
Shape-Preserving Interpolation on
the Sphere

Iordan M. Iordanov
Advisor: Menelaos I. Karavelas

December 2015

University of Crete, School of Sciences and Engineering
MSc Applied and Computational Mathematics

Contents

1 Abstract 1

2 Introduction 2
2.1 Linear interpolation . 2
2.2 Splines . 5
2.3 The de Casteljau algorithm . 7
2.4 Geodesics . 10
2.5 Cn and Gn continuity . 11
2.6 Shape-preservation . 12
2.7 Discrete derivatives . 13

3 Spherical splines 16
3.1 Interpolation on the sphere . 16
3.2 Spherical ν-splines . 17
3.3 Shape-preservation on the sphere . 21
3.4 Qualitative asymptotic analysis . 25

3.4.1 Control point limits . 25
3.4.2 Curve limits . 34

3.5 Algorithm & Implementation . 50

4 Conclusions 54

5 Results 55
5.1 Case 1 . 57
5.2 Case 2 . 59
5.3 Case 3 . 62
5.4 Case 4 . 66
5.5 Case 5 . 69
5.6 Case 6 . 75
5.7 Case 7 . 76
5.8 Case 8 . 80
5.9 Case 9 . 83
5.10 Case 10 . 85

5.11 Case 11 . 86
5.12 Case 12 . 89
5.13 Case 13 . 90
5.14 Case 14 . 92
5.15 Case 15 . 94
5.16 Case 16 . 96
5.17 Case 17 . 98
5.18 Case 18 . 101
5.19 Case 19 . 103
5.20 Case 20 . 106

6 Appendix 108
6.1 Code . 108

6.1.1 Example configuration file . 108
6.1.2 Makefile . 109
6.1.3 Main . 110
6.1.4 Options . 113
6.1.5 SplineNode . 114
6.1.6 NuSpline . 116
6.1.7 ShapePreservation . 122
6.1.8 FiniteDifference . 127
6.1.9 Utility . 130

Preface

This report contains the formulation and treatment of the problem on which I worked during
my M.S. thesis at the University of Crete, Heraklion, under the supervision of Prof. Menelaos
Karavelas. This is the result of many hours of frustration, bafflement, coding, writing and
plotting, but it also represents the immense satisfaction of achieving something difficult and
beautiful. I would like to express my vast gratitude towards Prof. Karavelas who not only
entrusted me with the specific task, but also always had a way of guiding me through the
difficulties which we inevitably encountered along the way. Be it practical considerations or
theoretical background, suggestions and tips, advice and insight, he was always a reliable
figure who inspired into me the persistence to come through and kept me on track.

I would also like to express my distinct gratitude to Prof. Eleni Tzanaki for her invaluable
contribution to this work. Her help on the progression of the analytical expressions for the
asymptotic behavior of the solution, as well as her insight into many of the topics treated
in the text have been crucial for the quality of the results and the comprehension of their
meaning. The many hours spent with her discussing various aspects of the problem, talking
about results and exchanging ideas, contributed to realizing aspects of the problem which
would have otherwise remained hidden to me, and I thank her for her patience and kindness.

However, none of this would have come to reality without the people in my life who have
always supported me and kept me going – my family. They have always given me the
courage to continue when doubt clouded my resolve, and in their own unique manner they
have supported me in innumerable ways. Thank you from the bottom of my heart, Mother,
Grandma and Kiki.

The presentation of this thesis took place on December 18, 2015 at the University of
Crete, Heraklion. The assessment committee was composed of (in alphabetical order) Prof.
Theodoulos Garefalakis, Prof. Menelaos Karavelas, and Prof. Michael Plexousakis, all of
whom I thank for the availability and the time taken to examine my work. Without further
ado, let us proceed to the text itself.

Περίληψη

Μια σημαντική επιθυμητή ιδιότητα των μεθόδων παρεμβολής με πολυώνυμα και με καμπύλες

τύπου spline, είναι η ικανότητα να διατηρούν το σχήμα που φαίνεται να έχουν τα αρχικά δεδομένα
εισόδου. Στη γενική περίπτωση όμως, δεν υπάρχει κάποια εγγύηση ότι η παρεμβάλλουσα

καμπύλη που παράγουν αυτές οι μέθοδοι θα συνεχίζει να έχει αυτό το σχήμα. Αυτός είναι

ο λόγος για τον οποίο έχουν προταθεί νέες μέθοδοι παρεμβολής οι οποίες συμπεριλαμβάνουν

ελεύθερες μεταβλητές. Ο έλεγχος των τιμών αυτών των παραμέτρων είναι σε θέση να προκαλέσει

την ικανοποίηση κάποιων περιορισμών που αφορούν το σχήμα της παρεμβάλλουσας. Ανάμεσα

σε αυτές τις καινούριες μεθόδους συναντάμε και τις μεθόδους τάσης οι οποίες χρησιμοποιούν

τις ελεύθερες παραμέτρους έτσι ώστε η παρεμβάλλουσα να τείνει σε μια κατά τμήματα γραμμική

καμπύλη η οποία να παρεμβάλλει τα δεδομένα σημεία. Με αυτό τον τρόπο, οι απαιτήσεις

διατήρησης σχήματος ικανοποιούνται τετριμμένα.

Στην παρούσα εργασία, διατυπώνουμε και υλοποιούμε μια μέθοδο παρεμβολής σημείων στη

μοναδιαία σφαίρα S2
. Η παρεμβάλλουσα καμπύλη μας είναι μια σφαιρική ν- spline, μιαG2

-συνεχής

κατά τμήματα κυβική καμπύλη η οποία ανήκει στην οικογένεια των μεθόδων τάσης, και η

οποία «ζει» πάνω στη μοναδιαία σφαίρα. Η ασυμπτωτική συμπεριφορά της καμπύλης για πολύ

μεγάλες τιμές των παραμέτρων τάσης μας δίνει έναυσμα για την διατύπωση του αλγορίθμου

που παρουσιάζουμε. Ο αλγόριθμος είναι σε θέση να καθορίσει αυτόματα την κατάλληλη τιμή

για κάθε παράμετρο τάσης έτσι ώστε η παρεμβάλλουσα καμπύλη να διατηρεί το σχήμα των

δεδομένων σημείων πάνω στη σφαίρα. Η διατύπωση του αλγορίθμου, η υλοποίησή του σε

γλώσσα προγραμματισμού C++, καθώς και αποτελέσματα για επιλεγμένες περιπτώσεις δοκιμής,
παρουσιάζονται στο τέλος της εργασίας.

Chapter 1

Abstract

An important desirable trait of polynomial and spline interpolation schemes is the ability
to preserve the shape suggested by the discrete input data. In the general case, however,
no guarantee exists that the resulting interpolant will bear these shape-preserving traits.
Therefore, new interpolation schemes, endowed with free parameters that can be adjusted
to satisfy the shape-preservation constraints, have been proposed and developed. Among
these methods we find the tension schemes which employ free parameters to cause a smooth
interpolant to convergence towards a piecewise linear curve connecting the data points, thus
trivially satisfying the requirements tied to shape-preservation.

In the present work we formulate and implement a method for interpolating data points lying
on the unit sphere S2. Our interpolant is a spherical ν-spline, aG2-continuous piecewise-cubic
curve which belongs to the family of tension curves and lives on the unit sphere. The
asymptotic behavior of the ν-spline for very large values of the tension parameters motivates
the formulation of an algorithm which is able to determine the value for each tension
parameter so that the resulting curve preserves the shape of the input points on the sphere.
The algorithm, its implementation in C++, and the results from selected test cases are
presented at the end of this thesis.

1

Chapter 2

Introduction

In the sections of this chapter we will present some of the basic concepts upon which this
work is based. Examples are given on selected topics, and definitions are introduced for less
common concepts which will be needed later.

2.1 Linear interpolation

Suppose that we have a high-precision electronic tracking system set to record the location
of a remote control toy car every second. Our measurements may not be sufficient in order
to fully describe the behavior of the toy car as it moves, or perhaps we need to know
the location of the car for a time when we were unable to take a measurement. We are,
however, able to estimate intermediate locations based on our measurements, and the process
is known as interpolation. Let us consider a concrete example – suppose we have the function
f(t) = 1

1−t2 sin(t) which describes the distance of our toy car from a fixed reference point
in space. Let us pretend that we do not know the formula of this function, but we do have
some measurements, as shown in the figure below.

2

−4 −3 −2 −1 0 1 2 3 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

f(
t)

Function plot for f(t) = 1
1+t2 sin(t)

f(t)

Samples

Figure 2.1: Sample measurements of f(t) = 1
1−t2 sin(t) for t = −4,−3, ..., 4.

The simplest thing one could do in order to interpolate the sample points on the curve is
to connect the dots. Formally, for every pair of consecutive measurements (or points on the
plot) (ti, f(ti)), (ti+1, f(ti+1)), we seek a linear polynomial of the form

v = at+ b, a, b ∈ R

which passes through (ti, f(ti)), (ti+1, f(ti+1)). It is not dificult to see that the polynomial
we seek is given by the equation

g(t) = f(ti) +
f(ti+1)− f(ti)

ti+1 − ti
(t− ti).

Setting t = ti in the above equation yields g(ti) = f(ti), while setting t = ti+1 yields g(ti+1) =
f(ti+1), so the linear polynomial g(t) indeed interpolates (ti, f(ti)) and (ti+1, f(ti+1)).

The expression for g(t) can be reformulated into a more convenient form. Considering
qi = (ti, f(ti)) and qi+1 = (ti+1, f(ti+1)), we can express the equation in parametric form as

pi(τ) = (1− τ)qi + τqi+1, τ ∈ R.

Here the parameter τ is any real number, so we can calculate any point on the line passing
through qi and qi+1. If, however, we confine τ in the interval [0, 1], we get the parametric
expression for the linear segment [qi, qi+1] which is extremely convenient. It is easily verified
that pi(0) = qi and pi(1) = qi+1, hence this expression indeed defines a linear polynomial
with respect to τ which interpolates the pair of points qi, qi+1. Repeating this procedure for

3

all pairs of measurements, we end up with a piecewise-linear polynomial which interpolates
every consecutive pair of sample points, as shown in the following figure.

−4 −3 −2 −1 0 1 2 3 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

f(
t)

Linear interpolation example

f(t)

Samples

Linear interpolant

Figure 2.2: Interpolation of the sample points with piecewise linear polynomials.

It becomes evident from the last plot that there are significant errors in our approximation,
and it can be proven that the error is proportional to the squared distance between the data
points ti. Moreover, the piecewise linear polynomial produced is not differentiable at the
data points, so it doesn’t look like the toy car could be able to actually follow this estimated
route. It is unnatural to change direction so abruptly, we would expect a smoother motion.
We can do something better which will make more sense, but for this we will need to look
at splines of higher order.

4

2.2 Splines

Figure 2.3: Spline used in the
construction of a curve. Note the use
of wedges at control points.

The term spline was coined approximately in
the middle of the 18th century and it is
speculated that it originates from the word splinter.
Initially, splines were flexible pieces of wood or
metal, used in the construction of ships and
bows. Nowadays their use is limited in this
context, however their homonymous counterparts in
Mathematics are powerful tools with very useful
properties.

Formally, the spline is a piecewise-continuous
sequence of functions which satisfies certain conditions,
such as derivative(s) continuity at the interpolation
nodes. The most widely used variant are the
polynomial splines, the most common being the
cubic spline (i.e., piecewise continuous polynomials
of degree 3 with continuity requirements at the
interpolation points for the first and second derivative). The continuity requirements
translate into a smooth curve without sharp variations at the interpolation points. Based
on this definition, it becomes clear that in the example of the previous section, we actually
constructed a piecewise linear spline, which only requires continuity of the curve itself at
the interpolation nodes. Requiring continuity of the first and second derivative in addition
yields a significantly smoother curve. The comparison of the two techniques can be seen in
figure 2.4.

It is evident, even from this simple example, that the cubic interpolant is much more
representative of the movement of the remote-controlled toy car as the transitions at the
interpolation points are much smoother. Our interpolant does not completely match the
“real” function f(t), however, and this is because we have not imposed other requirements
on the spline. One solution is to acquire different samples which will allow for better
approximation of f(t). Another idea would be to incorporate free parameters into the spline
itself, so that based on their value the resulting curve has a different shape, either more
“relaxed” or “tense”.

5

−4 −3 −2 −1 0 1 2 3 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

f(
t)

Linear vs. Cubic interpolation

f(t)

Samples

Linear interpolant

Cubic interpolant

Figure 2.4: Comparison of interpolation using linear and cubic splines.

Our work focuses on cubic ν-splines which belong to the family of parametric splines defined
by tension parameters ν (hence the name). The parameters ν are defined for each interpolation
node and affect how relaxed or tense the curve is at that node – large values for the
ν parameters cause the spline to tighten, while parameters close to 0 produce more relaxed
curves. In fact, when all tension parameters are equal to 0, ν-splines reduce to piecewise-cubic
splines. The concept is easily perceived if we return to the origin of splines: suppose that
the spline is actually a flexible piece of metal, wire, and at every control point there is a
winch. The tension values express how many times each winch has been turned. An example
regarding ν-splines living on the unit sphere is given in figure 2.5.

