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Abstract—In this paper, we present a numerical study of the performance of a discontinuous
Galerkin formulation for the Navier-Stokes equations. This method is characterized by the fact that
the velocity field is approximated using piecewise polynomial functions that are totally discontinuous
across interelement boundaries and which are pointwise divergence-free on each element (locally
solenoidal). In particular, numerical results are presented for two well-known benchmark problems.
© 2006 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

We consider the stationary Navier-Stokes equations for viscous incompressible flow as given in
the primitive variable formulation,

—vAu+(u-Vyu+Vp="f in Q, (1)

divu=0 in Q, (2)

u=g on Q1. (3)

Here, u = (u1,...,uy) : & — RV represents the velocity field, and p : @ — R, the pressure;
the function £ = (f1,...,fn) : @ — RY denotes the prescribed external body forces, g =
(g1, 19n) : 00 — RV, the admitted flux across the boundary dQ and v > 0 is a constant

measuring viscosity. Note that g must satisfy the compatibility condition fan g -ndo =0.
One of the attributes of the numerical method presented herein is the use of totally discontin-
uous piecewise polynomial vector functions to approximate the velocity field u. These functions
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satisfy the incompressibility condition (2) pointwise on each element of a partition of Q. A special
weak formulation is designed to account for the interelement jumps that ensue. The weak form
includes penalty jump terms designed to enforce continuity in a weak sense, [1,2]. This is common
practice in discontinuous Galerkin methods, [3-5]. Recently, Oden and Baumann introduced a
method which dispenses with such terms and achieves stability by reversing the sign of one of
the terms in the bilinear form, cf., [6] and the references therein. For the pressure, standard con-
tinuous piecewise polynomial functions are used. For the method that we shall describe below, a
range of theoretical issues including the stability and convergence of the approximations at the
optimal rates were presented in [2]. These results extended those obtained in [1] for the Stokes
problem. Also, in [7], the application of implicit Runge-Kutta methods to the corresponding time
dependent problem were analyzed.

Continuing our earlier work, [8], we present a much more expanded set of numerical experiments
designed to gauge the performance of our method and to offer a study of its characteristics. For
the sake of completeness, we include in Section 2 needed expository material borrowed from [2]
and [8]. This includes a description of the energy spaces, the discontinuous Galerkin formulations
and enumeration of some relevant analytical results. Section 3 contains the new material in this
paper. It describes some implementational aspects of the method and includes data confirming
the convergence rates established in [1] and [2]. The two benchmark problems of the driven cavity
and backward facing step provide an important test for our approach and allow a comparison
with other available methods.

2. PRELIMINARIES

2.1. The Energy Spaces

We shall next construct appropriate settings for the velocity, the pressure and their approxi-
mations as well as the Galerkin formulation. To begin, we consider partitions 7 = {Q1,...,84q,}
of Q parameterized by k > 0. For simplicity, we shall use the generic name of element to de-
note €2;, which will be typically a triangle in 2-D or a tetrahedron in 3-D. We note that our
formulation allows for more general shapes. In particular, the outlying elements may have a
curved edge or face if € is not polygonal.

The formal setting for the velocity will be provided by the (mesh-dependent) “energy” space
E; = H*(Q)) x---xH%(Qq, ), where H? is the Sobolev space of index 2 (cf., [9]). We may view Ey
as a subspace of L2(2). In addition to the L? norm, we equip Ej with the mesh-dependent H'like
norm,

d » av( | , NE
vie =< S IV, + 3 7y | & 5 kL ‘vu) _ v(y)‘
i=1 JEN; " laq., o
@1° 2 (4)
i ov + k‘l_l ’V(i) ’ y
o [sq. a0y

where

e k; is the diameter of 951,

o 0Q; ; = 0Q; N 0QYy, if 0 and 08); are adjacent,

e 00 = 00, N oA,

o v(® is the restriction of v to 8¢,

o v(® —v0) denotes the jump in v across 9, ;,

. 95::) is the normal derivative of v{" with respect to the unit outward normal to 8¢,
o N; = {j:Q; is adjacent to Q;},

er;=1ifi>jand 7; =01if i < j.
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Further, we denote

N
(u,v)Dz/ u.vdx:Z/ w;v; dz, Ivllp = (v, V)7,
D i VD

(u,v) = (u,v)q,

N
{(u,v)r = / u-vds = E / u;v; ds, edge or surface integrals,
/T i=17T

1/2
vlr = (v, v)/%

To approximate the pressure, we use a partition 7, = {QF,.. .,in‘h} of Q possibly different
from 7T. In order to satisfy the Babuska-Brezzi stability condition establishing the compatibility
of the velocity and pressure finite-element spaces, we shall assume that 7} is possibly finer than
7, in the sense that every element Qg is a union of members of 7.

Since the pressure is determined up to an additive constant only, it is convenient to work
with quotient spaces X/R obtained by identifying all functions in the space X that differ by
constants. Such a space is L2(Q2)/R. (Note that equivalently one could work with the space
L3Q) = {q € L¥Q) : [,qdz = 0}). L*(Q)/R is a Banach space when equipped with the
quotient norm ||¢|| r2¢0)/r = infeer [l — ¢l 2 (). We shall also use the following mesh-dependent
and L2-like norm on the quotient space H(Q)/R,

1/2

dn
4
lgllo. = {nqn%z(mm + > hilVe >|té;;} ,

=1

where hy is the diameter of Qf.

