
A New Framework for Join Product Skew

Foto Afrati1, Viktor Kyritsis1, Paraskevas Lekeas2, Dora Souliou1

1 National Technical University of Athens, Athens, Greece,
{afrati, vkyri}@softlab.ece.ntua.gr, dsouliou@mail.ntua.gr

2 Department of Applied Mathematics, University of Crete, Herakleio, Greece,
plekeas@tem.uoc.gr

Abstract. Different types of data skewness can result in load imbalance
in the context of parallel joins under the shared nothing architecture.
We study one important type of skewness, join product skew (JPS). A
static approach based on frequency classes is proposed which takes for
granted the data distribution of join attribute values. It comes from the
observation that since the join selectivity can be expressed as a sum
of products of frequencies of the join attribute values, an appropriate
assignment of join sub-tasks, that takes into consideration the magnitude
of the frequency products can alleviate the join product skew. Motivated
by the aforementioned ascertainment, we propose an algorithm, called
Handling Join Product Skew (HJPS), to handle join product skew.

Key words: Parallel DBMS, join operation, join selectivity, data dis-
tribution, data skew, load imbalance, shared nothing architecture

1 Introduction

The expansion of data in higher volumes as well as the increase complexity
of relational database queries make the performance issue a critical element in
the design of database systems. The limited potentials of centralized database
systems in terms of storage and processing power has led to the advent of parallel
database management systems (PDBMS), which allow the process of relational
database operations in parallel. Parallelism either by streaming the output of one
operator into the input of another one or by splitting an individual operator into
many independent operators can lead to faster evaluations of complex queries.

Among the relational operations, join is the most expensive one. Especially,
natural join is the most popular form of join operation. It is defined as a binary
operation between two relations, say R and S, that include the attributes X and
Y respectively in their schema definition. The output of the natural join is the
set, whose each element is the concatenation of a tuple r belonging to R and
a tuple s belonging to S under the condition that the values of the attributes
X and Y in the tuples r and s respectively are equal. The attributes X and Y
that participate in the natural join are called join attributes while the equality

condition is denoted by the join predicate R.X = S.Y . R
R.X=S.Y

on S stands for
the natural join of relations R and S on join attributes X and Y . However, for
simplicity we use the notation R on S in this paper.

2 Lecture Notes in Computer Science: Authors’ Instructions

Sort-merge join and hash-join constitute the two major operators join oper-
ator algorithms for the computation of the natural join R on S, that are subject
to parallel execution. In this paper we focus on the hash-based join since it
has linear execution cost (contrary to sort-merge join), and it performs better
in the presence of data skew [4] as well. Especially, we propose a new model
for handling join product skew, which is a specific type of skewness, in the
context of the shared-nothing architecture [12]. According to this architecture,
the computational nodes that constitute a PDBMS are distinguished into two
categories: database processors (or parallel units) and control processors. Each
computational node has its own memory and CPU and independently accesses
its local disks. A database processor is provided with the ability to perform lo-
cally relational operations. We will assume that all the database processors have
identical configuration. On the other hand the functionality of a control proces-
sor is twofold. It provides an interface to users in order to submit their queries,
expressed in a programming language, e.g., SQL, and it also sends the database
requests to the database processors. All the processors are exchanging messages
by using the underlying interconnection network.

The hash-based join processing of two relations in a PDBMS adopting the
shared-nothing setup is separated into three phases. In the first phase, which
can be regarded as a pre-processing step since its functionality bears no direct
relation to the join operation, both relations are fully declustered across the
database processors. Provided that relations of large data volumes are consid-
ered in the join operation R on S, full declustering is proven to be the best place-
ment strategy for parallel shared-nothing database systems [11]. In general, the
declustering attribute of each relation is different from the join attribute. Each
relation is horizontally partitioned among the databases processors by applying
a partition function (or defining ranges of values) on the declustering attribute.

What follows in the join processing is the redistribution of the partitioned
tuples. During the redistribution phase, each database processor applies a com-
mon hash function h (which is different from the function used in declustering)
on the join attribute value for its local fragments of relations R and S. The hash
function h ships any tuple belonging to either relation R or S, with join attribute
value bi to the h(bi)-th database processor. Generally speaking, according to the
given definition of the hash function, tuples with different values of join attribute
are likely to be shipped to the same database processor. Obviously, if the target
database processor determined by the hash function coincides with the database
processor, where initially a given tuple is placed, there is no need to ship this
tuple. However, in general, this is not the case. At the end of the redistribution
process both relations are fully partitioned into disjoint fragments.

