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Abstract— Computational models for the solution
of the two-dimensional shallow water equations
(SWEs) are presented. We describe a generalized class
of first and second order in space and time relaxation
schemes for the SWEs in two dimensions. We extend
in 2D classical relaxation models combined with
Runge-Kutta time stepping mechanisms as to include
also a forcing source term. To illustrate and validate
the capabilities of the proposed models, results are
presented for various well known test problems with
or without the source term present.


I. I NTRODUCTION


The mathematical model used here consists of


the 2D SWEs, in their classical form, obtained from


the incompressible flow continuity equation and


the momentum balance Navier-Stokes equations,


written in its physical conservative form as a single


vector equation


Ut+F(U)x+G(U)y = S(U), (x, y) ∈ Ω, (1)


where


U =
(


h, hu1, hu2


)T


=
(


h, q1, q2,
)T


,


S(U) =
(


0,−gh
∂Z


∂x
(x, y),−gh


∂Z


∂y
(x, y),


)T


,


F(U) =
(


q1,
q2
1


h
+


1
2
gh2,


q1q2


h


)T


,


G(U) =
(


q2,
q1q2


h
,
q2
2


h
+


1
2
gh2


)T


.


System (1) describes the flow at timet ≥ 0
at point (x, y) ∈ Ω, whereh(x, y, t) ≥ 0 is the


height of the fluid at point(x, y) at time t,Ω de-


notes the projection of the domain occupied by the


fluid onto thexy plane andZ(x, y) is the bottom


height function. The vector field(u1, u2) is the


average horizontal velocity, andg the gravitational


acceleration. Finally, the conservative variableq


(discharge) is given by(q1, q2) = (hu1, hu2). In


the homogeneous case, the system is equivalent to


that of isentropic Euler system. However due to the


presence of the source term the properties of the


system change substantially. The above system is


quite simple in the sense that only the topography


of the bottom in taken into account, but other terms


could be also added in order to include effects such


as friction on the bottom and on the surface as well


as variations of the channel width.


Substantial effort has been devoted over the past


20 years to the development of computational tech-


niques for fluid flow simulation, in particular in the


field of finite volumes for systems of conservation


laws. More recently many methods were proposed


for the numerical approximation of solutions of


hyperbolic conservations laws with source terms.


There has been a growing trend in favor of Riemann
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or Godunov-type based methods constructed within


the finite volume framework, see for example [11].


Such methods are noted for their good conservation


and shock capturing capabilities. Two dimensional


Riemann solvers do not appear to have matured


enough to be used in the construction of multi-


dimensional schemes. Even if such solvers were


available the resulting schemes are likely to be


too complicated for common use. The purpose of


the present work is to report on the applicability


of recently developed relaxation algorithms for


shallow flows, introduced in [4] in one-dimension,


for computing solutions in two-dimensions. We use


finite volume shock capturing spatial discretizations


that are Riemann solver free, while a Runge–Kutta


method provides the time stepping mechanisms.


The proposed schemes combine simplicity and


high efficiency. Their performance in various test


problems shows that provide a reliable alternative


for shallow water wave computations in one and


two dimensions. Numerical results are presented


for several test problems with or without the source


term present. The presented schemes are verified by


comparing the results with documented ones.


II. RELAXATION SYSTEMS FOR THE2D SWES


Relaxation systems for the 2D SWEs are moti-


vated by the general relaxation systems presented


in [6] and the relaxation systems introduced in [4]


for the 1D SWEs. Following from the above we


write a relaxation system for the SWEs replacing


the conservation law (1) by a larger linear system,


setting


u =






h,


q1,


q2



 , v =






v1,


v2,


v3



 , w =






w1,


w2,


w3



 ,


system (1) can be written as


ut + vx + wy = S(u),


vt + C2ux = −1
ε
(v − F(u))


wt + D2uy = −1
ε
(w −G(u)),


(2)


whereC2,D2 ∈ R3×3 are positive diagonal ma-


trices, e.g.C2 = diag(c2
1, c


2
2, c


2
3). System (2) can


now be further reformulated as,




u
v
w






t


+






0 I 0
C2 0 0
0 0 0










u
v
w






x


+






0 0 I
0 0 0


D2 0 0










u
v
w






y


=


=






S(u)
− 1


ε (v − F(u))
− 1


ε (w −G(u))