2.2. The Finite-Element Spaces

The set of vector functions,

(o) () () ()51

forms a basis for the space of linear solenoidal functions in R?. Augmenting it by

{(5)- (&) () ()}

gives a basis for quadratics. In R3, for r; = 2, a basis is given by the set,

1 0 0 0 0 Y 0 z 0 T T
0 ) 1 3 0 3 x ’ 0 3 0 ; 0 ) 0 ) z ; -y ’ 0
0 0 1 0 T 0 Y 0 0 0 —z

It is typical in constructing finite-element spaces to use affine transformations to map “master”
basis functions to each element ;. It turns out however that the incompressibility property is not
preserved by general affine transformations. Therefore, the local basis functions are constructed
by translations and scaling of the above functions. We denote the finite-element space thus
obtained by V' where r; —1 is the degree of the polynomials used. The fact that the spaces-V7!
possess optimal approximations properties is established in [1].

To approximate the pressure, we use spaces F;? of continuous piecewise polynomial functions
of degree 79 — 1,79 > 2 defined on the partition 7. These spaces are quite standard cf., [10].
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2.3. The Discontinuous Galerkin Formulations

We begin by defining the bilinear form a}(-,) : Ex x Ex — R

dy .
CLZ(ILV) = Z (Vu(l), Vv(l))Qi + Z Tij —< ;n ,v(t) — V(J)>
=1 JEN; o0
(%)
on o9, 20,

- <—8u<l) ,v(i)> - <8v(1) ,u(i)> ok <u('i)7v(i)>
on oqe on o0 a0s

which constitutes a weak formulation for the Dirichlet integral (Vu, Vv). Indeed, if u € H3(Q),

then Vv € Ey
dy

L ov® _ .
aj(u,v) = —(Au,v) — Z <u“)7 e vk; 1v(’)> . (6)

a0z

=1
Some further comments on the nature of the form az are in order as follows.

1. The first, second, and fifth terms on the right side of (5) are byproducts of integration by
parts and range over the interior and boundary edges of Ty, respectively. The array 7;; is
used to ensure that each interior edge is visited only once. This device is also convenient
as a method for relating the ordering of the edges in a natural way to the ordering of the
elements ;.

2. The third and sixth terms have been added to ensure symmetry of the form a;. Note
that the third term is zero for smooth u, while the sixth is a known quantity since ulsn
is given. We note that the theoretical results remain valid if these terms are removed.

3. The fourth and seventh are so-called “penalty” terms which, upon choosing « sufficiently

large, induce coercivity of the form a]. The choice of v is independent of the partition 7.

The next few results highlight the analysis presented in [1] and [2]. In particular, the role of
the penalty parameter «v is exhibited.

ProrosiTiOoN 1.
(1)
lag(u,v)| < (T +iullie [vihe  Yu,veE;.

(ii) There exist positive constants vy and ¢, such that for all v > o,

ay(v,v) > cqulfik, Vv eV

The value of vy depends on 71 but is independent of the meshsize k. Indeed, the bilinear form az
is singular if v is small. It is interesting to note that recently a class of related of methods which
discard the penalty terms have been proposed cf., [6]. In these methods, the bilinear form is made

nonsingular by what essentially amounts to changing the sign of the third term on the right side
of (5).

PRrROPOSITION 2. There exists a constant ¢ > 0, such that

(v, Vg) <cllv

lvkllallon,  VveEE: Vge HY(Q.
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THEOREM 1. Let r; > 1 and ro > 2 be given. Suppose 7T}, is sufficiently fine with respect to T,
Then, there exists a positive constant ¢, independent of k and h, such that
v,V
sup (v, Vg)
I o

> cllgllon, Vg€ PR (7)

This is the crucial Babuska-Brezzi (inf-sup) condition. Existence and convergence of the nu-
merical approximations depend on it in an essential manner. It is a simple exercise in linear
algebra to show that if (7) holds then we must necessarily have that dim V! > dim P;? — 1. In
this sense, using discontinuous elements for the velocity in conjunction with continuous elements
for the pressure constitutes a step in the right direction. Indeed, taking 7, fine with respect
to 7, is a way of increasing the dimension of V! with respect to the dimension of P;2. By the
same token, (7) cannot hold for arbitrary choices of 1 and r5 without taking 7 finer than 7.
However, our numerical experiments, all conducted with r1 = r5 or 7; = 75 + 1, suffered no
apparent ill effects from taking 7. = 7;,. We conjecture that (7) holds under these conditions.

At this point, we draw attention to similarities between our method and others in the literature.
Indced, in view of the fourth term in (5), our method can be termed as an “interior penalty”
formulation. Such methods have been extensively studied in the context of elliptic and other types
of problems [3-5,11,12]. In addition, the fact that the inf-sup property (7) holds for arbitrary
choices of r; and 7o, provided of course, we choose 7, finer than 75, relates our method in spirit
to so-called stabilized methods cf., [13,14].

