b)
The method (6.12) for a < 0.

Figure 6.4: The finite difference method (6.12).

for n = 0, . . . , Nt − 1, i = 0,±1,±2, . . . , where we have used the notation ν := τ/h for the Courant number
for this problem. The values of the solution u at initial time can be found from the initial condition (6.2),
giving

u0
i = u0(xi) i = 0,±1,±2, . . . . (6.13)

We shall refer to the finite difference method (6.12), (6.13) as the upwind method, the name stemming from
the fact that the method follows the direction of the wind a. The schematic representation of the method
(6.12) is shown in Figure 6.4.

Of course, to be able to use the method on a computer, we have to consider only a bounded interval for
the x-variable to reside in (so that we end up with a finite number of nodes in our grid). Defining boundary
conditions for the advection Cauchy problem is somewhat different to the cases of second order elliptic and
parabolic problems encountered in the previous chapters: the location of the boundary conditions for the
advection Cauchy problem depend on the direction of the characteristic curves.

More specifically, suppose for the moment that the coefficient a is constant and positive; then we saw
that the characteristic curves have slope 1/a > 0. We want to compute an approximation to the solution of
the problem (6.8), (6.9), for 0 ≤ x ≤ 1. A natural question that arises is: do we need boundary conditions
along the lines x = 0 and x = 1? To answer this, we resort (as usual) to the characteristic curves, which are
drawn in Figure 6.7 in the case of constant a for a > 0 and a < 0, respectively.
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Characteristic curves when a > 0.
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(b)
Characteristic curves when a < 0.

Figure 6.5: Characteristic curves for the advection equation for constant wind.

As the values of the solution “travel” along characteristic curves, we must supply with initial and boundary
conditions at the parts of the boundary where the characteristic curves “start”. Therefore, in the case of
a > 0, we should supply with boundary condition along the line x = 0 only, as the characteristic curves
“exit” across the line x = 1. Similarly, when a < 0, we should supply with boundary condition along the
line x = 1 only, as the characteristic curves “exit” across the line x = 0. The part of the boundary where we
have to supply boundary conditions is often called the inflow boundary and the part of the boundary that
do not enforce any boundary conditions is often called the outflow boundary.
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For simplicity we considered x ∈ [0, 1], the case x ∈ [a, b] can be treated completely analogously. The
initial/boundary value problem for a > 0 becomes: find u : [0, Tf ] × [0, 1] → R, such that

ut + aux = 0, for 0 < t ≤ Tf , 0 ≤ x ≤ 1,

u(0, x) = u0(x), for 0 ≤ x ≤ 1, (6.14)

u(t, 0) = u1(t), for 0 ≤ t ≤ Tf ,

for some u1 : [0, Tf ] → R known function; for the corresponding initial/boundary value problem when a < 0,
we replace the last equation in (6.14) with u(t, 1) = u1(t), for 0 ≤ t ≤ Tf .

Now, we shall include the boundary conditions in the upwind method. We consider the grid (tn, xi) ∈
R × [0, Tf ], with tn = nτ for n = 0, 1, . . . , Nt, where τ = 1/Nt and xi = ih, i = 0, 1, . . . , Nx, for some
h = 1/Nx. Then the upwind method reads:

u0
i = u0(xi), i = 0, 1, . . . , Nx

un
0 , if a > 0

un
Nx

, if a < 0

}

= u1(tn), n = 1, . . . , Nt, (6.15)

un+1
i =

{
(1 − an

i ν)un
i + an

i νun
i−1, if a > 0 for i = 1, . . . , Nx;

(1 + an
i ν)un

i − an
i νun

i+1, if a < 0 for i = 0, . . . , Nx − 1,
n = 0, . . . , Nt − 1.

Example 6.1 We shall use the upwind method (6.15) to approximate the solution to the advection ini-
tial/boundary value problem

ut + 2ux = 0, for 0 ≤ t ≤ 1, 0 ≤ x ≤ 1

u(0, x) = u0(x) :=

{
104(0.1 − x)2(0.2 − x)2, if 0.1 < x < 0.2;
0, otherwise.

u(t, 0) = 0, for 0 ≤ t ≤ 1.

After implementing the upwind method for this problem (noting that here a = 2 > 0), the approximate
solution, together with the exact solution, are shown in Figure 6.6. The exact solution can be found by the
method of characteristics to be u(t, x) = u0(x − 2t) and is drawn as is the black lines. The finite difference
approximations at various times using the upwind method are drawn as the blue lines. The left column of
plots was computed using Nx = 100 and Nt = 250, resulting to ν = 0.4 and the right column of plots was
computed using Nx = 100 and and Nt = 200, resulting to ν = 0.5.

Going back to the example in Figure 6.6, we observe that on the right column the blue and the black
lines are overlapping, indicating that the upwind method is extremely accurate for ν = 0.5; in fact, as we
shall explain below, the upwind method in this case gives the exact solution! This might appear somewhat
surprising in the first instance, as for the upwind method on the left column we used more grid points in
the t-direction than for the computation shown on the right column; therefore, we should expected that the
results on the left column should have been more accurate.

The explanation to this phenomenon can be traced into the upwind method itself. When ν = 1/2 in the
above example, where a = an

i = 2, giving an
i ν = 1, the upwind method becomes

un+1
i = (1 − an

i ν)un
i + an

i νun
i−1 = un

i−1,

i.e., the value of un+1
i only depends on un

i−1! Observing now that the characteristic curves for this problem
are straight lines with slope 1/a = 1/2, and noting that the slope of the line segment connecting un

i−1 with

un+1
i has slope ν = 1/2 also, we conclude that the characteristic curve that passes through the point un+1

i ,
passes through the point un

i−1 also, and therefore, the upwind method which in this case is un+1
i = un

i−1,
is imitating exactly the PDE, which is constant along each characteristic curve! Hence, in this special case
where an

i ν = 1, the upwind method is exact. Of course, the above observation is of very limited value, as in
general may be not easy or desirable to ensure that an

i ν = 1 (e.g., in the case where a is not constant, e.t.c.).
Finally we observe that the solution for the case ν = 0.4 becomes worse and worse after each time-step,

at least in the sense that the maximum value of the exact solution minus the one of the finite difference
approximation becomes bigger after each time-step. Indeed, we also notice that the finite difference approxi-
mation is non-zero in a bigger region after each time-step, which is not the case for the exact solution, which
only transports after each time-step. This phenomenon is often referred to as numerical dissipation.
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Figure 6.6: The exact solution is the black lines and the finite difference approximation using the upwind
method is the blue lines. The left column of plots was computed using Nx = 100 and Nt = 250, resulting to
ν = 0.4 and the right column of plots was computed using Nx = 100 and and Nt = 200, resulting to ν = 0.5.
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In Example 6.1, we witnessed that the upwind method suffers from excessive numerical dissipation.
However, we also saw that in the special case where design the grid so that |an

i |ν = 1 for all grid points,
then the upwind method is exact. We just mention in passing that this exactness of the upwind method for
|an

i |ν = 1 is very hard or in some instances impossible to be satisfied in the case of nonlinear problems, which
are, after all the problems of interest. Therefore, in what follows, we shall not give further consideration to
this special case.

Next, we attempt to shed some light on why the upwind method appears to be stable, at least from some
values of ν, and the method (6.7) is always unstable, despite both of them satisfying the CFL condition. We
start by observing that the upwind method can be rewritten as follows: for a > 0, we have

0 =
un+1

i − un
i

τ
+ an

i

un
i − un

i−1

h
=

un+1
i − un

i

τ
+

an
i

2h

(
2un

i − un
i−1 − un

i−1 − un
i+1 + un

i+1

)

=
un+1

i − un
i

τ
+ an

i

un
i+1 − un

i−1

2h
− an

i h

2

un
i+1 − 2un

i + un
i−1

h2
,

and, similarly, for a < 0, we have

0 =
un+1

i − un
i

τ
+ an

i

un
i+1 − un

i

h
=

un+1
i − un

i

τ
+

an
i

2h

(
un

i+1 + un
i+1 − 2un

i − un
i−1 + un

i−1

)

=
un+1

i − un
i

τ
+ an

i

un
i+1 − un

i−1

2h
+

an
i h

2

un
i+1 − 2un

i + un
i−1

h2
.