 . (3a)


We also consider the following variant, of the


above relaxation system, based on a novel approach


presented in [4] for the 1D case, written in vector


form as




u
v
w






t


+






0 I 0
C2 0 0
0 0 0










u
v
w






x


+






0 0 I
0 0 0


D2 0 0










u
v
w






y


=


=






0
− 1


ε (v − F(u))− 1
ε S̃(u)


− 1
ε (w −G(u))− 1


ε


˜̃S(u)



 .


(3b)


where


S̃(u) =






0
− ∫ x


gh(s, y)∂Z
∂x (s, y)ds


0











3


and


˜̃S(u) =






0
0


− ∫ y
gh(x, s)∂Z


∂y (x, s)ds



 .


The original conservation law, in both formula-


tions, has now been replaced by a linear hyperbolic


system with a relaxation source term which rapidly


drivesv → F(u) andw → G(u) in the relaxation


limit ε → 0. In some cases it can be shown analyt-


ically that solutions of the linear system approach


solutions to the original conservation law.


A general necessary condition for such con-


vergence is that thesubcharacteristic conditionis


satisfied. For systems (3) we require that for the


eigenvaluesλi of F′(u) and eigenvaluesµi of


G′(u) the following condition to be satisfied


λ1


c1
+


λ2


c2
+


λ3


c3
+


µ1


d1
+


µ2


d2
+


µ3


d3
≤ 1. (4)


By doing so we insure that the characteristic speeds


of the hyperbolic part of (3a) or (3b) are at least


as large as the characteristic speeds of the orig-


inal problem. Hence, by choosing the constants


c1, c2, c3 and d1, d2, d3, appropriately, so that the


corresponding subcharacteristic condition hold true,


in the relaxation limit ε → 0 we recover (1),


for both relaxation systems (3a) and (3b). See for


example, [9], [10], [8], [7] for discussions of this


condition and convergence properties.


III. SEMI-DISCRETE RELAXATION SCHEMES


We consider the classical second order MUSCL-


TVD scheme for the spatial discretization. For


brevity we present the semi-discrete schemes for


system (3b). To discretize the system of equations,


a spatially 2D domain of integration, divided into


cells (i, j), is assumed, with a uniform grid widths


in each direction,∆x = xi+ 1
2
− xi− 1


2
, ∆y =


yi+ 1
2
− yi− 1


2
and time step∆t = tn+1− tn, n =


0, 1, 2, . . .. The approximate solution, denoted as


the discrete valueun
ij , is the approximate cell


average of the variableu in the cell(xi+ 1
2
, xi− 1


2
)×


(yi+ 1
2
, yi− 1


2
) at timet = tn. The approximate point


value ofu at (x, y) = (xi+ 1
2
, yj+ 1


2
) at timet = tn


is denoted byun
i+ 1


2 ,j+ 1
2
.


We start by considering the following one-step


conservative system for the homogeneous case


∂


∂t
uij +


1
∆x


(vi+ 1
2 ,j − vi− 1


2 ,j)


+
1


∆y
(wi,j+ 1


2 , −wi,j− 1
2
) = 0, (5a)


∂


∂t
vij +


1
∆x


C2(ui+ 1
2 ,j − ui− 1


2 ,j) =


− 1
ε
(vij − F(uij)), (5b)


∂


∂t
wij +


1
∆y


D2(ui,j+ 1
2
− ui,j− 1


2
) =


− 1
ε
(wij −G(uij)). (5c)