We next construct a Galerkin approximation to the Stokes problem which is the system (1)-(3)
minus the convective term (u- V)u. Multiplying (1) by v € E; and integrating, we obtain after
using (6),

dy i
vay(u,v) + (v,Vp) = (£,v) = v _ <6v_() - kalv(i),g> . (8)
i=1 o0g
Now, multiplying (2) by ¢ € H*(Q) and integrating by parts and using the fact the solution of
(1)-(3) is in H?2(Q)), we see that
(u,Vq) = (g - 1,q)5q - 9)

Combining the last two equations, we derive the following weak formulation for the Stokes problem

zva(u,v)+(v,Vp)+(u,Vq) = Fs({v.q)), V[v,q] € Ex x HI(Q>7 (10)
&/ ov) .
Fs([v.q)) = (f,v)~v>_ <W - 7ki—lv<z>7g> +(g 10,q)q- (11)
=1 095

Hence, we define the Galerkin approximation to the Stokes problem as the unique element
[ug, pr] € V' x P?/R satisfying

vag(w,v) + (v, Vpn) + (ur, Vo) = Fs([v,q)),  VY[v,q] € Vi x P*/R. (12)

To handle the convective term (u - V)u, we define the trilinear form b1(-,,) : E} — R by

dk (4)
by(u,v,w) = E / ué )——v——wﬁfg dz — E Tij / u§ )(v%) - vfﬂl))w,(é)né Vdo §, (13)
i=1 | /S Oze JEN: o8

where we have adopted Einstein’s summation convention for repeated indices for components of
vectors. Following a well known device of Témam, we introduce the skew-symmetric form,

b(u,v,w) = % [b1(w, v,w) — b1 (u,w,Vv)]

Note that we have b(u,v,v) =0, Yu,v € E,. Additionally, the following consistency result
holds.
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PROPOSITION 3. Suppose u is in H3(Q) and satisfies divu = 0 in Q. Then,
1
b(u,u,v) = /((u -Viu)vdr — —/ (u-n)(u-v)do, Vv e Eg.
0 2 Jon

The Galerkin approximation of the stationary Navier-Stokes problem (1)-(3) is defined as the
unique solution [ug,pr] € V! x Py?/R of

va] (g, v) + (ug, Vq) + (v, Vpp) + b(ug, uk, v) (14)
= Fns|v,q], Vv,q € Vi' x P? /R, (15)

1
FNS[VJI] :FS([v7q])—§<g'nag'v>BQ' (16)

The convergence of the numerical approximations defined above is analyzed in [1] and [2].
Let [u, p] denote the solution of either the stationary Stokes or Navier-Stokes problems and assume
it to be sufficiently smooth. For simplicity, suppose that k = h and that 1 = ro = 7. Then, under
certain conditions, (cf., [1,2] for details) the Galerkin approximations [uk,ps] converge to [u,p]
and satisfy the optimal rates

0 —ugllrz + hfla — ugllie + hllp = puflon < ch”

3. NUMERICAL RESULTS

In this section, we describe the numerical and implementational issues pertaining to the solu-
tion of the Stokes as well as the Navier-Stokes problem. In the first part, we shall concentrate on
the implementation of the method, while in the second part, we consider the numerical validation
of the various theoretical results, in particular the verification of the optimal convergence rates.
Additionally, there are issues which are best illuminated by means of actual numerical experi-
ments. For instance, it is important to determine whether taking the same mesh for the velocity
and the pressure would cause the crucial inf-sup condition to break down. Even more significant
is the experimental determination of a useful range of values for the parameter ~.

Finally, in the third part of this section, we apply our method to two well known benchmark
problems, namely, the driven cavity and backward facing step problems.

3.1. Implementation

First, a triangulation of  is generated using the Modulef library [15]. The triangles are enu-
merated and other appropriate data structures are established. The various arrays and vectors
are constructed using suitable basis functions. Those for the velocity are as described in Sec-
tion 2.2. For the pressure, we use standard Lagrangian nodal basis functions expressed locally in
terms of barycentric coordinates [10].

Let {®,}]*, be a basis for V' and let {1/)4};21 be a basis for P;?. Writing u, = Z‘Z;l ar
and p;, = ZZLI bepe the Galerkin formulation (12) for the Stokes problem results in the linear

system, _
vS B a f
(e 0)(5)-(5): o

where

Sy = al (i, 5), Gi=1,...,Ju,

B'L]:(q)'L’VwJ)? i:17"'7Juv j:17"'7Jp7

_ & /9ol .

fj‘(f,®j>—uz< o —vk:‘<1>§’),g> R

i=1 80

4 = (8 1Y) a0, i=1. 0, Jp
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To solve the linear system (17), we adopted an algorithm devised by Bramley [16]. Indeed,
it turned out to be the most efficient among several we tested, [7]. We describe briefly its
derivation. For simplicity, we assume that § =0, v = 1. We solve (17) for b in the least squares
sense, b = BY(f — Sa) where B' is the Moore-Penrose pseudoinverse of B and substituting b
with this in(17), we get

PSa=Pf

where P = I — BB is the orthogonal projection onto ker(BT). On the other hand BTa = 0 if
and only if a = Pa, so

PSPa = Pf.

The method now applies the standard conjugate gradient method to PSPa = Pf. Assuming
that B has full rank then P = [ —B(BT B)~'BT. The matrix BT B is symmetric positive definite
and its dimension is small compared to that of S. We notice also that for the time-dependent
problem, B does not depend on time so BT B can be factored once at the beginning.

In this method, if the projection P is computed exactly, then the residual of BTa = 0 is
zero and the method trics to bring the residual of Sa + Bb = f to zero iteratively. Finally,
a preconditioned conjugate gradient method, with preconditioner PS~!P can be used to solve
PSPa = Pf.