Finally, after the completion of the redistribution phase, each database pro-
cessor p performs locally an equi-join operation between its fragments of relations
R and S, denoted by Rp and Sp respectively. The sets Rp and Sp contain tu-
ples that belong to relations R and S respectively, and the hash value of the
join attribute in every tuple t ∈ Rp ∪ Sp equals to p. The database optimizer
of each database processor chooses the most cost-effective way to execute the

Lecture Notes in Computer Science: Authors’ Instructions 3

local join operation. It is assumed that the join operation is computed locally
by the conventional hash-based algorithm. The joined tuples are kept locally in
each database processor instead of being merged with other output tuples into
a single stream.

Skewness is identified as one of the major factors that affects the effectiveness
of the parallel join [10]. It is perceived as the variance in the response times of
the database processors that participate in the parallel computation of the join
operation. [13] provides a classification of data skewness into four categories.
In sum, the tuple placement skew (TPS) is related to the first phase. It may
happen when the number of tuples belonging to a relation varies across the
database processors after its declustering. A wise choice of the function that
renders the initial placement of tuples in the database processors confines the
effect of this specific type of skewness. As to selectivity skew (SS), it occurs when
the application of the qualification condition(s), specified in the WHERE clause
of the query, leads to a widely varying number of tuples across the database
processors. Thus, this type of skewness is query-dependent.

The two remaining types of skewness, redistribution skew (RS) and join prod-
uct skew (JPS), are concerned to be critical in achieving high performance and
scalability in the context of natural join operations. Redistribution skew can be
observed after the end of the redistribution phase. It happens when at least one
database processor has received large number of tuples belonging to a specific
relation, say R, in comparison to the other processors after the completion of
the redistribution phase. This imbalance in the number of redistributed tuples
is due to the existence of naturally skewed values in the join attribute. Redistri-
bution skew can be experienced in a subset of database processors. It may also
concern both the relations R and S (double redistribution skew). Join product
skew occurs when there is an imbalance in the number of join tuples produced
by each database processor. [11] points the impact of this type of skewness to
the response of the join query.

Query load balancing in terms of the join operation is very sensitive to the
existence of the redistribution skew and/or the join product skew. Especially,
join product skew deteriorates the performance of subsequent join operation
since this type of skewness is propagated towards the query tree. In this paper
we address the issue of join product skew. We introduce the notion of frequency
classes, whose definition is based on the product of frequencies of the join at-
tribute values. Under this perspective we examine the cases of homogeneous and
heterogeneous input relations. We also propose a new static algorithm, called
HJPS (Handling Join Product Skew) to improve the performance of the parallel
joins in the presence of this specific type of skewness. Finally, we consider the
case of the chain join. In order to apply our approach, we give an analytical
formula about the size of the result set expressed as a product of join selectivi-
ties. Various dynamic and static techniques and algorithms have been
proposed to confine the impact of the join product skew.

The rest of this paper is organized as follows. In section 2 we illustrate the
notion of division of join attribute values into classes of frequencies by means of

4 Lecture Notes in Computer Science: Authors’ Instructions

two generic cases. In section 3 an algorithm that helps in reducing join product
skew effects is proposed. Section 4 discusses the related work and section 5
concludes the paper. Finally, a proof of an analytical formula concerning the
size of the result set for the chain join is exhibited in appendix.

2 Two Motivating Examples

We will assume the simple case of a binary join operation R1(A,B) on R2(B,C),
in which the join predicate is of the form R1.B = R2.B. The m discrete values
b1, b2, . . . , bm define the domain D of the join attribute B. Let fi(bj) denote the
relative frequency of join attribute value bj in relation Ri. By definition, the
relative frequency fi(x) for any x ∈ D is the fraction of tuples in relation Ri

with join attribute value equal to x. Obviously, the product fi(x)|Ri| is equated
to the number of tuples in relation Ri whose the join attribute value is equal to
x. Given the relative frequencies of the join attribute values b1, b2, . . . , bm, the
join selectivity of R1 on R2 is equal to [6]

µ =
∑
bj∈D

2∏
i=1

fi(bj) =
∑
bj∈D

f1(bj)f2(bj) (1)

Since µ = |R1onR2|
|R1×R2| and the size of the result set of the cross product R1 ×R2

is equal to the product |R1||R2|, the cardinality of the result set associated with
the join operation R1 on R2 is rendered by the magnitude of the join selectivity.
In appendix, a probabilistic meaning to the join selectivity measure is given as
well as it is proven an analytical formula about the size of the result set of the
chain join, which is a common form of join.

