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Finite volume schemes for Boussinesq type
equations

D. Dutykh1, T. Katsaounis2 and D. Mitsotakis3

Abstract. Finite volume schemes are commonly used to construct approxi-
mate solutions to conservation laws. In this study we extend the framework
of the finite volume methods to dispersive water wave models, in particular to
Boussinesq type systems. We focus mainly on the application of the method to
bidirectional nonlinear, dispersive wave propagation in one space dimension.
Special emphasis is given to important nonlinear phenomena such as solitary
waves interactions.

Keywords. finite volume method; dispersive waves; solitary waves; runup;
water waves

1. Introduction

The simulation of water waves in realistic and complex environments is a very
challenging problem. Most of the applications arise from the areas of coastal
and naval engineering, but also from natural hazards assessment. In this work
we will study numerically bidirectional water wave models. Specifically, we
consider the following family of Boussinesq type systems of water wave theory,
introduced in [1], written in nondimensional, unscaled variables

ηt + ux + (ηu)x + a uxxx − b ηxxt = 0,

ut + ηx + uux + c ηxxx − d uxxt = 0,
(1.1)

where a, b, c, d ∈ R, η = η(x, t), u = u(x, t) are real functions defined for
x ∈ R and t � 0.

a = 1
2
(θ2 − 1

3
)ν, b = 1

2
(θ2 − 1

3
)(1− ν),

c = 1
2
(1− θ2)µ, d = 1

2
(1− θ2)(1− µ),

where 0 ≤ θ ≤ 1 and µ,ν ∈ R.

Finite volume method is well known for its accuracy, efficiency and robustness
for approximating solutions to conservation laws and in particular to nonlinear
shallow water equations. The aforementioned bidirectional models (1.1) are
rewritten in a conservative form and discretization by the finite volume method
follows. Three different numerical fluxes are employed
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• a simple average flux (m-scheme),

• a central flux, (KT-scheme) [2, 3], as a representative of central schemes,

• a characteristic flux (CF-scheme), as a representative of the linearized
Riemann solvers, [4].

along with TVD, UNO and WENO reconstruction techniques, [5, 6, 7]. Time
discretization is based on Runge-Kutta (RK) methods which preserve the total
variation diminishing (TVD) property of the finite volume scheme, [8]. We use
explicit RK methods since we work with BBM type systems (1.1) and not with
KdV equation which is well known to be notoriously stiff.

The present text is organized as follows. In Section 1 we present the mathe-
matical model under consideration and the context of this study. Then, Section
2 contains a brief description of various numerical schemes we implemented.
Accuracy tests and several numerical results on head-on collision of solitary
waves are presented in Section 3. Finally, some conclusions of this study are
outlined in Section 4.

2. Numerical schemes

In the present section we generalize the finite volume method to systems (1.1)
of dispersive PDEs. Boussinesq system (1.1) can be rewritten in a conservative
like form as follows:

(I−D)vt + [F(v)]x + [G(v)]x = 0, (2.2)

where v = (η, u)T , F(v) = ((1 + η)u,η + 1
2
u2)T , G(v) = (a uxx, c ηxx), and

D = diag (b ∂2
x, d ∂

2
x). The simplest discretization is based on the average fluxes

F
m for F and G

m for G. For the other two choices of the numerical flux F

the evaluation of Jacobian is needed. Let A denotes the Jacobian of F, then

A =

�
u 1 + η
1 u

�
,

with eigenvalues λi = u±
√
1 + η, i = 1, 2. It is readily seen, since F is a hyper-

bolic flux, that A can be decomposed as A = LΛR thus for the characteristic
flux F

CF we have with µ =
W + V

2
, si = sign(λi), i = 1, 2

A(W,V ) =




1
2
(s1 + s2)

1
2

√
1 + µ1(s1 − s2)

s1 − s2
2
√
1 + µ1

1
2
(s1 + s2)



 .

For evaluating the numerical fluxes F , G simple cell averages or higher order
approximations such as UNO2 or WENO can be used. For more details we
refer to our original research article [9].