The Galerkin formulation (14) for the stationary Navier-Stokes problem is, on the other hand,
nonlinear. We solve it using Newton’s method, which takes the form,

va) (u,(fﬂ),v) + (u,(cg+1),Vq) + (v, VPEL[H))
+b (u,(fﬂ), u,(f),v> +b (u,(f), u§€£+l), v) (18)
=b (ug),u,(f),v) + Fns([v,q]), V[v,ql eV x P?, £=0,...,

with [u,(CO),p,(LO)] given. We found it efficient to take as [usco)
,(fH) — uff) || < TOL. Indeed, in view of the asymptotic

quadratic convergence of Newton’s method, this will ensure that [[ux — uf|| < TOL, where TOL

7pglo)] the solution of the corresponding

Stokes problem. Then, we iterate until |ju

is a prescribed tolerance parameter.

3.2. The Stokes Problem

We consider first the linear Stokes problem. In all the experiments conducted in this part as
well as for the Navier-Stokes problem, we took € to be the unit square. To perform a study of
the errors and the convergence rates, we employed the following two functions.

Test Function #1 (F1)

1
u= —Q(Sinw(x+y),—sin7r(m+y)),
b

1 .
p:%gsmﬂ(:c—}—y).

Test Function #2 (F2)
u= ((m4 — 223 4 1'2) (4y3 —6y% + Qy) ,— (4963 —6x? + 2$) (y4 — 27 + yg)) ,
p=a® 4P
adjusting f so that [u, p] is a solution to (1) and (3). Note that in both cases the incompressibility
condition (2) is satisfied. Also, ulag = 0 for F2 but not for F1.

In all the experiments, we imposed uniform grids on 2 consisting of isosceles right triangles
as shown in Figure 1. These ranged from a 13 x 13 “coarse” grid to a 25 x 25 grid. In Table 1,
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Figure 1. 17 x 17 grid.

Table 1. Dimensions.

Grid 13x13 | 17x17 | 21x21

Nr 288 512 800
dimV} 1440 2560 4000
dim V3 2592 4608 7200
dimP? 169 289 441

Table 2. (F1), ry = rz = 2, Re = 1000, v = 50.

£z 1E(w)1,e (1E(P) o,
h1 Error Rate Error Rate Error Rate
0.271420E — 02 0.218233E + 00 0.118079E — 01

8 0.109088E — 02 3.168 0.154478E + 00 1.201 0.648388E — 02 2.084
10 0.581889E — 03 2.816 0.121085E + 00 1.091 0.411995E — 02 2.032
12 0.361743E — 03 2.607 0.999393E — 01 1.053 0.285344E — 02 2.015
14 0.247176E — 03 2471 0.852042E — 01 1.035 0.209331E — 02 2.010
16 0.179910E — 03 2.379 0.743038E — 01 1.025 0.160110E — 02 2.007
18 0.137106E — 03 2.307 0.659013E — 01 1.019 0.126423E — 02 2.006
20 0.108069E — 03 2.259 0.592172E — 01 1.015 0.102357E — 02 2.004
22 0.875685E — 04 2.207 0.537693E — 01 1.013 0.845668E — 03 2.003
24 0.724353E — 04 2.180 0.492433E — 01 1.011 0.710444E — 03 2.002

we show the subsequent number of triangles(/N7) and the dimensions of the finite-element spaces
corresponding to the linear-linear and quadratic-linear combinations for the velocity and the
pressure.

In Tables 2 and 3, we exhibit the errors ||u — ugl/L2, [[u — uk|l1x, [lp — Pallo,n, respectively,
and the corresponding convergence rates for the first test function (F1). The convergence rate in
these tables and in those that follow is computed according to the formula,

_ Ey hy
Rate = In <E>/ln (E) ,

where E; is the discretization error corresponding to mesh size h;. These tables differ slightly
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Table 3. (F1), r1 =3, r2 = 2, Re = 1000, v = 50.

HE@)llL2 IE@) % IE®)lio,n
h—t Error Rate Error Rate Error Rate
6 0.317855E ~ 02 0.245591E + 00 0.118134E — 01
8 0.116768E — 02 3.481 0.130543E -+ 00 2.197 0.648448E — 02 2.085
10 0.565684E — 03 3.248 0.818998E -- 01 2.089 0.411983E — 02 2.033
12 0.319130E - 03 3.140 0.564581E — 01 2.040 0.285317E — 02 2.015
14 0.198322E — 03 3.086 0.413794E — 01 2.016 0.209301E — 02 2.010
16 0.131876E — 03 3.056 0.316914E — 01 1.998 0.160085E — 02 2.008
18 0.922359E — 04 3.035 0.250966E — 01 1.981 0.126404E — 02 2.006
20 0.670863E — 04 3.022 0.203939E — 01 1.969 0.102344E - 02 2.004
22 0.503381E — 04 3.013 0.169171E — 01 1.961 0.845569E — 03 2.003
24 0.388012E — 04 2.992 0.142719E — 01 1.954 0.710366E — 03 2.002
Table 4. (F2), r1 =2, 72 = 2, Re = 1000, v = 50.
| )| 1,2 IEC)l1,% 1E2@)lo,n
ht Error Rate Error Rate Error Rate
6 0.297854E — 01 0.115226E + 01 0.117173E + 00
8 0.123317E — 01 3.065 0.630035E + 00 2.099 0.669895E — 01 1.944
10 0.626874E — 02 3.032 0.395389E + 00 2.088 0.432210E — 01 1.964
12 0.364048E — 02 2.981 0.270867E +- 00 2.075 0.301522E — 01 1.975
14 0.232107E — 02 2.920 0.197128E + 00 2.061 0.222154E — 01 1.982
16 0.158553E —- 02 2.854 0.149943E + 00 2.049 0.170404E — 01 1.986
18 0.114169E — 02 2.788 0.117955E + 00 2.037 0.134813E — 01 1.989
20 0.856911E — 03 2.723 0.952851K — 01 2.026 0.109299E — 01 1.991
22 0.664818E — 03 2.663 0.786389E — 01 2.015 0.903916E — 02 1.993
24 0.529843E — 03 2.608 0.660586E — 01 2.003 0.759932E — 02 1.994
Table 5. (F2), r1 =3, ro =2, Re = 1000, v = 50.
TEG) L2 NE@) 1,k I E®)lo,n
ht Error Rate Error Rate Error Rate
6 0.469292E — 01 0.303473E + 01 0.115756E + 00
8 0.192761E — 01 3.093 0.167690E + 01 2.062 0.663451E — 01 1.935
10 0.968136E — 02 3.086 0.106024E + 01 2.054 0.428593E — 01 1.958
12 0.552236E — 02 3.079 0.729609E + 00 2.050 0.299221E — 01 1.971
14 0.343954E — 02 3.071 0.532077E + 00 2.048 0.220567E — 01 1.978
16 0.228433E — 02 3.065 0.404194E + 00 2.059 0.169248E — 01 1.983
18 0.159355E — 02 3.057 0.317075E + 00 2.061 0.133927E — 01 1.987
20 0.115516E — 02 3.054 0.255067E + 00 2.065 0.108600E — 01 1.990
22 0.863943E — 03 3.048 0.208263E + 00 2.127 0.898302E — 02 1.991
24 0.663177E — 03 3.039 0.174722E + 00 2.018 0.755298E — 02 1.993