Noting that |an
i | = an

i if a > 0 and −|an
i | = an

i if a < 0, the above two formulas can be combined to give

0 =
un+1

i − un
i

τ
+ an

i

un
i+1 − un

i−1

2h
− |an

i |h
2

un
i+1 − 2un

i + un
i−1

h2
, (6.16)

or
un+1

i − un
i

τ
+ an

i

un
i+1 − un

i−1

2h
=

|an
i |h
2

un
i+1 − 2un

i + un
i−1

h2
.

On the other hand, if we consider the generalisation of the method (6.7) for the general advection problem,
this can be written as

un+1
i − un

i

τ
+ an

i

un
i+1 − un

i−1

2h
= 0.

Hence, the upwind method can be viewed as the unstable method (6.7) equipped with an additional “sta-
bilisation” term which mimics the second derivative in space, i.e.,

|an
i |h
2

un
i+1 − 2un

i + un
i−1

h2
≈ |a|h

2
uxx,

i.e., we add some “numerical diffusion”. In other words, the upwind method from (6.16) can be thought as
a finite difference method for the parabolic PDE

ut + aux − |a|h
2

uxx = 0,

where we note that as h → 0, the PDE degenerates to the original advection equation ut + aux = 0!
Therefore, the additional “numerical diffusion” added to the unstable method (6.7) seems to work well

in stabilising the upwind method. On the other hand, however, at least a part of the additional “numerical
diffusion” seems to result to numerical dissipation for the upwind method, as observed in Example (6.1).
This undoubtedly affects the accuracy of the approximation for the upwind method. In Section 6.3, we shall
investigate a method that produces substantially less numerical dissipation, as it is constructed in a way of
“adding the right amount of numerical diffusion”.

6.2.1 Error analysis

To analyse the error of approximation for the upwind method for a > 0, we define the truncation error by

T n
i :=

u(tn+1, xi) − u(tn, xi)

τ
+ a(tn, xi)

u(tn, xi) − u(tn, xi−1)

h
, (6.17)
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for n = 0, . . . , Nt − 1, i = 1, . . . , Nx, and for a < 0, we have

T n
i :=

u(tn+1, xi) − u(tn, xi)

τ
+ a(tn, xi)

u(tn, xi+1) − u(tn, xi)

h
,

for n = 0, . . . , Nt −1, i = 0, . . . , Nx −1. The following lemma describes how well the finite difference method
approximates the original problem.

Lemma 6.2 For the upwind method defined above, we have

|T n
i | ≤

1

2

(
τMtt + hAMxx

)
, (6.18)

for all n = 0, . . . , Nt − 1, i = 1, . . . , Nx, where

Mtt := max |utt(t, x)|, and Mxx := max |uxx(t, x)|, and A := max |a(t, x)|,

and the maxima are taken over all (t, x) ∈ [0, Tf ] × [a, b], which are assumed to be finite.

Proof. The proof is left as a exercise.
2

For brevity, we shall use the short-hand notation: T := 1/2(τMtt + hMxx); with this notation, (6.18)
can be written as |T n

i | ≤ T . The next theorem describes the error behaviour of the upwind method.

Theorem 6.3 Consider the upwind method defined defined by the system (6.15) above. Let u be the exact
solution of the initial/boundary value problem (6.14). Assume that the Courant number satisfies 0 ≤ |an

i |ν ≤
1. Then we have the following error bound:

max
1≤i≤Nx

|u(tn, xi) − un
i | ≤

Tf

2
(τMtt + hAMxx), (6.19)

for n = 1, . . . , Nt.

Proof. The proof is left as a exercise.
2

The above theorem tells us that the approximations un
i converge to the exact values of the solution

u(tn, xi) with first order with respect to both the time-step τ and to the space-step h, provided that the
Courant number 0 ≤ ν ≤ 1/|an

i |.

6.2.2 Stability analysis

Let us now examine the stability properties of the upwind method. Consider the case a > 0. Ignoring the
boundary condition, we consider a grid of the form (tn, xi), with tn = nτ and xi = ih for n = 0, . . .Nt,
i = 0,±1,±2, . . . , with τ = 1/Nt and h ∈ R. We set

un
i = λneιkxi = λneιkih,

for k ∈ R, to be the approximate solution at the node (tn, xi). We use (6.4) to evolve one time-step; then
we get

λn+1eιkih = (1 − an
i ν)λneιkih + an

i νλneιk(i−1)h.

Dividing the last equation by λneιkih, we deduce

λ = 1−an
i ν +an

i νe−ιkh = 1−an
i ν +an

i ν
(
cos(−kh)+ ι sin(−kh)

)
=

(
1−an

i ν +an
i ν cos(kh)

)
− ι

(
an

i ν sin(kh)
)
.

Hence

|λ|2 =
(
1 − an

i ν + an
i ν cos(kh)

)2
+

(
− an

i ν sin(kh)
)2

= (1 − an
i ν)2 + 2(1 − an

i ν)an
i ν cos(kh) + (an

i )2ν2 cos2(kh) + (an
i )2ν2 sin2(kh)

= (1 − an
i ν)2 + 2(1 − an

i ν)an
i ν cos(kh) + (an

i )2

= 1 − 2an
i ν + 2(an

i ν)2 + 2(1 − an
i ν)an

i ν cos(kh)

= 1 − 2an
i ν(1 − an

i ν)(1 − cos(kh)).
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Clearly |λ| ≤ 1 if and only if |λ|2 ≤ 1, which is true if and only if the second term on the right-hand side
above is non-negative, which can only happen if and only if 1 − an

i ν ≥ 0, as an
i > 0 in this case. Hence, the

method is stable if and only if an
i ν ≤ 1, for a > 0.

If a < 0, we have similarly, using the method (6.4) to evolve one time-step:

λn+1eιkih = (1 + an
i ν)λneιkih − an

i νλneιk(i+1)h.

Dividing the last equation by λneιkih, we deduce

λ = 1 + an
i ν − an

i νeιkh = 1 + an
i ν − an

i ν
(
cos(kh) + ι sin(kh)

)
=

(
1 + an

i ν − an
i ν cos(kh)

)
− ι

(
an

i ν sin(kh)
)
.

Hence

|λ|2 =
(
1 + an

i ν − an
i ν cos(kh)

)2
+

(
− an

i ν sin(kh)
)2

= (1 + an
i ν)2 − 2(1 + an

i ν)an
i ν cos(kh) + (an

i )2ν2 cos2(kh) + (an
i )2ν2 sin2(kh)

= (1 + an
i ν)2 − 2(1 + an

i ν)an
i ν cos(kh) + (an

i )2

= 1 + 2an
i ν + 2(an

i ν)2 − 2(1 + an
i ν)an

i ν cos(kh)

= 1 + 2an
i ν(1 + an

i ν)(1 − cos(kh)).

Thus, we have |λ|2 ≤ 1 if and only if the second term on the right-hand side above is negative, which can
only happen if and only if 1 + an

i ν ≥ 0, as an
i < 0 in this case. Hence, the method is stable if and only if

−an
i ν ≤ 1, or |an

i |ν ≤ 1 for a < 0.
We, therefore, conclude that the upwind method is stable if and only if |an

i |ν ≤ 1, which is also the same
requirement for convergence, as shown in the previous section.

Problems

25. Let the PDE
ut + ux = 0,

along with some suitable initial and boundary conditions (which are not relevant to the discussion at this
point). We consider the finite difference method

un+1
i = αun

i−1 + βun
i + γun

i+1

for some α, β, γ ∈ R. Determine the coefficients α, β, γ so that the corresponding truncation error is of as
high an order as possible.

26. Prove Lemma 6.2.

27. Prove Lemma 6.3.
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Figure 6.7: The Lax-Wendroff method.

6.3 The Lax-Wendroff method

In Section 6.2 we studied the upwind method for the advection initial/boundary value problem, which is
convergent and stable when |a|ν ≤ 1 but, nonetheless, suffered from excessive numerical dissipation. We also
saw that the upwind method can be viewed as a “stabilised” version of the unstable method (6.7), through
the addition of a “numerical diffusion” term.

The amount of “numerical diffusion” added seems to contribute towards the numerical dissipation ob-
served in the upwind method which, in turn, affects the accuracy of the approximation. Here, we shall
investigate a method that produces substantially less numerical dissipation, as it is constructed in a way of
“adding the right amount of numerical diffusion”.