6

Figure 2.5: Comparison between spherical splines for ν-values equal to 0 (left) and 10
(right). Note that the ν-spline to the right is closer to the spherical triangle defined by the
three interpolation points.

2.3 The de Casteljau algorithm

Figure 2.6: Paul de Casteljau

Paul de Faget de Casteljau is a French physicist and
mathematician, born in 1930. In 1959, while in
the employment of Citroën, he developed a recursive
method for computing points on a particular set of
curves which were later formalized and popularized
by engineer Pierre Bézier.
The algorithm developed by de Casteljau can be
applied to recursively compute points on Bézier
curves of arbitrary rank. It relies on successive linear
interpolations, eventually resulting in a point which
lies on the desired curve. For instance, in order to
evaluate a cubic Bézier curve at a certain value, we
need four control points to define it, and the algorithm
recurs 3 times. Let us use an example to illustrate
the idea. Suppose the input of four control points Pi, i = 0, 1, 2, 3. For every value of the
parameter t ∈ [0, 1], compute the intermediate points

Pi,i+1 = (1− t)Pi + tPi+1, i = 0, 1, 2

which are then used in the same way to compute the intermediate points of second order

Pi,i+1,i+2 = (1− t)Pi,i+1 + tPi+1,i+2, i = 0, 1

7

and finally, the third-order approximation is computed as

Pi,i+1,i+2,i+3 = (1− t)Pi,i+1,i+2 + tPi+1,i+2,i+3, i = 0.

Schematically, the procedure can be illustrated in the following directed acyclic graph.

P0 P1 P2 P3

P01 P12 P23

P012 P123

P0123

An example of a cubic Bézier curve in 3-dimensional space is given below. Note that the
algorithm can be generalized to arbitrary dimension, as it relies only on the notion of linear
interpolation. If we wish to determine a point on a Bézier curve of order n in a d-dimensional
space, we need n+ 1 control points in this d-dimensional space. The procedure is applied as
shown in the previous figure. An actual example can be seen in 2.7, where point annotation
follows the notation used so far.

8

P
1

P
23

P
123

P
12

P
0123

P
1

P
0

P
012

P
01

P
1

Figure 2.7: Example of Bézier curve computed with de Casteljau’s method. The curve is
composed by the set of points produced by the procedure for all values of t ∈ [0, 1].

Bézier curves can also be computed via explicit formulae. For given control points Pi, i =
0, ..., n, the Bézier curve of order n is defined as

B(t) =
n∑
i=0

(
n

i

)
(1− t)n−itiPi

where (
n

i

)
=

n!

i!(n− i)! , i = 0, ..., n

is the binomial coefficient. The polynomials

Bn
i (t) =

(
n

i

)
(1− t)n−iti, i = 0, 1, ..., n

are called Bernstein polynomials and form a basis of the linear space of polynomials of degree
at most n. Hence, in the case of n = 3 (cubic curve) the formula becomes

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3

9

and it is easily verified that

B(0) = P0 and B(1) = P3.

2.4 Geodesics

In the Euclidean space, distance between two points is measured by the length of the linear
segment connecting them. Geodesics are the generalization of this concept to curved spaces.
In our case, we work on the sphere, hence geodesic curves arise naturally in the formulation
of the problem at hand. On the sphere, the geodesic is defined as the shortest route between
two points on the surface, which is equivalent to saying that the geodesic curve on the sphere
is a segment of a great circle. A great circle is defined as the intersection of the sphere with
a plane passing through its center. It divides the sphere into two equal hemispheres and the
diameter of any great circle coincides with the diameter of the sphere. The intersection of
the sphere with any other plane (not passing through its center) produces a so-called minor
circle. An example is given in the figure below.

Figure 2.8: Example of Great (blue and purple) and Minor (red) circles on the sphere. The
length of the red segment is greater than the length of the purple segment on the sphere.

Based on what we have already said, the minimum distance between two points on the sphere
is equal to the length of the geodesic arc between them. By definition, the geodesic between
any two points on the sphere has length at most π. However, in the case when two points

10

are diametrical, i.e., their geodesic distance is exactly π, special care should be exercised as
the geodesic is not uniquely defined – there are, in fact, infinitely many geodesics in this
case. The geodesic distance between two points p and q on the unit sphere is defined as

θ(p, q) = cos−1 (〈p, q〉) .

Note that since p and q are on the unit sphere, it holds that ‖p‖ = ‖q‖ = 1.

Since the geodesic is the generalization of the linear segment connecting two points on the
sphere, it is natural that linear interpolation is also generalized in the form of geodesic
interpolation on the sphere, as we will see in section 3.1.

The geodesic segment between p and q can be parameterized as

G[p, q](t) =
sin((1− t) · θ(p, q))

sin(θ(p, q))
· p+

sin(t · θ(p, q))
sin(θ(p, q))

· q, t ∈ [0, 1].

As in the linear case, a simple substitution yields G[p, q](0) = p and G[p, q](1) = q. It can
be proved that, since ‖p‖ = ‖q‖ = 1, it also holds that ‖G[p, q](t)‖ = 1, ∀ t ∈ [0, 1], hence
all points described by G indeed lie on the unit sphere.

2.5 Cn and Gn continuity

Our problem, in its essence, is to find a piecewise continuous curve which fits certain criteria,
so we need to explain what is continuity. We will consider two different notions of continuity.

Cn continuity. This is the so-called parametric continuity, since it is expressed in terms of
the parameter used to describe the curve. Consider the curve S(t), t ∈ D ⊆ R. Continuity
of order n ∈ N means that all derivatives of the curve with respect to the parameter t, up
to order n, are continuous. In other words,

lim
t→t−∗

dk

dtk
S(t) = lim

t→t+∗

dk

dtk
S(t), k = 0, 1, ..., n, t∗ ∈ D.

Gn continuity. This is the so-called geometric continuity and expresses the smoothness of
the curve in terms of geometric quantities. For instance, continuity of order G1 expresses
continuity of the slope, while G2 continuity expresses continuity of the curvature.

Now, the question that naturally arises is, what is the difference between these two definitions?
Suppose the curve S(t) describes the motion of a rigid body in space, such as the remote
- controlled toy car we used in our example in section 2.1. Then its first derivative with
respect to t describes the velocity of the body, while the second derivative with respect to t
describes the body’s acceleration. Requiring that the curve S(t) is C2-continuous translates
into requiring a smooth motion of the body, i.e., if we made a movie of the moving body, we

11

would not see it change its position, velocity or acceleration in an abrupt manner. Requiring
that the curve isG2-continuous, on the other hand, translates into requiring that the trace the
body leaves during its movement is smooth up to the quantities involved, i.e., the trace, its
slope and curvature would not change abruptly. In this sense, we can say that G-continuity
requirements are weaker that C-continuity requirements. An equivalent statement is that
C-continuity also entails G-continuity, but the inverse is not true.

2.6 Shape-preservation

The notion of shape-preservation is a flexible one, in the sense that one may define different
types of shape-preservation criteria relative to the requirements of a concrete application.
It is also possible to express the same concept with different quantities. Our definition is
based upon the definition presented in [1], which we will include here. In [1], the problem is
set up in R3, thus the following formulation regards curves in three-dimensional Cartesian
space. We will see in section 3.3 that the formulation of shape-preservation needs to change
to account for the space in which we work. Keeping that in mind, let us define the quantities

D = {Pm,m = 1, 2, ..., N} ,
Lm = Pm+1 − Pm,m = 1, 2, ..., N − 1,

Vm = Lm−1 × Lm,m = 2, 3, ..., N − 1,

Γm = |Lm−1 Lm Lm+1| = det
[
Lm−1 Lm Lm+1

]
.

Then the problem treated in [1] is stated as follows.

Problem (P). Find a G2-continuous curve S(u), u ∈ [u1, uN] which interpolates the point
set D with parameterization U , satisfies given boundary conditions B and is shape-preserving
in the following sense:

1. (convexity) If Vm · Vm+1 > 0 then

w(u) · Vn > 0, n = m,m+ 1, w(u) = Ṡ(u)× S̈(u), u ∈
[
um, um+1

]
.

2. (torsion) If Γm 6= 0, then

τ(u)Γm > 0, u ∈
[
u+m, u

−
m+1

]
.

3. (coplanarity) If Γn = 0 and

• Vm · Vm+1 > 0 then, for n = m and/or n = m+ 1

‖w(u)× Vn‖
‖w(u)‖ ‖Vn‖

< ε1, ‖w(u)‖ 6= 0, u ∈ ωm

where ε1 and ωm are user-defined such that ε1 ∈ (0, 1] and
[um, um+1] ⊆ ωm ⊂ (um−1, um+2).

12

• Vm · Vm+1 < 0 then, for n = m and/or n = m+ 1

‖w(u)× Vn‖
‖w(u)‖ ‖Vn‖

< ε1, ‖w(u)‖ 6= 0, u ∈ ϑm ∪ ϕm

where ε1 is as above and ϑm = [ϑm1, ϑm2] and ϕm = [ϕm1, ϕm2] are user-defined
intervals such that ϑm1 ≤ um < ϑm2 < u∗m and u∗m < ϕm1 < um+1 ≤ ϕm2 for some
user-specified point u∗m ∈ (um, um+1).

4. (collinearity) If ‖Vm‖ = 0 and Lm−1 · Lm > 0, then for n = m− 1,m∥∥∥Ṡ(u)× Ln
∥∥∥∥∥∥Ṡ(u)

∥∥∥∥∥∥Ln∥∥∥ < ε0, u ∈ ηm

where ε0 ∈ (0, 1] is user-specified and also ηm is a user-specified closed subinterval of
(um−1, um+1) containing um.

These requirements formulate a well-defined manner of saying that we want the resulting
curve to follow the inherent orientation of the points in the given set. The first criterion
(convexity) requires that all points of the resulting curve are on the same side of the
hyperplane defined by a subset of the points, under certain conditions. The torsion criterion
is tied to sharp variations in the orientation of a body traveling along the curve – it would
be unnatural for a plane to instantly do a barrel roll, for example. The coplanarity criterion
translates into requiring that whenever four consecutive points lie on the same plane (i.e.,
they are not affinely independent), the curve should also be relatively “close” to the plane
(the user defines how close). Finally, the collinearity criterion asks that whenever three
consecutive points lie on the same line, the curve should locally align with this line.

It should be noted that the coplanarity and torsion criteria only make sense when we are
working in three-dimensional space, as is the case in [1]. In the current work we are working
on the unit sphere which is a two-dimensional manifold in three-dimensional space. We
choose to work in a coordinate system which is innate to the sphere, namely the Spherical
Equatorial reference system. In this reference system we only need two quantities (longitude
and latitude) to fully determine the location of a point on the surface of the sphere.

In section 3.3 we redefine the collinearity and convexity criteria in order to best address the
requirements of shape-preservation on the sphere.

2.7 Discrete derivatives

In the process of verifying the shape-preserving conditions presented in section 3.3, the need
to compute the value of some derivative of the spline arises. Since we do not have an explicit
form for the curve in the general case, we employ finite difference methods to estimate its

13

derivatives. The technique is a well-known and established one, and an automatic way of
constructing a finite difference scheme for approximating derivatives of arbitrary order with
arbitrary accuracy has been employed. The formulation of the method in its general form,
as well as the following rationale, are explained in detail in [10].

Given a univariate function f(t) : R → Rn and a small value R 3 h > 0, we can select a
desired order of error p and require that the Taylor series expansion of f satisfy the following
relation

hd

d!
f (d)(t) =

imax∑
i=imin

Cif(t+ ih) +O
(
hd+p

)
(2.1)

for some indices imin ≤ i ≤ imax, imin, i, imax ∈ Z, and coefficients Ci ∈ R. Excluding the
term O

(
hd+p

)
transforms the above relation into an approximation for the derivative f (p).

We are interested in formulating a way to compute the coefficients Ci in order to obtain an
approximation of desired order.

A formal Taylor series for f(t+ ih) is

f(x+ ih) =
∞∑
n=0

in
hn

n!
f (n)(t) (2.2)

and by substituting (2.2) into (2.1) we get

hd

d!
f (d)(t) =

imax∑
i=imin

Ci

∞∑
n=0

in
hn

n!
f (n)(t) +O

(
hd+p

)
=
∞∑
n=0

(
imax∑
i=imin

inCi

)
hn

n!
f (n)(t) +O

(
hd+p

)
=

d+p−1∑
n=0

(
imax∑
i=imin

inCi

)
hn

n!
f (n)(t) +O

(
hd+p

)
hence the desired approximation is

f (d)(t) =
d!

hd

d+p−1∑
n=0

(
imax∑
i=imin

inCi

)
hn

n!
f (n)(t) +O (hp) . (2.3)

In order to satisfy (2.1), the following must hold

imax∑
i=imin

inCi =

{
0, 0 ≤ n ≤ d+ p− 1 and n 6= d,

1, n = d.