1559

from the corresponding tables in (8] due to a different scaling of the velocity basis functions.
Tables 4 and 5 are for the second test function (F2). Tables 2 and 4 correspond to 71 = ry = 2
and Tables 3 and 5 to r; = 3, ro = 2. The prevailing values of the Reynolds number Re = 1/v
and v are as shown. The rates are seen to conform to theoretical predictions. Note that the rate
for the L?-error for the velocity in Tables 2 and 4 is slightly larger than the predicted value of 2.
Also, the errors for the pressure are the same for both values of ry.
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Figure 3. Level curves for the errors: Ej x(u) {(a,c), Eg n(p) (b,d).

Next, we study the effect of the parameter v on the errors. Figures 2a and 2b display, in
logarithmic scale in the vy—axis, the behavior of the Ej p(u)-error with respect to <y for three
values of h, h = 1/10, 1/16, 1/32, r1 = ro = 2 and two different values of Re. We notice that
in all cases there is a critical value of ¥ which minimizes the error. It is also worth noting that
the errors become unbounded as y — 0%, given that the bilinear form a] becomes singular for
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small 7. On the other hand, the errors increase monotonically to an asymptotic limit as v --» oco.
Further, the pressure error does not seem to be affected by the choice of v, Figures 3b and 3d.

A very interesting issue is the dependence of the errors on Re and 4. In Figure 3, we show
the level curves for the errors in terms of these two parameters. In these experiments, we took
h = 1/16. Figures 3a and 3b correspond to r; = ry = 2 while Figures 3¢ and 3d correspond to
r1 = 3, o = 2. First, we observe that while the error for the velocity increases with Re, the
opposite happens with the pressure. However, the variation in the latter is rather insignificant.
On the other hand, for a fixed value of Re, the shapes of the level curves for the velocity indicate
the existence of an optimal value of v in the sense of minimizing the error. This is consistent
with the data reported in Figure 2. Further from Figures 3a and 3¢ we can conclude that we may
choose “optimal” values for v using the formulas v ~ 43 + Re/15 for r; =73 = 2 and v ~ Re/4
forry =3, rp = 2.

3.3. The Navier-Stokes Problem

The same type of experiments, as in the Stokes problem, were performed also in this case. The
starting values for the Newton iteration were the solution of the corresponding Stokes problem.
This strategy is followed in all the experiments reported here. The scheme converged in two or
three iterations with tolerance TOL = 1075,

In Table 6, the errors and the convergence rates are displayed. The rates are in good agreement
with the predicted theoretical rates.

Table 6. (F2), r1 =3, ro =2, Re = 100, v = 40.

I E() L2 HE()1,x IE@)lo,n
Al Error Rate Error Rate Error Rate
6 0.578271K — 02 0.370618E + 00 0.116888E + 00

8 0.237820E — 02 3.089 0.205087E -+ 00 2.057 0.668611E — 01 1.942
10 0.119497E — 02 3.084 0.129761E + 00 2.051 0.431534E - 01 1.962
12 0.682084E — 03 3.075 0.893687E — 01 2.045 0.301121E — 01 1.974
14 0.425040E — 03 3.068 0.652329E — 01 2.042 0.221895E — 01 1.981
16 0.282543E — 03 3.058 0.496940E — 01 2.038 0.170225E — 01 1.985
18 0.197238E — 03 3.052 0.391058E — 01 2.034 0.134687E - 01 1.988
20 0.143170E — 03 3.041 0.315710E — 01 2.031 0.109204E — 01 1.991
22 0.107350E — 03 3.021 0.260173E — 01 2.030 0.903191E — 02 1.992
24 0.827219E — 04 2.995 0.218098E — 01 2.027 0.759365E — 02 1.993

We investigate further the choice of the trilinear form (13). Indeed, there are two alternatives
trilinear forms. Namely, we can set

ba(u,v,w) = by(u,v,w), (19)

where b;(-,+,-) is defined by (13) or even simpler, we can take

bp(u,v,w) Z/ ()&)m w'® dz. (20)

These trilinear forms require less computational work than b. However, we do not have yet
convergence results for these forms. Tables 7 and 8 correspond to Table 6 for these trilinear
forms. The errors and the convergence from these tables show that there is no essential difference
between these forms.
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Table 7. (F2), (bp), r1 = 3, r2 = 2, Re = 100, v = 40.

