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It is well known that although the usual harmonic ansatz of geometrical optics fails near
a caustic, uniform expansions can be found which remain valid in the neighborhood
of the caustic, and reduce asymptotically to the usual geometric field far enough from
it. Such expansions can be constructed by several methods which make essentially use
of the symplectic structure of the phase space. In this paper we efficiently apply the
Kravtsov–Ludwig method of relevant functions, in conjunction with Hamiltonian ray
tracing to define the topology of the caustics and compute high-frequency scalar wave
fields near smooth and cusp caustics. We use an adaptive Runge–Kutta method to
successfully retrieve the complete ray field in the case of piecewise smooth refraction
indices. We efficiently match the geometric and modified amplitudes of the multi-valued
field to obtain numerically the correct asymptotic behavior of the solution. Comparisons
of the numerical results with analytical calculations in model problems show excellent
accuracy in calculating the modified amplitudes using the Kravtsov–Ludwig formulas.


1. Introduction


In the analysis of wave propagation in inhomogeneous media, the method of ge-


ometrical optics is often employed (see, e.g., Ref. 35). It is used not only to get


a qualitative picture of how the waves propagate, but also to evaluate the fields


quantitatively. However, geometrical optics fails either on caustics and focal points


where it predicts infinite wave amplitudes (see Sec. 2), or in shadow regions (i.e. re-


gions devoid of rays) where it yields zero fields. On the other hand, formation of


caustics is a typical situation in underwater acoustics and seismology due to the


multi-path propagation from localized sources. Indeed, even in the simplest oceanic


models and geophysical structures (see, e.g. Chap. 5 of Ref. 45 and Chap. 3 of


Ref. 21, respectively) a number of caustics occur, depending on the position of the


source and the stratification of the wave velocities.
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From the mathematical point of view, formation of caustics and related multi-


valuedness of the phase function, is the main obstacle in constructing global high-


frequency solutions of the Helmholtz equation. The problem of obtaining the multi-


valued phase function is traditionally handled by resolving numerically the charac-


teristic field related to the eikonal equation (ray tracing methods), see, e.g. Ref. 21.


A considerable amount of work has been done recently on constructing the multi-


valued phase function by properly partitioning the propagation domain and using


eikonal solvers (see, e.g., Refs. 1, 10, 23 and 44). A different approach is based on


kinetic formulation in the phase space, in terms of a density function which satis-


fies Liouville’s equation. The technique used to capture the multivalued solutions


is based on a closure assumption for a system of equations for the moments of


the density.12,43


Given the geometry of the multivalued phase function, a number of local and


uniform methods to describe wave fields near caustics have been proposed. The


first type of methods is essentially based on boundary layer techniques as they were


developed by Babich et al. (see, e.g., Refs. 9, 11 and 25). The second type exploits


the fact that even if the family of rays has caustics, there are no such singularities


for the family of the bicharacteristics in the phase space (see Definition 2.2). This


basic fact allows the construction of formal asymptotic solutions (FAS) which are


valid near and on the caustics. For this purpose two main asymptotic techniques


have been developed. The first one, which we will present in details in Sec. 3,


is the Kravtsov–Ludwig method (or the method of relevant functions).37,40 This


method starts with a modified FAS involving Airy-type integrals, the phase of


which take account of the type of caustics (Sec. 3 and Appendix). The second


one is the method of canonical operator developed by Maslov (closely related to


this are the techniques of Orlov’s interference integrals3 and oscillatory spectral


integrals.4,5 Maslov’s method exploits the fundamental fact that the Hamiltonian


flow associated with the bichararcteristics generates a Lagrangian manifold in the


phase space (see, e.g., Ref. 24), on which we can “lift” the phase function in a


unique way (see, e.g., Refs. 41, 42 and 46).


Although uniform caustic asymptotics have been widely used by the acoustical


and seismological community (see, e.g., Refs. 16, 18, 19 and 29 and the references


therein), the problem of the limits of applicability of uniform asymptotic expres-


sions has not been completely resolved yet, as it has been recently observed by


Asatryan and Kravtsov6 who attempted to give a qualitative answer. It seems that


the quantitative answer to such a question requires first of all the numerical com-


parison between uniform asymptotics and ordinary geometrical optics calculations


of the wave fields.


In this paper we show how to efficiently apply the Kravtsov–Ludwig method for


the numerical calculation of the amplitudes of high-frequency waves near fold and


cusp caustics. Comparisons of the numerical results with analytical calculations in


model problems show excellent accuracy in calculating numerically the modified am-


plitudes entering the Kravtsov–Ludwig formulas. We use these modified amplitudes
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to compute numerically the field around caustics and show that the uniform asymp-


totic solution matches efficiently with the ordinary geometrical optics solution far


away from the caustic.


In Sec. 2 we present the necessary results from geometrical optics. The


Kravtsov–Ludwig method of relevant function for fold and cusp caustics is de-


scribed in Sec. 3. In Sec. 4 we present the numerical algorithm for tracing the rays


and locating the caustics. In Sec. 5 we use the above algorithm in model problems


and show that the asymptotic solution obtained by the method of relevant func-


tions numerically, coincides with that obtained analytically, and it matches with


the ordinary geometrical optics solution.


2. High Frequency Solutions of the Helmholtz Equation


We consider the propagation of two-dimensional time-harmonic scalar waves in


a medium with variable refraction index n(r) = c0/c(r), c0 being the reference


wave velocity and c(r) the velocity at the point r = (x, z) ∈ D, where D is some


unbounded domain of R2
r. We assume that n ∈ C∞(R2


r) and n > 0. The two-


dimensional wave field u(r, k) is governed by the Helmholtz equation


∆u+ k2n2(r)u(r, k) = F (r) , r ∈ D , (2.1)


where k = ω/c0 is the wave number (ω being the frequency of the waves) and F


represents a compactly supported source generating the waves. We are interested


in the asymptotic behavior of u(r, k) as k →∞ (i.e. for very large frequencies ω),


assuming that r remains in a compact subset of D and outside the support of the


source function F .


Note that the asymptotic decomposition of scattering solutions when simulta-


neously |r| and k go to infinity is a rather complicated problem, as, in general,


the caustics of the Lagrangian manifold go off to infinity. This problem has been


rigorously studied by Vainberg,47 when D is a full neighborhood of infinity and


n = 1 for |r| > r0, r0 being a fixed positive constant, and by Kucherenko38 for the


case of a point source (i.e. f(r) = δ(r)), under certain conditions of decay for n(r)


at infinity.


As for fixed k > 0 there is, in general, an infinite set of solutions of (2.1), and


we need a radiation condition to guarantee uniqueness (cf. Ref. 20 for scattering


by compact inhomogeneities, and Ref. 48 for scattering by stratified media). This


condition is essentially equivalent to the physical fact that there is no energy flow


from infinity, which in geometrical optics is translated to the requirement that the


rays must go to infinity.


Definition 2.1. We say that


uN(r, k) = eikΦ(r)
N∑
`=0


(ik)−`A`(r) , (2.2)
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where the phase Φ and the amplitudes A` are real-valued functions in C∞(R2
r), is


a formal asymptotic solution (FAS) of (2.1) if it satisfies


(∆ + k2n2(r))uN (r, k) = O(k−N1) , k →∞ , (2.3)


where N1 → ∞ as N → ∞, in a bounded domain |x| ≤ a, |z| ≤ b, a, b being


positive constants.