We consider the advection initial/boundary value problem

ut + aux = 0, for 0 < t ≤ Tf , 0 ≤ x ≤ 1,

u(0, x) = u0(x), for 0 ≤ x ≤ 1, (6.20)

u(t, 0) = u1(t), for 0 ≤ t ≤ Tf ,

for some u1 : [0, Tf ] → R known function; for the corresponding initial/boundary value problem when a < 0,
we replace the last equation in (6.20) with u(t, 1) = u1(t), for 0 ≤ t ≤ Tf . For simplicity, in this section we
shall only consider the case 0 6= a ∈ R, i.e., when the wind a is a non-zero constant.

We consider the grid (tn, xi) ∈ R× [0, Tf ], with tn = nτ for n = 0, 1, . . . , Nt, where τ = 1/Nt and xi = ih,
i = 0, 1, . . . , Nx, for some h = 1/Nx.

Noting that here an
i = a, as a is constant, we shall study the finite difference method for approximating

the solution to the problem (6.20):

un+1
i − un

i

τ
+ a

un
i+1 − un

i−1

2h
− a2τ

2

un
i+1 − 2un

i + un
i−1

h2
= 0, (6.21)

for n = 0, 1, . . . , Nt, i = 0, 1, . . . , Nx, which after multiplication by τ and rearrangement yields

un+1
i =

aν

2
(1 + aν)un

i−1 + (1 − a2ν2)un
i − aν

2
(1 − aν)un

i+1, (6.22)

where, as per normal ν := τ/h. The initial and boundary conditions are completely analogous to the case
of the upwind method (6.15) and, therefore omitted here. This is the infamous Lax-Wendroff method. The
schematic representation of the method (6.22) is shown in Figure 6.7.

It is easy to see that the CFL condition for this problem is satisfied for ν ≤ 1/|a|. To check the stability
of this method, we set

un
i = λneιkxi = λneιkih,

for k ∈ R, to be the approximate solution at the node (tn, xi). We now use (6.22) to evolve one time-step;
then we get

λn+1eιkih =
aν

2
(1 + aν)λneιk(i−1)h + (1 − a2ν2)λneιkih − aν

2
(1 − aν)λneιk(i+1)h.
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Dividing the last equation by λneιkih, we deduce

λ =
aν

2
(1 + aν)e−ιkh + (1 − a2ν2) − aν

2
(1 − aν)eιkh

= 1 +
a2ν2

2

(
e−ιkh − 2 + eιkh

)
− aν

2

(
eιkh − e−ιkh

)

= 1 − 2a2ν2 sin2(
1

2
kh) − ιaν sin(kh).

Hence

|λ|2 =
(
1 − 2a2ν2 sin2(

1

2
kh)

)2
+

(
− aν sin(kh)

)2

= 1 − 4a2ν2
(
1 − cos2(

1

2
kh)

)
sin2(

1

2
kh) + 4a4ν4 sin4(

1

2
kh)

= 1 − 4a2ν2(1 − a2ν2) sin4(
1

2
kh),

which implies that |λ| ≤ 1 if and only if |4a2ν2(1 − a2ν2)| ≤ 1, which is true if and only if |a|ν ≤ 1, i.e, the
Lax-Wendroff method is stable if and only if ν ≤ 1/|a|.

Comparing (6.21) with (6.16), we notice that they differ only due to the coefficient of the second divided
difference, which in the case of the upwind method is |a|h/2, as opposed to a2τ/2 for the case of the Lax-
Wendroff method. Hence the amount of “numerical diffusion” imposed by each method differs. In particular,
recalling that for both the upwind and the Lax-Wendroff methods we need |a|ν ≤ 1 for stability, we have

|a|h
2

=
|a|τ
2ν

=
a2τ

2|a|ν ≥ a2τ

2
,

i.e., the amount of “numerical diffusion” added by the Lax-Wendroff method is smaller than the corresponding
for the upwind method. To illustrate the comparison of numerical dissipation properties between the upwind
method and the Lax-Wendroff method, we use the latter to approximate the solution to the initial/boundary
value problem from Example 6.1. The results are shown in Figure 6.8. Comparing these results with the
corresponding results from the first column of Figure 6.6, we indeed verify that the Lax-Wendroff method
does not suffer from excessive numerical dissipation and appears to more accurate results, compared to the
upwind method.

Therefore, the Lax-Wendroff method appears to contain the “right amount” of “numerical diffusion”.
One may wonder on the specific choice of the coefficient a2τ/2 present in the Lax-Wendroff method, which
governs the amount of “numerical diffusion” added. The particular choice of the value a2τ/2 is related to
the accuracy of the method. Indeed, as we saw in Problem 25, the Lax-Wendroff method has the highest
possible order of convergence from all the explicit methods involving the 3 values un

i−1, un
i and un

i+1! In
particular, we have the following bound.

Lemma 6.4 Let a ∈ R with a 6= 0. For the Lax-Wendroff method defined above, the truncation error is
defined by

T n
i :=

u(tn+1, xi) − u(tn, xi)

τ
+ a

u(tn, xi+1) − u(tn, xi−1)

2h
− a2τ

2

u(tn, xi+1) − 2u(tn, xi) + u(tn, xi−1)

h2
.

Then, assuming that |a|ν ≤ 1, we have

|T n
i | ≤

τ2

6
Mttt + |a|h

2

3
Mxxx, (6.23)

for all n = 0, . . . , Nt − 1, i = 1, . . . , Nx, where

Mttt := max |uttt(t, x)|, and Mxxx := max |uxxx(t, x)|,

and the maxima are taken over all (t, x) ∈ [0, Tf ] × [0, 1], which are assumed to be finite.
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Figure 6.8: The exact solution is the black lines and the finite difference approximation using the Lax-
Wendroff method is the blue lines, computed using Nx = 100 and Nt = 250, resulting to ν = 0.4.

Proof. We use Taylor’s Theorem, to obtain

u(tn+1, xi) = u(tn, xi) + τut(tn, xi) +
τ2

2
utt(tn, xi) +

τ3

6
uttt(ρn, xi),

for some ρn ∈ (tn, tn+1), and

u(tn, xi+1) = u(tn, xi) + hux(tn, xi) +
h2

2
uxx(tn, xi) +

h3

6
uxxx(tn, ξi),

u(tn, xi−1) = u(tn, xi) − hux(tn, xi) +
h2

2
uxx(tn, xi) −

h3

6
uxxx(tn, ζi),

for some ξi ∈ (xi, xi+1), ζi ∈ (xi−1, xi). Inserting all the above into the truncation error, and using the PDE
ut + aux = 0, along with the fact utt = (ut)t = (−aux)t = −a(ut)x = a2uxx, we deduce

T n
i =

τ2

6
uttt(ρn, xi) +

ah

12
(h − aτ)uxxx(tn, ξi) +

ah

12
(h + aτ)uxxx(tn, ζi).

Now, taking absolute values and the triangle inequality, we arrive to

|T n
i | =

τ2

6
|uttt(ρn, xi)| +

|a|h
12

|h − aτ | |uxxx(tn, ξi)| +
|a|h
12

|h + aτ | |uxxx(tn, ζi)|,

which gives (6.23), by observing that |a|ν ≤ 1 implies |h − aτ | ≤ 2h and |h + aτ | ≤ 2h.
2

Hence the Lax-Wendroff method is second order accurate with respect to both τ and h.

85



Problem

28. Motivated by the idea of Problem 25, i.e., that the Lax-Wendroff method is the highest order explicit
method involving un

i−1, un
i and un

i+1 when a is constant, construct a version of the Lax-Wendroff method for
the case where the wind a = a(t, x) is variable.
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Chapter 7

The Finite Element Method

7.1 Introduction

In the previous chapters, we considered finite difference methods for the approximation of solutions to initial
and boundary value problems of parabolic, elliptic and hyperbolic type. Finite difference methods are
constructed by replacing the partial derivatives of the PDEs by divided differences defined on a grid. So far,
we considered PDEs whose domain of definition was a rectangular domain (in, either “(x, y)′′, or “(t, x)”
variables). Of course in practice one may want to solve PDEs on more complicated domains than rectangles,
which renders the construction of a grid quite troublesome.

In this chapter, we shall be concerned with the finite element method (FEM) for elliptic problems. One
of the main advantages of the finite element method compared to the finite difference method is its ability
to cope with complicated domains of definition of the underlying PDEs. (There are also other advantages
of FEM compared to finite differences, but these topics are outside of the scope of these notes.)