14

The above constraint yields a system of d+ p linear equations in imax − imin + 1 unknowns.
Requiring also that imax− imin +1 = d+p causes the system to have a unique solution, which
gives us the coefficients needed to compute an approximation of f (d)(t) from (2.1). We can
also select the modality of the approximation scheme (forward, backward or centered) by
selecting the values of imin and imax as shown in the following reference table.

Modality imin imax

Forward 0 d+ p− 1
Backward −(d+ p− 1) 0

Centered −
⌊
d+p−1

2

⌋ ⌊
d+p−1

2

⌋
For instance, suppose we want to approximate f (3)(t) using forward finite differences and we
need accuracy of order O(h). This means that d = 3, p = 1, imin = 0 and imax = 3, so the
linear system we need to solve is

1 1 1 1
0 1 2 3
0 1 4 9
0 1 8 27

C0

C1

C2

C3

 =

0
0
0
1

The solution of the system is [C0, C1, C2, C3]

T
= 1

6
[− 1, 3,−3, 1]

T
, so the approximation

resulting from (2.1) is

f (3)(t) =
−f(t) + 3f(t+ h)− 3f(t+ 2h)− f(t+ 3h)

h3
+O(h).

For the needs of the present work, approximations of the first, second and third derivative
are needed. We have used fourth-order schemes in each case, either forward, backward or
centered, depending on the value of t for which we wish to calculate the derivative. Requiring
a fourth-order approximation of each derivative results in different needs for each derivative.
In order to calculate the first derivative of f with fourth-order accuracy, we need four values
of f . For the second derivative we need five values, and for the third derivative six values,
in order to achieve fourth-order accuracy. All the values we calculate for f , however, should
be in the same domain, i.e., in the same segment [Pκ, Pκ+1], κ = 0, 1, ..., n − 1. Thus, for
calculating the derivative at t = 0, we would select a forward scheme, so that the values
of f would be calculated at tj = jh, j = 0, 1, ...,m where m = 4 for the first derivative,
m = 5 for the second derivative and m = 6 for the third derivative. The same choice is
made if 0 > tm = mh, obviously. Similarly, in the case where t = 1 or, more generally, when
1 < tm = mh, we choose a backward scheme in order to calculate values for tj less than
1. If t is anywhere in-between 0 and 1 (and as long as all indices are within the domain of
interest), we prefer to use a centered scheme for all derivatives.

15

Chapter 3

Spherical splines

In this chapter we present the formulation of our problem and its solution. We present
the theory behind interpolating points on the unit sphere with spherical cubic splines as
described in [2], and give our own definition for shape-preservation constraints based on the
concepts in [1]. We study the asymptotic behavior of the spline produced by the procedure as
the tension values tend to infinity, and we also prove that the procedure eventually provides
a solution which satisfies all criteria. Concluding, the method itself is presented, along with
results arising from selected test cases.

3.1 Interpolation on the sphere

As we already mentioned in section 2.4, given qκ, qλ two points on the unit sphere, their
geodesic distance is defined as

θ(qκ, qλ) = cos−1(〈qκ, qλ〉)

and the geodesic that interpolates them can be parameterized as

G[qκ, qλ](t) =
sin((1− t) · θ(qκ, qλ))

sin(θ(qκ, qλ))
qκ +

sin(t · θ(qκ, qλ))
sin(θ(qκ, qλ))

qλ.

Using this definition of the geodesic, we are able to define a spherical Bézier curve by
recursively applying the geodesic interpolation, following the idea of de Casteljau. For a set
of (n+ 1) points on the sphere qi, i = 0, 1, ..., n we define the spherical Bézier curve as

qnn(t) = S[q0, q1, q2, ..., qn](t), 0 ≤ t ≤ 1

where
qki (t) = G[qk−1i−1 (t), qk−1i (t)](t), k ≤ i ≤ n

and q0i (t) = qi, i = 0, 1, ..., n. It can be shown that qnn(0) = q0 and qnn(1) = qn.

16

A cubic spherical spline results from four control points, as in the example case presented in
section 2.3. An example on the sphere is given in the figure below.

Figure 3.1: Example of cubic Bézier curve on the sphere. The red dotted curves
represent geodesics between the input control points, while the blue and black dotted curves
approximations of first and second order, respectively. The purple solid curve is the resulting
Bézier curve. The points have been numbered in correspondence with the example given in
the planar case.

3.2 Spherical ν-splines

The theory presented in this section has been introduced by Nielson in [2]. Based on our
previous discussion, we define the spherical ν-spline. The notation introduced at this point
will be retained for the rest of the text.

Definition. Given

• control points di, i = 0, 1, ..., n

17

• knots ti, i = 0, 1, ..., n with knot spacing hi = ti−ti−1, i = 1, 2, ..., n and h0 = hn+1 = 0

• tension values νi, i = 0, 1, ..., n

the third-order ν-spline is defined as the composite curve consisting of n curve segments and
is denoted as

ν(dj, tj, νj)(t).

Each segment is a third-order spherical Bézier curve as previously defined in the form

S[Pi−1, Ri−1, Li, Pi]

(
t− ti−1
hi

)
= S(t)

where i = 1, ..., n and ti−1 ≤ t ≤ ti.

In the above definition, the missing quantities are defined as

Li = G
[
di−1, di

](γi−1hi−1 + hi
γi−1hi−1 + hi + γihi+1

)
, i = 1, 2, ..., n,

Ri = G
[
di, di+1

](γihi
γihi + hi+1 + γi+1hi+2

)
, i = 0, 1, ..., n− 1,

Pi = G
[
Li, Ri

](hi
hi + hi+1

)
, i = 0, 1, ..., n,

γi =
2(hi + hi+1)

νihihi+1 + 2(hi + hi+1)
, i = 0, 1, ..., n.

It is clear that the spherical ν-spline is defined by the global control points di. In our
formulation, these quantities are unknown and we seek to compute them. We are instead
given the points Pi, i = 0, 1, ..., n which lie on the spline, and the auxiliary quantities Li
and Ri defined as above. Each quadruple {Pi, Ri, Li+1, Pi+1} , i = 0, 1, ..., n − 1 defines
a third-order Bézier curve which interpolates both Pi and Pi+1, thus the resulting spline
interpolates all input points Pi, and is also a composite cubic Bézier curve. The concept is
illustrated in the figure below.

18

di di+1

di+2

di−1

Ri−1

Li

Ri Li+1

Ri+1

Li+2

Pi Pi+1

Figure 3.2: Representation of the de Casteljau algorithm on the sphere, illustrating the
construction of a piecewise cubic ν-spline. In the forward formulation, we are given the
control points di and compute the points Pi which lie on the curve. In the inverse formulation,
we are given the points Pi and seek the control points di which will cause the spline to
interpolate.

A solution to this problem has been given in [2] and is summarized in the following formulation.

Definition. Consider the non-linear system of equations

d0 = P0

di =
Pi sin(βi)− sin((1−δi)βi) sin((1−λi)αi)

sin(αi)
di−1 − sin(δiβi) sin(µiαi+1)

sin(ai+1)
di+1

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

dn = Pn

where

αi = cos−1(di−1, di), αi+1 = cos−1(di, di+1)

Li = G[di−1, di](λi), Ri = G[di, di+1](µi)

βi = cos−1(Li, Ri)

λi =
γi−1hi−1 + hi

γi−1hi−1 + hi + γihi+1

, µi =
γihi

γihi + hi+1 + γi+1hi+2

δi =
hi

hi + hi+1

, γi =
2(hi + hi+1)

νihihi+1 + 2(hi + hi+1)

for i = 0, 1, ..., n. Compute the control points di, i = 0, 1, ..., n so that

ν(dj, tj, νj)(ti) = Pi, i = 0, 1, ..., n

19

with the following algorithm:

1. Select initial approximation for the quantities d
(0)
0 , d

(0)
1 , ..., d

(0)
n . Setting d

(0)
i = Pi, i =

0, 1, ..., n is as good a choice as any.

2. Compute updated values for the quantities αi, βi based on current values of the di.

3. Compute new approximation for the control points di in the form

d
(k)
i = F

(
d
(k−1)
i−1 , d

(k−1)
i , d

(k−1)
i+1

)
, i = 1, 2, ..., n− 1.

4. If convergence has been achieved, exit. If not, return to step 2.

Convergence in the above algorithm is considered achieved if the number of iterations exceeds
a user-defined threshold SNmax, or if for a user defined tolerance parameter Stol it holds that√√√√√√√

n∑
i=0

[
d
(k)
i − d(k−1)i

]2
n∑
i=0

[
d
(k)
i

]2 ≤ Stol.

The spherical curve resulting from the above procedure interpolates the input points Pi and
is guaranteed to be G2-continuous at the interpolation nodes. In the special case where
all tension values are 0, the resulting curve is actually C2-continuous. However, in [2] the
argument of shape-preservation is not treated.

It should be noted that the choice for the knot values ti plays a significant role in the quality
of the resulting spline. One naive choice would be to select a uniformly spaced set of knot
values, for instance t0 = 0, ti = ti−1 + h, i = 1, 2, ..., n for some positive parameter h. This
choice, however, may lead to curves which behave unnaturally between the interpolation
points. For instance, if the distance between consecutive input points Pi is not uniform,
the resulting spline may present loops. We therefore adopt an arc-length parameterization,
meaning that knot values are placed at a distance corresponding to the geodesic distance
between consecutive input interpolation points Pi. In other words,

t0 = 0,

ti = ti−1 + cos−1 (〈Pi−1, Pi〉) , i = 1, 2, ..., n.

This, in turn, means that the previously introduced quantities hi express, in fact, the geodesic
distances between consecutive interpolation points Pi−1 and Pi.

The presence of the free parameters νi in the formulation of the algorithm is crucial for
the application of this method to tackling the requirements of shape-preservation. Other
than giving the resulting curve its distinctive name, it has a major effect on its shape. In
subsection 3.4.1 and subsection 3.4.2 we will examine the behavior of the spline when the
tension values tend to infinity.

20

3.3 Shape-preservation on the sphere

In this chapter we proceed to formulate shape-preservation criteria on the sphere. In
section 2.6, we encountered the definition introduced by Karavelas & Kaklis in [1]. However,
the formulation in section 2.6 refers to a Cartesian 3D setting in which the quantities
introduced make sense. We need to take into account the fact that our work is conducted on
the unit sphere, which is a curved 2D surface. The ideas expressed here and the formulation
of the shape-preservation criteria are based upon [3].

Initially, let us consider the set of given points on the unit sphere P = {P0, P1, ..., Pn} such
that Pi 6= Pi+1, i = 0, 1, ..., n− 1 and max(θ(Pi, Pi+1)) < π/2, i = 0, 1, ..., n− 1 with

θ(Pi, Pi+1) = cos−1 (〈Pi, Pi+1〉) , ‖Pi‖ = ‖Pi+1‖ = 1.

Also, consider given the set of knot values ti such that for the interpolating spline S(t), t ∈
[0, tn] we have S(ti) = Pi.

In [3], Kaklis offers a generalization of shape preservation on curved surfaces, based on
geodesic curvature. The geodesic curvature of a curve c(t) (which is a subset of a curved
surface) is defined as

κg(t; c) =
n(t) · [ċ(t)× c̈(t)]

‖ċ(t)‖3
,

where n(t) is the normal vector of the surface at t. This quantity expresses (quote) the
curvature of the projection of c(t) on the plane tangent to the surface at the point under
consideration. Curves for which κg = 0 are geodesic curves.

Following the idea in section 2.6, we want to generalize the notion of shape preservation. In
particular, regarding convexity criteria, the idea is to exploit the pattern of the sign changes
of the so-called convexity indicators. In section 2.6, these are the vector-valued quantities
Vi which, in our case, need to be defined differently. Considering only the numerator in
the definition for the geodesic curvature, we can see that at an interpolation node Pi,
corresponding to a knot parameter ti, the following limit is valid.

n(ti) ·
[
ċ(ti)× c̈(ti)

]
= lim

h→0
n(ti) ·

[
ċ(ti − h)× ċ(ti + h)− ċ(ti − h)

2h

]
= lim

h→0

1

2h
n(ti) ·

[
ċ(ti − h)× ċ(ti + h)

]
− lim

h→0

1

2h
n(ti) ·

[
ċ(ti − h)× ċ(ti − h)

]
= lim

h→0

1

2h
n(ti) ·

[
ċ(ti − h)× ċ(ti + h)

]
.