Remark 2.1.
The discretization of the elliptic operator D is based on the standard centered
difference. This is a second order accurate approximation and it is compatibleEDP N
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with the TVD2 and UNO2 reconstructions. For higher order interpolation we
need to modify the elliptic and flux discretization to match the reconstruc-
tion’s order of approximation. Indeed, the finite volume scheme is modified
as

d
dt

�
Vi−1 + 10Vi +Vi+1

12
− (b, d)

Vi+1 − 2Vi +Vi−1

∆x2

�

+
Hi−1 + 10Hi +Hi+1

12
= 0 (2.3)

where Hi =
1
∆x

(F
i+

1

2

− F
i−

1

2

) + 1
∆x

(G
i+

1

2

− G
i−

1

2

), is a fourth order

accurate approximation.

Remark 2.2.
In the sequel for the discretization of the dispersive term G we use mainly

the average numerical flux G
m defined as G

m

i+
1

2

= (a, c)
Yi +Yi+1

2
, where

Yi =
Vi+1 − 2Vi +Vi−1

∆x2
. In case of higher order WENO reconstructions

we use the average numerical flux based on the reconstructed values of Yi

i.e. the flux G
lm

i+
1

2

= (a, c)

YL

i+
1

2

+YR

i+
1

2

2
, where YL

i+
1

2

and YR

i+
1

2

are

reconstructed values of Yi.

2.0.1. Boundary conditions

In the case of Bona-Smith type systems with flat bottom we consider herein
only the initial-periodic boundary value problem which is known to be well-
posed [10].

3. Numerical results

For the Boussinesq system (1.1) we present first results demonstrating the ac-
curacy of the finite volume scheme. Then, we study the interaction of solitary
waves.

3.1. Accuracy test, validation

We consider the initial value problem with periodic boundary conditions for
the Bona-Smith systems with known solitary wave solutions, [11], to study the
accuracy of the finite volume method:

η(ξ) = η0 sech
2(λξ),

u(ξ) = B η(ξ),EDP N
ORMANDIE
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(a) Average Flux

∆x Rate(E2
h) Rate(E∞

h )

0.5 1.910 1.978

0.25 1.910 1.954

0.125 1.923 1.937

0.0625 1.936 1.941

0.03125 1.946 1.948

(b) TVD2 MinMod

∆x Rate(E2
h) Rate(E∞

h )

0.5 2.042 2.032

0.25 2.033 2.029

0.125 2.026 2.023

0.0625 2.021 2.019

0.03125 2.017 2.016

Fig. 3.0. Rates of convergence.

with

η0 = 9
2

·
θ2 − 7/9

1− θ2
, cs =

4(θ2 − 2/3)
�

2(1− θ2)(θ2 − 1/3)
,

λ = 1
2

�
3(θ2 − 7/9)

(θ2 − 1/3)(θ2 − 2/3)
, B =

�
2(1− θ2)

θ2 − 1/3
.

We fix θ2 = 8/10 in the system and an analytic solitary wave of amplitude
η0 = 1/2 is used as the exact solution in [−50, 50] computed up to T = 100.
The error is measured with respect to discrete L2 and L∞ norms, namely we
use:

E2
h(k) = �Uk

�h/�U
0
�h, �Uk

�h =

�
�

i

∆x|Uk
i |

2

�1/2

,

E∞
h (k) = �Uk

�h,∞/�U0
�h,∞, �Uk

�h,∞ = max
i

|Uk
i |,

where Uk = {Uk
i }i denotes the solution of the fully-discrete scheme at the

time tk = k∆t. The expected theoretical order of convergence was confirmed
for all finite volume methods we presented above. Two indicative cases are
reported in Table 3.1 for the average flux and TVD2 implementation with
MinMod limiter.

We also check the preservation of the invariant

I1(t) =

�

R
(η2(x, t) + (1 + η(x, t))u2(x, t)− c η2

x(x, t)− a u2
x(x, t)) dxEDP N
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(a) Evolution of η amplitude
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(b) Evolution of Ih1

Fig. 3.1. Preservation of the solitary wave amplitude and conservation of the
invariant Ih1 : Gm flux with Minmod limiter

by computing its discrete counterpart:

Ih1 =
�

i

∆x

�
η2
i + [(1 + ηi)ui]

2
− c

�
ηi+1 − ηi

∆x

�2

− a

�
ui+1 − ui

∆x

�2
�
,

as well as the discrete mass Ih0 = ∆x
�

i ηi. Figure 3.1 shows the evolution
of the amplitude and the invariant Ih1 of the solitary wave up to T = 200.
The comparison of various methods is performed. We observe that the UNO2
reconstruction is more accurate while the KT and the CF schemes show com-
parable performance. We note that the invariant Ih0 = 1.932183566158 con-
served the digits shown for all numerical schemes. In this experiment we took
∆x = 0.1, ∆t = ∆x/2.