IE@)Il 2 E@)l1 x IE®)lo.n
h1 Error Rate Error Rate Error Rate
0.576702E — 02 0.368896E + 00 0.116890E + 00

0.237681E — 02 | 3.081 | 0.204787E +00 | 2.046 | 0.668611E— 01 | 1.042
10 | 0.119479E—02 | 3.082 | 0.129681E+00 | 2.048 | 0.431532E — 01 | 1.062
12 | 0.682171E—03 | 3.074 | 0.893361E — 01 | 2.044 | 0.301118E—01 | 1.974
14 0.425113E — 03 3.068 0.652241E — 01 2.041 (0.221894E — 01 1.981
16 | 0.282546E —03 | 3.050 | 0.496800E — 01 | 2.037 | 0.170227E— 01 | 1.985
18 | 0.1971645 —03 | 3.055 | 0.391031E — 01 | 2.034 | 0.134690E—01 | 1.988
20 | 0.143185E — 03 | 3.036 | 0.315679E—01 | 2.032 | 0.109206E —01 | 1.991
22 | 0.107339E - 03 | 3.023 | 0.260125E —01 | 2.031 | 0.903200E — 02 | 1.992
24 | 0.827200E — 04 | 2.993 | 0.218075E—01 | 2.026 | 0.759362E — 02 | 1.994

Table 8. (F2), (ba), 1 =3, ra = 2, Re = 100, v = 40.

| ECu)| 2 1E(ull1,% IE(®)llo,n
h—1 Error Rate Error Rate Error Rate
6 0.576769L — 02 0.370237E + 00 0.116876E + 00

8 0.237663E — 02 3.082 0.205006E + 00 2.055 0.668597E — 01 1.941
10 0.119412E — 02 3.084 0.129729E + 00 2.051 0.431533E — 01 1.962
12 0.681936E — 03 3.073 0.893497E — 01 2.045 0.301120E — 01 1.974
14 0.424991E — 03 3.068 0.652268E — 01 2.041 0.221895E — 01 1.981
16 0.282497E — 03 3.058 0.496858E — 01 2.038 0.170226E —- 01 1.985
18 0.197122E — 03 3.055 0.391052E — 01 2.033 0.134690E — 01 1.988
20 0.143145E — 03 3.037 0.315697E — 01 2.032 0.109207E — 01 1.991
22 0.107320E — 03 3.022 0.260128E — 01 2.031 0.903201E — 02 1.992
24 0.827147E — 04 2.993 0.218085E — 01 2.026 0.759362E — 02 1.994

3.4. Benchmark Problems

In literature, two problems have become standard benchmarks for testing numerical schemes
solving the equations of fluid flow. These are: the flow in a driven cavity, [17,18] and the flow in
a backward facing step [18,19]. In both cases, we solve the corresponding stationary problem.

3.4.1. Driven cavity

In this test problem the fluid is driven horizontally on the upper side of a square cavity with
side a. The Reynolds number here is defined to be Re = alUU /v, where U is the horizontal velocity
on the upper side and v is the viscosity of the fluid. For simplicity, we take a =1 and U =1 on
the top side of the cavity. The velocity on the other sides of the cavity is taken to be zero. The
main characteristic of the flow, shown in Figure 4a, is the creation of a principal vortex (PV)
close to geometric center of the cavity and secondary vortices, (LV), (RVy), (RV3), and (TV), on
the bottom left and right corners and on the upper right corner, respectively.

To study the flow, we put a nonuniform grid, shown in Figure 4b, concentrated at the corners
and walls of the cavity. The mesh consists of 2194 triangles resulting in 10970 velocity unknowns
and 1178 pressure unknowns, where linear elements were used for the velocity and the pressure.
We tested our code for the following values of Re-number,

Re = 100, 400, 1000, 2000, 3200, 5000, 7500, 10000.



Numerical Simulation 1563
u=1 u=0
u =0 u,=0
u,=0 u,=0
i v
RV,
u=u,=0
(a). Structure of the flow. (b). The mesh.
Figure 4. The geometry and the mesh.
Table 9. Values of v and £,,.
Re 5y Ly
100 50 2
400 60 2
1000 80 3
2000 130 3
3200 160 3
5000 200 3
7500 270 3
10000 340 3
Table 10. Centers of the vortices.
Re PV RV, LV TV RV,
100 0.61778 0.75016 0.94354 0.05279 0.02554 0.02777 —_ —
400 0.55889 0.60251 0.87982 0.11363 0.02872 0.04134 — —
1000 0.53356 0.56658 0.85934 0.09987 0.07371 0.06751 — —
2000 0.52371 0.54695 0.85427 0.09608 0.07699 0.10153 — —
3200 0.51706 0.54042 0.83082 0.08514 0.07497 0.11394 0.04785 0.89401 —
5000 0.51174 0.53799 0.81163 0.08171 0.07156 0.11661 0.05825 0.90593 —
7500 0.50803 0.53669 0.79269 0.07807 0.06835 0.12368 0.06225 0.91054 0.94042 0.03996
10000 0.50697 0.535635 0.74692 0.05805 0.06274 0.15549 0.06371 0.91069 0.93981 0.07856