(3.1)

This means that for sufficiently small h the sign of the geodesic curvature is defined by the
sign of the quantity n(ti) · [ċ(ti − h)× ċ(ti + h)]. We need to notice here that in our case,

21

the input points Pi are essentially the normal vectors to the surface of the sphere. We can
thus replace n(ti) = Pi and, by substituting c(t) with the spline curve S(t), we define the
convexity indicators on the sphere as

Qi =
Pi · [G[Pi−1, Pi](1)×G[Pi, Pi+1](0)]

‖G[Pi−1, Pi](1)×G[Pi, Pi+1](0)‖ .

Introducing a slightly better notation, let us define the following quantities summarizing the
tools we need.

Γi(t) = G[Pi, Pi+1](t), i = 0, 1, ..., n− 1, t ∈ [0, 1],

Vi = Γ̇i−1(1)× Γ̇i(0), i = 1, 2, ..., n− 1,

κg(t;S) =
S(t) ·

[
Ṡ(t)× S̈(t)

]
∥∥∥Ṡ(t)

∥∥∥3 , t ∈ [0, tn]

Qi =
Pi · Vi
‖Vi‖

, i = 1, 2, ..., n− 1.

The quantity Vi expresses a binormal vector to the spline, defined by the geodesics on both
sides of the internal nodes. If the geodesic Γi−1 does not coincide with the geodesic Γi, then
this vector is non-zero and is perpendicular to the surface of the sphere. It can either point
inwards or outwards, depending on the relative position of the input points. The orientation
of Vi is easily found by the right-hand rule. The quantity Qi, on the other hand, is a scalar
whose value can be either 1, 0 or -1 and provides a definition of the local orientation of the
poly-geodesic curve at each node Pi. In the same manner, the quantity κg(t;S) is a scalar
quantity in which the term S(t) is essentially the normal vector of the curve S(t) at each
t ∈ [0, tn]. Where appropriate, we will use a localized notation for the geodesic curvature
defined as

κg(t;Si) =
Si(t) ·

[
Ṡi(t)× S̈i(t)

]
∥∥∥Ṡi(t)∥∥∥3 , Si ∈ [Pi, Pi+1], t ∈ [0, 1]

With these quantities in mind, the problem we treat can be expressed in the following way.

Problem (S). Find a G2−continuous curve S(u) that interpolates the point set P with
parameterization U and is shape-preserving in the sense:

• (Co-circularity) If Qi = 0 and θ(Pi−1, Pi+1) > max {θ(Pi−1, Pi), θ(Pi, Pi+1)} , i =
1, 2, ..., n− 1, then

|κg(ti ;S)| < ε, i = 1, 2, ..., n− 1,

where ε ∈ (0, 1] is a user-defined variable.

22

• (Nodal convexity) If Qi 6= 0, i = 1, 2, ..., n− 1, then the following must be true

κg(ti ;S)Qi ≥ 0.

• (Segment convexity) If QiQi+1 > 0, then it must be true that

κg(t;Si)Qλ > 0, t ∈ [0, 1], λ ∈ {i, i+ 1} , i = 1, 2, ..., n− 2.

The first difference we notice in our formulation from the one we saw in section 2.6 is that
we do not treat coplanarity and torsion. As we said, in [1] Karavelas & Kaklis are working
in a 3D Cartesian space, where coplanarity is not guaranteed, and torsion also makes sense.
In our case, we are working on the sphere, hence coplanarity with a more general meaning
is implied, since all points examined lie on the surface of the unit sphere, and torsion need
not be treated in this context. Let us now take a moment to appraise the meaning of the
above requirements.

The co-circularity criterion states that whenever a triplet Pi−1, Pi, Pi+1 lies on the same
great circle arc, the resulting spline should also follow this orientation at the interpolation
point Pi within some tolerance implied by ε. This is verified by requiring that the geodesic
curvature of the spline at the interpolation point is smaller than a threshold ε, which is the
case when the curve locally aligns with the geodesic – when κg becomes zero, the spline
actually coincides with the geodesic. Now, this criterion only makes sense when the points
are in the correct order. Co-circularity has to be examined only when Pi+1 comes after Pi on
the geodesic segment Pi−1 → Pi → Pi+1. If Pi+1 is between Pi−1 and Pi, it makes no sense to
examine co-circularity. These degenerate cases are covered by controlling that the geodesic
distance between Pi−1 and Pi+1 must exceed both the geodesic distances between Pi, Pi+1

and Pi−1, Pi. This is a suitable control in the case where the maximum distance between the
input points is less than π/2. An example illustrating the motivation for this requirement is
given in the following figure.

Pi−1

Pi

Pi+1

Pi−1

Pi

Pi+1

Figure 3.3: Illustration of the motivation behind the co-circularity requirement. On the left,
the shape of the curve required by the criterion. On the right, one possible scenario where
the curve does not obey the criterion. Note that the curve on the right interpolates the points
and is G2-continuous at the interpolation point, but its shape does not follow the natural
orientation expected in a similar setup. The tangent vector at Pi has a significantly different
orientation than the one implied by the geodesics. The black dashed curves represent the
geodesics between the nodes.

23

The convexity criterion, on the other hand, expresses the shape we would like to achieve
either on an interpolation node or a segment of the spline. Convexity at an interpolation
node is examined via the sign of the product of the geodesic curvature and the convexity
indicator at each point. Nodal convexity is only requested at nodes which are not co-circular
with their neighbors. The nodal convexity requires non-negative sign of the product because,
as we will see in the next chapter, the geodesic curvature at the interpolation nodes tends
to become 0. An illustration of the idea behind this requirement is shown below.

Pi Pi

Vi Vi

Figure 3.4: Illustration of the motivation behind the node convexity requirement. On the
left, the shape of the curve required by the criterion. On the right, one possible scenario
where the curve does not obey the criterion. Note that the curve does not follow the natural
orientation defined by the nodes on both sides of Pi. The black curves represent parts of the
geodesics between the nodes.

Segment convexity states a more strict requirement. We request that whenever four consecutive
points on the sphere form a “convex” poly-geodesic setting, the curve must follow this
orientation on the segment between the two middle points. A convex poly-geodesic setting
is easily verified by controlling whether the sign of the quantities Qi and Qi+1 is the same,
indicating compatible alignment of the geodesics on both sides of the nodes Pi and Pi+1.
Think again of the right-hand rule – a convex setting means that our thumb remains in the
same half-space if we go all the way from Pi−1 to Pi+2. If such a setting is verified, it is
natural to require that the resulting curve also follows this orientation, and this requirement
is easily expressed by using the geodesic curvature. An example of segment convexity is
given below.

24

Vi

Vi+1

Vi

Vi+1

Pi−1

Pi

Pi+1

Pi+2

Pi−1

Pi

Pi+1

Pi+2

Figure 3.5: Illustration of the motivation behind the segment convexity requirement. On
the left, the shape of the curve required by the criterion. On the right, one possible scenario
where the curve does not obey the criterion. Note that the curve does not follow the natural
orientation defined by the interpolation nodes in the interval [Pi, Pi+1]. The black dashed
curves represent the geodesics between the nodes.

3.4 Qualitative asymptotic analysis

In this section we will examine the behavior of the spherical ν-spline as previously defined
when the tension values tend to infinity. Our analysis is motivated by the ansatz that when
νi → ∞ for suitable indices i ∈ {0, 1, ..., n}, the shape-preserving criteria established in
the previous section are validated. For the rest of the section we will adopt the notation
introduced in section 3.2.

3.4.1 Control point limits

Let us recall that the control points di, i = 1, 2, ..., n − 1 are computed via the nonlinear
expression

di =
Pi sin(βi)− sin((1−δi)βi) sin((1−λi)αi)

sin(αi)
di−1 − sin(δiβi) sin(µiαi+1)

sin(ai+1)
di+1

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

, i = 1, 2, ..., n− 1

where

αi = cos−1(di−1, di), αi+1 = cos−1(di, di+1)

Li = G[di−1, di](λi), Ri = G[di, di+1](µi)

βi = cos−1(Li, Ri)

λi =
γi−1hi−1 + hi

γi−1hi−1 + hi + γihi+1

, µi =
γihi

γihi + hi+1 + γi+1hi+2

δi =
hi

hi + hi+1

, γi =
2(hi + hi+1)

νihihi+1 + 2(hi + hi+1)

25

With a little attention, we can see that the quantities di, i = 1, 2, ..., n − 1 depend on the
triplet of tension values {νi−1, νi, νi+1}. With this remark in mind, our analysis is based on
the following assumptions.

Assumption 3.1. Assume that the following are true.

1. The limit
lim

νi−1,νi,νi+1→∞
di, i = 1, 2, ..., n− 1

exists.

2. The limit
lim

νi,νi+1,νi+2→∞
di+1, i = 1, 2, ..., n− 2

also exists.

3. The limits for di and di+1 are such that

lim
νi−1,νi,νi+1,νi+2→∞

αi 6= 0, i = 1, 2, ..., n− 1.

We can now begin to examine the behavior of the quantities involved in the computation.
First, note that the control points di, i = 0, 1, ..., n all lie on the unit sphere. The validity
of this observation is based on the fact that the nonlinear system of equations described in
section 3.2 is the inverse version of de Casteljau’s algorithm for points on the unit sphere. The
auxiliary quantities Li, i = 1, 2, ..., n − 1 and Ri, i = 0, 1, ..., n are computed via geodesics
interpolation between every two consecutive control points, thus they are also situated on
the unit sphere.

A second important observation is the fact that the quantities αi, i = 1, 2, ..., n are non-zero
and also bounded. Since the control points di lie on the unit sphere, and we have assumed
that they do not coincide neither initially nor at their limit, it is true αi < π, hence we
conclude that

0 < αi < π, i = 1, 2, ..., n. (3.2)

Let us now examine the other quantities involved. It is evident that the quantity directly
affected by the tension values is γi. Is is not difficult to verify that

lim
νi→∞

γi = 0, i = 0, 1, ..., n.

We can also see that when νi = 0, then γi = 1, hence

0 ≤ γi ≤ 1, i = 0, 1, ..., n.

26

Now, in order to obtain the limit for the quantities λi and µi, we will need to evaluate the
limit for all tension values involved, hence

lim
νi,νi+1→∞

µi = lim
νi,νi+1→∞

γihi
γihi + hi+1 + γi+1hi+2

.

The limit for the numerator is
lim
νi→∞

γihi = 0

while for the denominator we have

lim
νi,νi+1→∞

γihi + hi+1 + γi+1hi+2 = hi+1 6= 0

thus we conclude that
lim

νi,νi+1→∞
µi = 0.

On the other hand, if νi = 0 = νi+1, we have seen that γi = γi+1 = 1 which implies

µi =
hi

hi + hi+1 + hi+2

< 1

thus we have

0 ≤ µi < 1⇐⇒ 0 < 1− µi ≤ 1, i = 0, 1, ..., n− 1. (3.3)

A result that follows from (3.3), given (3.2) (which obviously holds for ai+1 as well), is that

0 ≤ sin(µiαi+1) < 1 and 0 < sin((1− µi)αi+1) ≤ 1, i = 0, 1, ..., n− 1. (3.4)

For the quantity λi, the limit is

lim
νi−1,νi→∞

λi = lim
νi−1,νi→∞

γi−1hi−1 + hi
γi−1hi−1 + hi + γihi+1

.

As in the previous case, for the numerator we have

lim
νi−1→∞

γi−1hi−1 + hi = hi 6= 0

and for the denominator

lim
νi−1,νi→∞

γi−1hi−1 + hi + γihi+1 = hi 6= 0

hence

lim
νi−1,νi→∞

λi =
hi
hi

= 1.

27

In this case we can again verify that for νi−1 = 0 = νi we have γi−1 = γi = 1 which leads to

λi =
hi−1 + hi

hi−1 + hi + hi+1

< 1

but positive, no less. Therefore for λi we have

0 < λi ≤ 1⇐⇒ 0 ≤ 1− λi < 1, i = 1, 2, ..., n. (3.5)

Combining the results of (3.5) with (3.4), we conclude that

0 < sin(λiαi) ≤ 1 and 0 ≤ sin((1− λi)αi) < 1, i = 1, 2, ..., n. (3.6)

It is evident that, by definition,

0 < δi < 1⇐⇒ 0 < 1− δi < 1, i = 0, 1, ..., n. (3.7)

Now, given the conclusions we have reached so far, we can prove the following lemma.

Lemma 3.1. For the quantities Li and Ri, the limits for the corresponding tension values
exist and are

lim
νi−1,νi,νi+1→∞

Li = lim
νi−1,νi,νi+1→∞

di, i = 1, 2, ..., n− 1

and
lim

νi−1,νi,νi+1→∞
Ri = lim

νi−1,νi,νi+1→∞
di, i = 1, 2, ..., n− 1.