2.1 Homogeneous Input Relations

Firstly, we examine the natural join of two homogeneous relations R1(A,B) on
R2(B,C) in the context of the join product skew effect. In the case of the homo-
geneous relations the distribution of the join attribute values bi is the same for
both input relations R1 and R2. That is, there exists a distribution f such that
f1(b) = f2(b) = f(b) for any b ∈ D. In this setting, the distribution f is skewed
when there are join attribute values bi, bj ∈ D such that f(bi) ≫ f(bj).

The join attribute values with the same relative frequency fk defines the
frequency class Ck = {b ∈ D | f(b) = fk}.

Thus, the domain D of the join attribute B is disjointly separated into classes
of different frequencies. This separation can be represented with a two level tree,
called frequency tree. The nodes of the first level correspond to classes of different
frequencies. The kth node of the first level is labeled with Ck. The descendant
leaves of the labeled node Ck correspond to the join attributes belonging to
class Ck. Each leaf is labeled with the value of one of the join attributes of
the class corresponding to the parent node. The following picture depicts the

Lecture Notes in Computer Science: Authors’ Instructions 5

root

C1

b2

C2

b1 b6

C3

b3 b5

C4

b4

Fig. 1. The frequency tree for R1 on R2.

structure of a simple frequency tree for join operation R1 on R2 assuming that
D = {b1, . . . , b6} is separated into four frequency classes C1, . . . , C4.

The number of produced joined tuples for a given class Ck is equal to
|Ck|f2

k |R1||R2| since fk|R1| tuples of relationR1 matches with fk|R2| tuples of re-
lationR2 on any join attribute value b ∈ Ck. LetN be the number of the database
processors participating in the computation of the join operation. Since only the
join product skew effect is considered, the workload associated with each node is
determined by the size of the partial result set that is computed locally. In order
the workload of the join operation to be evenly apportioned on the N database

processors, each node should produce approximately
(∑K

k=1 |Ck|f2
k

N

)
|R1||R2| num-

ber of joined tuples, where K denotes the number of frequency classes. In terms
of the frequency classes, this is equivalent to an appropriate assignment of either
entire or subset of frequency class(es) to each database processors in order to
achieve the nearly even distribution of the workload. This assignment can be
represented by the selection of some internal nodes and leaves in the frequency
tree. By construction, the selection of an internal node in the frequency tree
amounts to the exclusive assignment of the corresponding frequency class to
some database processor. Thus, this database processor will join tuples from the
relations R1 and R2 whose join attribute value belongs to the selected class. Fi-
nally, to guarantee the integrity of the final result set, the sequence of selections
must span all the leaves of the frequency tree.

2.2 Heterogeneous Input Relations

We extend the previous analysis in the case of heterogenous input relations. The
join attribute values are distributed to the input relationsR1(A,B) andR2(B,C)
according to the data distributions f1 and f2, respectively. In general, it holds
that the relative frequencies of any join attribute value b ∈ D are different in the
relations R1 and R2, i.e., f1(b) ̸= f2(b) for any b ∈ D. The above are depicted
in table 1.

The number of joined tuples corresponding to the join attribute value b ∈ D
is rendered by the product f1(b)f2(b). Thus, the join product skew happens when
f1(bi)f2(bi) ≫ f2(bj)f2(bj) for some bi, bj ∈ D. This means that the workload
of the join process for the database processor, to which the tuples with join
attribute value equal to bi have been shipped at the redistribution phase, will
be disproportional compared with the respective workload of another database
processor. Similarly to section 2.1, the classes Ck = {b ∈ D | f1(b)f2(b) = fk}
disjointly partition the join attribute values.

6 Lecture Notes in Computer Science: Authors’ Instructions

Join Attribute Values R1 R2

b1 f1(b1) f2(b1)

.

bm f1(bm) f2(bm)

Table 1. Relative frequencies of the join attribute values.