According to the well-known WKB procedure we seek an FAS of (2.1) of the


form (2.2) in D\supp F . Substituting (2.2) into (2.3) and separating the powers


(ik)−`, ` = 0, 1, . . . , we obtain the eikonal equation


(∇Φ(r))2 = n2(r) , (2.4)


for the phase function, and the following hierarchy of transport equations


2∇Φ · ∇A0 + ∆Φ(r)A0(r) = 0 , (2.5)


2∇Φ · ∇A` + ∆Φ(r)A`(r) = −∆A`−1(r) , ` = 1, 2, . . . , (2.6)


for the amplitudes.


A standard way of solving the eikonal equation (2.4) is based on the


use of bicharacteristics (see, e.g., Chap. VIII of Ref. 30). Let H(r,p) be the


Hamiltonian function


H(r,p) =
1


2


(
|p|2 − n2(r)


)
, r ∈ D, p ∈ R2


p , (2.7)


corresponding to the Helmholtz equation (2.1), where p = (px, pz) is the momentum


conjugate to the position r = (x, z). The associated Hamiltonian system reads


as follows:


dr


dt
= ∇pH(r,p) = p , (2.8a)


dp


dt
= −∇rH(r,p) = n(r)∇n(r) . (2.8b)


Let r = r0(θ), θ ∈ I ⊂ R, be an initial manifold U0 in R2
r, and specify on it the


initial conditions (for t = 0)


r(0) = r0(θ) , p(0) = p0(θ) , θ ∈ I , (2.9)


Φ(r) = Φ0(θ) , Al(r) = A0
l (θ) for r = r0(θ) , (2.10)


p0(θ) and Φ0(θ), A0
l (θ) being given functions. Note that


|p0(θ)|2 = (n(r0(θ)))2


must be satisfied on the initial manifold (see, e.g., Ref. 38).


The initial manifold is chosen so that to model the source term F in the right-


hand side of (2.1). In the case of a point source at r0, i.e. F (r) = δ(r− r0), this has
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been exhaustively done by Avila and Keller2 (see also Ref. 8). In general, the high-


frequency modeling of an arbitrary source relies on a Fourier integral representation


of the solution of the Helmholtz equation and a stationary-phase approximation of


this in the neighborhood of supp F . This procedure has recently been applied,


e.g., by Ref. 17 for calculating the local field of a linear array of acoustic trans-


ducers (side-scan sonar) and in Ref. 36 for studying the problem of high-frequency


cylindrical abberations.


Definition 2.2. The trajectories r = r(t, θ), p = p(t, θ), t ∈ R, θ ∈ I, which solve


the initial value problem (2.8), (2.9) in the phase space R4
rp are called bicharacter-


istics and their projection r = r(τ, θ), t ∈ R, θ ∈ I onto R2
r are called rays.


Assuming that p0(θ) is nowhere tangent to r0(θ), the solution of the (nonchar-


acteristic) Cauchy problem (2.4), (2.10) for the eikonal equation, is given by


Φ(r(t, θ)) = Φ0(θ) +


∫ t


0


p(τ, θ)
dr(τ, θ)


dτ
dτ , (2.11)


where the integral is calculated along the bicharacteristics. The transformation


(t, θ) 7→ (x(t, θ), z(t, θ)) , (2.12)


is one-to-one, provided that the Jacobian


J =


∣∣∣∣∣∣∣∣
dx


dt


dx


dθ


dz


dt


dz


dθ


∣∣∣∣∣∣∣∣ , (2.13)


is nonzero. Although J 6= 0 for t = 0, it does not necessarily remain nonzero for all


t. Whenever J = 0, (t, θ) may be nonsmooth or multivalued functions of (x, z), and


the rays may intersect, overlap, etc., and in general have singularities (although


the bicharacteristics never intersect in the phase space). Then, the phase function


Φ = Φ(x, z) may be a multivalued or a nonsmooth function.


The solution of the transport equation (2.5) for the principal amplitude A0 on


the rays is given by


A0(r(t, θ)) =
α0(θ)√
J(t, θ)


, (2.14)


where α0(θ) = A0
0(θ) is the amplitude at the point r = r0 on the initial manifold,


and J(t, θ) is the value of the Jacobian, so that r = (x(t, θ), z(t, θ)) for the consid-


ered time. Note that the amplitude (2.14) is calculated integrating the transport


equation (2.5) along the rays.


Definition 2.3. The points r = r(t, θ) at which J(t, θ) = 0 are called focal points,


and the manifold generated from these points (i.e. the envelope of the family of the


rays) is called caustic.
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The amplitude A0 calculated by (2.14), blows up on the caustics and therefore


the WKB procedure fails to predict the correct amplitudes there. Fortunately, the


caustics only appear as apparent singularities when we apply the WKB procedure,


and as we already mentioned in the Introduction, it is possible to construct uniform


solutions which remain finite on the caustics.


3. Kravtsov–Ludwig Method of Relevant Functions


3.1. Motivation


The idea of obtaining global high-frequency solutions of the Helmholtz equa-


tion (2.1) by the method of relevant functions, is to replace (2.2) by an integral


of the form (see, e.g., Refs. 22, 37 and 40)


u(r) =


(
ik


2π


)1/2 ∫
Ξ


eikS(r,ξ)a(r, ξ) dξ , ξ ∈ Ξ ⊂ Rξ . (3.1)


Here S and a satisfy the eikonal equation (2.4) and the transport equation (2.5),


respectively, identically with respect to ξ. Such an integral can be regarded as a


continuous superposition of oscillatory functions of the form (2.2). The physical


motivation underlying the method of relevant functions is the fact that in every


small region in which the refraction index of the medium can be considered as


constant and the wave front as plane, the field can be represented as a superposition


of plane waves aeiS , where a and ∇S vary slowly in transition from one region to


the next.


In the case of single phase geometrical optics we can take S(r, ξ) = φ(r) − ξ2.


Then the only stationary point ξ = 0 is simple and by stationary phase lemma (see,


e.g., p. 219 of Ref. 13), the oscillatory integral (3.1) reduces asymptotically to (2.2).


If there are more than one simple stationary point ξj(r), i.e. ∂ξS(r, ξj(r)) = 0 and


∂2
ξS(r, ξj(r)) 6= 0, we have the asymptotic expansion


u(r) ∼
∑
j


Aj0(r)eikSj(r) , (3.2)


where


Sj(r) = S(r, ξj(r)) (3.3a)


and


Aj0(r) = exp


(
i


(
π


2
+ sgn(∂2


ξS(r, ξj(r)))


))
a(r, ξj(r))√
|∂2
ξS(r, ξj(r))|


, (3.3b)


and the summation in (3.2) extends over all the stationary points. The amplitudes


Aj0 are solutions of the zero-order transport equation (2.5).