7.2 Weak derivatives

Before embarking with constructing finite element methods, we shall need to understand a bit more various
concepts of differentiation. We know from basic Analysis that not every continuous function is differentiable.
The aim of this section is to define a new concept of “differentiation” which will allow us to generalise the
notion of a derivative of a function. To do so, we shall need to consider first some elementary concepts.

Definition 7.1 Consider a function f : Ω → R, Ω ⊂ R
d open set. We define the support of f to be the

closure1 of the set {x ∈ Ω : f(x) 6= 0}.

In other words, the support of a function f is the smallest closed set containing the pre-images of all non-zero
values of f .

Example 7.2 The support of the function f : R → R with

f(x) =







1 + x, for −1 < x < 0;
1 − x, for 0 < x < 1;
0, otherwise,

is the closed interval [−1, 1].

Definition 7.3 Let Ω ⊂ R
d open set. We denote by C∞

0 (Ω), the family of all functions φ : Ω → R that are
infinite times differentiable and have compact support2.

It is not hard to show that, in fact, C∞
0 (Ω) is a (infinite dimensional) vector space, but this is beyond the

scope of these notes.
A natural question is whether infinitely differentiable functions φ : Ω → R with compact support do exist

at all, i.e., is C∞
0 (Ω) empty or not?

1Closure of a set A in R
d is the smallest closed set containing A.

2A set B ⊂ R
d is compact if it is bounded and closed.
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Example 7.4 Consider the function f : R → R with

f(x) =

{

e
1

x2
−1 , for −1 < x < 1;

0, otherwise.

This function is infinitely differentiable for all x 6= ±1. At x = 1, we have

f ′
+(1) = lim

h→0+

f(1 + h) − f(1)

h
= lim

h→0+

0 − 0

h
= 0,

and

f ′
−(1) = lim

h→0+

f(1) − f(1 − h)

h
= lim

h→0+

0 − e
1

(1−h)2−1

h
= ... = 0.

Hence f is also differentiable at x = 1 (and completely analogously for x = −1). The case of higher
derivatives follows analogously. Notice that this function’s support in the closed interval [−1, 1] (which is a
bounded and closed set).

Therefore, at least for the case of functions defined on a open set Ω ⊂ R containing the closed interval
[−1, 1] the family C∞

0 (Ω) is non-trivial.
The infinitely differentiable functions of compact support play a very important role in the modern theory

of functions. In particular, they are utilised in generalising the concept of a derivative of a function.

Definition 7.5 Let (a, b) ⊂ R open interval. A function g : (a, b) → R is called a weak derivative of a
function f : (a, b) → R if

∫ b

a

g(x)φ(x) dx = −
∫ b

a

f(x)φ′(x)dx < +∞

for all functions φ ∈ C∞
0 ((a, b)) 3.

Theorem 7.6 Let (a, b) ⊂ R open and f : (a, b) → R. If f is differentiable in (a, b) then it has a weak
derivative g with g = f ′ almost everywhere4.

Proof. Let φ ∈ C∞
0 ((a, b)). Since φ has compact support (i.e., bounded and closed), the endpoints a and b

cannot be in the support of φ (since the support of φ is closed and, therefore, can only be contained strictly
in the interval (a, b)). Hence φ(a) = φ(b) = 0 (or, strictly speaking, limx→a+ φ(x) = limx→b− φ(x) = 0).
Since f ′ exists in (a, b), the integration by parts formula implies

∫ b

a

f ′(x)φ(x) dx = [f(x)φ(x)]ba −
∫ b

a

f(x)φ′(x)dx = −
∫ b

a

f(x)φ′(x)dx,

since φ(a) = φ(b) = 0. Therefore, from Definition 7.5, we have that f ′ is a weak derivative of f , too. 2

The converse of Theorem 7.6 is not true, i.e., there are functions that are not differentiable that have a
weak derivative. This somewhat justifies the name: a weak derivative is a “weaker” notion of differentiation
that the (classical) derivative.

Example 7.7 Consider the function f : R → R with

f(x) =







1 + x, for −1 < x ≤ 0;
1 − x, for 0 < x < 1;
0, otherwise.

3Notice that since the function g only appears under the integral sign, it is strictly-speaking not unique, as changing the
value of g at finite number of points it will not change the value of the integral!

4Almost everywhere here means that g is equal to f ′ at all points in (a, b) up to a set of Lebesgue measure zero.
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This function is not differentiable at the points −1, 0 and 1. To see if f has a weak derivative, we consider
φ ∈ C∞

0 (R); then

−
∫ −∞

−∞
f(x)φ′(x) dx = −

∫ 0

−1

(1 + x)φ′(x) dx −
∫ 1

0

(1 − x)φ′(x) dx

= −[(1 + x)φ(x)]0−1 +

∫ 0

−1

(1 + x)′φ(x) dx − [(1 − x)φ(x)]10 +

∫ 1

0

(1 − x)′φ(x) dx

= −φ(0) +

∫ 0

−1

φ(x) dx + φ(0) +

∫ 1

0

(−1)φ(x) dx,

=

∫ 0

−1

φ(x) dx +

∫ 1

0

(−1)φ(x) dx,

after integrating by parts each term above. Hence, we have

−
∫ −∞

−∞
f(x)φ′(x) dx =

∫ −∞

−∞
g(x)φ(x) dx

where

g(x) =







1, for −1 < x < 0;
−1, for 0 < x < 1;
0, otherwise.

The function g is a weak derivative of f . (Notice that, as before, the value of g at a finite number of points
and, in particular, at the points 0 and ±1 is irrelevant!)

We conclude this section with some more definitions.

Definition 7.8 Let (a, b) ⊂ R open interval. We define the family of functions

L2((a, b)) :=
{

f : (a, b) → R :

∫ b

a

f2(x) dx < ∞
}

,

i.e., the family of all square (Lebesgue-)integrable functions. Furthermore, we definite the family

H1((a, b)) :=
{

f ∈ L2((a, b)) : g ∈ L2((a, b)) for g weak derivative of f}.

Finally, we define

H1
0 ((a, b)) :=

{

f ∈ H1((a, b)) : f = 0 at the endpoints a and b}.

It can be shown that all the above are vector spaces, but this is beyond the scope of these notes. The space
L2((a, b)) is an example of the so-called Lebesgue spaces, whereas H1((a, b)) and H1

0 ((a, b)) are examples of
the so-called Sobolev spaces.

Problem

29. Calculate the weak derivative of the function f : (0, 2) → R with

f(x) =

{
x2, for 0 < x ≤ 1;
2 − x, for 1 < x < 2.

Does this function have a classical derivative everywhere in the interval (0, 2)? Explain. Does this function
belong to L2((0, 2))? Does it belong to H1((0, 2))? Does it belong to H1

0 ((0, 2))? Explain.
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7.3 The two-point boundary value problem in weak form

We consider again the two-point boundary value problem

Find u : (a, b) → R function, such that − u′′(x) = f(x) and u(a) = 0, u(b) = 0. (7.1)

where f(x) is a known function.
The first step in defining a finite element method is to rewrite the two-point boundary value problem

(7.1) in the so-called weak form, as follows.
Let H := H1

0 ((a, b)) defined in the previous section to be the family of functions v, that have a weak
derivative and satisfy the Dirichlet boundary conditions v(a) = 0 = v(b). We multiply the equation by a test
function v ∈ H, to get

−u′′(x)v(x) = f(x)v(x),

and we integrate over the domain (a, b):

−
∫ b

a

u′′(x)v(x)dx =

∫ b

a

f(x)v(x)dx.

Now, if we perform an integration by parts to the integral on the left-hand side, we get

∫ b

a

u′(x)v′(x)dx −
[
u′(x)v(x)

]b

a
=

∫ b

a

f(x)v(x)dx,

for all v ∈ H. Using the fact that v(a) = 0 = v(b) for all v ∈ H, we arrive to

∫ b

a

u′(x)v′(x)dx =

∫ b

a

f(x)v(x)dx,

for all v ∈ H. Hence, the two-point boundary value problem can be transformed to the following problem in
weak form (also known as variational form):

Find u ∈ H s.t.

∫ b

a

u′(x)v′(x)dx =

∫ b

a

f(x)v(x)dx, for all v ∈ H. (7.2)

Notice that if a function u is a solution to the problem (7.1), then it is also a solution to the problem (7.2).
The converse, however, is not true, i.e., if a function u is a solution to the problem (7.2), then it is not
necessarily a solution to the problem (7.1). Indeed, this can be verified by recalling that for u ∈ H to be a
solution to (7.2), we only require that u has only a weak derivative, whereas for u to be a solution to (7.1),
we have to require that u is twice differentiable.