To compute the solution for the final value of Re-number we proceed as follows. We compute the
solution for Re = 100 using as initial value for Newton’s iteration the solution of the corresponding
Stokes problem. The necessary Newton iterations (£x) were taken to be 5 and our convergence
criterion was that the difference, measured in the L? norm, of two successive iterates be less than
1073, Now, to compute the solution for the next value of Reynolds number, we use as starting
value for Newton’s iteration the solution of the previous value of Re-number. In Table 9, we show
the values of v and ¢,, needed to obtain the solution for the given Re-number following the above
process.
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Typically for this benchmark problem part of the standard output includes the following.
e The streamlines in the whole domalin.
e The location of the centers of the vortices.

o The profiles of u; along z = 1/2 and ug along y = 1/2.

In Table 10, we list the locations of the centers of the vortices. The streamlines in the whole
domain as well as in the corners are shown in Figures 5 and 6 for the various values of Re-number.
In Figure 7, we give the profiles of u; along x = 1/2 and us along y = 1/2. In Table 11, we

1

1

Ll 1T

0.25 0.5

(d). Re = 2000,

Figure 5. Streamlines.

1
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0.25

0.25

(a). Re = 3200. (b). Re = 5000.

Figure 6. Streamlines.
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Table 11. Location of vortex centers :

(23], (f) [24], (2) [25].

Velocity profiles.

(b). ug along y = 1/2.

(a) this work, (b) [20], (c) [21], (d) [22], (e)

Re PV RV, Lv
a 0.61778 0.75016 0.94354 0.05279 0.02554 0.02777
b 0.6172 0.7344 0.9453 0.0625 0.0313 0.0391
c 0.6188 0.7375 0.9375 0.0563 0.0375 0.0313

100 d 0.6167 0.7417 0.9417 0.0500 0.0333 0.0250
e 0.6196 0.7373 0.9451 0.0627 0.0392 0.0353
f 0.6172 0.7383 0.9414 0.0625 0.0352 0.0352
g 0.6152 0.7383 0.9493 0.0587 0.0275 0.0352
a 0.55889 0.60251 0.87982 0.11363 0.02872 0.04134
b 0.5547 0.6055 0.8906 0.1250 0.0508 0.0469
c 0.5563 0.6000 0.8875 0.1188 0.0500 0.0500

400 d 0.5571 0.6071 0.8857 0.1143 0.0500 0.0429
c 0.5608 0.6078 0.8902 0.1255 0.0549 0.0510
f 0.5547 0.6055 0.8867 0.1250 0.0508 0.0469
g 0.5588 0.6053 0.8906 0.1172 0.0537 0.0425

compare the locations of the centers of the main vortices (PV), (RVy), (LV) with the results
reported in [20-25]. We have an overall agreement of our solutions with respect to the shape and
location of the three main vortices for all values of Re-number up to Re = 3200. For Re > 5000,

there are small differences between our solutions, which are mainly on the location and shape of
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Table 11. (cont.)

PV

RV,

Lv

1000

T oo T o

)

0.53356 0.56658
0.5313 0.5625
0.5438 0.5625
0.5286 0.5643
0.5333 0.5647
0.5313 0.5664
0.5352 0.5664

0.85934 0.09987
0.8594 0.1094
0.8625 0.1063
0.8643 0.1071
0.8667 0.1137
0.8633 0.1133
0.8691 0.1128

0.07371 0.06751
0.0859 0.0781
0.0750 0.0813
0.0857 0.0714
0.0902 0.0784
0.0820 0.0781
0.0859 0.0741

2000

[eEEENC )

[

0.52371 0.54695
0.5250 0.5500
0.5255 0.5490
0.5195 0.5469
0.5234 0.5484

0.85427 0.09608
0.8375 0.0938
0.8471 0.0980
0.8438 0.0977
0.8477 0.0977

0.07699 0.10153
0.0875 0.1063
0.0902 0.1059
0.0859 0.1016
0.0850 0.1010

3200

- T & |,

0.51706 0.54042
0.5165 0.5469
0.5156 0.5391
0.5195 0.5430

0.83082 0.08514
0.8125 0.0859
0.8242 0.0859
0.8320 0.0898

0.07497 0.11394
0.0859 0.1094
0.0820 0.1172
0.0828 0.1152

5000

T e (e

[¢]

-

0.51174 0.53799
0.5117 0.5352
0.5125 0.5313
0.5176 0.5373
0.5156 0.5352
0.5156 0.5352

0.81163 0.08171
0.8086 0.0742
0.8500 0.0813
0.8078 0.0745
0.8008 0.0742
0.8086 0.0742

0.07156 0.11661
0.0703 0.1376
0.0625 0.1563
0.0784 0.1373
0.0742 0.1328
0.0723 0.1391

o ® |0

@

0.50803 0.53669
0.5117 0.5322
0.5176 0.5333
0.5117 0.5313

0.79269 0.07807
0.7813 0.0625
0.7922 0.0667
0.7813 0.0664

0.06835 0.12368
0.0645 0.1504
0.0706 0.1529
0.0625 0.1523

10000

-0 o

0.50697 0.53565
0.5117 0.5333
0.5140 0.5307
0.5117 0.5313

0.74692 0.05805
0.7656 0.0586
0.7877 0.0615
0.7578 0.0586

0.06274 0.15549
0.0586 0.1641

0.0586 0.1602

the secondary vortices. Overall we can say that the present method provides adequate results
even for fairly large Re-number using much coarser grids (34 x 34) compared to that of (129 x 129)

up to (257 x 257) used by the aforementioned works.

