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Abstract – The statistics of fracture precursors in the creep-damage process are studied on
the basis of a proposed dry, non-linear viscoelastic fiber bundle model. This model permits
the occurrence of damage avalanches consisting of simultaneous rupture of several fibers. The
avalanche size distribution for the global-load sharing rule follows a power law asymptotic behavior
analogous to that of static fracture (Kloster M. et al., Phys. Rev. E, 56 (1997) 2615). The
statistical behavior of the same distribution, however, for the local-load sharing rule is different
from that of the static fracture. Moreover, power law asymptotics apply to times between successive
bursts with a universal exponent close to unity —an exponent close to that observed in fracturing
processses occuring at vastly different time and space scales.
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Introduction. – Statistical aspects of rupture in
random materials have received increasing attention due
to their richness in physical and mathematical phenomena.
It is still, however, an open problem to embed material
fracture into the general framework of statistical physics.
Among the fundamental problems that statistical physics
face is to understand the analogy of material failure
with thermodynamic phase transitions and critical
phenomena [1]. This field has attracted the attention
of physicists due to the existence of power laws and
fractals expressing the self-organization of the rupture
process. The acoustic emission (AE) recorded in stressed
materials under constant stress or constant strain rate
loading exhibits a wealth of such “critical” behaviors. In
particular, the temporal, spatial and size distributions of
the acoustic emission (AE) events follow a power-law-like
statistics [2,3]. Such a power law scaling is observed
also in earthquakes [4,5], despite the vastly different
scales involved, and can be considered indicative of self-
similarity in the AE and earthquake source process [6].
AE is the consequence of micro-cracks forming and
propagating in the material and thus provide an indirect
measure of the damage accumulated in the system. For
this reason, AE is often used as a non-destructive tool in
material testing and evaluation.
Conceptually simple models are an attractive tool for

the needs of the statistical-physics approach. While simple
models often fail to reproduce the complex phenomenol-
ogy observed, they can nevertheless provide meaningful

insights. Moreover, qualitative features of such models
may be amenable to experimental testing [7,8]. The earli-
est and simplest models in this respect are the fiber
bundle models (FBMs) [9]. In the case of fast fracture,
the classic work is that of Daniels [10] while in the case
of time-dependent breakdown the seminal work is that
of Coleman’s [11]. Recently, creep observations have been
modeled in terms of novel FBMs with viscoelastic fibers [7,
12,13]. These models, however, do not embody the classi-
cal static feature of instant multiple cracks; they resem-
ble the classical time-dependent FBMs in this respect. In
the static case burst avalanches occur as load redistribu-
tion following fiber failures may cause step load increases
on surviving fibers above their stress threshold. In the
time-dependent models, failure probability, controlled by
lifetime (in the classical time-dependent FBMs) or strain
thresholds (in the viscoelastic FBMs), remains continu-
ous under these step increases in fiber load; fibers break
one by one. This is not the case however for the time-
dependent FBMs with thermal noise also proposed for the
study of the creep behavior of disorder systems [8,14], in
which instant multiple fiber breaks are possible. Although
the avalanche size distribution is not related directly to
any fracture experiments, it has been proved of outmost
importance in the theoretical description of the fracturing
process [15].
In [16], the viscoelastic FBMs of [12] were enriched by

a more realistic rheology in order to account for burst
avalanches of simultaneous fiber breaks. The rheology of
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Fig. 1: The proposed Maxwell rheological model describing the
constitutive behavior of the bonds.

the fibers in this work is described by the Kelvin-Voigt
chain model which is amenable to approximate any linear
viscoelastic material to any desired accuracy. This model
provides an adequate approach for the statistical analysis
of fracture precursors in the creep rupture of natural fiber
composites like wood [17]. Here, we extend this analysis
using non-linear viscoelastic rheology for the fibers. Such
an FBM is more appropriate for fiber-reinforced compos-
ites. Namely, the avalanche size and inter-event time distri-
bution (the inter-event times distribution is affected on
average by the avalanche size distribution) are analyzed for
the two ends of the load redistribution spectrum, i.e. for
global and local load sharing rules. The results obtained,
especially that on the temporal occurence of fracturing
events, are considered of importance in non-destructive
testing and earthquake prediction.