The linear hyperbolic part of the (5) has two


Riemann invariants in each direction,v ± Cu in


the x−direction andw ±Du in the y−direction,


associated with the characteristic fields±C and


±D respectively. To construct a second order accu-


rate in space scheme, the MUSCL piecewise linear


interpolation is applied to thek−th component of


v ±Cu, which gives respectively:


(v + cku)i+ 1
2 ,j = (v + cku)ij +


1
2
∆xsx,+


ij ,


(v − cku)i+ 1
2 ,j = (v − cku)i+1,j − 1


2
∆xsx,−


i+1,j ,


(w + dku)i,j+ 1
2


= (w + dku)ij +
1
2
∆ysy,+


ij ,


(w − dku)i,j+ 1
2


= (v − dku)i,j+1 − 1
2
∆ysy−


i,j+1,


(6)


whereu, v are thek−th (1 ≤ k ≤ 3 for the 2D


SWEs) components ofv,u and w respectively,


with s the slopes in the(i, j)−th cell defined as


sx,±
ij =


1
∆x


(vi+1,j±ckui+1,j−vij∓ckuij)φ(θx,±
ij )
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with


θx,±
ij =


vij ± ckuij − vi−1,j ∓ ckui−1,j


vi+1,j ± ckui+1,j − vi,j ∓ ckuij
,


and


sy,±
ij =


1
∆y


(wi,j+1±dkui,j+1−wij∓dkuij)φ(θy,±
ij )


with


θy,±
ij =


wij ± dkuij − vi,j−1 ∓ dkui,j−1


wi,j+1 ± dkui,j+1 − vi,j ∓ dkuij
,


where φ is a limiter function. There are several


options on choosing a limiter function. Some of the


most popular ones are, the MinMod (MM) limiter


φ(θ) = max(0,min(1, θ)), the Superbee (SB)


limiter φ(θ) = max(0,min(2θ, 1),min(θ, 2)),
the VanLeer (VL) limiter φ(θ) = |θ|+θ


1+|θ| , and


the Monotonized Central (MC) limiterφ(θ) =
max(0,min((1 + θ)/2, 2, 2θ)).


Following from (6) we get


ui+ 1
2 ,j =


1
2
(uij + ui+1,j)− 1


2ck
(vi+1,j − vij)


+
∆x


4ck
(sx,+


ij + sx,−
i+1,j),


vi+ 1
2 ,j =


1
2
(vij + vi+1,j)− ck


2
(ui+1,j − uij)


+
∆x


4
(sx,+


ij − sx,−
i+1,j),


(7)


ui,j+ 1
2


=
1
2
(uij + ui,j+1)− 1


2ck
(wi,j+1 − wij)


+
∆y


4dk
(sy,+


ij + sy,−
i,j+1),


wi,j+ 1
2


=
1
2
(wij + wi,j+1)− dk


2
(ui,j+1 − uij)


+
∆y


4
(sy,+


ij − sy,−
i,j+1).


(8)


Then the second order (in space) semi-implicit


relaxation scheme is given componentwise by


∂


∂t
uij +


(vi+1,j − vi−1,j)
2∆x


− ck(ui+1,j − 2uij + ui−1,j)
2∆x


− dk(wi,j+1 − 2wij + wi,j−1)
2∆y


+
1
4
(sx,+


ij − sx,−
i+1,j − sx,+


i−1,j + sx,−
ij )


+
1
4
(sy,+


ij − sy,−
i,j+1 − sy,+


i,j−1 + sy,−
ij ) = 0,


∂


∂t
vij +


c2
k(ui+1,j − ui−1,j)


2∆x


− ck(vi+1,j − 2vij + vi−1,j)
2∆x


+
ck


4
(sx,+


ij + sx,−
i+1,j − sx,+


i−1,j − sx,−
ij ) =


− 1
ε
(vij − Fk(uij))− 1


ε
S̃k(uij),


∂


∂t
wij +


d2
k(ui,j+1 − ui,j−1)


