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Abstract. The objective of this work is to provide an in depth
numerical study of the interplay between thermal softening and
strain-hardening in shearing deformations of strain-rate dependent
materials. We consider the unidirectional simple shearing of an
infinite slab. This model, despite its simplicity, incorporates the
essential features of shear band modeling. We employ an adaptive
finite element method of any order for the spatial discretization.
Adaptivity in the spatial variable, is a necessity to correctly capture
these singular phenomena. Further the implicit Euler method with
variable time-step is used for the time discretization. The resulting
numerical scheme is of implicit-explicit type, of any order in space
and simple to implement.


1. Introduction


Dissipative mechanisms, such as viscosity or thermal diffusion, tend to stabilize the
thermomechanical processes opposing the destabilizing influence of the nonlinearity
of the material response. The competition is especially delicate when the strength
of the dissipative mechanisms weakens in the course of the motion. At high strain
rates, thermal softening can eventually outweigh the tendency of the material to
harden, thus creating a destabilizing mechanism which competes with internal dis-
sipation. Experimental and numerical investigations indicate that when the degree
of thermal softening is large this competition results to instability and formation of
shear bands. Shear bands are narrow regions of concentrated shearing deformation.
Once the band is fully formed, the two sides of the region are displaced relatively
to each other, however the material still retains full physical continuity from one
side to the other. We refer to [19] for an excellent survey of the mechanical issues.


The intent of this work is to provide an in-depth numerical study of the interplay
of thermal softening and strain-hardening in shearing deformations of strain-rate
dependent materials, using modern ideas of adaptive finite element methods so as
to fully resolve the bands. We consider a simple model, the unidirectional simple
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shear of an infinite slab, which, despite its simplicity, incorporates the essential
material behavior necessary for shear band modeling. The model simulates the
main significant aspects of experiments in shear band formation, like the pressure-
shear test, [8], or the thin-walled tube torsion test [13]. It ignores, however, certain
potentially important factors that may play a role in the subsequent development
of shear bands, [18]. The model is then solved numerically using a finite element
method, appropriate for the multiscale nature of the problem.


The width of the shearing band may be of the order of only a few microme-
ters or even less. A resolution of the order of 10µm or less would be required for
many materials in order to follow the deformation across the band in detail. When
a fixed mesh is used and the tip of a peak of a state variable becomes narrower
than the mesh spacing then it will be the length scale of the grid that regularizes
the calculation rather than the physical and constitutive features of the material.
Thus, an adaptive refinement strategy for the spatial as well as for the temporal
discretization parameters is necessary to capture correctly the shear band forma-
tion. Wright and Walter, [20], were perhaps the first to follow, with numerical
simulations the evolution of an adiabatic shear band from the initial, nearly ho-
mogeneous stage to the final, fully localized stage. For numerical computations in
various one-dimensional models we also refer to [3],[10], [12], [11] and the two- and
three-dimensional computational studies in [1], [2].


It is our objective to introduce various developments from adaptive finite ele-
ments into the study of formation and evolution of shear bands, and use this model
problem as a paradigm to further develop and extend the related theory of adaptive
finite element method to quasilinear convection diffusion systems. The proposed
finite element schemes show excellent numerical resolution of the shear band and
provide a numerical justification that shear band formation is occurring concur-
rently with the collapse of momentum diffusion mechanism. This is in accordance
with the preliminary analysis in [17] and justifies the role of diffusion collapse in
shear band formation. Further the numerical schemes provide a justification that
growing amplitude oscillations predicted by linearized instability analysis are con-
centrated and consumed, through a nonlinear mechanism, into one fully developed
shear band.


The paper is organized as follows: in Section 2 we introduce the mathemati-
cal model. The finite element approximations are described in Section 3 while in
Section 4 some numerical results are presented.


2. The mathematical model


We consider the adiabatic plastic shearing of an infinite plate of thickness d. In a
Cartesian coordinate system the plate occupies the region Ω = [0, d] between the
planes x = 0 and x = d. Let v(x, t) be the velocity field in the shearing direction,
γ(x, t) be the shear strain, θ(x, t) be the temperature and σ(x, t) be the shear stress.
Under the assumption that elastic effects are negligible the Lagrangian description
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of the balance laws of momentum, energy and the kinematic compatibility condition
yield:


ρ vt = σx, x ∈ Ω, t > 0,(1)
c ρ θt = β σ γt + k θxx, x ∈ Ω, t > 0,(2)
γt = vx, x ∈ Ω, t > 0,(3)


where ρ, c, β, k are constants denoting the referential density, the specific heat, the
portion of plastic work converted into heat (“cold work”) and thermal diffusivity,
respectively. In the case where k = 0 the process is adiabatic. A simpler model
consisting of two equations can also be considered