Proof. Based on Assumption 3.1, the limits for the quantities di exist, and are such that the
quantities αi are non-zero. We do not know the limits for the control points di at this point,
but we do know that they exist. With this knowledge, we can write

lim
νi−1,νi,νi+1→∞

Li = lim
νi−1,νi,νi+1→∞

G[di−1, di](λi)

= G

[
lim

νi−1,νi,νi+1→∞
di−1, lim

νi−1,νi,νi+1→∞
di

](
lim

νi−1,νi,νi+1→∞
λi

)
= G

[
lim

νi−1,νi,νi+1→∞
di−1, lim

νi−1,νi,νi+1→∞
di

]
(1)

= lim
νi−1,νi,νi+1→∞

di.

Following the same logic,

lim
νi−1,νi,νi+1→∞

Ri = lim
νi−1,νi,νi+1→∞

G[di, di+1](µi)

= G

[
lim

νi−1,νi,νi+1→∞
di, lim

νi−1,νi,νi+1→∞
di+1

](
lim

νi−1,νi,νi+1→∞
µi

)
= G

[
lim

νi−1,νi,νi+1→∞
di, lim

νi−1,νi,νi+1→∞
di+1

]
(0)

= lim
νi−1,νi,νi+1→∞

di.

28

An immediate consequence of Lemma 3.1 is that

lim
νi−1,νi,νi+1→∞

βi = lim
νi−1,νi,νi+1→∞

cos−1 (Li, Ri)

= cos−1
(

lim
νi−1,νi,νi+1→∞

Li, lim
νi−1,νi,νi+1→∞

Ri

)
= cos−1

(
lim

νi−1,νi,νi+1→∞
di, lim

νi−1,νi,νi+1→∞
di

)
= 0.

(3.8)

Bearing these results in mind, we will examine the behavior of the control point di with
respect to the corresponding input point Pi as the appropriate tension values tend to infinity.
The indices i are in the range i = 1, 2, ..., n − 1. In order to proceed, we will first consider
the difference

di − Pi =
Pi sin(βi)− sin((1−δi)βi) sin((1−λi)αi)

sin(αi)
di−1 − sin(δiβi) sin(µiαi+1)

sin(ai+1)
di+1

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

− Pi

=

[
sin(βi)

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

− 1

]
Pi

−
[sin((1−δi)βi) sin((1−λi)αi)

sin(αi)

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

]
di−1

−
[sin(δiβi) sin(µiαi+1)

sin(ai+1)

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

]
di+1.

Let ‖·‖ denote the Euclidean norm in R3. We can thus write

‖di − Pi‖ ≤
∣∣∣∣∣ sin(βi)
sin((1−δi)βi) sin(λiαi)

sin(αi)
+ sin(δiβi) sin((1−µi)αi+1)

sin(αi+1)

− 1

∣∣∣∣∣ ‖Pi‖
+

∣∣∣∣∣
sin((1−δi)βi) sin((1−λi)αi)

sin(αi)

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

∣∣∣∣∣ ‖di−1‖
+

∣∣∣∣∣
sin(δiβi) sin(µiαi+1)

sin(ai+1)

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

∣∣∣∣∣ ‖di+1‖ .

However, given that Pi, di−1 and di+1 are points on the unit sphere, it holds that ‖Pi‖ =

29

‖di−1‖ = ‖di+1‖ = 1. Therefore, the last expression becomes

‖di − Pi‖ ≤
∣∣∣∣∣ sin(βi)
sin((1−δi)βi) sin(λiαi)

sin(αi)
+ sin(δiβi) sin((1−µi)αi+1)

sin(αi+1)

− 1

∣∣∣∣∣
+

∣∣∣∣∣
sin((1−δi)βi) sin((1−λi)αi)

sin(αi)

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

∣∣∣∣∣
+

∣∣∣∣∣
sin(δiβi) sin(µiαi+1)

sin(ai+1)

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

∣∣∣∣∣ .
(3.9)

We are interested in examining the behavior of the above quantities when the tension values
{νi−1, νi, νi+1} tend to infinity, in other words we want to see what happens when we apply
the limit to both sides of (3.9). Initially, we can see that

lim
νi−1,νi,νi+1→∞

‖di − Pi‖ ≤ lim
νi−1,νi,νi+1→∞

∣∣∣∣∣ sin(βi)
sin((1−δi)βi) sin(λiαi)

sin(αi)
+ sin(δiβi) sin((1−µi)αi+1)

sin(αi+1)

− 1

∣∣∣∣∣
+ lim

νi−1,νi,νi+1→∞

∣∣∣∣∣
sin((1−δi)βi) sin((1−λi)αi)

sin(αi)

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

∣∣∣∣∣
+ lim

νi−1,νi,νi+1→∞

∣∣∣∣∣
sin(δiβi) sin(µiαi+1)

sin(ai+1)

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

∣∣∣∣∣ ,
(3.10)

however it becomes abundantly clear that we will have clearer results by handling each
expression separately. For the first limit, we want to examine

lim
νi−1,νi,νi+1→∞

∣∣∣∣∣ sin(βi)
sin((1−δi)βi) sin(λiαi)

sin(αi)
+ sin(δiβi) sin((1−µi)αi+1)

sin(αi+1)

− 1

∣∣∣∣∣ . (3.11)

Instead on examining the entire expression, we will focus on showing that the fraction’s limit
is the unit. This, however, is equivalent to showing that the inverse of the fraction has the
unit as its limit. Hence, we now have

lim
νi−1,νi,νi+1→∞

sin((1−δi)βi) sin(λiαi)
sin(αi)

+ sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

sin(βi)
. (3.12)

Recall that our assumptions state that

lim
νi−1,νi,νi+1→∞

αi 6= 0,

30

which allows us to see that

lim
νi−1,νi,νi+1→∞

sin(λiαi)

sin(αi)
=

sin

(
lim

νi−1,νi,νi+1→∞
λi · lim

νi−1,νi,νi+1→∞
αi

)
sin

(
lim

νi−1,νi,νi+1→∞
αi

)

=

sin

(
1 · lim

νi−1,νi,νi+1→∞
αi

)
sin

(
lim

νi−1,νi,νi+1→∞
αi

)
= 1,

and also

lim
νi−1,νi,νi+1→∞

sin((1− µi)αi+1)

sin(αi+1)
=

sin

((
1− lim

νi−1,νi,νi+1→∞
µi

)
· lim
νi−1,νi,νi+1→∞

αi+1

)
sin

(
lim

νi−1,νi,νi+1→∞
αi+1

)

=

sin

(
(1− 0) · lim

νi−1,νi,νi+1→∞
αi+1

)
sin

(
lim

νi−1,νi,νi+1→∞
αi+1

)
= 1.

Now (3.12) can be rewritten as

lim
νi−1,νi,νi+1→∞

sin((1− δi)βi) + sin(δiβi)

sin(βi)
= lim
νi−1,νi,νi+1→∞

sin((1− δi)βi)
sin(βi)

+ lim
νi−1,νi,νi+1→∞

sin(δiβi)

sin(βi)
. (3.13)

The quantity δi does not depend on the tension values νi, and we have seen that the limit for
the quantity βi is zero, hence by de l’Hôspital’s rule we can easily verify that (3.13) becomes

lim
νi−1,νi,νi+1→∞

sin((1− δi)βi) + sin(δiβi)

sin(βi)
= (1− δi) + δi = 1. (3.14)

Returning to (3.11) with the result of (3.14), we conclude that

lim
νi−1,νi,νi+1→∞

∣∣∣∣∣ sin(βi)
sin((1−δi)βi) sin(λiαi)

sin(αi)
+ sin(δiβi) sin((1−µi)αi+1)

sin(αi+1)

− 1

∣∣∣∣∣ = |1− 1| = 0. (3.15)

31

Let us now continue with the second limit in order. We have

lim
νi−1,νi,νi+1→∞

∣∣∣∣∣
sin((1−δi)βi) sin((1−λi)αi)

sin(αi)
sin((1−δi)βi) sin(λiαi)

sin(αi)
+

sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

∣∣∣∣∣ ≤
lim

νi−1,νi,νi+1→∞

∣∣∣∣∣
sin((1−δi)βi) sin((1−λi)αi)

sin(αi)
sin((1−δi)βi) sin(λiαi)

sin(αi)

∣∣∣∣∣ =

lim
νi−1,νi,νi+1→∞

∣∣∣ sin((1−λi)αi)sin(λiαi)

∣∣∣ =

∣∣∣∣∣∣
lim

νi−1,νi,νi+1→∞
sin((1− λi)αi)

lim
νi−1,νi,νi+1→∞

sin(λiαi)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
sin

((
1− lim

νi−1,νi,νi+1→∞
λi

)
lim

νi−1,νi,νi+1→∞
αi

)
sin

(
lim

νi−1,νi,νi+1→∞
λi · lim

νi−1,νi,νi+1→∞
αi

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
sin

(
(1− 1) lim

νi−1,νi,νi+1→∞
αi

)
sin

(
1 · lim

νi−1,νi,νi+1→∞
αi

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
sin (0)

sin

(
lim

νi−1,νi,νi+1→∞
αi

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
0

sin

(
lim

νi−1,νi,νi+1→∞
αi

)
∣∣∣∣∣∣∣∣ = 0.

(3.16)

The last result is correct under the Assumption (3.1).

32

Finally, let us examine the third limit, for which we have

lim
νi−1,νi,νi+1→∞

∣∣∣∣∣
sin(δiβi) sin(µiαi+1)

sin(ai+1)
sin((1−δi)βi) sin(λiαi)

sin(αi)
+

sin(δiβi) sin((1−µi)αi+1)
sin(αi+1)

∣∣∣∣∣ ≤
lim

νi−1,νi,νi+1→∞

∣∣∣∣∣
sin(δiβi) sin(µiαi+1)

sin(ai+1)
sin(δiβi) sin((1−µi)αi+1)

sin(αi+1)

∣∣∣∣∣ =

lim
νi−1,νi,νi+1→∞

∣∣∣ sin(µiαi+1)
sin((1−µi)αi+1)

∣∣∣ =

∣∣∣∣∣ lim
νi−1,νi,νi+1→∞

sin(µiαi+1)

lim
νi−1,νi,νi+1→∞

sin((1−µi)αi+1)

∣∣∣∣∣ =∣∣∣∣∣∣∣∣
sin

(
lim

νi−1,νi,νi+1→∞
µi · lim

νi−1,νi,νi+1→∞
αi+1

)
sin

((
1− lim

νi−1,νi,νi+1→∞
µi

)
· lim
νi−1,νi,νi+1→∞

αi+1

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
sin

(
0 · lim

νi−1,νi,νi+1→∞
αi+1

)
sin

(
(1− 0) · lim

νi−1,νi,νi+1→∞
αi+1

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
sin (0)

sin

(
lim

νi−1,νi,νi+1→∞
αi+1

)
∣∣∣∣∣∣∣∣ = 0.

(3.17)

Again, the last expression is valid under Assumption (3.1).

Returning to the limit (3.10) with results (3.15), (3.16) and (3.17), we see that

lim
νi−1,νi,νi+1→∞

‖di − Pi‖ ≤ 0. (3.18)

The remarkable result from (3.18) is that, as the tension values {νi−1, νi, νi+1} tend to infinity,
the control point di comes closer and closer to Pi, until the two points finally coincide.
Remember that ‖·‖ denotes the Euclidean norm in R3. The results of our asymptotic analysis
so far can be summarized in the following theorem.

Theorem 3.1. The computation of the control points di, i = 1, 2, ..., n− 1 via the algorithm
described in section 3.2 depends on the triplet of tension values {νi−1, νi, νi+1}. Under the
Assumption 3.1, it holds that

lim
νi−1,νi,νi+1→∞

di = Pi, i = 1, 2, ..., n− 1.

A direct consequence of the above theorem is the following corollary.

Corollary 3.1. Under the Assumption 3.1, it holds that

lim
νi−1,νi,νi+1→∞

Li = Pi, i = 1, 2, ..., n− 1

and also
lim

νi−1,νi,νi+1→∞
Ri = Pi, i = 1, 2, ..., n− 1.

33

It has to be noted that Assumption 3.1 has not been justified at the point at which we
introduced it. However, the conclusions at which we arrive are consistent with every one of
the assumptions made. Moreover, these assumptions are also consistent with the numerical
results obtained from all test cases.

3.4.2 Curve limits

Now, having solid knowledge of the behavior of the control points defining the ν-spline as
the tension values tend to infinity, we will examine the behavior of the curve itself and the
behavior of its derivatives at the limit for the tension values. For the rest of this section we
will be working in the interval [Pi, Pi+1], i = 1, 2, ..., n − 2. Our boundary conditions state
that d0 = P0 and dn = Pn, hence we will focus on the internal nodes. We will also use a local
parameterization t ∈ [0, 1] instead of a global u ∈ [Pi, Pi+1], and we will follow the steps of
de Casteljau’s algorithm.