3.2. Head-on collisions

The head-on collision of two counter-propagating solitary waves is character-
ized by the change of the shape along with a small phase-shift of the waves as a
consequence of the nonlinearity and dispersion. These effects have been stud-
ied extensively before by numerical means using high order numerical methods
such as finite differences, [12], spectral and finite element methods, [13], and
experimentally in [14]. In Figure 6.1 we present the numerical solutions of
the BBM-BBM system and the Bona-Smith system with θ2 = 9/11 (in di-
mensional and unscaled variables) along with the experimental data from [14].
The spatial variable is expressed in centimeters while the time in seconds.
The solutions were obtained using the CF-scheme with UNO2 and WENO3
reconstruction using ∆x = 0.05 cm and ∆t = 0.01 s. For this experiment
we constructed solitary waves for Boussinesq systems by solving the respec-
tive o.d.e’s system in the spirit of [15] such that they fit to experimentally
generated solitary waves before the collision. The speeds of the right and left-
traveling solitary waves are cr,s = 0.854 m/s and cl,s = 0.752 m/s respectively.

We observe that Boussinesq models converge to almost identical numerical
solutions with all numerical schemes we tested. A very good agreement with
the experimental data is observed. The discrete mass for the Bona-SmithEDP N
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Bona Smith 2=9/11
BBM BBM
Experimental data

(a) t = 18.29993s
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Bona Smith 2=9/11
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Experimental data

(b) t = 18.80067s
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Bona Smith 2=9/11
BBM BBM
Experimental data

(c) t = 19.00956s
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Bona Smith 2=9/11
BBM BBM
Experimental data

(d) t = 19.15087s
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Bona Smith 2=9/11
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Experimental data

(e) t = 19.19388s
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(f) t = 19.32904s

Fig. 3.2. Head-on collision of two solitary waves: —: BBM-BBM, −−: Bona-
Smith (θ2 = 9/11), •: experimental data of [14]
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Bona Smith 2=9/11
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(a) t = 19.84514s
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Bona Smith 2=9/11
BBM BBM
Experimental data

(b) t = 20.49949s

Fig. 3.3. (Cont’d) Head-on collision of two solitary waves. —: BBM-BBM,
−−: Bona-Smith (θ2 = 9/11), •: experimental data of [14]EDP N
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(a) Bona-Smith

Ih1

m-flux 0.000944236

UNO2 0.00094423

TVD2 0.00094

WENO3 0.00094423

(b) BBM-BBM

Ih1

m-flux 0.00092793

UNO2 0.00092793

TVD2 0.00092

WENO3 0.00092793

Fig. 3.3. Preservation of the invariant Ih1 .

system is Ih0 = 0.0059904310418 and for the BBM-BMM system is Ih0 =
0.0059199389479 for all fluxes and reconstructions used. The variances in
Ih1 are mainly due to different types of reconstruction and not to the choice of
numerical fluxes. In Table 3.2 these values are reported.

4. Conclusions

Initially, the finite volume method was proposed by S. Godunov, [16], to
compute approximate solutions to hyperbolic conservation laws. In the present
study we made a further attempt to generalize this method to the framework
of dispersive PDEs. This type of equations arises naturally in many physi-
cal problems. In the water wave theory dispersive equations have been well
known since the pioneering work of J. Boussinesq, [17], and Korteweg-de Vries,
[18]. Currently, the so-called Boussinesq-type models become more and more
popular as an operational model for coastal hydrodynamics and other fields
of engineering. We extend the finite volume framework to dispersive mod-
els. We tested several choices of numerical fluxes (average, Kurganov-Tadmor,
characteristic), various reconstruction methods ranging from classical (TVD2,
UNO2) to modern approaches (WENO3, WENO5). Various choices of limiters
have been also tested out. Advantages of specific methods are discussed and
some recommendations are outlined.
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