ρ vt = σx, x ∈ Ω, t > 0,(4)
c ρ θt = β σ vx + k θxx, x ∈ Ω, t > 0.(5)


The above systems of equations are supplemented with the constitutive law


(6) σ = G θ−α γm γ`
t = G θ−α γm v`


x, or σ = G θ−α v`
x


where α,m, ` denote the thermal softening, strain hardening and strain rate sensi-
tivity parameters respectively and G is a material constant. This power law model
has been used extensively to model steels that exhibit shear bands. Equation (6) is
entirely empirical, but it allows considerable flexibility in fitting experimental data
over an extended range. According to experimental data for most steels we have
α = O(10−1), m = O(10−2) and ` = O(10−2). Further, the plate is subjected to a
prescribed constant velocity V at the one boundary while the other boundary is at
rest, so the boundary conditions are


(7) v(0, t) = 0, v(d, t) = V, t ≥ 0.


We also impose initial conditions


(8) v(x, 0) = v0(x) > 0, θ(x, 0) = θ0(x) > 0, γ(x, 0) = γ0(x) > 0, x ∈ Ω,


which are to be compatible with the boundary data so that vx(x, 0) > 0.
For these initial data it can be proved, by maximum principle, that θt > 0 and


γt > 0 hence θ(x, t) > 0 and γ(x, t) > 0 so (2) is well defined and (1) is parabolic
in v. The problem of adiabatic shearing (k = 0) has been extensively studied
analytically for a variety of constitutive assumptions by a great number of authors
[9], [15, 16, 17], [14]. In [7] the authors use the finite element method to prove
existence and uniqueness for a system similar to (4),(5). Tzavaras, [17], introduced
a mathematical characterization of shear banding based on the existence theory
and large time behavior of solutions of the system of nonlinear partial differential
equations describing the shearing. For the constitutive model at hand it has been
proved using linearized analysis, that the homogeneous solution is stable under the
quasistatic assumption, provided that q = m + ` − α > 0. This stability criterion
was first published in [14] (see [5] for the more general case of nonhomogeneous
materials). On the other hand, according to the aforementioned mathematical
characterization introduced by Tzavaras, the only result for the dynamical problem
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known so far is that a classical solution exists over all times when q = m+`−α > 0
if the initial conditions are smooth enough but otherwise arbitrary, [17]. Thus it is
an open question whether the solution blows up in finite time or even at infinity.


A simple solution to (1)-(3) is given by choosing k = 0, v(0, t) = 0, v(1, t) = 1, ∀t
then


v(x, t) = x, γ(x, t) = γ0(x) + t,(9)


θ(x, t) =
{
θ0(x)α+1 +


α+ 1
m+ 1


[
(γ0(x) + t)m+1 − γ0(x)m+1


]} 1
α+1


.(10)


3. Finite element approximation


We consider the finite element discretization of (1)-(3). Let Th be a partition of Ω
consisting of intervals I = [xi−1, xi] of length hi = xi − xi−1, i = 1, . . . ,Mh where
Mh = card(Th) with h = supi hi. Further let 0 = t0 < t1 < · · · < tn < . . . be a
partition of [0,∞) with δn = tn − tn−1, n = 1, 2, . . . . We consider the classical one
dimensional C0 finite element space Sh,p ⊂ H1(Ω), defined on partitions Th of Ω


(11) Sh = Sh,p =
{
φ ∈ C0(Ω) : φ|I ∈ Pp(I), I ∈ Th


}
, dimSh = pMh + 1,


where Pp(I) denotes the space of polynomials on I of degree at most p.
For simplicity we consider the finite element discretization of (4)-(5): we seek


functions vh, θh ∈ Sh such that


(vh,t, φ) =
G


ρ
θ−a


h v`
hφ(x)


∣∣x=d


x=0
− (


G


ρ
θ−a


h v`
h,x, φ


′), ∀φ ∈ Sh,(12a)


(θh,t, ψ) = (
βG


cρ
v`+1


h,x θ
−a
h , ψ) + kθh,xψ


∣∣x=d


x=0
− k(θh,x, ψ


′), ∀ψ ∈ Sh,(12b)