The expansion fails whenever ∂2
ξS(r, ξj(r)) = 0, i.e. for the stationary points of


multiplicity greater than one, and in this case a modified stationary phase lemma


must be applied (p. 222 of Ref. 13). The appearance of multiple stationary points is
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associated with the formation of caustics. Near caustics the phase is a multivalued


function and, in general, it cannot be derived by integration using (2.11). Represen-


tation theorems for the phase function S are derived by the methods of singularity


theory (see, e.g., Ref. 7), according to the type of caustic appearing. For simple


caustics (fold, cusp), these results are briefly presented in the Appendix.


3.2. Smooth caustic (fold)


It can be shown that near a smooth caustic (fold) the correct form of the phase is


(see Appendix; also Proposition 6.1 of Ref. 26, and Ref. 37)


S(r, ξ) = φ(r) + ξρ1(r)− ξ3


3
, (3.4)


and the amplitude admits the decomposition


a(r, ξ) = g0(r) + ξg1(r) + h(r, ξ)∂ξS(r, ξ) , (3.5)


where h(r, ξ) is a smooth function. Substituting (3.4) and (3.5) into (3.1), applying


the stationary phase lemma for k → ∞ to get rid of the third term in (3.5), and


using the standard integral representation of the Airy function Ai(.) (see, e.g.,


Ref. 39), we obtain the asymptotic expansion


u(r) =
√


2πk1/6eiπ/4eikφ(r)


×
(
g0(r)Ai(−k2/3ρ1(r)) + ik−1/3g1(r)Ai′(−k2/3ρ1(r))


)
+O(k−1) . (3.6)


Using the asymptotic expansion of the Airy function for large negative argu-


ment, we obtain from (3.6) for ρ1 6= 0 and k →∞, the expansion


u(r) =
1√
2


(
g0(r) + g1(r)


√
ρ1(r)


)
ρ
−1/4
1 eikS̃+(r)


+
1√
2


(
g0(r)− g1(r)


√
ρ1(r)


)
ρ
−1/4
1 eikS̃−(r)eiπ/2 , (3.7)


where


S̃±(r) = S(r, ξ±(r)) = φ(r) ± 2


3
ρ


3/2
1 (r) (3.8)


are the values of the phase function at the points ξ±(r) = ±
√
ρ1(r), i.e. the roots of


the stationary phase equation ∂ξS(r, ξ) = 0. On the other hand, if two rays, which


pass through any point M in the region of the fold (Fig. 1), are far enough from


the caustic, the geometrical optics expansion has the form


u(r) = A+(r)eikΦ+(r) +A−(r)eikΦ−(r) , (3.9)


where Φ±(r) are the geometrical phases. The symbol (−) (respectively (+)) indi-


cates the ray which arrives at M directly from the initial manifold (respectively, af-


ter “reflection” from the caustic). A± are the values of the zeroth-order amplitudes
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Fig. 1. The geometry of a fold caustic.


A0 (see Eq. (2.5)) computed along the (±) rays. Therefore, the geometrical ampli-


tudes A±(r) solve the transport equations (2.5), and, according to (2.14), they are


given by


A±(r) =
α0(θ±)√
J±(r)


, (3.10)


where θ± = θ±(r) are the values of the parameter at the initial manifold corre-


sponding to the rays (±) passing from M , α0(θ±) are the corresponding initial


amplitudes, and J±(r) are the values of the Jacobian at the point r calculated


along the (±) rays. The value of the square root
√
J± is calculated by the formula√


J± =
√
|J±|ei(π/2)γ± where γ+ = 1 and γ− = 0. Note that γ± counts the number


of tangencies of the rays with the caustic along their course from the points r0(θ±)


on the initial manifold to the point M . The geometrical phases Φ±(r) in (3.9) are


computed by integration along the rays using (2.11).


According to the matching principle, the expansions (3.7) and (3.9) must coin-


cide away from the caustic. From the matching conditions for the amplitudes


1√
2


(
g0(r) + g1(r)


√
ρ1(r)


)
ρ
−1/4
1 = A+(r) , (3.11a)


1√
2


(
g0(r)− g1(r)


√
ρ1(r)


)
ρ
−1/4
1 eiπ/2 = A−(r) , (3.11b)


we obtain the modified amplitudes


g0(r) =
ρ


1/4
1√
2


(A+(r)− iA−(r)) , (3.12a)


g1(r) =
ρ
−1/4
1√


2
(A+(r) + iA−(r)) . (3.12b)
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The functions φ and ρ1 are found from the matching condition of the phases


S̃±(r) = S±(r), and they are given by


φ(r) =
1


2
(Φ+(r) + Φ−(r)) and ρ1(r) =


(
3


4
(Φ+(r)− Φ−(r))


)2/3


. (3.13)


3.3. The cusp caustic


In the case of a cusp caustic the phase function must have the form (GS, Proposi-


tion 7.1 for k = 4 of Ref. 26, and Ref. 37)


S(r, ξ) = φ(r) + ρ1(r)ξ − ρ2(r)
ξ2


2
+
ξ4


4
, (3.14)


and the amplitude admits the representation


a(r, ξ) = g0(r) + ξg1(r) + ξ2g2(r) + f(r, ξ)∂ξS(r, ξ) , (3.15)


where f(r, ξ) is a smooth function. Note that again by the stationary phase formula


we will get rid of the third term in (3.15). The stationary points ξj(r) are the roots


of the cubic equation


∂ξS(r, ξ) = ρ1(r)− ρ2(r)ξ + ξ3 = 0 , (3.16)


and they are given by the formulas


ξ1(ρ1, ρ2) = A+B , (3.17a)


ξ2(ρ1, ρ2) = −1


2
(A+B) + i


√
3


2
(A−B) , (3.17b)


ξ3(ρ1, ρ2) = −1


2
(A+B)− i


√
3


2
(A−B) , (3.17c)


with


A =


(
ρ1


2
+
√
D


)1/3


, B =


(
ρ1


2
−
√
D


)1/3


(3.17d)


and


D =
ρ2


1


4
− ρ3


2


27
. (3.17e)


From (3.17e) it follows that there are three real stationary points in Region I, a


double one on the sides of the cusp, and a triple one, equal to zero, at the “beak”


of the cusp, and only one real stationary point in Region II (Fig. 2). Regions I and


II are separated by the cusp which is the locus of multiple (double or triple) roots


of (3.16), i.e. the points where


ρ2
1 =


4ρ3
2


27
. (3.18)
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1


2


Fig. 2. The geometry of a cusp caustic.


Note that each real stationary point corresponds to a ray, and therefore there


are three rays passing through any point inside the cusp (Region I) and only one ray


through each point outside the cusp (Region II). At the sides of the cusp the double


stationary point corresponds to a pair of coalescing rays tangent to the caustic, while


the third one corresponds to the ray crossing the caustic transversely. Finally, at the


“beak” of the caustic (3.18), the triple stationary point, equal to zero, corresponds


to the three rays coalescing at this point.


Again according to the matching principle, we apply the stationary phase lemma


for the integral (3.1) with phase (3.14) (see, e.g., p. 221 of Ref. 13, Chap. VII of


Ref. 49), and we match the obtained amplitudes and phases with the geometrical


ones. From the matching of the amplitudes we obtain the system


g0(r) + ξjg1(r) + ξ2
j g2(r) = Aj(r)(∂2


ξS(r, ξj(r)))1/2


= Aj(r)(3ξ2
j (r) − ρ2(r))1/2 , j = 1, 2, 3 , (3.19)


where Aj(r) are the geometrical amplitudes calculated using (2.14) by the formula


Aj(r) =
α0(θj)√
Jj(r)


. (3.20)


Here θj are the values of the parameter at the initial manifold corresponding to the


jth ray, while α0(θj) is the corresponding initial amplitude and Jj(r) is the value


of the Jacobian calculated for the jth ray.