2∆y


− dk(wi,j+1 − 2wij + wi,j−1)
2∆y


+
dk


4
(sy,+


ij + sy,−
i+1,j − sy,+


i−1,j − sy,−
ij ) =


− 1
ε
(wij −Gk(uij))− 1


ε
˜̃
Sk(uij),


(9)


with S̃k,
˜̃
Sk, Fk, Gk being thek−th components of


S̃,
˜̃S,F andG respectively. Notice that in the case


the slopes± = 0 or φ = 0, the MUSCL scheme


(9) reduces to a first orderupwind scheme.


IV. FULLY DISCRETE SCHEMES


In this section we present the time discretization


of the semi-discrete relaxation schemes applied to


the SWEs. We apply the implicit Runge-Kutta split-


ting scheme introduced in [6] as the time marching


mechanism to advance the solution by one time


step∆t. The splitting treats, alternatively, the stiff


source terms implicitly in two steps and the convec-


tion terms with two explicit steps. For the source


term application, corresponding to system (3b), and


temporarily dropping the subscript indices, given
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{un,vn wn}, then {un+1,vn+1wn+1} are com-


puted by


un,1 = un,


vn,1 = vn +
∆t


ε
(vn,1 − F(un,1)) +


∆t


ε
S̃(un,1),


wn,1 = wn +
∆t


ε
(wn,1 −G(un,1)) +


∆t


ε
˜̃S(un,1);


u(1) = un,1 −∆t(∆x
+vn,1 + ∆y


+wn,1),


v(1) = vn,1 −∆tC2∆x
+un,1,


w(1) = wn,1 −∆tD2∆y
+un,1;


un,2 = u(1),


vn,2 = v(1) − ∆t


ε
(vn,2 − F(un,2))


− 2∆t


ε
(vn,1 − F(un,1))


− ∆t


ε
S̃(un,2)− 2∆t


ε
S̃(un,1),


wn,2 = w(1) − ∆t


ε
(wn,2 −G(un,2))


− 2∆t


ε
(wn,1 −G(un,1))


− ∆t


ε
˜̃S(un,2)− 2∆t


ε
˜̃S(un,1);


u(2) = un,2 −∆t(∆x
+vn,2 + ∆y


+wn,2),


v(2) = vn,2 −∆tC2∆x
+un,2


w(2) = wn,2 −∆tD2∆y
+un,2;


un+1 =
1
2
(un + u(2)),


vn+1 =
1
2
(vn + v(2)),


wn+1 =
1
2
(wn + w(2)),


where the discretization operators∆ are defined as


∆x
+pij =


1
∆x


(pi+ 1
2 ,j − pi− 1


2 ,j),


∆y
+pij =


1
∆y


(pi,j+ 1
2
− pi,j− 1


2
).


Note that, using the above schemes neither linear


algebraic equation nor nonlinear source terms arise


and the space time discretizations are treated sep-


arately. In addition both first and second order re-


laxation schemes are stable under aCFL condition


max
(


(max
i


ci)
∆t


∆x
, (max


i
di)


∆t


∆y


)
≤ 1


2
(12)


V. NUMERICAL TESTS AND RESULTS


In this section we present some classical numer-


ical tests and results that demonstrate the perfor-


mance of the relaxation schemes presented for the


2D SWEs. First two typical examples of 2D dam-


break problems are solved and discussed.


We choose the initial conditions for all the re-


laxation systems presented above asu(x, y, 0) =
u0(x, y), v(x, y, 0) = v0(x, y) ≡ F(u0(x, y)),
w(x, y, 0) = w0(x, y) ≡ G(u0(x, y)). In the


small relaxation limit (ε → 0) the relaxation


systems presented here satisfy the so calledlocal


equilibrium (v = F(u) and w = G(u), see


[6], and by choosing the above forv and w we


avoid the introduction of an initial layer through


the relaxation system. For the boundary conditions


given the physical boundary conditions,ub, that


should imposed for each problem (transmisive or


reflective in the following test problems), then we


setvb = F(ub) andwb = G(ub) as to avoid the


introduction of artificial boundary layers.