Problem

30. Write the following two-point boundary value problems in weak form

• find u : (a, b) → R, such that −u′′(x) + u′(x) = f(x) and u(a) = 0, u(b) = 0;

• find u : (a, b) → R, such that −u′′(x) = f(x) and u(a) = 0, u′(b) = 0.

7.4 The finite element method for the two-point boundary value

problem

To define the finite element method for the boundary value problem (7.1) above, we consider an approxima-
tion to the problem (7.2). In contrast with the finite difference method, here we shall not approximate any
derivatives directly; instead, we shall restrict the family of eligible solutions to a smaller family of functions,
Hh ⊂ H := H1

0 ((a, b)) say5.

5For the linear algebra lovers, H is an infinite dimensional vector space (why?), and Hh will be a finite-dimensional subspace,
conveniently chosen
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To construct a suitable family Hh, we consider equally distributed points x0 < x1 < · · · < xN+1, at
distance h between them, such that

a = x0, x1 = x0 + h, x2 = x1 + h, . . . , xN = xN−1 + h, xN+1 = b.

We then choose the family Hh to be the family of continuous functions vh ∈ Hh that are linear (i.e., straight
lines) at each interval [xi−1, xi], for i = 1, . . . , N + 1 and vh(x0) = 0 = vh(xN+1); see Figure 7.1 for an
illustration. Notice that such functions have a weak derivative on (a, b) and, moreover, they belong to
H1

0 ((a, b)) (why?).

a = x0 xN+1 = bx1 xN

�
�

�
����

�
�

J
J

J
JJ

@
@

@
Q

QQ

...

...

h

Figure 7.1: Piecewise linear functions.

We notice that for such piecewise linear functions, we only need to determine their value at each node
xi (i.e., we need to determine their values on a finite number of points); then all the intermediate values
on each (xi−1, xi) are fully determined, since they are the values on the straight lines connecting the values
at the nodes. Hence, it is possible to consider a finite number simpler functions, whose linear combinations
give us all piecewise linear functions on the given grid. Indeed, for every xi, i = 1, . . . , N , we consider the
“hat” functions φi : [a, b] → R with

φi(x) =







x−xi−1

h , if xi−1 ≤ x ≤ xi;
xi+1−x

h , if xi ≤ x ≤ xi+1;
0, otherwise,

i.e., φi ∈ Hh is the piecewise linear function which is equal to 1 on the node xi and is equal to zero on all
other nodes; see Figure (7.2). We shall refer to this set of functions as basis functions.

a = x0 xN+1 = bx1 xi xN

�
�
�
�
�
�A

A
A
A
A
A

φi

h

Figure 7.2: “Hat” function φi.

Any function wh ∈ Hh that is continuous in [a, b] and linear on each interval [xi, xi+1] can be therefore
written as

wh =
N∑

i=1

Wiφi,

for Wi ∈ R being the “height” of the function at the node xi
6. Hence, instead of solving the problem (7.2),

we solve the approximate problem

Find uh ∈ Hh s.t.

∫ b

a

u′
h(x)v′h(x)dx =

∫ b

a

f(x)vh(x)dx, for all vh ∈ Hh;

6The functions φi constitute a basis of the finite dimensional vector space Hh and, therefore, each function uh ∈ Hh can be
written as a linear combination of the basis
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This is the finite element method. Each grid, together with the associated basis functions φ at the nodes is
called the the finite element. Of course, different choices of grid and different choices of basis functions lead
to different finite element methods.

Thus, since every vh ∈ Hh can be written as a linear combination of “hat” functions, we can instead
equivalently ask

Find uh ∈ Hh s.t.

∫ b

a

u′
h(x)φ′

i(x)dx =

∫ b

a

f(x)φi(x)dx, for all i = 1, . . . , N.

Also, since uh ∈ Hh, too, we have uh =
∑N

j=1 Ujφj , for some Uj ∈ R and, therefore the problem becomes

Find Uj , j = 1, . . . , N, s.t.
N∑

j=1

Uj

∫ b

a

φ′
j(x)φ′

i(x)dx =

∫ b

a

f(x)φi(x)dx, for all i = 1, . . . , N.

This is a linear system of N equations with N unknowns and can be written as a linear system AU = F, for
A = [aij ]

N
i,j=1, U = (U1, . . . , UN )T and F = (F1, . . . , FN )T , where

aij =

∫ b

a

φ′
j(x)φ′

i(x)dx, and Fi =

∫ b

a

f(x)φi(x)dx.

We now calculate the entries aij of the matrix A, recalling that differentiation of φi’s is understood to
be taking place only inside each interval (xi−1, xi). Then φ′

i is given by

φ′
i(x) =







1
h , if xi−1 < x < xi;
− 1

h , if xi < x < xi+1;
0, otherwise,

To calculate aij , we consider 4 cases:

case 1: j = i. We have

aii =

∫ b

a

φ′
i(x)φ′

i(x)dx =

∫ xi+1

xi−1

1

h2
dx =

2

h
;

case 2: j = i + 1. We have

ai(i+1) =

∫ b

a

φ′
i+1(x)φ′

i(x)dx =

∫ xi+1

xi

1

h

(
− 1

h

)
dx = − 1

h
;

case 3: j = i − 1. We have

ai(i−1) =

∫ b

a

φ′
i−1(x)φ′

i(x)dx =

∫ xi

xi−1

(
− 1

h

) 1

h
dx = − 1

h
;

case 4: |j − i| ≥ 2. In this case φi and φj are not simultaneously nonzero at any point in [a, b], hence

aij = 0.

Therefore, we conclude that the linear system arising from the finite element method above is of the form












2
h − 1

h 0 0 . . . 0
− 1

h
2
h − 1

h 0 . . . 0
0 − 1

h
2
h − 1

h . . . 0
...

...
. . .

. . .
. . . . . .

0 . . . 0 − 1
h

2
h − 1

h
0 . . . 0 0 − 1

h
2
h
























U1

U2

...

...
UN−1

UN













=













F1

F2

...

...
FN−1

FN













, (7.3)
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which after multiplication by −h becomes












−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

...
. . .

. . .
. . . . . .

0 . . . 0 1 −2 1
0 . . . 0 0 1 −2
























U1

U2

...

...
UN−1

UN













= −h













F1

F2

...

...
FN−1

FN













. (7.4)

Comparing this system with (3.23) which is the linear system arising from the finite different approximation
of the two-point boundary value problem, we can see that the matrices in both cases are identical, although
they emerged from completely different procedures! On the other hand the right-hand sides of the systems
(3.23) and (7.8) are different. Considering for the moment that the known function f is constant, say
f(x) = C, then the i-th entry of the right-hand side of (3.23) is equal to −h2C. Calculating now the i-th
entry of the right-hand side of (7.8), we have

−hFi = −h

∫ b

a

f(x)φi(x)dx = −hC

∫ b

a

φi(x)dx = −hC

∫ xi+1

xi−1

φi(x)dx = −hCh = −h2C,

which is identical to what we found for the right-hand side of (3.23)! More interesting cases arise when f is
not constant; then the two right-hand sides are, in general, not equal anymore.

Remark 7.9 If one wishes to implement the above finite element method in the computer for general right-
hand side function f , should resort to numerical integration/quadrature for the computation of the integrals
∫ b

a
f(x)φi(x)dx.

Problem

31. Construct a finite element method for the two-point boundary value problem

Find u : (a, b) → R function, such that − u′′(x) = f(x) and u(a) = 0, u(b) = 0.

using a nonuniform grid of the form

a = x0, x1 = x0 + h1, x2 = x1 + h2, . . . , xN = xN−1 + hN , xN+1 = b,

i.e., hi = xi − xi−1 for i = 1, . . .N + 1. Write the resulting linear system.
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We shall now consider the case of Neumann boundary condition at the endpoint b. We consider the
problem

Find u : (a, b) → R function, such that − u′′(x) = f(x) and u(a) = 0, u′(b) = 0. (7.5)

where f(x) is a known function.
We write the problem (7.5) in variational form, as follows. Here, we shall define a different family of test

functions (and of eligible solutions), to conform with the new boundary conditions. We define

H̃ := {v ∈ H1((a, b)) : v(a) = 0},

i.e., the family of functions v ∈ H1((a, b)) which satisfy the Dirichlet boundary condition v(a) = 0 only.
Next, we multiply the PDE by a test function v ∈ H̃ and we integrate over the domain [a, b]:

−
∫ b

a

u′′(x)v(x)dx =

∫ b

a

f(x)v(x)dx.

