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Abstract - A Riemann-solver free scheme is presented for the
numerical solution of shallow water flows and the transport
and diffusion of pollutant in such flows. By first transform-
ing the original nonlinear system, that governs such flows, to
a semilinear system, with relaxation source and applying a
non-oscillatory reconstruction and an asymptotic preserving
method for space and time discritizations, numerical results
are presented in one and two dimensions showing that the
method can be considered as an alternative to classical finite
difference methods.
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I. INTRODUCTION

In recent years many methods were proposed for the nu-
merical approximation of solutions of hyperbolic conser-
vations laws for complex applications. There has been a
growing trend in favor of Riemann or Godunov-type based
methods constructed within the finite volume framework.
Such methods are noted for their good conservation and
shock capturing capabilities. More recently many meth-
ods were proposed for the numerical approximation of
solutions of hyperbolic conservations laws incorporating
source terms, with application to the shallow water equa-
tions, based on such methods.

The purpose of the present work is to report on the ap-
plicability of recently developed relaxation algorithms for
shallow flows, introduced in [DK 03] and [DK 05], for the
solution of one and two-dimensional problems with pol-
lutant transport. The starting point of our investigation is
the class of relaxation schemes, first introduced in [JX 95],
which are based on a relaxation approximation to the non-
linear conservation law, that has linear convection term and
does not need a Riemann solver nor characteristic decom-
position and thus enjoy great simplicity. This simplicity
can be of great significance when one has to solve large
scale engineering problems. Theoretical results on relax-
ation schemes problems have been extensively covered in

the literature, these include convergence analysis, error es-
timates as well as nonlinear stability.

We use finite volume shock capturing spatial discretiza-
tions that are Riemann solver free, while a Runge—Kutta
method provides the time stepping mechanisms. The pro-
posed schemes combine simplicity and high efficiency.
Their performance in various test problems shows that pro-
vide a reliable alternative method for wave computations in
one and two dimensions. Numerical results are presented
for several test problems with or without the source term
present and the presented schemes are verified by compar-
ing the results with analytical and documented ones.

II. MODEL EQUATIONS

We depart from the well known two-dimensional shallow
water (SW) system, with a geometrical source term added,
written in it’s physical conservative form,
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where we denote h(t,z,y) > 0, the water depth at time ¢,
u = (u1,us) T, the flow velocity, g the gravitational accel-
eration, Z(z,y) the bottom topography and X(z, y,t) are
the sources of water. We also denote with q=hu the water
discharge.

A wide variety of physical phenomena are governed by the
SW equations. An important class of problems of practi-
cal interest involve such water flows, including tidal flows
in estuary and coastal water regions, bore wave propaga-
tion, flood waves in rivers, surges and dam-break modelling
among others. The inclusion of source terms, e.g., those
terms relevant to bottom topography is often necessary to
permit the modelling of such realistic problems.



The SW system is being used to provide the hydrodynamic
background for the propagation and diffusion of a passive
pollutant in the water which is modeled by the equation

OhC + div(huC) —
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= ZCEJ (3)

where C(t,z,y)) is the average pollutant concentration,
Cx, is a given concentration of the pollutant at the sources
¥ and D = (D?,D¥)T are diffusion coefficients. Equa-
tions (1), (2) and (3) are coupled through the source terms
and can be written in differential conservation law form as
a single vector equation.

It is well known that the solutions of such nonlinear sys-
tems present steep fronts and shock discontinuities, which
need to be resolved accurately in applications, and can
cause severe numerical difficulties. Thus, computing nu-
merical solutions is not trivial due to nonlinearity, the pres-
ence of the convective term and the coupling of the equa-
tions through the source terms.

I11. RELAXATION APPROXIMATIONS

Consider an extended (with a general source term present)
nonlinear system of conservation laws in one space dimen-
sion, with initial data,
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where the functions u and f(u) € R™. Introducing the
artificial variable v (relaxation variable), the corresponding
relaxation system is then given by
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with initial data

u(z,0) = ug(x),
V(.’L’,O) = VO('Z')

= f(“O(m))J

where the small parameter e is the relaxationrate (0 < € <
1) and
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is a positive diagonal matrix to be chosen. Here we must
require that the well-known sub-characteristic condition
holds given by

C?—f'(u)?>0, Vu. (6)

This condition ensures the dissipative nature of the approx-
imation. Hence, for the one-dimensional case we require
that every eigenvalue \; of f'(u) satisfies

|Al < Cmaxs (7

where ¢max = max;c;. By doing so we insure that the
characteristic speeds of the hyperbolic part of (5) are at
least as large as the characteristic speeds of the original
problem. Consequently, in the limit ¢ — 0% system (5)
approaches the original system (5) by the local equilibrium
v = f(u).