Alternatively, it is possible the definition of classes of ranges of frequencies
according to the schema Ck = {b ∈ D | fk−1 ≤ f1(x)f2(x) < fk} (range
partitioning in the frequency level).

The “primary-key-to-foreign-key” join consists a special case of heterogeneity
where in one of the two relation, say R1, two different tuples always have different
values in the attribute B. This attribute is called primary key and its each value
b ∈ D uniquely identifies a tuple in relation R1. As to relation R2, attribute
B, called foreign key, matches the primary key of the referenced relation R1.
In this setting, which is very common in practice, we have that f1(bi) =

1
m for

any bi ∈ D, and in general f2(bi) ̸= 1
m with f2(bi) > 0. The join product skew

happens when f2(bi) ≫ f2(bj) for some bi, bj ∈ D, since f1(bi) = f1(bj). Thus,
the separation of the join attribute values into disjoint frequency classes can be
defined with respect to the data distribution f2, i.e., Ck = {x ∈ D | f2(x) = fk}.

3 Algorithm

In the continue we propose an algorithm that handles join product skewness.
The algorithm deals with the simple case of the binary join operation between
two relations R(A,B) on S(B,C), in which the join predicate is B. For the
explanation of the algorithm we use the following notation. Let D be the domain
of values of the join attribute then D = {b1, b2, ..., bm} where m is the number
of the discrete join attribute values.
|Rbi| is the number of tuples of the relation R with join attribute value equal to
bi for every i = {1, 2, ...,m}.
|Sbi| is the number of tuples of the relation S with join attribute value equal to
bi for every i = {1, 2, ...,m}.
The algorithm considers |Rbi| and |Sbi| given for every value of i. The number
of computations that should take place in order to commit the join operation
depends on the number of tuples from both relations that have common join
attribute value (R.B = S.B) and it is equal to |R on S|. In other words the total
process cost for the join operation TPC is given by the sum of products of the
tuples in both relations that have equal join attribute values and it is expressed
by the equation

Lecture Notes in Computer Science: Authors’ Instructions 7

TPC =
∑

bi∈D |Rbi| ∗ |Sbi|.
We notate by n the given number of processors. If we divide the TPC by n we
get the number of computations that should each processor commits in order to
avoid delays in one or more processors.
The symbol pwl stands for the work load that corresponds to each processor.
The quotient of the division of the product of |Rbi| * |Sbi| by pwl gives the
number of processors needed to handle each distinct join attribute value. If this
number for which we use the symbol vwlbaj (work load for the join attribute
value baj) exceeds value 1 the algorithm considers the join attribute value skewed
and decides to send this join to more than one processors. The exact number is
defined by the quotient. Let SK = {ba1, ba2, ba3, ..., bal} be the skewed values.
For each one of them the algorithm’s steps are the following. For the value ba1
the number of processors needed is vwlba1. The algorithm uses the first vwlba1
processors for the join attribute value ba1. For this step we need to know which
of the two relations has the greater number of tuples. If |Rba1| > |Sba1| the
tuples of the relation R are redistributed to the first vwlba1 processors while all
the tuples from the second relation are send to all vwlba1 processors. In order
to decide which tuple of the relation R goes to which processor the algorithm
uses a hash function on a different attribute from the join attribute. So at this
step all processors apply the hash function to the tuples from relation R whose
join attribute value equals to ba1 and send them to the appropriate processor. In
the opposite case where |Rba1| < |Sba1| all the tuples from the the first relation
with join attribute value equal to ba1 go to all the processors and the tuples
of the second relation are distributed to all vwlba1 processors according to the
hash function. The same procedure takes place for the rest skewed values. The
remaining tuples are redistributed to the the rest processors according to the
hash function which is applied to the join attribute value.

4 Related Work

The achievement of load balancing in the presence of redistribution and join
product skew is related to the development of static and dynamic algorithms.
In static algorithms it is assumed that adequate information on skewed data
is known before the application of the algorithm. [1], [3], [5], [15], [14], [16],
[18] expose static algorithms. On the contrary, data skew effect is detected and
encountered dynamically at run time [2], [7], [8], [9], [19].