Non-linear viscoelastic fiber bundle model. – The
model consists of a 1D linear array of N fibers, pulled
parallel to their direction by an external load. The fibers
are assumed to exhibit non-linear viscoelasticity described
by the Maxwell equation

ε̇t(t) =
σ̇(t)

E
+
σm(t)

η
, (1)

where σ(t) is the applied stress, εt(t) the corresponding
strain, E Young’s modulus and η,m� 1 the creep constant
and creep exponent, respectively. This constitutive equa-
tion has considerable validity for the description of the
steady-state creep of single-phase metals and ceramics for
both elevated temperatures and high applied stresses [18].
Typical values of m for such materials range between 3
and 6. The m exponent is a measure of the non-linearity
of the material response; for m= 1 the response is linear
viscoelastic. Equation (1) resembles a Maxwell element
which consists of a spring and a dashpot coupled in series
as illustrated in fig. 1, thus it actually decouples to the
system 


εt(t) = εe(t)+ εc(t),

σ(t) =Eεe(t),

σm(t) = ηε̇c(t),

(2)

where εe and εc are the parts of the strain that correspond
to the deformation of the spring and dashpot, respec-
tively. In order to capture failure in the model a strain-
controlled failure criterion is imposed, i.e. a fiber fails
during the time evolution of the system when its total

t Em(εm)m-1/η

εt
/ε

m
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Fig. 2: Total strain εt(t) for several values of σ0 with
a creep exponent m= 4 (Weibull distribution P (εd) = 1−
exp[−(εd/εm)α], α= 2). The inset represents typical values of
times ∆t between successive bursts. The figure is based on
bundles of N = 107 fibers.

strain exceeds a statistically distributed damage threshold
εd with probability density p(εd) and cumulative distrib-

ution P (εd) =
∫ εd
0
p(x)dx.

The simplest approach is to assume the global load
sharing rule (GLS), i.e. after failure of a fiber its load is
transfered equally among the intact fibers, so that the load
on fiber i at a certain deformation εt is simply given by
σi(ε

t) = σ(εt)/ns(ε
t) = σ(εt)/[N(1−P (εt)], where ns(εt)

is the total number of surviving fibers. Thus the macro-
scopic constitutive equation for the time evolution of the
bundle is described by the system


εt = εe+ εc,

σ= [1−P (εt)]Eεe,
σm = [1−P (εt)]mηε̇c.

(3)

We restrict our attention to loading paths in which the
stress remains fixed to a constant value σ0. The creep
rupture displacement εtr = ε

e
r + ε

c
r —the total strain at

the time tf of complete rupture— corresponds to the
values of εe and εc that satisfy σ0 = [1−P (εe+ εc)]Eεe =
φ(εe, εc) and vanish ∂φ/∂εe = 1−P (εt)− εep(εt). Indeed,
dσ0 = (∂φ/∂ε

e)dεe+(∂φ/∂εc)dεc = 0 yields ε̇e→∞ for
∂φ/∂εe→ 0. Creep rupture occurs eventually for all loads;
there is no critical stress. However, for very small values
of the applied load the complete rupture does not occur
in a time scale of interest. In fig. 2, the behavior of εt is
illustrated for different values of the applied stress. Note
that the bundle displays no primary creep (or logarithmic
creep), i.e. after the initial elastic response the creep rate
does not slowly decrease with increasing strain but it
practically jumps to a nearly constant value that depends
on the value of the applied load (steady-state creep). This
behavior is attributed on the constitutive equation (1) that
describes only the steady-creep stage.

Burst avalanches. Creep is a stress-controlled process,
thus the same load must always be endured by the
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surviving fibers; the same load is simply redistributed.
Step load increases following fiber failure —the stresses
are assumed to equilibrate infinitely fast (quasistatic
assumption)— result in instantaneous increases in elastic
strain due to the presence of the elastic unit in the Maxwell
element (fig. 1). Therefore it is likely that the (total) strain
threshold of other non-failed fibers may be exceeded. This
mechanism may easily trigger an avalanche. It should be
noted that the dynamics of avalanches of fiber breaks
is different for the static and the proposed viscoelastic
model. Whenever an avalanche stops in the static model,
the load of each of the surviving fibers increases so as to
become equal to the next stress threshold and then a new
avalanche may occur due to the failure of the fiber having
this threshold as its strength. In the proposed model
however, whenever an avalanche stops, the load of the
fibers remains constant until the creep (time-dependent)
deformation forces the total deformation to reach the next
threshold.
In order to derive analytically the distribution D(∆) of