With a little thought, we can see that every point on the spherical spline interpolating Pi
and Pi+1 can be found from the expression

S(t) = G
[
G
[
G
[
Pi, Ri

]
(t), G

[
Ri, Li+1

]
(t)
]

(t), G
[
G
[
Ri, Li+1

]
(t), G

[
Li+1, Pi+1

]
(t)
]

(t)
]

(t). (3.19)

In the previous chapter, we saw that

lim
νi−1,νi,νi+1→∞

Li = Pi = lim
νi−1,νi,νi+1→∞

Ri, i = 1, 2, ..., n− 1.

Evidently, Ri depends on the triplet νi−1, νi, νi+1, while Li+1 depends on the triplet νi, νi+1, νi+2.
Applying the limits for the union of these tension values to the innermost quantities in (3.19),
we have

lim
νi−1,νi,νi+1,νi+2→∞

G
[
Pi, Ri

]
(t) = G

[
Pi, lim

νi−1,νi,νi+1→∞
Ri

]
(t)

= G[Pi, Pi](t)

= Pi

lim
νi−1,νi,νi+1,νi+2→∞

G
[
Li+1, Pi+1

]
(t) = G

[
lim

νi,νi+1,νi+2→∞
Li+1, Pi+1

]
(t)

= G
[
Pi+1, Pi+1

]
(t)

= Pi+1

lim
νi−1,νi,νi+1,νi+2→∞

G
[
Ri, Li+1

]
(t) = G

[
lim

νi−1,νi,νi+1→∞
Ri, lim

νi,νi+1,νi+2→∞
Li+1

]
(t)

= G
[
Pi, Pi+1

]
(t).

We can now rewrite the expression for (3.19) in the following manner:

lim
νi−1,νi,νi+1,νi+2→∞

S(t) = G
[
G
[
Pi, G[Pi, Pi+1](t)

]
(t), G

[
G[Pi, Pi+1](t), Pi+1

]
(t)
]

(t). (3.20)

34

As a next step, we use the explicit forms for each of the parts of the expression. Let us define
ω = cos−1 (〈Pi, Pi+1〉) and ϑ = cos−1 (〈Pi, G[Pi, Pi+1](t)〉) so we can write

G
[
Pi, G[Pi, Pi+1](t)

]
(t) =

sin((1− t)ϑ)

sin(ϑ)
· Pi +

sin(tϑ)

sin(ϑ)
·G[Pi, Pi+1](t)

=
sin((1− t)ϑ)

sin(ϑ)
· Pi +

sin(tϑ)

sin(ϑ)
·
[

sin((1− t)ω)

sin(ω)
Pi +

sin(tω)

sin(ω)
Pi+1

]
=

sin((1− t)ϑ) sin(ω) + sin(tϑ) sin((1− t)ω)

sin(ϑ) sin(ω)
· Pi +

sin(tϑ) sin(tω)

sin(ϑ) sin(ω)
· Pi+1.

(3.21)

Focusing on the quantity ϑ for a moment, we see that

ϑ = cos−1 (〈Pi, G[Pi, Pi+1](t)〉)

= cos−1
(〈

Pi,
sin((1− t)ω)

sin(ω)
· Pi +

sin(tω)

sin(ω)
· Pi+1

〉)
= cos−1

(
sin((1− t)ω)

sin(ω)
· ‖Pi‖+

sin(tω)

sin(ω)
· 〈Pi, Pi+1〉

)
.

Recalling that ‖Pi‖ = 1 and ω = cos−1 (〈Pi, Pi+1〉)⇔ cos(ω) = 〈Pi, Pi+1〉 we can write

ϑ = cos−1
(

sin((1− t)ω) + sin(tω) cos(ω)

sin(ω)

)
= cos−1

(
sin((1− t)ω) + 1

2
[sin((1 + t)ω)− sin((1− t)ω)]

sin(ω)

)
= cos−1

(1
2

[sin((1− t)ω) + sin((1 + t)ω)]

sin(ω)

)
= cos−1

(
sin(ω) cos(tω)

sin(ω)

)
= cos−1 (cos(tω)) .

= tω

Applying this result to (3.21), the expression becomes

G
[
Pi, G[Pi, Pi+1](t)

]
(t) =

sin((1− t)ϑ) sin(ω) + sin(tϑ) sin((1− t)ω)

sin(ϑ) sin(ω)
Pi +

sin(tϑ) sin(tω)

sin(ϑ) sin(ω)
Pi+1

=
sin((1− t)tω) sin(ω) + sin(t2ω) sin((1− t)ω)

sin(tω) sin(ω)
Pi +

sin(t2ω) sin(tω)

sin(tω) sin(ω)
Pi+1

=
sin(tω) sin((1− t2)ω)

sin(tω) sin(ω)
Pi +

sin(t2ω) sin(tω)

sin(tω) sin(ω)
Pi+1

=
sin((1− t2)ω)

sin(ω)
Pi +

sin(t2ω)

sin(ω)
Pi+1.

This concludes the procedure for the first member of our complex expression. Consider now
ϕ = cos−1 (〈G[Pi, Pi+1](t), Pi+1〉) and ω as previously defined. Following the same steps to

35

tackle the second part, we have

G
[
G[Pi, Pi+1](t), Pi+1

]
(t) =

sin((1− t)ϕ)

sin(ϕ)
·G[Pi, Pi+1](t) +

sin(tϕ)

sin(ϕ)
· Pi+1

=
sin((1− t)ϕ)

sin(ϕ)
·
[

sin((1− t)ω)

sin(ω)
· Pi +

sin(tω)

sin(ω)
· Pi+1

]
+

sin(tϕ)

sin(ϕ)
· Pi+1

=
sin((1− t)ϕ) sin((1− t)ω)

sin(ϕ) sin(ω)
· Pi +

sin((1− t)ϕ) sin(tω) + sin(ω) sin(tϕ)

sin(ϕ) sin(ω)
· Pi+1.

(3.22)

Focusing on ϕ, we find that

ϕ = cos−1 (〈G[Pi, Pi+1](t), Pi+1〉)

= cos−1
(〈

sin((1− t)ω)

sin(ω)
· Pi +

sin(tω)

sinω
· Pi+1, Pi+1

〉)
= cos−1

(
sin((1− t)ω)

sin(ω)
· 〈Pi, Pi+1〉+

sin(tω)

sinω
· ‖Pi+1‖

)
.

Recall that ‖Pi+1‖ = 1 and that 〈Pi, Pi+1〉 = cos(ω) and we can write

ϕ = cos−1
(

sin((1− t)ω) cos(ω) + sin(tω)

sin(ω)

)
= cos−1

(1
2

[sin((1− t)ω + ω)− sin(ω − (1− t)ω)] + sin(tω)

sin(ω)

)
= cos−1

(1
2

[sin((2− t)ω)− sin(tω)] + sin(tω)

sin(ω)

)
= cos−1

(1
2

[sin((2− t)ω) + sin(tω)]

sin(ω)

)
= cos−1

(
sin(ω) cos((1− t)ω)

sin(ω)

)
= cos−1 (cos((1− t)ω))

= (1− t)ω.

36

Substituting back into (3.22), we get

G
[
G[Pi, Pi+1](t), Pi+1

]
(t) =

sin((1− t)ϕ) sin((1− t)ω)

sin(ω) sin(ϕ)
Pi+

sin((1− t)ϕ) sin(tω) + sin(ω) sin(tϕ)

sin(ω) sin(ϕ)
Pi+1

=
sin((1− t)2ω) sin((1− t)ω)

sin(ω) sin((1− t)ω)
Pi+

sin((1− t)2ω) sin(tω) + sin(ω) sin(t(1− t)ω)

sin(ω) sin((1− t)ω)
Pi+1

=
sin((1− t)2ω) sin((1− t)ω)

sin(ω) sin((1− t)ω)
Pi−

sin((t− 2)tω) sin((1− t)ω)

sin(ω) sin((1− t)ω)
Pi+1

=
sin((1− t)2ω)

sin(ω)
Pi −

sin((t− 2)tω)

sin(ω)
Pi+1

=
sin((1− t)2ω)

sin(ω)
Pi −

sin
([

(1− t)2 − 1
]
ω
)

sin(ω)
Pi+1

=
sin((1− t)2ω)

sin(ω)
Pi +

sin
([

1− (1− t)2
]
ω
)

sin(ω)
Pi+1.

Summarizing our results so far, we have found that

G
[
Pi, G[Pi, Pi+1](t)

]
(t) =

sin((1− t2)ω)

sin(ω)
Pi +

sin(t2ω)

sin(ω)
Pi+1 (3.23)

and

G
[
G[Pi, Pi+1](t), Pi+1

]
(t) =

sin((1− t)2ω)

sin(ω)
Pi +

sin ([1− (1− t)2]ω)

sin(ω)
Pi+1. (3.24)

Substituting (3.23) and (3.24) into (3.20) yields

lim
νi−1,νi,νi+1,νi+2→∞

S(t) = G
[
aPi + bPi+1, cPi + dPi+1

]
(t) (3.25)

with

a =
sin((1− t2)ω)

sin(ω)
, b =

sin(t2ω)

sin(ω)

c =
sin((1− t)2ω)

sin(ω)
, d =

sin ([1− (1− t)2]ω)

sin(ω)
.

The reason behind writing the expression into the above form is that we can still do better.
For simplicity’s sake we will first examine the quantity ρ = cos−1 (〈aPi + bPi+1, cPi + dPi+1〉),

37

for which we have

cos(ρ) = 〈aPi + bPi+1, cPi + dPi+1〉
= ac ‖Pi‖2 + ad 〈Pi, Pi+1〉+ bc 〈Pi+1, Pi〉+ bd ‖Pi+1‖2

= ac+ bd+
[
ad+ bc

]
〈Pi, Pi+1〉

= ac+ bd+
[
ad+ bc

]
cos(ω)

= c(a+ b cos(ω)) + d(b+ a cos(ω))

=
sin((1− t)2ω)

sin2(ω)

[
sin((1− t2)ω) + sin(t2ω) cos(ω)

]
+

sin ([1− (1− t)2]ω)

sin2(ω)

[
sin(t2ω) + sin((1− t2)ω) cos(ω)

]
=

sin((1− t)2ω)

sin2(ω)
· sin(ω) cos(t2ω) +

sin ([1− (1− t)2]ω)

sin2(ω)
· sin(ω) cos((1− t2)ω)

=
sin((1− t)2ω) cos(t2ω)

sin(ω)
+

sin ([1− (1− t)2]ω) cos((1− t2)ω)

sin(ω)

=
sin(ω − 2tω + t2ω) cos(t2ω)

sin(ω)
+

sin ([1− (1− t)2]ω) cos(ω − t2ω)

sin(ω)

=
sin(ω) cos(−2tω + t2ω) cos(t2ω)

sin(ω)
+

(((((((((((((((((
cos(ω) sin(−2tω + t2ω) cos(t2ω)

sin(ω)

+
(((((((((((((((((
sin(2tω − t2ω) cos(ω) cos(−t2ω)

sin(ω)
+

sin(2tω − t2ω) sin(ω) sin(−t2ω)

sin(ω)

= cos(−2tω + t2ω) cos(t2ω) + sin(2tω − t2ω) sin(−t2ω)

= cos(−2tω + t2ω) cos(t2ω)− sin(2tω − t2ω) sin(t2ω)

= cos(−2tω + t2ω + t2ω)

= cos(2t(t− 1)ω).

The final result states that ρ = cos−1 (〈aPi + bPi+1, cPi + dPi+1〉) = 2t(t− 1)ω, hence (3.25)
can be rewritten as

38

lim
νi−1,νi,νi+1,νi+2→∞

S(t) = G
[
aPi + bPi+1, cPi + dPi+1

]
(t)

=
sin((1− t)ρ)

sin(ρ)
·
[
aPi + bPi+1

]
+

sin(tρ)

sin(ρ)
·
[
cPi + dPi+1

]
=

sin(2t(1− t)2ω)

sin(2t(1− t)ω)

[
sin((1− t2)ω)

sin(ω)
Pi +

sin(t2ω)

sin(ω)
Pi+1

]
+

sin(2t2(1− t)ω)

sin(2t(1− t)ω)

[
sin((1− t)2ω)

sin(ω)
Pi +

sin
([

1− (1− t)2
]
ω
)

sin(ω)
Pi+1

]

=
sin(2t(1− t)2ω) sin((1− t2)ω) + sin(2t2(1− t)ω) sin((1− t)2ω)

sin(2t(1− t)ω) sin(ω)
Pi +

sin(2t(1− t)2ω) sin(t2ω) + sin(2t2(1− t)ω) sin
([

1− (1− t)2
]
ω
)

sin(2t(1− t)ω) sin(ω)
Pi+1

= A · Pi +B · Pi+1

with

A =
sin(2t(1− t)2ω) sin((1− t2)ω) + sin(2t2(1− t)ω) sin((1− t)2ω)

sin(2t(1− t)ω) sin(ω)

and

B =
sin(2t(1− t)2ω) sin(t2ω) + sin(2t2(1− t)ω) sin ([1− (1− t)2]ω)

sin(2t(1− t)ω) sin(ω)
.