[8], [9] meet the challenge of redistribution skew in the context of a dynamic
approach. According to the bucket-spreading parallel hash join algorithm [9]
and its variant tuple interleaving hash join algorithm [8], redistribution skew is
alleviated by guaranteeing that the database processors get approximately the
same number of tuple for the join phase. However, to achieve this the relations
are redistributed twice.

[2], [19] address the issue of the join product skew following a dynamic ap-
proach. A dynamic parallel join algorithm that employs a two-phase scheduling
procedure is proposed in [19]. The authors of [2] present an hybrid frequency-

8 Lecture Notes in Computer Science: Authors’ Instructions

Algorithm HJPS (* Handling Join Product Skew *)

Input: tri tuples of relations R and trj tuples of relations S, number of processors n.
Output: correspondence of tuple to processor
Consider the join attribute value is the set:
D = {b1, b2, ..., bm}
(* compute all frequencies for every join attribute value inD *)
for i : = 1 to m do

calculate |Rbi|, |Sbi|;
TPC =

∑
bi∈D |Rbi| ∗ |Sbi| (*TCP the total process cost*)

pwl = TPC/n
(*pwl the process cost of each processor*)
vwlbi = |Rbi| ∗ |Sbi|;
(*vwlbi the process cost for each join attribute value bi)
vnbi = vwlbi/pwl;
(*pnbi ideal number of processors for the join attribute value bi*)
if (pnbi >= 2) consider bi a skewed value;
Let SK = {ba1 , ba2 , ba3 , ..., bal} be the set of skewed values
for i : = a1 to am do

if (|Rbi| > |Sbi|)
distribute every tri to the next vnbi processors;
send every tsi to the next vnbi processors;

else
distribute every tsi to the next vnbi processors;
send every tri to the next vnbi processors;

assign rest tuples from both relations to the rest processors;

(*for distribution use a hash function to another attribute*)
(*the algorithm uses a hash function to the join attribute*)

Fig. 2. Handling Join Product Skew Algorithm

Lecture Notes in Computer Science: Authors’ Instructions 9

adaptive algorithm dynamically combines histogram-based balancing with stan-
dard hashing methods. The main idea is that the processing of each sub-relation,
stored in a processor, depends on the join attribute value frequencies which are
determined by its volume and the hashing distribution.

[1] , [5], [15], [14] deal with the redistribution skew effect assuming perfect or
nearly perfect information of the join attribute distribution. The algorithm in [15]
splits the hash phase into two phases and adds a scheduling phase between these
two. During the scheduling phase, an heuristic optimization algorithm balance
the load across the multiple processors. [14] follows the same approach for sort-
merge join by adding a scheduling phase. During this phase the balance of the
workload is achieved using the output of the sort phase. Subset replication and
range partitioning techniques, presented in [5], computes a split vector of join
attribute values given a set of collected samples of the relations to be joined. The
split vector is used to partition the skewed relation into a number of ranges that
is equal to the processors. In PRPD algorithm [18], the tuples of each sub-relation
of R1 with skewed join attribute values occurring in R1 are kept locally in the
database processor, while the set of tuples that have skewed values happening
in R2 are broadcast to all the database processor. The remaining tuples of sub-
relation are hash redistributed. The remaining tuples of each sub-relation of R2

are treated in the respective way. The algorithm captures efficiently the case
where some values are skewed in both relations.

Virtual processor partitioning [5] is designed to deal with the presence of the
product skew statically. Using the notion of the splitting values stored in a split
vector, multiple range partitions instead of one are assigned to each processor.
Authors in [1] assign a work weight function to each join attribute value in order
to generate partitions of nearly equal weight.

Finally, OJSO algorithm [17] handles data skew effect in an outer join, a
variant of the equi-join operation.

5 Conclusion and Future Work

We address the problem of join product skew in the context of the PDBMS.
In our analysis, the apriori knowledge of the distribution of the join attribute
values has been taken for granted. We concentrated on the case of partitioned
parallelism, according to which the join operator to be parallelized is split into
many independent operators each working on a part of data. We introduce the
notion of frequency classes and we examined its application in the general cases
of homogeneous and heterogeneous input relations. Furthermore, an algorithmic
framework called HJPS is proposed to handle the join product skew. The pro-
posed algorithm identifies the skew elements and assigns a specific number of
processors to each of them. Given a skewed join attribute value, the number of
dedicated processors is rendered by the process cost for computing the join for
this attribute value, and by the workload that a processor can afford.