bursts ∆ for GLS, consider a small strain per fiber interval
(εt, εt+dεt). For a large number N of fibers the expected
number of surviving fibers in this interval is N [1−P (εt)].
Moreover, the expected number of thresholds in the
interval isNp(εt)dεt. These thresholds are Poisson distrib-
uted. Assume that time-dependent deformation results in
the break of a fiber with threshold εt, then the load that
this fiber suffered will be redistributed on the N [1−P (εt)]
remaining fibers; the average force σ0 remains fixed. Thus
the instantaneous load increase will be dσ=Eεe/{N [1−
P (εt)]} which results in a total strain increase dεt =dεe =
εe/{N [1−P (εt)]}, since the creep strain remains fixed.
The average number of fibers that break due to this load
increase is

α= α(εt) =Np(εt)dεt =
εep(εt)

[1−P (εt)] . (4)

Following the analysis in [19,20], one finds that the
distribution of bursts ∆ over an interval (εt0, ε

t
r) is given by

D(∆)

N
=
∆∆−1

∆!

∫ εtr
εt0

α(εt)∆−1e−α(ε
t)∆[1−α(εt)]p(εt)dεt.

(5)
For large ∆ the maximum contribution comes from
the neighborhood of the upper integration limit,
since α(εt)e−α(ε

t) is maximal for α(εt) = 1, i.e.
for εt = εtr. Expansion around the saddle point

using α∆e−α∆ = e∆[−1−1/2(1−α)
2+O(1−α)3], as well as

α(εt)� 1+α′(εtr)(εt− εtr) and Stirling’s approximation
∆! =∆∆e−∆

√
2π∆, one obtains

D(∆)

N
=C∆−5/2(1− e−∆/∆c), (6)

where

∆c = 2/[α
′(εtr)

2(εtr − εt0)2] (7)
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Fig. 3: (a) A log-log plot of the distribution of bursts for GLS
recorded in the interval (0, εtr) (m= 6, uniform distribution
P (εd) = εd/εm). (b) A log-log plot of the distribution of bursts
for GLS recorded in the interval (0, εtr) (m= 5, Weibull distri-
bution α= 3). Both figures are based on n= 5 · 104 bundles of
N = 106 fibers.

and C = (2π)−1/2p(εtr)/α′(εtr). Equation (6) yields the
asymptotic behavior

D(∆)

N
∝
{
∆−3/2, for ∆�∆c,
∆−5/2, for ∆�∆c. (8)

Such a behavior has been proved in the static [19] and
linear viscoelastic [17] global FBMs. This behavior is
a universal phenomenon, independent of the threshold
distribution, the applied stress and the creep exponent
(fig. 3). The crossover has been proposed as a signal for
imminent failure [20]; the 3/2 power law will be seen
only when the beginning of the interval, εt0, is close
enough to the rupture value εtr. Hence, for applications
it is important that the crossover signals are seen also
in a single sample (fig. 4a). In addition, the exact value
of the crossover point has been derived (7). For the
uniform distribution ∆c = 2(1− εtr)/[(εtr)2(1− εt0/εtr)2]
(dimensionless values) where εtr = 1−

√
σ0, so for σ0 = 0.2

and εt0 = 0.6ε
t
r one obtains log(∆c)� 1.26. This value is

approximated reasonably well by numerical simulations
(fig. 4b). For the other extreme case of load sharing that
the local-load sharing rule (LLS) constitutes, in which the
excess load of a bursting fiber is divided equally to
the nearest surviving fibers, the numerically estimated
apparent exponent value for small event sizes is not
universal but dependent on the microstructural details
(the threshold distribution) (fig. 5). Moreover, for differ-
ent applied stresses the exponent may vary considerably
(fig. 5). The trend is that the smaller the applied load
is the smaller the absolute value of the exponent. This
behavior is in contrast to the static and linear viscoelastic
FBMs in which the exponent is approximated quite well
by the value −4.5 (for small event sizes).
Inter-event times. Next, we study numerically the