The last step is to further simplify the quantities A and B.

39

For A we have

A =
sin(2t3ω − 4t2ω + 2tω) sin(ω − t2ω) + sin(2t2ω − 2t3ω) sin(ω − 2tω + t2ω)

sin(2tω − 2t2ω) sin(ω)

= (((((((((((((((

cos(2t3ω − 3t2ω + 2tω − ω) − cos(2t3ω − 5t2ω + 2tω + ω)

2 sin(2tω − 2t2ω) sin(ω)

+
cos(−2t3ω + t2ω + 2tω − ω)

(((((((((((((((((

− cos(−2t3ω + 3t2ω − 2tω + ω)

2 sin(2tω − 2t2ω) sin(ω)

=
cos(−2t3ω + t2ω + 2tω − ω)− cos(2t3ω − 5t2ω + 2tω + ω)

2 sin(2tω − 2t2ω) sin(ω)

=
−2 sin

(
−2t3ω+t2ω+2tω−ω+2t3ω−5t2ω+2tω+ω

2

)
sin
(
−2t3ω+t2ω+2tω−ω−(2t3ω−5t2ω+2tω+ω)

2

)
2 sin(2tω − 2t2ω) sin(ω)

=
−2 sin

(
−4t2ω+4tω

2

)
sin
(
−2t3ω+t2ω+2tω−ω−2t3ω+5t2ω−2tω−ω)

2

)
2 sin(2tω − 2t2ω) sin(ω)

=
(((((((((((
−2 sin(−2t2ω + 2tω) sin

(
−4t3ω+6t2ω−2ω

2

)
(((((((((
2 sin(2tω − 2t2ω) sin(ω)

=
− sin(−2t3ω + 3t2ω − ω)

sin(ω)

=
sin(2t3ω − 3t2ω + ω)

sin(ω)

=
sin ((1− t)2(2t+ 1)ω)

sin(ω)
.

40

For B, the calculations go as follows.

B =
sin(2t3ω − 4t2ω + 2tω) sin(t2ω) + sin(2t2ω − 2t3ω) sin(2tω − t2ω)

sin(2tω − 2t2ω) sin(ω)

=
cos(2t3ω − 4t2ω + 2tω − t2ω)− cos(2t3ω − 4t2ω + 2tω + t2ω)

2 sin(2tω − 2t2ω) sin(ω)

+
cos(2t2ω − 2t3ω − (2tω − t2ω))− cos(2t2ω − 2t3ω + 2tω − t2ω)

2 sin(2tω − 2t2ω) sin(ω)

=
cos(2t3ω − 5t2ω + 2tω)

((((((((((((((
− cos(2t3ω − 3t2ω + 2tω)

2 sin(2tω − 2t2ω) sin(ω)

+ (((((((((((((
cos(−2t3ω + 3t2ω − 2tω) − cos(−2t3ω + t2ω + 2tω)

2 sin(2tω − 2t2ω) sin(ω)

=
cos(2t3ω − 5t2ω + 2tω)− cos(−2t3ω + t2ω + 2tω)

2 sin(2tω − 2t2ω) sin(ω)

=
−2 sin

(
2t3ω−5t2ω+2tω−2t3ω+t2ω+2tω

2

)
sin
(

2t3ω−5t2ω+2tω−(−2t3ω+t2ω+2tω)
2

)
2 sin(2tω − 2t2ω) sin(ω)

=
−2 sin

(
−4t2ω+4tω

2

)
sin
(

4t3ω−6t2ω
2

)
2 sin(2tω − 2t2ω) sin(ω)

=
−((((((((((

2 sin(−2t2ω + 2tω) sin(2t3ω − 3t2ω)

(((((((((
2 sin(2tω − 2t2ω) sin(ω)

=
− sin(2t3ω − 3t2ω)

sin(ω)

=
sin(−2t3ω + 3t2ω)

sin(ω)

=
sin (t2(2(1− t) + 1)ω)

sin(ω)
.

After all this work, (3.25) takes the amazingly beautiful form

lim
νi−1,νi,νi+1,νi+2→∞

S(t) =
sin ((1− t)2(2t+ 1)ω)

sin(ω)
· Pi +

sin (t2(2(1− t) + 1)ω)

sin(ω)
· Pi+1 (3.26)

which can be rewritten as

lim
νi−1,νi,νi+1,νi+2→∞

S(t) = Φ(1− t;ω) · Pi + Φ(t;ω) · Pi+1 (3.27)

with

Φ(t;ω) =
sin (t2(2(1− t) + 1)ω)

sin(ω)
.

41

Recall that we are working in the interval [Pi, Pi+1], i = 1, 2, ..., n − 2 with t ∈ [0, 1] being
the “local” parameter.

It is easily verified for the above expression that

lim
νi−1,νi,νi+1,νi+2→∞

S(0) = Pi and lim
νi−1,νi,νi+1,νi+2→∞

S(1) = Pi+1.

hence expression (3.26) still describes an interpolant, as expected. However, it is clear
that the interpolant is now defined by only two control points, which means that it is
indeed a form of geodesic interpolant. The parameterization of the curve is different from
the parameterization used in the linear geodesic interpolation, but for t ∈ [0, 1] the above
expression describes a point on the geodesic between Pi and Pi+1. One way to perceive this is
relevant to the manner in which we explained C- and G-continuity. If we suppose that S(t)
describes the motion of a rigid body from point Pi to point Pi+1, the geodesic provides the
minimum path between Pi and Pi+1, and moreover the body will be moving with constant
velocity for the whole duration of the motion. Considering the limit of S(t) provides a
different parameterization, meaning that the velocity of the body will not be constant along
the path, but will change depending on how far from each endpoint it is. The trace of the
body, however, will be the same, being the geodesic from Pi to Pi+1.

Now, regarding the limit of the derivatives Ṡ(t) and S̈(t), we will only present the resulting
expressions without reference to the extensive calculations. We employ the limits for the
angles ϑ, ϕ and ρ previously proven, and also exploit the limits for the quantities Li+1 and
Ri. Replacing everything in the explicit form of the first derivative of S(t) from (3.19) yields

lim
νi−1,νi,νi+1,νi+2→∞

Ṡ(t) = Ψ(1− t;ω) · Pi −Ψ(t;ω) · Pi+1

where

Ψ(t;ω) =
2 t(1−t)ω cos(2 t2(1−t)ω) sin(t(1−t)ω)−(1−t)ω sin(2 t2(1−t)ω) cos(t(1−t)ω)

sin(2 t(1−t)ω) sin((1−t)ω) −
(−2 t(1−t)ω cos(2 t2(1−t)ω) sin((1−t)2ω)+(1−t)ω sin(2 t2(1−t)ω) cos((1−t)2ω)) sin(tω)

sin(2 t(1−t)ω) sin((1−t)ω) sin(ω) −
2 t(1−t)ω cos(2 (1−t)2tω) sin(t2ω)−tω sin(2 (1−t)2tω) cos(t2ω)

sin(2 t(1−t)ω) sin(ω) −
sin(2 t2(1−t)ω) sin((1−t)2ω)ω cos((1−t)ω)

sin(2 t(1−t)ω) sin((1−t)ω) sin(ω) −
sin(2 (1−t)2tω) sin(t2ω)ω cos((1−t)ω)

sin(2 t(1−t)ω) sin(tω) sin(ω)

It may not be immediately evident, but it can be verified that

lim
t→0

Ψ(t;ω) = 0 = lim
t→1

Ψ(t;ω),

42

which, in turn, implies that

lim
νi−1,νi,νi+1,νi+2→∞

Ṡ(0) = 0 = lim
νi−1,νi,νi+1,νi+2→∞

Ṡ(1).

Performing the same steps for the second derivative, we arrive at a similar expression.
Namely, we have

lim
νi−1,νi,νi+1,νi+2→∞

S̈(t) = Ξ(1− t;ω) · Pi − Ξ(t;ω) · Pi+1

where Ξ(t;ω) is defined on the (entire) next page.

43

Ξ(t;ω) =
sin(2 (1−t)2tω) sin(t2ω)ω2 cos((1−t)ω) cos(tω)

(sin(tω))2 sin(2 t(1−t)ω) sin(ω) +
2 t(1−t)ω2 sin((1−t)2ω) cos(2 t2(1−t)ω) cos(tω)

sin(2 t(1−t)ω) sin((1−t)ω) sin(ω) − (1−t)ω2 sin(2 t2(1−t)ω) cos((1−t)2ω) cos(tω)

sin(2 t(1−t)ω) sin((1−t)ω) sin(ω) −
2 tω2 sin(2 (1−t)2tω) cos((1−t)ω) cos(t2ω)

sin(2 t(1−t)ω) sin(tω) sin(ω) − tω sin(2 (1−t)2tω)(2 (1−t)ω−2 tω) cos(2 t(1−t)ω) cos(t2ω)
(sin(2 t(1−t)ω))2 sin(ω) +

(−4 t2(1−t)ω2+tω (−2 t(1−t)ω+(1−t)(2 (1−t)ω−2 tω))) cos(2 (1−t)2tω) cos(t2ω)
sin(2 t(1−t)ω) sin(ω) +

ω sin(2 (1−t)2tω) cos(t2ω)
sin(2 t(1−t)ω) sin(ω) −

sin(2 t2(1−t)ω) sin((1−t)2ω)ω2(cos((1−t)ω))2

(sin((1−t)ω))2 sin(2 t(1−t)ω) sin(ω) +
cos((1−t)2ω) cos((1−t)ω)

sin(ω)

(
− (1−t)ω2 sin(2 t2(1−t)ω) sin(tω)

sin(2 t(1−t)ω)(sin((1−t)ω))2 +
2 (1−t)ω2 sin(2 t2(1−t)ω)
sin(2 t(1−t)ω) sin((1−t)ω)

)
+

cos(2 t(1−t)ω) cos((1−t)ω)
sin(ω)

(
sin(2 t2(1−t)ω)(2 (1−t)ω−2 tω) sin((1−t)2ω)ω

(sin(2 t(1−t)ω))2 sin((1−t)ω) +
sin(2 (1−t)2tω)(2 (1−t)ω−2 tω) sin(t2ω)ω

(sin(2 t(1−t)ω))2 sin(tω)

)
+(

2 t(1−t)ω2 sin(t(1−t)ω)
sin(2 t(1−t)ω)(sin((1−t)ω))2 + 1

sin(ω)

(
2 t(1−t)ω2 sin((1−t)2ω) sin(tω)

sin(2 t(1−t)ω)(sin((1−t)ω))2 −
(2 t(1−t)ω+t(2 (1−t)ω−2 tω)) sin((1−t)2ω)ω

sin(2 t(1−t)ω) sin((1−t)ω)

))
cos(2 t2(1−t)ω) cos((1−t)ω)−

(−2 t(1−t)ω+(1−t)(2 (1−t)ω−2 tω))ω sin(t2ω) cos(2 (1−t)2tω) cos((1−t)ω)
sin(2 t(1−t)ω) sin(tω) sin(ω) +

(1−t)ω2 sin(2 t2(1−t)ω) cos(t(1−t)ω) cos((1−t)ω)
sin(2 t(1−t)ω)(sin((1−t)ω))2 +

(1−t)ω sin(2 t2(1−t)ω)(2 (1−t)ω−2 tω) sin(tω) cos(2 t(1−t)ω) cos((1−t)2ω)
(sin(2 t(1−t)ω))2 sin((1−t)ω) sin(ω) +

(−4 t(1−t)2ω2−(1−t)ω (2 t(1−t)ω+t(2 (1−t)ω−2 tω))) sin(tω) cos(2 t2(1−t)ω) cos((1−t)2ω)
sin(2 t(1−t)ω) sin((1−t)ω) sin(ω) +

ω sin(2 t2(1−t)ω) sin(tω) cos((1−t)2ω)
sin(2 t(1−t)ω) sin((1−t)ω) sin(ω) +(

−2 t(1−t)ω (2 (1−t)ω−2 tω) sin((1−t)2ω) sin(tω)

(sin(2 t(1−t)ω))2 sin((1−t)ω) sin(ω) − 2 t(1−t)ω (2 (1−t)ω−2 tω) sin(t(1−t)ω)
(sin(2 t(1−t)ω))2 sin((1−t)ω)

)
cos(2 t2(1−t)ω) cos(2 t(1−t)ω)−

(1−t)ω sin(2 t2(1−t)ω)(2 (1−t)ω−2 tω) cos(t(1−t)ω) cos(2 t(1−t)ω)
(sin(2 t(1−t)ω))2 sin((1−t)ω) +

2 t(1−t)ω cos(2 (1−t)2tω)(2 (1−t)ω−2 tω) sin(t2ω) cos(2 t(1−t)ω)
(sin(2 t(1−t)ω))2 sin(ω) +