Much work needs to be done for our work to mature. We are in the process of
testing our algorithm against real databases, and a benchmark analysis should

10 Lecture Notes in Computer Science: Authors’ Instructions

be conducted as well. In addition, we are looking at generalizing our framework
analysis with frequency classes at multiple joins. The study of the chain join in
appendix section assuming non-correlated join attribute values is only a special
case.

References

1. K. Alsabti and S. Ranka. Skew-insensitive parallel algorithms for relational join. In
HIPC ’98: Proceedings of the Fifth International Conference on High Performance
Computing, page 367, Washington, DC, USA, 1998. IEEE Computer Society.

2. Mostafa Bamha and Gaétan Hains. Frequency-adaptive join for shared nothing
machines. pages 227–241, 2001.

3. Hasanat M. Dewan, Mauricio A. Hernández, Kui W. Mok, and Salvatore J. Stolfo.
Predictive dynamic load balancing of parallel hash-joins over heterogeneous pro-
cessors in the presence of data skew. In Proceedings of the Third International
Conference on Parallel and Distributed Information Systems (PDIS 94), Austin,
Texas, September 28-30, 1994, pages 40–49. IEEE Computer Society, 1994.

4. David J. DeWitt and Jim Gray. Parallel database systems: The future of high
performance database systems. Commun. ACM, 35(6):85–98, 1992.

5. David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri.
Practical skew handling in parallel joins. In Li-Yan Yuan, editor, 18th International
Conference on Very Large Data Bases, August 23-27, 1992, Vancouver, Canada,
Proceedings, pages 27–40. Morgan Kaufmann, 1992.

6. Peter J. Haas, Jeffrey F. Naughton, and Arun N. Swami. On the relative cost of
sampling for join selectivity estimation. In PODS ’94: Proceedings of the thirteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pages 14–24, New York, NY, USA, 1994. ACM.

7. Lilian Harada and Masaru Kitsuregawa. Dynamic join product skew handling for
hash-joins in shared-nothing database systems. In Tok Wang Ling and Yoshifumi
Masunaga, editors, Database Systems for Advanced Applications ’95, Proceedings of
the 4th International Conference on Database Systems for Advanced Applications
(DASFAA), Singapore, April 11-13, 1995, volume 5 of Advanced Database Research
and Development Series, pages 246–255. World Scientific, 1995.

8. Kien A. Hua and Chiang Lee. Handling data skew in multiprocessor database com-
puters using partition tuning. In Guy M. Lohman, Amı́lcar Sernadas, and Rafael
Camps, editors, 17th International Conference on Very Large Data Bases, Septem-
ber 3-6, 1991, Barcelona, Catalonia, Spain, Proceedings, pages 525–535. Morgan
Kaufmann, 1991.

9. Masaru Kitsuregawa and Yasushi Ogawa. Bucket spreading parallel hash: A new,
robust, parallel hash join method for data skew in the super database computer
(sdc). In Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek, editors, 16th
International Conference on Very Large Data Bases, August 13-16, 1990, Brisbane,
Queensland, Australia, Proceedings, pages 210–221. Morgan Kaufmann, 1990.

10. M. Seetha Lakshmi and Philip S. Yu. Effectiveness of parallel joins. IEEE Trans.
Knowl. Data Eng., 2(4):410–424, 1990.

11. Manish Mehta and David J. DeWitt. Data placement in shared-nothing parallel
database systems. VLDB J., 6(1):53–72, 1997.

12. Michael Stonebraker. The case for shared nothing. IEEE Database Eng. Bull.,
9(1):4–9, 1986.

Lecture Notes in Computer Science: Authors’ Instructions 11

13. Christopher B. Walton, Alfred G. Dale, and Roy M. Jenevein. A taxonomy and
performance model of data skew effects in parallel joins. In Guy M. Lohman, Amı́lcar
Sernadas, and Rafael Camps, editors, 17th International Conference on Very Large
Data Bases, September 3-6, 1991, Barcelona, Catalonia, Spain, Proceedings, pages
537–548. Morgan Kaufmann, 1991.

14. Joel L. Wolf, Daniel M. Dias, and Philip S. Yu. An effective algorithm for paral-
lelizing sort merge in the presence of data skew. In DPDS, pages 103–115, 1990.