Following the previous motivation we write a relaxation
system for the 1D equations replacing the conservation
laws (1)-(3) by a larger system
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where w, H, and B € R?" and the new vectors are stated
explicitly as
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We can see now that system (1)-(3) can be easily converted
to the relaxation system (8) in a straightforward manner.
We should note here that the characteristic variables are
still much simpler than those of the non-linear conserva-
tion law, since the relaxation system has linear characteris-
tic variables, and that no information about the eigensystem
of the Jacobian of the nonlinear flux is required, except an
upper bound of the largest eigenvalue in modulus, in order
to adjust the parameters in C? according to the subcharac-
teristic condition. We note that for the hyperbolic system
(1)-(3), and for the 1D case, the eigenvalues of the Jacobian
are A1 2 = u++/gh, A\s = u.

Next we present the semi-discrete relaxation schemes for
the larger system where we consider possible spatial dis-
cretizations. To discretize the system of equations (8) we
assume a uniform spaced grid with Az = z;, 1 — Ty
and a variable time step (calculated based on a CFL condi-
tion) At = t"*tt — " n =0,1,2,.... The approximate



solution, denoted as the discrete value w7, is the approxi-
mate cell average of the variable w in the cell (z; 1, 2;_1)
at time ¢ = t™. The approximate point value of w at
x = z;, 1 attime ¢ = ¢ is denoted by Wi We then

construct a classical first order in space upwind scheme and
a second order MUSCL-type scheme, and present the time
discretization of the relaxation scheme applied to the equa-
tions. We presenta MUSCL-TVD space discretization, and
a Runge-Kutta method as the time marching mechanism to
advance the solution in time, which reads as

whl = w + AtB(w™?), (9a)
wl) = w! — AtD,H(w™!), (9b)
w™? = wl) — AtB(w™?) — 2A¢tB(w™')  (90)
w® = w™? — AtD, H(w™?) (9d)
witl = %(w" +w?). (%)

This second order implicit-explicit (IMEX) Runge-Kutta
splitting scheme utilized here is different to the one pre-
sented for the shallow water equations in [DK 05]. For the
first n components of w in equations (11a) and (11c) one
does not have to solve any implicit problems due to the
special structure of the source term in equation (3) (follow-
ing from (1)), while for the second n components one can
again solve explicitly (that due to linearity of v). For ex-
ample, for the first n. components of w™! in equation (11a)
we have

ult = ul — Ats;(uP"), (10)
while for the second n components we have
At
fuz."’l =] — — [fi(u?’l) — v:"l] , (11)
which we solve explicitly as
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Hence, this splitting treats, alternatively, the stiff source
terms X (v — £(u)) implicitly in two steps (that due to the
structure of the source terms and the linearity of v one still
solve them explicitly), and the convection terms with two
explicit steps. Thus, we have an explicit implementation
of an implicit source term, with stability constraints solely
determined by the non-stiff convection terms, just as in a
usual shock capturing scheme.

The spatial discretization is introduced in (9) by the opera-
tor
1
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Tossolve for H, . 1 and construct a second order accurate in
space scheme, the MUSCL-TVD piecewise linear interpo-
lation is applied to the k—th component of v + Cu, gives
respectively:

1
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(13)
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where u, v are the k—th (1 < k& < n) components of v, u
respectively, with & the slopes in the i—th cell defined as

1
of = A_x(vi—i-l + cruivt — vi F cpus)p(6F)  (14)
and
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where ¢ is a limiter function, satisfying
0 < ¢(6) < minmod(2, 26). (16)

There are several options on choosing a limiter function.
Some of the most popular ones are, the MinMod (MM)
limiter

¢(0) = max(0, min(1, 6)),
the VanLeer (VL) limiter

_loi+6

the Superbee (SB) limiter

#(0) = max(0, min(26, 1), min(6, 2)),
and the Monotonized Central (MC) limiter

¢(0) = max(0, min((1 + 8)/2,2,20)).
Following from (13) we get
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slope o = 0 or ¢ = 0, the MUSCL scheme reduces to a
first order upwind scheme.

It is worth noting here that, using the above schemes neither
linear algebraic equation nor nonlinear source terms arise.
In addition both first and second order relaxation schemes
are stable under a CFL condition

o (s 2) <1 a9

In order to retain the TVD property (see [JX 95]) a more
strict restriction has to be imposed on the usual CFL con-
dition, and that has been applied in the following section n
in order to calculate At

CFL = max ((maxc,)ﬂ) <

s (19)
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It is worth noting that, using the above scheme neither lin-
ear algebraic equations nor nonlinear source terms arise. In
addition this second order relaxation scheme is stable and
non-oscillatory under the C'F'L condition.