Now, if we perform and integration by parts to the integral on the left-hand side, we get

∫ b

a

u′(x)v′(x)dx −
[
u′(x)v(x)

]b

a
=

∫ b

a

f(x)v(x)dx,

for all v ∈ H̃. Using the fact that v(a) = 0 and that u′(b) = 0 for all v ∈ H̃, we arrive to

∫ b

a

u′(x)v′(x)dx =

∫ b

a

f(x)v(x)dx,

for all v ∈ H̃. Hence, the two-point boundary value problem can be transformed to the following problem in
weak form:

Find u ∈ H̃ s.t.

∫ b

a

u′(x)v′(x)dx =

∫ b

a

f(x)v(x)dx, for all v ∈ H̃. (7.6)

The second step in defining the finite element method is to restrict the family of functions where we want
to solve to the problem (7.2).

To construct a suitable family H̃h, we consider equally distributed points x0 < x1 < · · · < xN+1, at
distance h between them, such that

a = x0, x1 = x0 + h, x2 = x1 + h, . . . , xN = xN−1 + h, xN+1 = b.

We then choose the family H̃h to be the family of continuous functions vh ∈ Hh that are linear (i.e., straight
lines) at each interval [xi−1, xi], for i = 1, . . . , N + 1 and vh(x0) = 0.

Notice that, in contrast with the case of Dirichlet boundary conditions, here we do not prescribe any
value for the node xN+1 = b. Instead, this is now an unknown and will be treated in a special fashion as we
shall see immediately.

For every xi, i = 1, . . . , N , we consider the basis functions to be the “hat” functions φi : [a, b] → R as
before; see Figure (7.2). We now also need a basis function for the node xN+1, which is simply given by

φN+1(x) =

{
x−xN

h , if xN ≤ x ≤ xN+1;
0, otherwise;

see Figure (7.3)
Any function wh ∈ H̃h that is continuous in [a, b] and linear on each interval [xi, xi+1] can be therefore

written as

wh =

N+1∑

i=1

Wiφi.

Hence, instead of solving the problem (7.6), we solve the approximate problem

Find uh ∈ H̃h s.t.

∫ b

a

u′
h(x)v′h(x)dx =

∫ b

a

f(x)vh(x)dx, for all vh ∈ H̃h;

This is the finite element method with linear elements for this problem.

94



a = x0 xN+1 = bx1 xi xN

�
�
�
�
�
�

φN+1

h

Figure 7.3: “Hat” function φN+1.

Thus, since every vh ∈ Hh can be written as a linear combination of “hat” functions, we can instead
equivalently ask

Find uh ∈ H̃h s.t.

∫ b

a

u′
h(x)φ′

i(x)dx =

∫ b

a

f(x)φi(x)dx, for all i = 1, . . . , N, N + 1.

Also, since uh ∈ H̃h, too, we have uh =
∑N+1

j=1 Ujφj , for some Uj ∈ R and, therefore the problem becomes

Find Uj , j = 1, . . . , N + 1, s.t.

N+1∑

j=1

Uj

∫ b

a

φ′
j(x)φ′

i(x)dx =

∫ b

a

f(x)φi(x)dx, for all i = 1, . . . , N, N + 1.

This is a linear system of N + 1 equations with N + 1 unknowns and can be written as a linear system
AU = F, for A = [aij ]

N+1
i,j=1, U = (U1, . . . , UN , UN+1)

T and F = (F1, . . . , FN , FN+1)
T , where

aij =

∫ b

a

φ′
j(x)φ′

i(x)dx, and Fi =

∫ b

a

f(x)φi(x)dx.

The entries aij of the matrix A for i, j = 1, . . . , N can be calculated as above. For the entries ai(N+1)

and a(N+1)j , we shall need

φ′
N+1(x) =

{
1
h , if xN < x < xN+1;
0, otherwise.

To calculate ai(N+1) and a(N+1)j, we consider 3 cases:

case 1: i = N + 1 (or, equivalently, j = N + 1). We have

a(N+1)(N+1) =

∫ b

a

φ′
N+1(x)φ′

N+1(x)dx =

∫ xN+1

xN

1

h2
dx =

1

h
;

case 2: i = N (or, equivalently, j = N). We have

aN(N+1) = a(N+1)N =

∫ b

a

φ′
N (x)φ′

N+1(x)dx =

∫ xN+1

xN

(
− 1

h

) 1

h
dx = − 1

h
;

case 3: |N +1− i| ≥ 2 (or, equivalently, |N +1− j| ≥ 2). In this case φi and φj are not simultaneously nonzero
at any point in [a, b], hence

a(N+1)j = 0 = ai(N+1).

Therefore, we conclude that the linear system arising from the finite element method above is of the form














2
h − 1

h 0 0 . . . 0 0
− 1

h
2
h − 1

h 0 . . . 0 0
0 − 1

h
2
h − 1

h . . . 0 0
...

...
. . .

. . .
. . . . . .

0 . . . 0 − 1
h

2
h − 1

h 0
0 . . . 0 0 − 1

h
2
h − 1

h
0 . . . 0 0 0 − 1

h
1
h




























U1

U2

...

...
UN−1

UN

UN+1















=















F1

F2

...

...
FN−1

FN

FN+1















, (7.7)
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which after multiplication by −h becomes














−2 1 0 0 . . . 0 0
1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
...

...
. . .

. . .
. . . . . . 0

0 . . . 0 1 −2 1 0
0 . . . 0 0 1 −2 1
0 . . . 0 0 0 1 −1




























U1

U2

...

...
UN−1

UN

UN+1















= −h















F1

F2

...

...
FN−1

FN

FN+1















. (7.8)

Comparing this system with (3.25) which is the linear system arising from the finite different approximation
of the two-point boundary with Neumann boundary condition, we can see that the matrix arising from the
finite difference method with the fictitious node considered in (3.25) and the of the system (7.7) are identical!

Nevertheless, we again have different right-hand sides but, as discussed above, if we consider f(x) = C
for some constant C, the right-hand side entries of the systems (3.25) and (7.7) coincide for i = 1, . . . , N .
For i = N + 1, we calculate

−hFN+1 = −hC

∫ xN+1

xN

φN+1(x)dx = −1

2
h2C,

which coincides with the corresponding value in (3.25)!
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7.5 FEM in two and three dimensions

So far we have considered the case of one-dimensional problems, whereby we witnessed the conceptual
easiness of constructing finite element methods for elliptic problems. The full flexibility of the finite element
method, however, can be realised when applied to problems in 2 or 3 dimensions, as we shall see below.

Before starting our discussion on the construction of the finite element method in 2 or 3 dimensions, we
note that the concepts of weak derivative can be extended to partial derivatives, along with the families of
functions L2, H1 and H1

0 . We refrain from giving the explicit definitions here for reasons of brevity7, noting,
however, that all partial derivatives discussed below are understood as weak derivatives.

Let us consider the Poisson problem with homogeneous Dirichlet boundary conditions over an open
bounded domain Ω ⊂ R

d, d = 2, 3:
−∆u =f, in Ω

u =0, on ∂Ω,
(7.9)

where f : Ω → R is a known function. For simplicity, we shall assume that the boundary ∂Ω of the domain
Ω is composed by consecutive line segments (i.e., ∂Ω is a polygon).

The first step in defining a finite element method is to rewrite the problem (7.9) in weak form, using
the divergence theorem8. We define H to be the family of square-integrable functions v : Ω → R, which
are weakly differentiable in Ω (their weak derivative is also square integrable in Ω) and satisfy the Dirichlet
boundary condition v = 0 on ∂Ω (this family is usually denoted by H1

0 (Ω)).
Next, we multiply the PDE by a test function v ∈ H, to get

−∆u v = fv,

and we integrate over the domain Ω:

−
∫

Ω

∆u vdV =

∫

Ω

fvdV.