15. Joel L. Wolf, Daniel M. Dias, Philip S. Yu, and John Turek. An effective algorithm
for parallelizing hash joins in the presence of data skew. In Proceedings of the Seventh
International Conference on Data Engineering, April 8-12, 1991, Kobe, Japan, pages
200–209. IEEE Computer Society, 1991.

16. Joel L. Wolf, Daniel M. Dias, Philip S. Yu, and John Turek. New algorithms for
parallelizing relational database joins in the presence of data skew. IEEE Trans.
Knowl. Data Eng., 6(6):990–997, 1994.

17. Yu Xu and Pekka Kostamaa. Efficient outer join data skew handling in parallel
dbms. PVLDB, 2(2):1390–1396, 2009.

18. Yu Xu, Pekka Kostamaa, Xin Zhou, and Liang Chen. Handling data skew in
parallel joins in shared-nothing systems. In SIGMOD ’08: Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pages 1043–1052,
New York, NY, USA, 2008. ACM.

19. Z. Xiaofang and M.E. Orlowska. Handling data skew in parallel hash join com-
putation using two-phase scheduling. In Algorithms and Architectures for Parallel
Processing, pages 527 – 536. IEEE Computer Society, 1995.

Appendix

We consider the case of the chain join (which is one of the most common form
of join) in terms of finding an analytical formula about the size of the result set.
A chain join is a join of the form

R = R1(A0, A1) on R2(A1, A2) on . . . on Rk(Ak−1, Ak)

where each relation Ri joins with the following one Ri+1 on the single join
attribute Ai. It is possible that there are additional attributes in the schema
of Ri’s. However, for convenience we omit to include attributes that do not
participate in the join process. In our analysis, we denote by µi,i+1 the selectivity
of the join operation Ri(Ai−1, Ai) on Ri+1(Ai, Ai+1) on attribute Ai, where
1 ≤ i ≤ k − 1. The join selectivity µi,i+1 is considered as the probability of
the event that two randomly picked tuples belonging to relations Ri and Ri+1

respectively join on the same join attribute value. In the following lemma, it will
be proved that the selectivity of the chain join is equal to the product of the
selectivities of the constituent binary join operations under the condition that
there is no dependence between the values of the join attributes Ai.

Lemma 51 Given that the values of the join attributes Ai in a chain join of k
relations are independent of each other, the overall join selectivity of the chain
join, denoted by µ, is equal to the product of the selectivities of the constituent
binary join operations, i.e., µ =

∏k
i=1 µi,i+1.

12 Lecture Notes in Computer Science: Authors’ Instructions

Proof. We define a pair of random variables (Xi,Yi) for every relation Ri, where
i = 2, . . . , k − 1. Specifically, the random variable Xi corresponds to the join at-
tribute Ri.Ai and it is defined as the function Xi(t) : Ωi → NXi

, where Ωi is the
set of the tuples in the relation Ri. NXi stands for the set {0, 1, . . . , |DAi | − 1},
where DAi is the domain of the join attribute Ai. In other words, NXi defines
an enumeration of the values of the join attribute Ai, in such a way that there
is a one-to-one correspondence between the values of the set DAi and NXi . Sim-
ilarly, the random variable Yi(t) : Ωi → NYi , where NYi represents the set
{0, 1, . . . , |DAi+1 | − 1}, corresponds to the join attribute Ai+1. As for the rela-
tions R1 and Rk, only the random variables Y1 and Xk are defined, since the
attributes R1.A0 and Rk.Ak do not participate in the join process.

Let R denote the event of the join process. Then we have that

p(R) = p
(
Y1 = X2 ∧ Y2 = X3 ∧ . . . ∧ Yk−1 = Xk

)
By assumption, the random variables are independent of each other. Thus,

it is valid to say that p(R) =
∏k−1

i=1 p(Yi = Xi+1). Moreover, p(Yi = Xi+1)
represents the probability of the event that two randomly picked tuples from
relations Ri and Ri+1 agree on their values of the join attribute Ai. Since it
holds that p(Yi = Xi+1) = µi,i+1, the lemma follows.

As a direct consequence of the previous lemma, the cardinality of the result
set associated with the chain join of k relations is given by the formula

|R| =
(k−1∏
i=1

µi,i+1

)
·

k∏
j=1

|Rj |