IV. 1D NUMERICAL TESTSAND RESULTS

We present results of a series of numerical experiments il-
lustrating the various features of the schemes. For consis-
tency in all the experiments reported here the time step At
was computed according to the condition (18), but in prac-
tice higher values can also be used in most calculations.
The choices of ¢; in all the numerical tests are based on
rough estimates of the eigenvalues (u + /gh,u — \/gh,
u) of the original (1)—(3) equations. Thus, we take c¢; >
sup |A\;| which satisfy the subcharacteristic condition (7).
Other choices can be made, for example one can simply
set ¢; = max(sup |A;|)Vi, as long as numerical stability
is maintained. It should be noted here that larger ¢; val-
ues usually add more numerical viscosity. The schemes
presented here can be viewed as a whole class of schemes
depending on the parameters ¢;.

The relaxation parameter e should be small with respect
to the time step and space mesh length, that is At > e
and Az > e. Again here, e plays the role of viscosity
coefficient so more numerical diffusion will be added for
relatively larger values of e

A. 1D Dam-Break Problem

The first test case is of a dam break on a flat bottom, where
the concentration of the pollutant has different values on
each side of the dam. We compare the results with ex-
act solutions (presented as solid lines). For this first prob-
lem the channel length is L = 50m. The initial data is
that of a Riemann problem, with zo = 10m being the

dam position (position of the initial discontinuity). The
values hr, = 1m,ur, = 2.5m/s and Cr = 1 are the
initial value at the left side of the dam, with right values
hr = 0.lm,ur = Om/s and Cr = 0. The simulation
time is ¢, = 7s. Figures (1)-(3) show the results for wa-
ter height, water discharge and pollutant concentration ob-
tained with the relaxation scheme with computational pa-
rameters Az = 0.5m,e = 1.D — 6, ¢; = 6.5,¢c0 = 1.4
and ¢3 = 4. The VL limiter was used to obtain these re-
sults. We are particularly interested in the performance of
the scheme for the pollutant concentration. The numerical
solution closely follows the exact one, with the pollutant
shock front well captured for the coarse grid used.

B. Emission of Pollutant Over Topography

This test case is also from [AB 03]. Here we test the intro-
duction of a source of pollutant is a flow. For this problem
the initial datais h+ Z = 2, ¢ = 0.5 with L = 1000m and
g = 1 with

Z(z) = {

We assume that the water is initially clean until time ¢, =
100s (where the flow has reached a steady state at this
point) when a source of water ¥ = 0.01 with concentration
of pollutant C'ss, = 10 is turned on at the point z = 45m,
then at time ¢, = 300s the pollution source is turned off.
Then we follow the evolution of this pollutant layer.

Using Az = 4m,e = 1.D — 6, ¢; = 2,¢0 = 1 and
c3 = 0.5 with the MC limiter, numerical results for the
pollutant concentration are presented in Figures (4) and (5)
at times t,,; = 300s, 350s, 500s and 800s, for the interval
I = [0,500]. The results are in very good agreement with
those presented in [AB 03], [KCP 05]. As pointed out in
[AB 03] due to the presence of the water source there is a
local modification in space and time of the hydrodynamic
computation. Here we prove that the relaxation scheme can
cope with such situations producing reliable results.

0.2 — 0.05(z — 10)2,
0, otherwise.

8 <z <12,

V. 2D NUMERICAL TESTSAND RESULTS

In this section we apply the relaxation scheme to two-
dimensional problems. We will not make a complete pre-
sentation of the extension of the scheme in 2D here, since it
will be detailed elsewhere. The 2D computations are based
on extending the 1D strategy.

We will just present the 2D relaxation model that corre-
sponds to equation (5) for the 1D case. Considering the
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Fig. 1. Dam Bresk problem: water height at t,,:=7s. Exact
solution (=) and MUSCL (0-).
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Fig. 2. Dam Break problem: water discharge at ¢,.:=7s. Exact
solution (=) and MUSCL (0-).
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Fig. 3. Dam Break problem: pollutant concentration at £,.,:=7S.
Exact solution (=) and MUSCL (0-).

classical 2-D conservation law

du , Of(w , dg(u)

ot ox Jy

=s(u); (z,y) € R?, t>0,

U(JU,?/,O) = llo(.flf,y); (xay) € R2

(20)
with u, f(u) and g(u) € R™ we introduce the relaxation
variables v, w to (20), and the linear relaxation model in
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Fig. 4. Emission of Pollutant Over Topography: concentration of
the pollutant at times¢ = 300s (left) and t = 350s (right) for
the MUSCL relaxation scheme.