The choices ofci, di, i = 1, 2, 3 in all the


numerical tests are based on rough estimates of


the eigenvalues of the original SWEs, as to satisfy


the subcharacteristic condition (4). Other choices


can be made as long as numerical stability is


maintained. It should be noted here that larger


values for theci, di, usually add more numerical


viscosity, so for accuracy reasons it is desirable to


have theci, di as small as possible.


The relaxation parameterε should be small with


respect to the time step and space mesh length,


that is ∆t À ε ∆y, ∆x À ε. Again here,ε plays


the role of viscosity coefficient so more numerical


diffusion will be added for relatively larger values


of ε.







6


A. 2D Partial Dam-Break


The first two-dimensional hypothetical problem


is the one presented in [5]. For this problem a


dam, located in the center of the region, is assumed


to partially fail instantaneously. The water depth


upstream of the dam ishu = 10m and downstream


is assumed to be eitherhd = 5, 0.1, 0m (dry). The


computational domain is a200m × 200m region


which has been subdivided into41 × 41 square


grid. The breach is75m in length, which has


distances of 30m from the left bank and 95m from


the right. At the instant of breaking of the dam,


water is released through the breach, forming a


positive wave (bore) propagating downstream and


a negative wave (rarefaction) spreading upstream.


The results forhd = 5m and aftert = 0.72s
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Fig. 1. Water depth for the partial dam-break flow (hd = 5m)
at t = 0.72s computed with the upwind relaxation scheme.


are shown in Figs 1, 2, and 3 in terms of water


depth, contour of depth and velocity field. The


computational parameters used wereε = 1.E − 6
and c1 = 10, c2 = 6, c3 = 11, d1 = 10, d2 =
5, d3 = 11. The difference between the first order


upwind scheme and the MUSCL can be clearly


seen. The SB limiter has been shown (see Fig. 3) to


exhibit sharper resolution of discontinuities, since
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Fig. 2. Water depth and Depth contours with velocity field for
the partial dam-break flow (hd = 5m) at t = 0.72s computed
with the MUSCL relaxation scheme (MM limiter).


it does not reduce the slope as severely as MM near


a discontinuity.


In Fig. 4 the results forhd = 0.1m are presented


using the VL limiter. When there is a finite water


depth downstream, a shock front always exists. This


is not the case for the dry bed case. In the dry


bed case the bore propagates much faster and at


time t = 7.2s has reached the boundary of the


computational domain boundary. There is also a


significant difference in the velocity vector field


in the two cases. In the wet bed cases although


there is a finite water depth downstream the flow
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Fig. 3. Water depth and Depth contours with velocity field for
the partial dam-break flow (hd = 5m) at t = 0.72s computed
with the MUSCL relaxation scheme (SB limiter).


velocity vanishes. In the dry case, the water depth


is extremely small. In the numerical scheme,h and


q are the calculated variables. Machine precision


will produce finite values for the dependent variable


u, calculated asu = q/h, even though to machine


precisionh is considered as zero. These results can


be seen in Fig. 5 for a81 × 81 square grid. All


the results presented here are very similar to others


found in the literature, see for example [1],[12]


B. Circular 2D Dam-Break


Another typical example is based on the hypo-


thetical test case presented in [1]. It involves the
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Fig. 4. Water depth and Depth contours with velocity field
for the partial dam-break flo w (hd = 0.1m) at t = 0.72s


compute ed with the MUSCL relaxation scheme (VL limiter
andc1 = c2 = 12, c3 = 15, d1 = d3 = 12, d2 = 6).