distribution D(∆t) of times ∆t in between successive
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Fig. 4: (a) A log-log plot of the distribution of bursts under
GLS recorded in an interval (εt0, ε

t
r). The creep exponent and

Weibull exponent are m= 7 and α= 3, respectively. The figure
is based on a bundle of N = 107 fibers. (b) The distribution of
bursts for the uniform threshold distribution with σ0/(Eεm) =
0.02 and εt0 = 0.6ε

t
r (m= 3). The figure is based on n= 5 · 104

bundles of N = 106 fibers. The arrow indicates the crossover
point.
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Fig. 5: A log-log plot of the distribution of bursts under LLS
recorded in an interval (0, εtr). The applied loads and threshold
distribution are described in the legend (m= 6). The figure is
based on n= 104 bundles, each with N = 105 fibers.

bursts. The inter-event times between successive bursts
for the proposed model depend on the applied load, the
applied probability distribution and the creep exponent.
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Fig. 6: A log-log plot of the distribution of inter-event times
∆t̃ (t̃ = tEm(εm)

m−1/η) under GLS for several values of
applied stress. The γ-value remains the same for different
stresses, threshold distribution and creep exponent. The power
law behavior can be observed over 5 orders of magnitude. The
figure is based on n= 1000 samples of N = 107 fibers.
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Fig. 7: A log-log plot of the distribution of inter-event times
∆t̃ (t̃ = tEm(εm)

m−1/η) for LLS. The γ-value remains the
same for different stresses, threshold distribution and creep
exponent. The figure is based on n= 1000 samples, each with
N = 105 fibers.

However, a universal feature is that the peaks of ∆t
initially, along the steady-creep stage, are scattered over
a broad interval while they decay more or less exponen-
tially in the tertiary stage (fig. 2). Moreover, extensive
simulations under GLS revealed that the distribution of
inter-event times on the macroscopic steady-creep stage
follows a power law of the form D(∆t)∝∆t−γ . The value
of the exponent γ = 1± 0.05 is independent from the disor-
der distribution, the applied load and the creep exponent
(fig. 6). Note that increasing the load or decreasing the
creep exponent m, the power law regime preceding the
exponential cut-off is getting shorter but the value of
γ remains the same. A similar exponential decay of the
statistical distribution of inter-event times with an expo-
nent γ = 1± 0.05 was found under LLS, as well, indepen-
dent again from the applied load, failure distribution and
creep exponent (fig. 7). These results are in agreement
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with those from viscoelastic FBMs [17]. The empirical
value of the exponent γ obtained from experiments was
found to depend on the material. Nevertheless, the values
reported in literature are in the proximity of unity [2] with
the exception of [3].
The differences between our theoretical results and

those in [13,21] on the γ-value are worth mentioning. In
contrast to our results, in [13], the exponent γ is not
universal; it is different for GLS on the two sides of the
critical stress σc (γ � 1.5 for σ0 >σc and γ � 1.95 for
σ0 <σc, these values were also obtained from a completely
different approach of creep failure [21]), while for LLS
the system is in the same universality class (γ � 1.9)
as for GLS for stress levels above the critical one. The
discrepancy between the latter results and those reported
herein are attributed to the influence on inter-event times
distributions by the burst avalanches present in our model;
in [13,21] fibers break one by one.

Conclusions. – Concluding, a dry FBM of non-linear
viscoelastic fibers is proposed for the study of fracture
precursors in creep rupture. The constitutive behavior
of the fibers resembles a Maxwell unit amenable to
approximate the rheology of single-phase metals and
ceramics for both elevated temperatures and high applied
stresses. In particular, the event sizes and event time
intervals follow a power-law-like statistics. The power law
asymptotic behavior of event sizes for GLS is analogous to
that of the static fracture displaying a crossover behavior
that can be used as a sign of imminent failure. On the other
hand, the numerically estimated apparent exponent for
LLS is not universal. For event time intervals, a universal
power law exponent γ close to unity is found in accordance
with linear viscoelastic FBMs. The γ-value is very close to
that obtained in fracturing processes over a wide range
of activity. Moreover, the occurrence of burst avalanches
in time-dependent breakdown is of importance in its own
right due to the applicability of burst sequences in vastly
different theoretical studies of the damage-failure process.
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