Now, if we perform and integration by parts in d dimensions (see (7.10)) to the integral on the left-hand
side, we get ∫

Ω

∇u · ∇vdV −
∫

∂Ω

v∇u · ~ndS =

∫

Ω

fvdV.

for all v ∈ H, where ~n denotes the unit outward normal vector to the boundary ∂Ω. Using the fact that
v = 0 on ∂Ω for all v ∈ H, we arrive to

∫

Ω

∇u · ∇vdV =

∫

Ω

fvdV.

for all v ∈ H. Hence, the Poisson problem with homogeneous Dirichlet boundary conditions can be trans-
formed to the following problem in weak form

Find u ∈ H s.t.

∫

Ω

∇u · ∇vdV =

∫

Ω

fvdV, for all v ∈ H. (7.11)

7The interested reader can find out more about calculus of functions of several variables, e.g., in the book of Adams and
Fournier, Sobolev Spaces, Academic Press (2003).

8The divergence theorem, also known as Gauss’ theorem, or Green’s theorem (when applied to two-dimensional domains)

states that, given an open bounded domain Ω ⊂ R
d, d = 2, 3, and a differentiable vector field ~F (x, y) = (F1(x, y), F2(x, y)) if

d = 2, or ~F (x, y, z) = (F1(x, y, z), F2(x, y, z)) if d = 3, then
Z

Ω
∇ · ~FdV =

Z

∂Ω

~F · ~ndS,

where ~n denotes the unit outward normal vector to the boundary ∂Ω, dV the infinitesimal area if d = 2 or the infinitesimal
volume if d = 3, and dS the infinitesimal arc if d = 2 or the infinitesimal surface if d = 3. If we apply the divergence theorem
to the vector field ~F = v∇u, we get

Z

Ω
∇ · (v∇u)dV =

Z

∂Ω
v∇u · ~ndS.

Using the formula ∇· (v∇u) = ∇v · ∇u+ v ·∇ ·∇u and recalling that ∇·∇u = ∆u, we deduce the integration by parts formula

in d dimensions
Z

Ω
∆u vdV = −

Z

Ω
∇v · ∇udV +

Z

∂Ω
v∇u · ~ndS. (7.10)
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The second step in defining the finite element method is to consider an approximation to the problem
(7.11). For simplicity, we shall consider only the case d = 2, i.e., when Ω is a bounded set on the plane; the
case d = 3 is analogous. To this end, we shall restrict the family of eligible solutions to a smaller family of
functions, Hh. To construct a suitable family Hh, we split the domain Ω into triangles T ∈ T (from now on
we shall refer to these triangles as elements), where T denotes the set of elements to which we shall refer
to as the mesh, as shown in Figure 7.4. Each vertex of a triangle will be referred to as a node. Suppose
the triangulation contains N nodes that are not on the boundary ∂Ω. We can then choose (arbitrarily) a
numbering between 1, . . . , N for the nodes.

Ω

T

Figure 7.4: A mesh in two dimensions

We consider the family Hh to consist of the functions that are continuous and linear on every element
T ∈ T , see Figure 7.5 for an illustration of such function.

Figure 7.5: A function belonging to the family Hh subject to the mesh from Figure 7.4

Hence, any function wh ∈ Hh that is continuous in Ω and linear on each element T ∈ T can be therefore
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written as

wh =

N∑

i=1

Wiφi,

for Wi ∈ R being the “height” of the function at the node i. Therefore, instead of solving the problem (7.11),
we solve the approximate problem

Find uh ∈ Hh s.t.

∫

Ω

∇uh · ∇vhdV =

∫

Ω

f vhdV, for all vh ∈ Hh;

This is the finite element method. Each mesh, together with the associated basis functions φi at the nodes
is called the the finite element. Of course, different choices of meshes and different choices of basis functions
lead to different finite element methods.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6
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−0.5

0

0.5

1

1.5

Figure 7.6: Finite element approximation to the problem (7.13).

Thus, since every vh ∈ Hh can be written as a linear combination of “pyramid” functions, we can instead
equivalently ask

Find uh ∈ Hh s.t.

∫

Ω

∇uh · ∇φidV =

∫

Ω

f φidV, for all i = 1, . . . , N.

Also, since uh ∈ Hh, too, we have uh =
∑N

j=1 Ujφj , for some Uj ∈ R and, therefore the problem becomes

Find Uj, j = 1, . . . , N, s.t.

N∑

j=1

Uj

∫

Ω

∇φj · ∇φidV =

∫

Ω

f φidV, for all i = 1, . . . , N.

This is a linear system of N equations with N unknowns and can be written as a linear system AU = F, for
A = [aij ]

N
i,j=1, U = (U1, . . . , UN )T and F = (F1, . . . , FN )T , where

aij =

∫

Ω

∇φj · ∇φidV, and Fi =

∫

Ω

fφidV. (7.12)

Example 7.10 We use the finite element method to approximate the solution to the Poisson problem with
homogeneous Dirichlet boundary conditions:

−∆u =100 sin(πx), in Ω

u =0, on ∂Ω,
(7.13)

where Ω is given by the domain in Figure 7.4, along with the mesh used in the approximation. The finite
element approximation is shown in Figure 7.6.

(The finite element solution to this example was computed using the PDE toolbox in MATLAB. Type
pdetool to open the PDE toolbox in MATLAB).
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Problem

32. Consider the Poisson problem with mixed boundary conditions

−∆u(x, y) =f(x, y), (x, y) ∈ (0, 1)2

u(x, 0) = u(0, y) = u(x, 1) =0, 0 ≤ x, y ≤ 1

ux(1, y) =1, 0 ≤ y ≤ 1.

Write the problem in weak form and comment on how to construct a finite element method for it.
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7.6 Calculation of the FEM system for a simple problem

To make the discussion concrete we shall calculate the system emerging from the finite element method for
a simple geometry in two dimensions. In particular, we consider Ω = (0, 1)× (0, 1), which we subdivide into
triangles, with nodes (xi, yj) such that

0 = x0, x1 = x0 + h, x2 = x1 + h, . . . , xN = xN−1 + h, xN+1 = 1,

and
0 = y0, y1 = y0 + h, y2 = y1 + h, . . . , yN = yN−1 + h, yN+1 = 1,

hence, we have h = 1/(N + 1), as illustrated in Figure 7.7.
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Figure 7.7: Triangulation of Ω = (0, 1) × (0, 1).

For each node (xii, yj), we associate a basis (pyramid) function φi,j which is linear on every element and
continuous, taking the value 1 at the node (xi, yj) and the value 0 at all other nodes (xk, yl) 6= (xi, yj). The
support of the basis function φi,j is illustrated in Figure 7.8.
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Figure 7.8: The support of φi,j .
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If we calculate the pyramid function φi,j explicitly, we find

φi,j(x, y) =







1 − x−xi

h − y−yj

h , if (x, y) ∈ T1;

1 − y−yj

h , if (x, y) ∈ T2;
1 + x−xi

h , if (x, y) ∈ T3;

1 + x−xi

h +
y−yj

h , if (x, y) ∈ T4;

1 +
y−yj

h , if (x, y) ∈ T5;
1 − x−xi

h , if (x, y) ∈ T6;
0, otherwise.

We are now in position to calculate ∇φi,j = ((φi,j)x, (φi,j)y), so that we can, in turn, calculate the entries
(7.12) of the matrix A in the linear system of the finite element method described above. It easy to see that

(φi,j)x(x, y) =







− 1
h , if (x, y) ∈ T1;

0, if (x, y) ∈ T2;
1
h , if (x, y) ∈ T3;
1
h , if (x, y) ∈ T4;
0, if (x, y) ∈ T5;
− 1

h , if (x, y) ∈ T6;
0, otherwise.

, and (φi,j)y(x, y) =







− 1
h , if (x, y) ∈ T1;

− 1
h , if (x, y) ∈ T2;

0, if (x, y) ∈ T3;
1
h , if (x, y) ∈ T4;
1
h , if (x, y) ∈ T5;
0, if (x, y) ∈ T6;
0, otherwise.

It is now not too hard to see (just need to check every single case) that the resulting matrix

A =
1

h2












B I 0 0 . . . 0
I B I 0 . . . 0
0 I B I . . . 0
...

...
. . .

. . .
. . .

...
0 . . . 0 I B I
0 . . . 0 0 I B












, (7.14)

where 0 is the N × N zero matrix, I is the N × N identity matrix, and B is N × N matrix

B =












−4 1 0 0 . . . 0
1 −4 1 0 . . . 0
0 1 −4 1 . . . 0
...

...
. . .

. . .
. . . . . .

0 . . . 0 1 −4 1
0 . . . 0 0 1 −4












.