The (12a)-(12b) is a coupled fully nonlinear system of ordinary differential equa-
tions which we discretize by an Implicit-Explicit Euler (IEE) scheme. Indeed in
the nonlinear equations of the system the unknown variable is treated implicitly
while the other variables are treated explicitly. The proposed scheme decouples
completely the system and each equation is solved separately, possibly in parallel.
Let J = dimSh, V = (V1, . . . , VJ), U = (θ1, . . . , θJ), we write


vh(x, t) =
J∑


i=1


Vi(t)φi(x), θh(x, t) =
J∑


i=1


θi(t)ψi(x),


Then the IEE scheme applied to (12a)-(12b) is : Given the solution Vn, Un at time
level tn the solution Vn+1, Un+1 is given by


MVn+1 = MVn + δn+1F(Vn+1,Un), V0 = V(t = 0) = Pv0(x),(13a)


MUn+1 = MUn + δn+1H(Vn,Un+1), U0 = U(t = 0) = Pθ0(x),(13b)


where F(V,U) = G
ρ θ


−a
h v`


h,xφj


∣∣x=d


x=0
−(G


ρ θ
−a
h v`


h,x, φ
′
j), H(V,U) = (βG


cρ v
`+1
h,x θ


−a
h , ψj)+


kθh,xψj


∣∣x=d


x=0
− k(θh,x, ψ


′
j), j = 1, . . . , J , M = (φi, φj), i, j = 1, . . . , J is the
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mass matrix and P is either the interpolation or the L2 projection operator :
P : C0([0, d]) → Sh. The nonlinear equations (13a), (13b) are solved using New-
ton’s method.


We describe briefly the adaptive mechanisms, spatial and temporal, used to
follow the development of the singularity of vx and consequently for γ and θ. The
adaptive mesh refinement strategy presented here is motivated by the work in [6].
The location of the singularity point x? ∈ [0, d] is completely determined by non-
uniformities in the initial conditions v0, θ0. As time increases vx grows near x? and
the adaptive mechanism refines the spatial mesh in a neighborhood of x? and cuts
the time step according to a certain criterion.


We assume that the partition Th satisfies: ∃c0 ∈ R, h ≤ c0hI , ∀I ∈ Th. At time
level n an interval I of the partition Th is refined, the spatial size hI is halved, if
the following criterion is satisfied


(14) hI‖vn
h,x‖L∞(I) > εh‖vn


h,x‖L1(I),


where εh is a constant that is determined empirically, [4]. The criterion (14) is
motivated by a local L∞ − L1 inverse inequality that elements of Sh satisfy on I.
On the other hand, the time step control is motivated by preserving the energy
E(t):


(15) E(t) :=
∫ d


0


[
βρ


2
v2(x, t) + cρθ(x, t)


]
dx.


Using (1), (2) and the boundary conditions we get ∂E
∂t = βV σ|x=d. Thus to preserve


the energy in time up to first order we define the time step size δn+1 as


(16) δn+1 = εδ
|En+1


h − En
h |


βV σn+1
h |x=d


, εδ ∼ 1.


4. Numerical Experiments


We present numerical results in the case of the formation of a shear band without
thermal diffusion : k = 0, −α+ ` < 0. For simplicity we consider the system of two
equations (4)- (5) and we take α = 0.5 and ` = 0.1. The initial conditions v0, θ0,
are small perturbations of the uniform shearing solutions, (9), (10) around the point
x = 1


2 . We compute the solution of (4), (5) at time t = 0.32, which are shown in
Figures 1(b) and 1(a). The singular behavior of the solution is correctly captured
using the adaptive techniques (14) and (16) with εh = 1.0025. The temperature
at the shear band point x = 1


2 has risen about 1100 times the initial temperature,
while vx has reached a value of ∼ 2.7 × 106. In Figure 2(a) the resulting stress
is shown, while Figure 2(b) shows the stress at the shear band point x = 1


2 . The
oscillations in Figure 2(b) are believed to be the high frequency modes the solution
which due to the local behavior of the instability are concentrated at the shear
band point, [4]. We notice that the stress exhibits a large dip at the point where
the shear band is forming. With progression of time the two parts of the material
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Figure 1. Solution at t = 0.32


deform increasingly independent, and unloading occurs at the regions outside the
band (see Fig. 4(b)). In other words, we have collapse of momentum diffusion
across the shear band. In Figure 3(a) we show the evolution in time of the vx at
the shear band point x = 1


2 . We notice the exponential shape of the curve in a
logarithmic scale which might be an indication that vx blows up at the shear band.
Further in Figure 3(b) the solution v at time t = 0 and t = 0.32 are shown. We
notice that vx is developing a δ-function type behavior. The case k 6= 0 is under
consideration, [4].
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