From the matching of the phases S̃j(φ, ρ1, ρ2) = S(r, ξj(ρ1, ρ2)) with the geo-


metrical phases Φj(r) which are computed by (2.11) along the jth ray (j = 1, 2, 3),


we obtain


S̃(φ, ρ1, ρ2) = φ(r) + ρ1ξj(ρ1, ρ2)− ρ2


ξ2
j (ρ1, ρ2)


2
+
ξ4
j (ρ1, ρ2)


4


= Φj(r) , j = 1, 2, 3 . (3.21)


Solving the nonlinear system (3.21) for ρ1(r), ρ2(r) and φ(r), and thereafter


calculating ξj(r) = ξj(ρ1(r), ρ2(r)) from the relations (3.17a)–(3.17c), we compute
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the modified amplitudes g0, g1, g2 from the linear system (3.19). It can be shown


using (3.20) and the system (3.19), that the modified amplitudes g0, g1 and g2


remain finite on the caustic.40


Introducing the Pearcey’s integral (generalized Airy function)


Y0(−a, b) =


∫
R


exp


(
i


(
t4


4
− at


2


2
+ bt


))
dt , (3.22)


and using (3.1), (3.14) and (3.15) we obtain the asymptotic expansion


u(r) = (2π)−1/2eiπ/4eikφ(r)(g0(r)k1/4Y0(−a, b)− ik−1/2g1(r)∂bY0(−a, b)


+ 2ik−1/2g2(r)∂aY0(−a, b)) +O(k−1) , k→∞ , (3.23)


where we have put


a = k1/2ρ2 and b = k3/4ρ1 . (3.24)


Note that


b = µa3/2 , µ =
ρ1


ρ
3/2
2


. (3.25)


Here µ plays the role of the uniformity parameter for the uniform asymptotic ex-


pansion of Y0 constructed by Kaminski,33 and it provides a measure of the distance


of the point (ρ1, ρ2) from the caustic, where µ takes the value µc = 2/
√


27.


The stable numerical computation of the modified amplitudes g0, g1 by (3.11)


and of g0, g1 and g2 through the solution of the linear system (3.19) is, in general, a


nontrivial task, since the geometrical amplitudes A± and Aj , j = 1, 2, 3 blowup on


the caustics, and their singularities must eventually cancel in the course of numerical


computation to obtain the correct field. Besides that, possible numerical errors in


locating the caustic can further introduce instabilities in the computations. The last


task is successfully dealt with using the procedure described in the next section.


4. Numerical Ray Tracing and Caustic Location


A crucial step for applying the Kravtsov–Ludwig method is to locate the caustic.


Recall that by Definition 2.3 the caustic is the locus of points where J = 0. It


follows from (2.13) that the Hamiltonian system (2.8) is not sufficient to evaluate the


Jacobian J . Differentiating this system with respect to the parameter θ we obtain


d


dt


(
dr


dθ


)
= ∇p∇xH(r,p)


dr


dθ
+∇p∇pH(r,p)


dp


dθ
, (4.1a)


d


dt


(
dp


dθ


)
= −∇x∇xH(r,p)


dr


dθ
−∇x∇pH(r,p)


dp


dθ
. (4.1b)
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Therefore, we must consider (2.8) together with (4.1a), (4.1b), i.e. the following


system of ordinary differential equations


dx


dt
= px


dpx


dt
=


1


2


∂ε


∂x
,


dz


dt
= pz


dpz


dt
=


1


2


∂ε


∂z
,


dX


dt
= P


dP


dt
=


1


2


(
∂2ε


∂x2
X +


∂2ε


∂x∂z
Z


)
,


dZ


dt
= Q


dQ


dt
=


1


2


(
∂2ε


∂z∂x
X +


∂2ε


∂z2
Z


)
,


(4.2)


where ε = n2 and


X =
dx


dθ
, Z =


dz


dθ
, P =


dpx


dθ
, Q =


dpz


dθ
,


which is subjected to the initial conditions


x(0) = x0(θ) , px(0) = p0x(θ) ,


z(0) = z0(θ) , pz(0) = p0z(θ) ,


X(0) = 0 , P (0) =
dp0x(θ)


dθ
,


Z(0) = 0 , Q(0) =
dp0z(θ)


dθ
.


(4.3)


p0x(θ) and p0z(θ) being the components of the vector p0(θ), and x0(θ), z0(θ) being


the components of r0(θ) (see Eq. (2.9)).


In the special case of a point source, the geometrical optics solution near a point


source has been constructed by Avila and Keller,2 combining the WKB method with


the boundary layer technique to deal with the peculiarities of the two-dimensional


case. For a point source located at the point (x0, z0), the appropriate initial condi-


tions are


x(0) = x0 , px(0) = n0 cos θ ,


z(0) = z0 , pz(0) = n0 sin θ ,


X(0) = 0 , P (0) = −n0 sin θ ,


Z(0) = 0 , Q(0) = n0 cos θ ,


(4.4)


where θ is the shooting angle of the ray (i.e. the polar angle at the source point


(x0, z0)), and n0 = n(x0, z0) is the value of the refraction index at the source. The


numerical solution of the above system gives us the points of the rays (x(t, θ), z(t, θ))


as well as the values of the derivatives X(t, θ), Z(t, θ). The caustic is identified as


the locus of the points (x(t, θ), z(t, θ)) where J(t, θ) = pxZ −Xpz = 0.
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The system (4.2), (4.4) cannot be solved analytically for a general refraction


index n2, although this is possible in some important special situations (see the


examples in Sec. 5). Therefore, we have to rely on direct numerical methods to


solve it.


For a given θ, that is along a fixed ray, the system (4.2), (4.3) becomes a stan-


dard initial-value problem (IVP), the solution of which can in general be approx-


imated using Runge–Kutta (RK) methods for marching with respect to t. These


methods have excellent stability properties which, as follows from several numerical


experiments,34 are extremely important for defining with accuracy the topology of


the caustics, especially when the refraction index n2 has discontinuous derivatives.


It has been observed that when the refraction index has continuous derivatives, the


Standard RK-method (SRK) gives satisfactory results. However, in the case where


n2 has discontinuous derivatives, it is necessary to apply an adaptive RK-method


(ARK), since (SRK) fails to produce an adequate solution.