3.4.2. Backward Facing Step

We turn our attention to the second benchmark problem: the flow in a backward facing step
[18,19]. The geometry of the problem is shown in Figure 8. At the entrance a parabolic profile
is prescribed, while the velocity is taken to be zero on the sides. At the exit, a parabolic profile
is also given so that the total flux along the boundary is zero. Here, we assume that the flow is

fully developed at the exit.

Figure 8. The geometry.
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Alternatively, a “Neumann” type boundary condition of the form, 1/-2—;‘; = pn can be also

imposed at the exit. Indeed the formulation allows us to incorporate this type of boundary
condition quite easily. Let 00y and 9Qp denote the part of the boundary where the Neumann
and Dirichlet conditions are applied respectively. Then, we modify the bilinear form a](-,-) to

dy .
. . Sul® : )
aZ,D(u7V) - § {(vu(l)v vv(l))ﬂz + § Tij |:_ <—;—n,v(l) - V(])>
M

i=1 JEN;

[ ovW RGN0 okl <u<z’> OO v(j)> [
on 29 : ’ Elolp on’ o0s?
di.

ovid . . oul® ‘
_<(;’_,U<L>> 9kt (a0 v CD}—Z<U—7V“)>
n aqeP oy i on BQ:,N

=1

%)

where OQ?D =0, NINp and aﬂf’N = ; N 3Qy. We replace the last term in aZyD(-,-) by
(1/v) {u-n,p). Also, notice that if u is smooth over { and solenoidal then,

(0, Vg) = (g 1,q)pa, + (U 1,q¢)sq,

Hence, in this case, we define the Galerkin approximation of the stationary Navier-Stokes problem
(1)—(3) as the unique solution [uk,ps] € V! x P/?/R of

vag p(uk, v) + (U, Vg) + (v, Vpi) = (U - 0, @)gq,, — (V- 1, Pn) g,
+bB(uk,uk,v) IFJQS[V,L]], V[v,q] GV,:l XP;?/R,

where

i @ .
FRs(v-a) = (€3) ~v (G- vk:1v<’>,g>m§p (& 0 e, -

In the case of the Stokes problem the modified variational formulation preserves its symmetry.

The Reynolds—number in this case is defined as Re = (Unax(H — h))/v where Upay is the
maximum velocity at the entrance, H — h determines the height of the step and v is the viscosity
of the fluid. The main characteristic of the flow is the creation of a vortex right after the step.

To study the flow, we put a nonuniform grid on the domain, concentrated mainly at the
entrance and on the recirculation region. The mesh consists of 1784 triangles resulting in 8920
velocity unknowns and 956 pressure unknowns. We use linear elements for the velocity and for the
pressure approximations. To test our code, we have chosen the following set of parameters [19],

L=2, Li=3  H=15  h=1,

along with the following boundary conditions,

u = —%(y —H+h)(y—H), at the entrance {(Upay = 1),
h
4

u= ,ﬁy(y — H), at the exit,

u=0, on the sides.

The values of Re-number tested were: Re = 50, 150. The initial value for Newton’s iteration
was the solution of the associated Stokes problem. The values of v and £; needed to obtain the
solution for the given Re-number are given in Table 12.

Table 12. Values Table 13. Length of

of v and £y. recirculation region.
Re ¥ £, Re Length
50 55 2 50 2.95

150 100 3 150 6.08
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Figure 9. Streamliners, Re = 50, 150.

The output for this flow consists in part of the following nondimensionalized values.

e Streamline plots on the whole domain and in the recirculation region.

o Pressure level plots on the whole domain and in the recirculation region with § = ReU2,,p
and p = 0 at the step corner.

e Length of the recirculation region.

The length of the recirculation region is given in Table 13. In Figure 9, the streamlines in the
whole and in the recirculation area are plotted for Re = 50, 150, respectively. The corresponding
pressure contour plots are shown in Figure 10. In all plots, the axes have been nondimensionalized
by 1/(H — h) and the origin is at the step corner. We compared our solution with the solution
of the actual experiment reported in [19]. For both values of Re-number our solutions agree very
well with respect to the vortex shape and the length of the recirculation region. In particular,



Numerical Simulation 1569

Re=50

g 4 Re=150 8 12

Figure 10. Pressure contours, Re = 50, 150.

the computed length of the recirculation region, for Re = 50 and Re = 150 differs only by 0.05

and 0.08, respectively.
The above results were obtained with the parabolic exit profile. We also implemented the
boundary condition ug—ﬁ = pn. However, the numerical results agreed very closely to those

obtained with the parabolic profile.

4. CONCLUSION

The numerical results presented herein confirm the analytical results of [1] and [2]. They also
highlight two important characteristics of the method.
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(1) The results of the two benchmark problems show that the method can accurately simulate
fluid flow problems and do so efficiently as evidenced by the relatively small number of
elements. We believe that the efficiency can be further enhanced by the inclusion of
adaptive mesh selection. The adoption of Multigrid for solving the systems of equations
is another way to reduce run times. Both of these features are being currently developed.

(2) The method is sufficiently flexible to handle a variety of B.C.’s including Dirichlet, Neu-

mann as well as other esoteric B.C.s such as l/g—: = pn.
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