The corresponding linear system for this case reads (after multiplication of the equation by h2) h2AU = h2F :












B I 0 0 . . . 0
I B I 0 . . . 0
0 I B I . . . 0
...

...
. . .

. . .
. . .

...
0 . . . 0 I B I
0 . . . 0 0 I B




































U1,1

U2,1

...
UN,1

U1,2

...
UN,2

...
U1,N

...
UN,N

























= h2

























F1,1

F2,1

...
FN,1

F1,2

...
FN,2

...
F1,N

...
FN,N

























, (7.15)

where

Fi,j =

∫

Ω

fφi,jdV.
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Comparing this system with (7.15) which is the linear system arising from the five point difference method
for the same problem, we can see that the matrix arising from the five point difference method and the one
above are identical! Nevertheless, we again have different right-hand sides.

Hence, for this simple geometry Ω and for this particular triangulation described in Figure ??, the five
point method and the finite element method are the same, up to the right-hand side!
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7.7 FEM for parabolic problems

Having derived finite element methods for elliptic problems, we are now in position to consider FEM for
parabolic problems, by combining the ideas of finite difference time-stepping and finite element analysis
for the “space” variable(s). As we saw, the treatment of elliptic problems in two and three dimensions is
completely analogous to the treatment of the two-point boundary value problem. Therefore, in the discussion
below, we shall adopt the general case of the heat initial/bounary value problem in two or three dimensions
in “space”, plus the “time” variable.

Let us consider the heat equation with solution u(t, x) : [0, Tf ] × Ω → R, with Ω ⊂ R
d open bounded

domain, d = 2, 3:
ut − ∆u =f, for t ∈ (0, Tf ] and x ∈ Ω

u(t, x) =0, for t ∈ (0, Tf ] and x ∈ ∂Ω,

u(0, x) =u0(x), for x ∈ Ω,

(7.16)

where f, u0 : Ω → R known functions. For simplicity, we shall assume (as in the case of elliptic problems)
that the boundary ∂Ω of the domain Ω is composed by consecutive line segments (i.e., ∂Ω is a polygon).

The first step in defining a finite element method is to rewrite the problem (7.16) in weak form, using
the divergence theorem. Quite similarly to the case of elliptic problems, we define H to be the family of
functions v ∈ H, which are differentiable in Ω and satisfy the Dirichlet boundary condition v = 0 on ∂Ω.

Next, we multiply the PDE by a test function v ∈ H, to get

utv − ∆u v = fv,

and we integrate over the domain Ω:

∫

Ω

utvdV −
∫

Ω

∆u vdV =

∫

Ω

fvdV.

Now, if we perform and integration by parts in d dimensions (see (7.10)) to the second integral on the
left-hand side, we get

∫

Ω

utvdV +

∫

Ω

∇u · ∇vdV −
∫

∂Ω

v∇u · ~ndS =

∫

Ω

fvdV.

for all v ∈ H, where ~n denotes the unit outward normal vector to the boundary ∂Ω. Using the fact that
v = 0 on ∂Ω for all v ∈ H, we arrive to

∫

Ω

utvdV +

∫

Ω

∇u · ∇vdV =

∫

Ω

fvdV.

for all v ∈ H. Hence, the heat problem can be transformed to the following problem in weak form

For each t ∈ (0, Tf ], find u ∈ H s.t.

∫

Ω

utvdV +

∫

Ω

∇u · ∇vdV =

∫

Ω

fvdV, for all v ∈ H. (7.17)

The second step in defining the finite element method is to consider an approximation to the problem
(7.17). For simplicity, we shall consider only the case d = 2, i.e., when Ω is a bounded set on the plane; the
case d = 3 is analogous.

One way of doing this is to first consider a finite difference approximation to the “time”-derivative ut, by
backward Euler method say. To this end, we consider an equally distributed subdivision t0 < t1 < · · · < tNt

,
at distance τ between them, such that

0 = t0, t1 = t0 + τ, t2 = t1 + τ, . . . , tNt−2 = tNt−1 + τ, tNt
= Tf ,

in the “time”-direction; hence, we have τ = 1/Nt.
We formally make the following approximations, using backward difference for the time-derivative

ut(t, x) ≈ δt
τ,−u(t, x) =

u(t, x) − u(t − τ, x)

τ
,
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and for t = tn, we set un(x) to be the approximations of u(tn, x) for x ∈ Ω. Hence, the heat problem is
“approximated in time” by the family of problems in weak form

For each n = 1, . . . , Nt, find un ∈ H s.t.
∫

Ω

un − un−1

τ
vdV +

∫

Ω

∇un · ∇vdV =

∫

Ω

fvdV, for all v ∈ H,
(7.18)

where we set u0
h(x) = u0(x). Note that the above problem is still not “discrete in space”. To approximate

the problem in “space”, we shall restrict the family of eligible solutions to a smaller family of functions, Hh.
We split the domain Ω into elements T ∈ T in complete analogy to the case of elliptic problems, see, e.g.,
Figure 7.4. We consider the family Hh to consist of the functions that are continuous and linear on every
element T ∈ T , see Figure 7.5 for an illustration of such function. Suppose the triangulation contains Nx

nodes that are not on the boundary ∂Ω. We can then choose (arbitrarily) a numbering between 1, . . . , Nx

for the nodes, and we recall that “pyramid” basis function φi for each node i = 1, . . . , Nx described in the
previous section.

Therefore, the approximate problem (in both “space” and in “time”) is given by

For each n = 1, . . . , Nt, find un
h ∈ Hh s.t.

∫

Ω

un
h − un−1

h

τ
vhdV +

∫

Ω

∇un
h · ∇vhdV =

∫

Ω

fvhdV, for all vh ∈ Hh,

where u0
h(x) = u0(x) 9. This is the finite element method with backward Euler time-stepping. Of course,

different choices of divided differences for the time-derivative, different meshes and different choices of basis
functions lead to different finite element methods. For each time-level n, the approximation un−1

h will be
known (having been calculated in the previous step). We can rearrange the approximate problem then as

For each n = 1, . . . , Nt, find un
h ∈ Hh s.t.

∫

Ω

un
hvhdV + τ

∫

Ω

∇un
h · ∇vhdV = τ

∫

Ω

fvhdV +

∫

Ω

un−1
h vhdV, for all vh ∈ Hh.

Thus, since every vh ∈ Hh can be written as a linear combination of “pyramid” functions, we can instead
equivalently ask

For each n = 1, . . . , Nt, find un
h ∈ Hh s.t.

∫

Ω

un
hφidV + τ

∫

Ω

∇un
h · ∇φidV = τ

∫

Ω

fφidV +

∫

Ω

un−1
h φidV, for all i = 1, . . . , Nx.

Also, since un
h ∈ Hh, too, we have un

h =
∑N

j=1 Un
j φj , for some Un

j ∈ R and, therefore the problem becomes

For each n = 1, . . . , Nt, find Un
j , j = 1, . . . , Nx, s.t.

N∑

j=1

Un
j

∫

Ω

φjφidV + τ

N∑

j=1

Un
j

∫

Ω

∇φj · ∇φidV =

∫

Ω

(τf + un−1
h )φidV, for all i = 1, . . . , Nx.

Thus, to find un
h for every n = 1, . . . , Nt, we have to solve a linear system of Nx equations with Nx unknowns

and can be written in matrix form as (M + τA)Un = Gn, for M = [mij ]
Nx

i,j=1 and A = [aij ]
Nx

i,j=1, Un =

(Un
1 , . . . , Un

N)T and G = (Gn
1 , . . . , Gn

N )T , where

mij =

∫

Ω

φjφidV, aij =

∫

Ω

∇φj · ∇φidV, and Gn
i =

∫

Ω

(τf + un−1
h )φidV.

Example 7.11 We use the finite element method to approximate the solution to the heat problem with
homogeneous Dirichlet boundary conditions:

ut − ∆u =0, for t ∈ (0, 1] and x ∈ Ω

u(t, x) =0, for t ∈ (0, 1] and x ∈ ∂Ω,

u(0, x) =1, for x ∈ Ω,

(7.19)

where Ω is given by the domain in Figure 7.4, along with the mesh used in the approximation. The finite
element approximation (using Nt = 100, for different times t is shown in Figure 7.9.

9In practice some form of approximation of u0 is used, either by interpolation or projection.
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Figure 7.9: Finite element approximation to the heat problem
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