For locating numerically the caustic we proceed as follows. We choose a suffi-


ciently large time interval [0, T ] and a wide sector of initial angles [θI , θF ], which


depend, in general, on the ray picture obtained by the ray tracing. For fixed positive


integers M,N and ∆t = T/N and ∆θ = (θF − θI)/M , we define the partition


ΩN,M = {(tn, θm) , tn = n∆t , θm = θI +m∆θ , n = 0, . . . , N , m = 0, . . . ,M} ,


of Ω = [0, T ]×[θI, θF ]. Then, solving the IVP in the interval 0 ≤ t ≤ T , for any fixed


θm in our partition, we find the points xmn = x(tn, θm), zmn = z(tn, θm) of the rays,


and the corresponding quantities Xmn, Zmn, Pmn, Qmn to compute the value of the


Jacobian Jmn = J(tn, θm) at the point xmn, zmn. To locate the caustic we collect


the points where |Jmn| ≤ δ, the tolerance δ being a small number, which in general


depends on the smoothness of the refraction index. In the case of a fold caustic, this


condition is satisfied by taking a sufficiently fine grid in time, that is taking large


enoughN . However, in the case of a cusp this simple approach requires an extremely


large value of N , which makes the whole computation slow and inefficient. Thus


we are led to a different approach which is based on the fact that J changes sign


whenever the ray intersects the caustic. More specifically, let tb and ta = tb + ∆t


be two points in our partition, such that J(tb) > 0 and J(ta) < 0, i.e. the ray


intersects the caustic, for some t0 in the interval (tb, ta), and J has a zero for t = t0.


At this point we can follow two different ways. Either we introduce a partition for


the interval (tb, ta) and solve again the IVP to get a more accurate approximation


of the root of J , or we apply a root-finding algorithm, like the bisection method, to


locate the zero of J up to a desired accuracy in (tb, ta). It turns out from several


numerical experiments we have done that the second way works much better in


capturing the caustics in relatively complicated stratified media.


In order to test the efficiency of our ray tracing and caustic identification code,


we have compared our results with analytical ones for various continuous profiles


n2(z) which however have discontinuous derivative at z = 0 (weak interface). For


example, in Figs. 3 and 4 we show the results of the numerical ray tracing for
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Fig. 3. Rays from a point source.
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Fig. 4. Caustic located by ARK algorithm.


the rays and the caustic generated by a point source at z = z0 in a medium with


refraction index


n2(z) =


{
1 , z ≤ 0 ,


(1 + az)−2 , |z| ≥ 0


for z0 = −1.25 and a = 0.5. In this case, SRK fails to capture any points of the


caustic, while ARK can efficiently locate the cusp shown in Fig. 4, which is clearly


suggested by the ray pattern in Fig. 3. It should be emphasized that the rays and


the caustics traced are in excellent accuracy numerically with those plotted using


their analytical parametric equations.
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5. Examples


In this section we analyze two models in order to show that the Geometrical Optics


(GO) and the Kravtsov–Ludwig (KL) solutions match each other far away from


the caustic for high enough frequency. In these examples most of the necessary


calculations for computing the modified amplitudes entering the KL formula can


be performed analytically. In this way we are able to compare the results obtained


by direct numerical computation of the modified amplitudes with those obtained


by analytical computation of these amplitudes and to ensure the accuracy of our


computations for the high frequency field.


Example 5.1. (Linear layer37). We consider the field generated by a point source


at (x, z) = (0, z0) in a stratified medium, occupying the half-space z ≤ d, with


refraction index which increases linearly off its boundary, i.e.


n2(z) = 1− z


d
, z ≤ d , d > 0 . (5.1)


In this case the system (4.2) with initial conditions (4.4) can be easily solved to


derive the parametric equations of the rays


x(t, θ) = n0t cos θ , (5.2a)


z(t, θ) = − 1


4d
t2 + n0t sin θ + z0 , (5.2b)


where n0 =
√


1− z0/d. Eliminating the parameter t from (5.2a), (5.2b) we find the


Cartesian equation of the rays


z(x, θ) = − 1


4(d− z0) cos2 θ
x2 + x tan θ + z0 (5.2c)


parametrized with the initial angle θ of the ray. In the sequel we put H = d − z0.


As the field is symmetric with respect to the z-axis, we consider only the rays in


the half-plane x > 0, i.e. those with initial angle −π/2 < θ < π/2.


The turning points of the rays are defined from the condition pz = dz/dt = 0,


which implies tud = 2dn0 sin θ (the subscript ud means that the rays turn down-


wards), and they are given by


xud = 2H sin θ cos θ (5.3a)


zud = z0 +H sin2 θ , 0 < θ < π/2 . (5.3b)


Obviously zud ≤ d for any θ ∈ (0, π/2), and therefore only the ray with angle


θ = π/2 reaches the boundary z = d.


The Jacobian (2.13) takes the form


J(τ, θ) = n0


(
1− t sin θ


2dn0


)
t , (5.4)
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and it vanishes for t = 0 which corresponds to the point source, and for


t = 2dn0/ sin θ which corresponds to the caustic. The parametric equations of the


caustic are


xc(θ) =
2H


tan θ
, (5.5a)


zc(θ) = 2H


(
1− 1


2 sin2 θ


)
+ z0 , (5.5b)


and therefore the caustic is the parabola (fold)


zc(x) = d− x2


4H
. (5.5c)


From (5.2c) we see that the rays from the source (0, z0) with angles θ± satisfying


tan θ± =
2H


x


{
1±


[
1− x2


4H2
− z − z0


H


]1/2
}
, (5.6)


pass through the point (x, z) at


t± = 2
√


2


{
1− z − z0


H
±
[
1− x2


4H2
− z − z0


H


]1/2
}1/2√


H


d
. (5.7)


The corresponding values of the Jacobian J are


J± = τ±


(
1− z − z0


2H
− τ2


±
8H2


)
, (5.8)


where τ± = n0t±. Putting


f± = 1− z − z0


2H
± R


2H
, R2 = x2 + (z − z0)2 , (5.9)


we have


τ± = 2H
(√


f+ ±
√
f−
)


(5.10)


and


J± = ∓2H
(
f+


√
f− ± f−


√
f+


)
. (5.11)


Note that in the illuminated zone we have τ± > 0 and τ+ > τ−. Also, since f+ > 0


and f+f− = 0 on the caustic, it follows that f− = 0 there. The choice of the


± indices is made according to the convention introduced in Sec. 3 for the rays


approaching or leaving the fold. Therefore, J− must be positive since the corre-


sponding ray has not intersected the caustic yet.
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The phase function is given by


Φ(x, z)− Φ(0, z0) =


∫ τ


0


n2(z(t, θ)) dt


=


∫ τ


0


(
1− 1


H


(
− t2


4H
+ t sin θ + z0


))
dt


= τ


{(
1− z − z0


2H


)
− τ2


24H2
− z0


H


}
. (5.12)


Using the initial condition Φ(0, z0) = 0, we obtain the two phases


Φ+(x, z) =
2H


3
(f


3/2
+ + f


3/2
− )− 2z0


(√
f+ +


√
f−
)
, (5.13a)


Φ−(x, z) =
2H


3
(f


3/2
+ − f3/2


− )− 2z0


(√
f+ −


√
f−
)
. (5.13b)


Using Eqs. (3.8) we compute the quantities


φ(x, z) =
2H


3
f


3/2
+ − 2z0


√
f+ , (5.14a)


ρ1(x, z) =
(
Hf


3/2
− − 3z0


√
f−
)2/3


(5.14b)


and substitute into KL formula (3.6). We observe that, in fact, ρ1 = 0 on the caustic


since f− = 0 implies Φ− = Φ+ = φ there.


In the sequel for simplicity we assume that z0 = 0 (then H = d and n0 = 1).