breaking of a circular dam, and it is an important


test example for the analysis and performance of


the presented algorithms when solving complex


shallow flow problems. Initially, the physical model


is that of two regions of still water separated by


a cylindrical wall (with radius 11m) centered in a


50 × 50m square domain. The water depth within


the cylinder is10m and 1m outside. The wall is


then assumed to be removed completely and no


slope or friction is considered, then the circular


dam-break waves (rarefaction waves) will spread


and propagate radially and symmetrically as the
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Fig. 5. Depth contours and velocity field for the partial dam-
break flow (hd = 0m) at t = 0.72s computed with the MUSCL
relaxation scheme ( VL limiter andc1 = c2 = 12, c3 =


15, d1 = d3 = 12, d2 = 10).


water drains from the deepest region and there is


a transition from subcritical to supercritical flow.


The results aftert = 0.69s are shown in Figs 6,


7, again in terms of water depth, contour of depth


and velocity field. The computational parameters


used wereε = 1.E − 6 and c1 = c3 = 12, c2 =
7, d1 = d3 = 12, d2 = 7. It can be clearly seen


that the waves spread uniformly and symmetrically,


with the radial symmetry slightly distorted by the


effects of the grid due to the inability to represent


a circle on a square grid, but otherwise the solution


is very accurate and agrees quite well with those


presented in [1], [12] and other works.


The case of an initially dry bed outside the


cylinder is also considered here and the results are


presented in Fig. 8 It can be seen that no bore


forms, instead a rarefaction wave extends into the


dry region. The scheme is capable of handling the


dry bed problem. The computational parameters


used for this case wereε = 1.E − 6 and c1 =
c3 = 12.5, c2 = 10, d1 = d3 = 12.5, d2 = 10.
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Fig. 6. Water depth and Depth contours with velocity field at
t = 0.69s for the circular dam-break flow computed with the
upwind relaxation scheme
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Fig. 7. Depth contours and velocity field att = 0.69s for the
circular dam-break flow computed with the MUSCL relaxation
scheme and the SB limiter


C. Steady flow over a hump


As a problem with a source term present we
consider the academic test case of a 1m× 1m
square pool with a symmetric bump situated at
the center presented in [2]. The pool is assume
totally closed by solid vertical walls. The bump is
mathematically defined by


Z = max


"
0,


1


4
− 5


 �
x− 1


2


�2


+


�
y − 1


2


�2
!#


.


Initial conditions covering totally the bump are


h + Z = 0.5m,u1 = u2 = 0m/s. The flow


evolves during 60s and the initial steady state
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Fig. 8. Depth contours and velocity field att = 0.69s for the
dry bed circular dam-break flow computed with the MUSCL
relaxation scheme and the VL limiter


must be preserved. The results for scheme (3b)


(that was proven in [4] more accurate for similar


1D problems when compared to scheme (3a)) are


presented in Fig. 9. A uniform51×51grid was used


and the computational parameters wereε = 1.E−8
and c1 = c3 = 2.5, c2 = 0.5, d1 = d3 = 2.5, d2 =
0.5. The steady state is correctly maintained, with


a small distortion at the point where the bump


geometry is discontinuous my construction. The


overall equilibrium is conserved with no unphysical


velocities appearing in the results that would alter


the steady state.
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Fig. 9. Water depth over a bump and depth contours with
velocity field, for a steady flow over a bump


VI. CONCLUSIONS


In the present work a generalization of relaxation


schemes have been presented in order to compute


shallow water flows in 2D with and without a


topography source term present. The main feature


of the schemes is their simplicity and robustness.


Finite volume shock capturing spatial discretiza-


tions, that are Riemann solver free, have been used


providing accurate shock resolution. A new way to


incorporate the topography source term in 2D was


applied with the relaxation model and only small


errors were introduced while preserving steady


states. The results also demonstrate that relaxation


schemes are accurate, simple, efficient and robust


and can be of practical consideration.
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