2D reads as follows,
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where now C2,D? € R™*™ are positive diagonal matrices.
In the limit ¢ — 0% system (21) approaches the original
system (2.1) by the local equilibrium v = F(u) and w =
G (u). A general necessary condition for such convergence
is that a sub-characteristic like condition is satisfied. For
system (21) we require that,
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(22)
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Fig. 5. Emission of Pollutant Over Topography: concentration of
the pollutant at timest = 500s (left) and ¢ = 800s (right) for
the MUSCL relaxation scheme.

with A;, u; being the eigenvalues of OF(u)/0u and
OG (u)/Ou respectively.

A. A 2D Partial Dam-Break

This problem is similar to the one considered in [CK 05]
and is the case of a 2D square domain 1400m x 1400m
where the water flows through a breach that is located be-
tween y = 560 and y = 840, from the left to the right.
The initial data is ur, = ug = v = vg = 0 and
hr = 0.5m and hg = 1m. The initial pollutant concentra-
tion is given by C(z,y,0) = e0-0001[(z—650)"+(y—600)*]
for0 < z < 700,0 < y < 1400 andC(z,y,0) = 0.5
for 700 < z < 1400,0 < y < 1400. The boundary
conditions at z = 0 and x = 1400m are assumed to be
transmissive and all other boundaries are considered as re-
flective. At the instant of breaking of the dam, water is
released through the breach, forming a positive wave prop-
agating downstream and a negative wave spreading up-
stream. The computational parameters used were e = 10~°
and¢; = 10,0 = 6,¢3 = ].].,dl = 10,d2 = 5,d3 = 11.
The VL limiter was applied in all computations. The solu-

tion computed on a 500 x 500 grid at time ¢,,; = 200s is
shown in Figures (V-A) and (V-A). The scheme provides
a very high resolution of circular shock wave and the vor-
tices formed on the breach. The results for the pollutant
concentration correctly describe the physical behavior and
are comparable to those presented in [CK 05].
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Fig. 6. A 2D Partia Dam Break: 3D plot (top) and contour plot
(bottom) for water height at t,.,: = 200s computed with the
MUSCL relaxation scheme.

B. Emission of Pollutant in a Reservoir

This test problem is to simulate the transport and diffusion
in a reservoir. The computational domain is a 200m x
200m region which has been subdivided into 81 x 81 square
grid. The initial stagnant water depth in the reservoir is
h = hr, = 1lm = hg and u; = us = 0, with no pollu-
tant present inside the domain. The values of the diffusion
coefficients are D, = D, = 29.2m?/s A breach exists,
located in the middle of the reservoir, and is 75m in length,
having distances of 30m from the left bank and 95m from
the right. The boundary conditionsat z = 0 and x = 200m
are assumed to be transmissive and all other boundaries
are considered as reflective. At the beginning at the inlet
of the reservoir we impose u; = 0.1m/s and a pollutant
is released with C' = 0.7. The computational parameters
used weree = 1.D —6andc; = ¢3 = 4,c0 = ¢4 =
0.25,dy = d3 = 4,d> = d4 = 0.15, with the MC limiter.
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Fig. 7. A 2D Partiad Dam Break: 3D plot (top) and magnifi ed top
view (bottom) for the pollutant concentration ., = 200s
computed with the MUSCL relaxation scheme.

The results for two consecutive representations in terms of
velocity fields and pollutant concentration distribution are
presented in Figure (8). We can clearly see the discharge
effect to the evolution of the pollutant concentration on the
initially stagnant reservoir water.

V1. CONCLUSIONS

In the present work relaxation schemes have been studied
in order to compute numerical solutions for the two di-
mensional shallow water flows along with transport and
diffusion of pollutant in such flows. The main feature of
the schemes is their simplicity and robustness. Finite vol-
ume shock capturing spatial discretization, that are Rie-
mann solver free, have been used providing accurate shock
resolution. The schemes has been extended in two dimen-
sions. The benchmark tests have shown that the schemes
provide accurate solutions in good agreement with analyti-
cal or reference solutions. The results also demonstrate that
relaxation schemes are accurate, simple, efficient and ro-
bust and can be of practical consideration and further study.
Further possible developments of the method can be con-
sidered, like higher order spatial discretizations, different
Runge-Kutta time stepping methods and an adaptive way
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Fig. 8. Emission of pollutant in areservoir: velocity fi eld (left)
and pollutant concentration contours (right) at timet = 80s
computed with the MUSCL relaxation scheme.

of calculating the characteristic speeds. These are interest-
ing areas of numerical analysis that can benefit from further
investigation.
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