From (3.12) we find the geometrical amplitudes


A+ =
−iα0√


τ+(f+f−)1/4
, (5.15a)


A− =
α0√


τ−(f+f−)1/4
, (5.15b)


and using (3.11) we calculate the modified amplitudes


g0 =
−iH1/6α0√


2f
1/4
+


(
1√
τ+


+
1√
τ−


)
, (5.16a)


g1 =
iH1/6α0√


2f
1/4
+


1


f
1/2
−


(
1√
τ+


− 1√
τ−


)
. (5.16b)


It can be easily seen from (5.16a) that g0 remains finite on the caustic, and the


same holds for g1 since


1√
τ+


− 1√
τ−


=
−4H


√
f−√


τ+τ−(τ+ + τ−)
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and


g1 =
iH−1/6α0√


2f
1/4
+


−4H
√
τ+τ−(


√
τ+ +


√
τ−)


. (5.17)


In order to define the initial amplitude at the source, which should be independent


of the polar angle θ because of the local symmetry of the field, we approximate


(5.16a) and (5.16b) for small R, and we find that near the source


A− ∼
α0√
R


and Φ− ∼ R , (5.18)


while A+ remains bounded. Then, the expansion (3.9) leads to the near source


approximation


u ∼ A−eikS− ∼ α0
eikR√
R
. (5.19)


On the other hand, according to the high-frequency approximation of the point-


source field constructed in Ref. 2 (see also Ref. 9), the solution near the source has


the asymptotic expansion


u ∼ e−iπ/4


2i
√


2π


eikR√
R
. (5.20)


Comparing (5.19) and (5.20) we find


α0 =
e−iπ/4


2i
√


2π
. (5.21)


Finally, using the KL formula (3.6) we obtain the high-frequency field


u(x, z) = − 1


4
√


2


1


f
1/4
+


√
R
λ1/6ei2/3λf


3/2
+


(
1√
H


(
√
τ+ +


√
τ−)Ai


(
−λ2/3f−


)


+ iλ−1/3 4
√
H


√
τ+ +


√
τ−


Ai′
(
−λ2/3f−


))
, (5.22)


where λ = kH = kd is the dimensionless wave number. Recall that Ai(·) is the


Airy function.


In Figs. 5–7, we compare the amplitude |u| of the field predicted by the ordinary


GO (solid line) with that predicted by KL formula (5.22) (dashed line) for various


wave numbers k, in the case z0 = 0, d = 1 (then H = 1). The amplitude |u| of the


field is calculated along the ray at θ∗ = π/4 from the source, at the points where


this ray intersects the rays with angle in the interval (−∆θ + θ∗, θ∗ + ∆θ) where


∆θ = 0.45π, and are plotted as functions of the dimensionless parameter q = x/d.


As the initial angle θ moves far from θ∗, the intersection point moves away from


the caustic, and GO matches with KL solution. In both cases all the computations


have been performed numerically.


For the numerical approximation of the quantities J±,Φ±, entering the formu-


las (3.11) and (3.13) we numerically compute the modified amplitudes g0, g1 as
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Fig. 5. |u| vs q for k = 100.
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Fig. 6. |u| vs q for k = 200.


Fig. 7. |u| vs q for k = 1000.
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follows: We start by shooting two rays, with initial angles θ∗ and θ∗ + ∆θ for some


small ∆θ. Then, there is a tσ ∈ [0, T ] such that the two rays intersect each other,


and one of them has already touched the caustic while the other has not. If ∆θ


is small enough, we expect that the intersection point is very close to the caustic.


To find tσ we first solve the IVP for sufficiently large T to guarantee that the two


rays have an intersection point. Next, we find the minimal distance between the


two rays sampled on the underlying partition {tn = n∆T, n = 0, . . . , N}, where


∆T = T/N . If N is sufficiently large, then there are points t+s , t
−
s , 0 < s < N ,


on the two rays (±), respectively that are “close” to tσ. After locating t+s , t
−
s we


define a small neighborhood around these points, and we solve again the IVP there


with smaller ∆t to improve the accuracy for the intersection point. In this way we


also get much more precise values for the other quantities. Finally, for the com-


putation of the phases S± we approximate the integral formula (2.11) using the


Gauss–Legendre quadrature rule (in this example, four quadrature points give very


good approximation of the integral). The required values of n2 along the rays at


the quadrature points are obtained using cubic spline interpolation at the points


on the rays corresponding to tn.


It turned out that the numerical values for the Jacobian J± and the phase Φ±,


and thereafter of the field amplitudes, are in excellent accuracy with those obtained


using the analytical formulas (5.8) and (5.13a), (5.13b).


Note finally that in the case where we restrict the propagation domain to z ≤ h,


h < d, there is a pencil of rays shot with angle θ ∈ (arcsin
√


h−z0
H


, π/2), which are


reflected at the boundary z = h as their turning points satisfy tud > h. This pencil


is separated from the pencil of rays which are refracted downwards by a boundary


ray which is tangent to the boundary z = h and also to the caustic which in this


case is an open arc of the parabola (5.5c). The boundary ray and this arc define the


shadow boundary (cf. Ref. 32). The representation of the phase function in this case


is radically different from (3.4), and it can be derived by the methods of singularity


theory (Ref. 31, cf. Ref. 28).


Example 5.2. (Evolution of a parabolic wave front in a homogeneous medium)


The high-frequency approximation of the focusing in cylindrical abberation (see,


e.g., Ref. 35) leads to solve the eikonal equation (see also p. 172 of Ref. 46)


|∇Φ(x, z)| = 1 (5.23)


with initial data


Φ|Γ = 0 , ∂νΦ|Γ = 1 . (5.24)


Here Γ is the parabola


Γ =


{
(x, z)|z = ζ, x =


ζ2


2σ
, ζ ∈ R


}
, (5.25)


σ being a fixed positive parameter, and ν denotes the interior unit normal vector


on Γ.
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The Hamiltonian (2.7) is given in this case by H(r,p) = 1
2 (|p|2 − 1). Solving


the system (2.8) we find that the rays are given by


x(τ) =
σ√


σ2 + ζ2
τ +


ζ2


2σ
, (5.26a)


z(τ) = − ζ√
σ2 + ζ2


τ + ζ . (5.26b)


The Jacobian (2.13) is given by


J(τ, ζ) =
1


σ


√
σ2 + ζ2 − σ


σ2 + ζ2
τ , (5.27)


and accordingly the caustic is the curve


x = σ +
3σ1/3


2
z2/3 . (5.28)


Eliminating the parameter τ from Eqs. (5.26a) and (5.26b) we obtain the cu-


bic equation


ζ3 + 2σ(σ − x)ζ − 2σ2z = 0 . (5.29)


Performing the trivial change of coordinates


ξ =
ζ√
2σ


, ρ1 = −z
√
σ


2
, ρ2 = x− σ (5.30)


we rewrite the equation of the caustic (5.28) in the form (3.17), while the cubic


equation (5.29) is written in the form (3.16). Note that the coordinates ρ1, ρ2


introduced in (5.30) do not represent globally the correct (Kravtsov–Ludwig) coor-


dinates which have to be found from the solution of the nonlinear system (3.21).


Recall that the roots of the cubic equation (3.17), and therefore of (5.29), are


real in Region I (see Fig. 2), while in Region II there is only one real root, the


other two being complex. On the cusp (where the discriminant D, given by (3.17e),


vanishes) two of the three real roots coalesce to a double one, and at the beak O


all the real roots coalesce to the triple root ζ = 0. In Region I the rays go through


each point r = (x, z) at the times τj = τj(x, z), j = 1, 2, 3, originating at the points


of the initial parabola Γ corresponding to the values ζj = ζj(x, z) = ξj(ρ1, ρ2)
√


2σ.


The times τj are calculated from either (5.26a) or (5.26b) for ζ = ζj .


In order to calculate the modified amplitudes g0, g1, g2 we apply the procedure


described in Sec. 3.3 as follows.


Step 1. We compute the geometrical phases by integration along the rays, using


Φj(x, z) =


∫ τj(x,z)


0


n2(x(t, ζj), z(t, ζj)) dt (5.31a)


= τj(x, z) = (ζj − z)


√
σ2 + ζ2


j


ζj
. (5.31b)
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We also compute the geometrical amplitudes


Aj(r) =
α0(ζj)√
Jj(r)


,


where Jj(r) = J(τj , ζj) are obtained from (5.27).


In the sequel, for simplicity, we assume that α0 = 1 everywhere on Γ.


Step 2. We substitute (5.31a)–(5.31c) into (3.19) to obtain S̃(φ, ρ1, ρ2). These


phases must be equal to the geometrical phases Sj(r), given by (5.32b), so we have


to solve the nonlinear system


S̃(φ, ρ1, ρ2) = φ(r) + ρ1ξj(ρ1, ρ2)− ρ2


ξ2
j (ρ1, ρ2)


2
+
ξ4
j (ρ1, ρ2)


4


= Φj(r) , j = 1, 2, 3 , (5.32)


to derive φ(r), ρ1(r) and ρ2(r). Note that, even for this simple case, the system


(5.32) cannot be solved analytically, and so we cannot calculate explicitly the mod-


ified amplitudes.


The numerical solution of this nonlinear system is performed as follows. We


rewrite the system in the form


φ = −ρ1ξ1 + ρ2
ξ2
1


2
− ξ4


1


4
+ Φ1 , (5.33a)


ρ1(ξ1 − ξ2)− ρ2


2
(ξ2


1 − ξ2
2) +


1


4
(ξ4


1 − ξ4
2) = Φ1 − Φ2 , (5.33b)


ρ1(ξ2 − ξ3)− ρ2


2
(ξ2


2 − ξ2
3) +


1


4
(ξ4


2 − ξ4
3) = Φ2 − Φ3 . (5.33c)


Using the formulas


ξ1 + ξ2 + ξ3 = 0 , ξ1ξ2ξ3 = −ρ1 , ξ1ξ2 + ξ2ξ3 + ξ1ξ3 = ρ2 , (5.34)


connecting the roots of the cubic equation (3.16) with the coefficients ρ1, ρ2, we


write Eqs. (5.33b), (5.33c) as a system with respect to ξ2, ξ3 only, the roots of which


correspond to the rays which coalesce as we approach the caustic. This system reads


as follows:


F (ξ2, ξ3) = −ξ4
3/4− 2ξ3


2ξ3 − 3ξ2ξ
3
3/2− 3ξ2


2ξ
2
3 = Φ1 − Φ2 , (5.35a)


G(ξ2, ξ3) = −ξ4
2/4 + ξ4


3/4 + ξ3
2ξ3/2− ξ3


3ξ2/2 = Φ2 − Φ3 . (5.35b)


The system (5.35a), (5.35b) is solved by Newton’s method assuming as conver-


gence criterion the absolute distance between successive approximations of the roots


to be less than a given tolerance ε which in this particular example is ε = 10−12.


Note that as we approach the beak of the cusp, the Jacobian of the system


(5.36a), (5.36b) goes to zero as ξ2, ξ3 go to zero with the same order with respect


to the distance from the beak. However, since (Φ2 − Φ3) also goes to zero and
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(Φ2−Φ3)/G(ξ2, ξ3) remains bounded away from zero, the computation is stable up


to distances of the order 10−10 from the beak (the value of the uniformity parameter


µ at this distance is µ = 0.312 499 961 215 455 2, while on the caustic it has the value


µ = 2/
√


27 = 0.384 900 18 . . .).


Step 3. Finally we substitute φ(r), ρ1(r), ρ2(r) found by Step 3 into (5.31a)–(5.31c),


to get ξj(r), and we compute the modified amplitudes by solving explicitly the linear


system (3.18), i.e.


g0(r) + ξj(r)g1(r) + ξ2
j (r)g2(r) = aj(r)


(
(∂2
ξS(r, ξj(r)))


)1/2
= Aj(r)(3ξ2


j (r) − ρ2(r))1/2 , j = 1, 2, 3 . (5.36)


Then the field is evaluated using formula (3.22).


In Figs. 8, 9 and 10, we compare the amplitudes of the field predicted by GO


with that predicted by KL formula for relatively high frequencies (k = 100) along


the three rays passing through the point (x0, z0) = (1.7937,−0.382) inside the cusp


(5.28) with σ = 1. We compute the amplitudes as functions of |z|. The solid line


represents the GO solution which blows up along each ray as we approach the


caustic. The dashed line represents the KL solution when the Pearcey integral is


computed using the uniform asymptotic expansion by Kaminski,33 while the dotted


line represents the KL solution when we compute the Pearcey integral by direct


numerical integration. In the latter case the numerical integration fails for large


enough k|z|. However, uniform asymptotics and numerical integration give almost


identical results for a satisfactory range of |z| for each k, giving thus enough evidence


that the asymptotic expansion is accurate for large values of k|z|. Obviously GO


tends to match the KL solution far away from the caustic. The distance from


the caustic for satisfactory matching depends, in general, on the particular wave


number k.


Fig. 8. |u| vs |z| along ray 1.
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Fig. 9. |u| vs |z| along ray 2.
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Fig. 10. |u| vs |z| along ray 3.


Appendix A. Lagrangian Manifold and Phase Functions


Consider the partial differential equation


P (x, k−1Dx)u(x, k) = 0 , x ∈ X (A.1)


where k is a large parameter and P is the differential operator


P (x,Dx) =
m∑
|α|=0


cα(x)Dα
x , (A.2)


with α = (α1, . . . , αm), αj being non-negative integers, |α| = α1 + · · · + αm,


Dx = (1
i
∂x1 , . . . ,


1
i
∂xm), and Dα


x = (1
i
∂x1)α1 · · · (1


i
∂xm)αm , i =


√
−1. In general,


X can be an m-dimensional smooth manifold, but for simplicity we can think of X
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as Rm. The function


P (x, p) =
m∑
|α|=0


cα(x)pα , (A.3)


where p = (p1, . . . , pm) is called the symbol of the differential operator (A.2).


Substituting the FAS


u(x, k) = eikΦ(x)
∞∑
`=0


(ik)−`A`(x) , (A.4)


into (A.1) and separating powers of k, and putting p = ∇Φ(x), we obtain the


Hamilton–Jacobi equation


H(x, p) = 0 , (A.5)


where H(x, p) is the principal symbol of the operator P . In the case, for example,


of the Helmholtz operator P = −∆ +k2n2(x), the Hamilton–Jacobi equation (A.5)


is the usual eikonal equation |∇Φ|2 = n2.


The bicharacteristics of (A.2) are given by the Hamiltonian system


dx


dt
= ∇pH ,


dp


dt
= −∇xH , (A.6)


with initial data


x(0, u) = x0(u) , p(0, u) = p0(u) , u ∈ U , (A.7)


U being an open subset of Rm−1. Suppose that the initial data are such that


H(x0(u), p0(u)) = 0 (compatibility condition for the Cauchy problem (A.6), (A.7)),


and define Φ0(u), u ∈ U , by p0(u) dx0(u) = dΦ0(u).


Let LH be the Hamiltonian vector field


LH =
∂H


∂pi


∂


∂xi
− ∂H


∂xi


∂


∂pi
. (A.8)


Obviously LHH = 0, and therefore LH is tangent to H−1(0) in the cotangent


space T ∗X. The integral curves of LH in H−1 are called bicharacteristic strips of


the hypersurface H−1(0), and because H−1(0) is the characteristic variety of the


operator P we call these integral curves the bicharacteristic strip for P . The images


in X of these curves under the projection π : (x, p)→ x from T ∗X into X are called


bicharacteristic curves for P (rays).


A smooth submanifold Λ of T ∗X is locally of the form {(x,∇Φ(x)) ∈ T ∗X;


x ∈ D}, that is the graph of ∇Φ for some smooth real-valued function Φ on an


open subset D of X, if and only if it satisfies the following geometric conditions


dim Λ = m (A.9a)


Λ is transversal to the fibers x = const. in T ∗X (A.9b)


σ(ζ, η) = 0 if (ζ, η) ∈ T(x,p)Λ , (A.9c)
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where σ is the canonical two-form on T ∗X, given by


σ(ζ, η) =
m∑
l=1


(ζ2lη1l − ζ1lη2l) , (A.10a)


in local coordinates


ζ = (ζ1, ζ2) , η = (η1, η2) . (A.10b)


The relations (A.9a) and (A.9b) mean that Λ is locally the graph {(x, p(x)) ∈
T ∗X;x ∈ D} of some one-form p, and then (A.9c) express the fact that dp = 0


which locally implies that p = dΦ for some function Φ. A submanifold Λ satisfying


(A.9c) is called isotropic. If, in addition, its dimension is equal to m (maximal),


then it is called a Lagrangian submanifold in T ∗X.


Therefore, finding local solutions Φ of the Hamilton–Jacobi equation (A.5) is


equivalent to finding pieces of Lagrangian manifolds Λ which are transversal to the


fibers on which H = 0.


It can be shown that if Λ ⊂ H−1(0) in T ∗X, then LH is tangent to Λ and


therefore Λ is the union of parts of bicharacteristic strips. Conversely, if Λ0 is


an (m − 1)-dimensional smooth isotropic submanifold of T ∗X, Λ0 ⊂ H−1(0) and


LH is transversal to Λ0, then the local flow-out Λ of Λ0 along a bicharacteris-


tic strip is a Lagrangian manifold in H−1(0), and locally the only one containing


Λ0. Therefore, assuming that LH is nowhere tangent to the initial submanifold


Λ0 = {(x0(u), p0(u)), u ∈ U} (which means that the Cauchy problem is locally well-


posed), we construct the phase function Φ = Φ(x) integrating the equation


dΦ̆


dt
= p · ∇pH , (A.11)


along the rays x = x(t, u), with initial condition Φ̆(0, u) = Φ0(u), and then, if pos-


sible, changing from the coordinates (t, u) to x, and setting Φ(x) = Φ̆(t, x−1(t, x)).


This procedure fails in the following cases:


Case 1: If H(x0, p0) = ∇H(x0, p0) = 0 at a certain point (x0, p0) in Λ0 which makes


even a local solution impossible.


Case 2: If following a bicharacteristic strip the tangent space TΛ of the Lagrangian


manifold “turns vertically”, and it is not transversal to the fibers (i.e. the condition


(A.9b) is not satisfied), even if ∇H 6= 0 all the time. This case corresponds to the


formation of caustics and there the projections of the bicharacteristic strips on X


get singularly concentrated.


Case 3: If Λ itself has singularities, e.g. self-intersections.


In all these cases it is not possible to construct global asymptotic expansions by


means of the formal ansatz (A.4) because it is not possible to construct the phase


function by the above described procedure. However, a phase function parametriz-


ing the Lagrangian manifold Λ still can be found by appealing to the methods of


singularity theory. More precisely, the following proposition holds.
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Proposition A.1. (Ref. 26) Let π : Λ → X the projection of Λ onto X, and


assume that dπ has rank m − ν at the point (x0, p0). Then, there exists a phase


function S = S(x, ζ0) on X×Rν, such that the critical set Cζ = {(x, ζ) : dζS = 0} is


an m-dimensional submanifold of X×Rν and the map Cζ → T ∗X, (x, ζ) 7→ (x, dxS)


maps a neighborhood of (x0, 0) diffeomorphically onto a neighborhood of (x0, p0)


in Λ.


Note that the dimension of the phase variable ζ, i.e. the rank m − ν of the


projection π : Λ→ X, is equal to the nullity of the Hessian D2S.


Then, we can represent the solution as a compound asymptotic generated by


the Lagrangian distribution associated with the Lagrangian pair (Λ, S) (Chap. VII


of Ref. 26), i.e. as an oscillatory integral of the form


u(x, k) =


(
ik


2π


)ν/2 ∫
Z


eikS(x,ζ)A(x, ζ, k) dζ , Z ⊂ Rνζ , (A.12)


where


A(x, ζ, λ) ∼
∞∑
l=0


Al(x, ζ)k
µ−l , (A.13)


µ being a positive real constant.


The construction of global asymptotic solutions starting from the oscillatory in-


tegral (A.12) requires the transformation of the phase function S(x, ζ) to a canonical


form by changing the fiber variable ζ ∈ Z, so that to be able to apply stationary-


phase type lemmas for the transformed integral. In the general case such a trans-


formation is provided by the techniques of singularity theory, but the presentation


of any general results in this direction goes beyond the purpose of this Appendix.


In the special case of simple caustics (of the type Aλ, Sec. 17 of Ref. 7), including


fold (λ = 2) and cusp caustics (λ = 3), it is enough to take ν = 1, and then the


following representation theorem holds.


Theorem A.1. (Ref. 26) Let X be a neighborhood of the origin of Rm and


S = S(x, ζ) a phase function on X × R. Suppose that at the origin


∂lS


∂ζl
= 0 for l = 1, . . . , q − 1 and


∂qS


∂ζq
6= 0 . (A.14)


Then there exists a function ξ = ξ(x, ζ) and functions of x : f0(x), . . . , fq−2(x) such


that ξ(0, 0) = 0 and f0(0), . . . , fq−2(0) = 0,


∂ξ


∂ζ
6= 0 at 0 (A.15)


and


S(x, ζ) = f0 + f1ξ + · · ·+ fq−2ξ
q−2 +


ξq


q
+ ε(x, ζ)


with ε(x, ζ) vanishing to infinite order at x = 0.
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