(2 (1−t)ω sin(t(1−t)ω)−2 t sin(t(1−t)ω)ω+2 t(1−t)ω ((1−t)ω cos(t(1−t)ω)−t cos(t(1−t)ω)ω)+(1−t)ω (2 t(1−t)ω+t(2 (1−t)ω−2 tω)) cos(t(1−t)ω)) cos(2 t2(1−t)ω)
sin(2 t(1−t)ω) sin((1−t)ω) +

(2 (1−t)ω−2 tω) sin((1−t)2ω) sin(tω) cos(2 t2(1−t)ω)
sin(2 t(1−t)ω) sin((1−t)ω) sin(ω) +

(−2 (1−t)ω+2 tω) sin(t2ω) cos(2 (1−t)2tω)
sin(2 t(1−t)ω) sin(ω) −

(2 t(1−t)ω (−2 t(1−t)ω−t(2 (1−t)ω−2 tω)) sin(t(1−t)ω)−ω cos(t(1−t)ω)+(1−t)ω (−(1−t)ω sin(t(1−t)ω)+t sin(t(1−t)ω)ω)) sin(2 t2(1−t)ω)
sin(2 t(1−t)ω) sin((1−t)ω)

(2 t(1−t)ω (−2 t(1−t)ω−t(2 (1−t)ω−2 tω))−2 (1−t)2ω2) sin(2 t2(1−t)ω) sin((1−t)2ω) sin(tω)

sin(2 t(1−t)ω) sin((1−t)ω) sin(ω) +

(2 t(1−t)ω (−2 t(1−t)ω+(1−t)(2 (1−t)ω−2 tω))−2 t2ω2) sin(2 (1−t)2tω) sin(t2ω)
sin(2 t(1−t)ω) sin(ω) − sin(2 t2(1−t)ω) sin((1−t)2ω)ω2

sin(2 t(1−t)ω) sin(ω) − sin(2 (1−t)2tω) sin(t2ω)ω2 sin((1−t)ω)
sin(2 t(1−t)ω) sin(tω) sin(ω)

44

Now, we wish to examine the behavior of the cross-product of the first and second derivative
of the spline, as the tension values go to infinity. Let us consider

lim
νi−1,νi,νi+1,νi+2→∞

Ṡ(t) = αPi − βPi+1 and lim
νi−1,νi,νi+1,νi+2→∞

S̈(t) = γPi + δPi+1

with

α := Ψ(1− t, ω),

β := Ψ(t, ω),

γ := Ξ(1− t, ω),

δ := Ξ(t, ω).

We use the knowledge that the cross-product is distributive, meaning that

κ× (τ + σ) = (κ× τ) + (κ× σ) and (κ+ τ)× σ = (κ× σ) + (τ × σ).

Thus we have

(αPi − βPi+1)× (γPi + δPi+1) = (αPi − βPi+1)× γPi + (αPi − βPi+1)× δPi+1

= αγ(Pi × Pi)− βγ(Pi+1 × Pi) + αδ(Pi × Pi+1)− βδ(Pi+1 × Pi+1)

= αδ(Pi × Pi+1) + βγ(Pi × Pi+1)

= (αδ + βγ)(Pi × Pi+1).

Hence, we conclude that

lim
νi−1,νi,νi+1,νi+2→∞

[
Ṡ(t)× S̈(t)

]
=

[
lim

νi−1,νi,νi+1,νi+2→∞
Ṡ(t)

]
×
[

lim
νi−1,νi,νi+1,νi+2→∞

S̈(t)

]
= (αδ + βγ)(Pi × Pi+1)

=
[
Ψ(1− t, ω) Ξ(t, ω) + Ψ(t, ω) Ξ(1− t, ω)

]
(Pi × Pi+1).

Substituting
Λ(t;ω) = Ψ(1− t, ω) Ξ(t, ω) + Ψ(t, ω) Ξ(1− t, ω)

allows us to write

lim
νi−1,νi,νi+1,νi+2→∞

[
Ṡ(t)× S̈(t)

]
= Λ(t;ω) (Pi × Pi+1) . (3.28)

We said previously that the limit of the quantity Ψ goes to zero at both t = 0 and t = 1,
thus we gather that

lim
t→0

Λ(t;ω) = 0 = lim
t→1

Λ(t;ω).

It is not easily proved analytically, but the quantity Λ(t;ω) has been found computationally
to be non-negative for (t, ω) ∈ [0, 1]× [0, 3π/5]. These numerical results can be misleading,
however, and we confine our domain of trust to be for (t, ω) ∈ [0, 1] × [0, π/2]. We include

45

the plots for Λ(t;ω) for t ∈ [0, 1] and with ω varying from 0 to π. In the following three
figures, Λ(t;ω) is non-negative for all t ∈ [0, 1]. We have broken down the plots in various
intervals for ω in order to be able to show the progression of the quantity at all stages –
it would be difficult to make out anything if we plotted everything together. Cooler colors
(blue) are used for lower values of ω, while warmer colors (red) represent higher values for
ω.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

Plots for Λ(t; ω) for (t, ω) = [0, 1] × [0, π/5]

t

Λ
(t

;
ω

)

46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

Plots for Λ(t; ω) for (t, ω) = [0, 1] × [π/5, π/2]

t

Λ
(t

;
ω

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Plots for Λ(t; ω) for (t, ω) = [0, 1] × [π/2, 3π/5]

Λ
(t

;
ω

)

t

The final two plots show exclusively values for ω for which Λ(t;ω) becomes negative at some
t ∈ [0, 1]. It is not observable in the first figure, but near the ends (t = 0 and t = 1) the
function becomes negative. This behavior is magnified for higher values of ω.

47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

Plots for Λ(t; ω) for (t, ω) = [0, 1] × [3π/5, 4π/5]

Λ
(t

;
ω

)

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

30

40

50

60

Plots for Λ(t; ω) for (t, ω) = [0, 1] × [4π/5, π]

t

Λ
(t

;
ω

)

Based on the premise that the maximum distance between consecutive input points is π/2,
which is one of our main requirements, we can see that the sign of the cross-product Ṡ(t)×S̈(t)
agrees with the sign of Pi × Pi+1 when the quadruple of tension values {νi−1, νi, νi+1, νi+2}
goes to infinity.

48

Moreover, we can see that

lim
νi−1,νi,νi+1,νi+2→∞

[
Ṡ(0)× S̈(0)

]
= 0 = lim

νi−1,νi,νi+1,νi+2→∞

[
Ṡ(1)× S̈(1)

]
.

Bearing these results in mind, let us examine now the behavior of the geodesic curvature
κg(t;Si) as the tension values affecting Si tend to infinity. This is exactly the limit

lim
νi−1,νi,νi+1,νi+2→∞

κg(t;Si) = lim
νi−1,νi,νi+1,νi+2→∞

Si(t) ·
[
Ṡi(t)× S̈i(t)

]
∥∥∥Ṡi(t)∥∥∥3 , t ∈ [0, 1] (3.29)

The denominator in the last expression is a positive quantity for t ∈ (0, 1), thus the sign
of the curvature as the tension values tend to infinity is defined only by the numerator.
Considering only the top part of the fraction, we have

lim
νi−1,νi,νi+1,νi+2→∞

Si(t) ·
[
Ṡi(t)× S̈i(t)

]
=
[
Φ(1− t;ω)Pi + Φ(t;ω)Pi+1

]
·
[
Λ(t;ω) (Pi × Pi+1)

]
= Φ(1− t;ω) Λ(t;ω)

[
Pi · (Pi × Pi+1)

]
+ Φ(t;ω) Λ(t;ω)

[
Pi+1 · (Pi × Pi+1)

] (3.30)

Relation (3.4.2) tell us that when the appropriate tension values go to infinity, the geodesic
curvature becomes zero. The triple products in the last expression indeed amount to 0, and
this result indicates that when the quadruple of tension values {νi−1, νi, νi+1, νi+2} tend to
infinity, then the curve in the segment i tends to coincide with the geodesic, thus having
zero curvature. Let us not forget that the limits for the quantity Λ for t→ 0 and t→ 1 are
0, so we can conclude that this behavior is manifested for t ∈ [0, 1].

Thus, we arrive at the main results of our analysis which are summarized in the following
theorem.

Theorem 3.2. The behavior of the ν-spline in the segment [Pi, Pi+1], i = 1, 2, ..., n − 2 is
determined by the values of the tension parameters {νi−1, νi, νi+1, νi+2}. When these values
tend to infinity, the following limits hold.

lim
νi−1,νi,νi+1,νi+2→∞

S(t) = Φ(1− t;ω)Pi + Φ(t;ω)Pi+1, t ∈ [0, 1],

lim
νi−1,νi,νi+1,νi+2→∞

Ṡ(t) = Ψ(1− t;ω)Pi −Ψ(t;ω)Pi+1, t ∈ [0, 1],

lim
νi−1,νi,νi+1,νi+2→∞

S̈(t) = Ξ(1− t;ω)Pi + Ξ(t;ω)Pi+1, t ∈ [0, 1],

lim
νi−1,νi,νi+1,νi+2→∞

[
Ṡ(t)× S̈(t)

]
= Λ(t;ω) (Pi × Pi+1) , t ∈ [0, 1],

lim
νi−1,νi,νi+1,νi+2→∞

κg(t;Si) = 0, t ∈ [0, 1]

where the quantities Φ(t;ω),Ψ(t;ω),Ξ(t;ω),Λ(t;ω) are as previously defined.

The natural question to ask is, what do our results mean? Actually, the results from the
asymptotic analysis are consistent with the brief remark in section 2.2: it is as if there were

49

a winch at each interpolation node, and turning the winch causes the spline to come closer
and closer to the geodesic between the point and its two immediate neighbors.

Formally, we witnessed the behavior of the quantity Λ(t ;ω) which gives us information
about the shape of the spline in a segment as the appropriate tension values tend to infinity.
We concluded that if the distance between the input points does not exceed 3π/5, then
this quantity is positive, and the curve will follow the alignment of the geodesic in this
segment. We have also seen that the geodesic curvature tends to become zero in this segment,
and this result also fortifies our hypothesis that increasing the quadruple of tension values
{νi−1, νi, νi+1, νi} we will achieve the shape of the geodesics. Our belief is that eventually
κg will indeed become 0, but it is essential that it does so from values whose sign agrees
with the sign of the convexity indicators Qi. The experimental results collected suggest that
this is indeed the case, and numerical findings support our claim. As the tension values
increase, the spline indeed takes the form of the piecewise geodesic interpolant, the control
points di tend to coincide with the interpolation points Pi, and the auxiliary values Li and
Ri also tend to the same nodes. Therefore, as the curve approaches the poly-geodesic, the
criteria which we have established in order to ensure shape preservation are satisfied in a
straightforward manner:

• The co-circularity criterion for the input point Pi, i = 1, 2, ..., n − 1 is eventually
satisfied if we increase the tension values for the computation of the control point di,
which means that in order to satisfy the co-circularity criterion, we need to increase
the values of the triplet {νi−1, νi, νi+1}.

• Nodal convexity for the input point Pi, i = 1, 2, ..., n − 1 is achieved if the control
point di is sufficiently close to Pi, hence yielding a curve which will “follow” the
geodesic on both sides of Pi. This again translates to increasing the values of the
triplet {νi−1, νi, νi+1}.

• Based on our last discussion, segment convexity is satisfied by aligning the curve with
the geodesic in the segment [Pi, Pi+1]. In order to achieve this, we have seen that the
tension values to increase are the quadruple {νi−1, νi, νi+1, νi+2}.

3.5 Algorithm & Implementation

We have discussed the construction of spherical ν-splines via the method described in [2].
We have also described the shape-preservation criteria needed by our application, based
on the notions introduced in [1]. We are now ready to give an iterative algorithm which,
given a set of points P on the unit sphere, automatically determines the set of control
points di, i = 0, 1, ..., n and tension values νi, i = 0, 1, ..., n for which the resulting spherical
ν-spline interpolates the point set P and satisfies the requirements for shape-preservation as
formulated in S.

50

The input to the algorithm is summarized below.

P Set of points on the unit sphere
Btol Tolerance parameter for the Bisection method (see below)
BNmax Maximum number of iterations for the Bisection method (see below)
Stol Tolerance parameter for the spline computation method (Nielson)
SNmax Maximum number of iterations for the spline computation algorithm (Nielson)
ε Tolerance parameter for the geodesic curvature (co-circularity)
h Step size parameter for the finite difference method

With this input we summarize the algorithm in the following steps.

1. Preliminary steps: initialize auxiliary variables

(a) Create a set of initial tension values ν
(0)
i = 0, i = 0, 1, ..., n.

(b) Create an index set for which to examine co-circularity, i.e.,

C =
{
i :
[
Qi = 0

]
∧
[
θ(Pi−1, Pi+1) > max {θ(Pi−1, Pi), θ(Pi, Pi+1)}

]
, i ∈ {1, 2, ..., n− 1}

}
(c) Create an index set for which to examine nodal convexity, i.e.,

K = {i : Qi 6= 0, i ∈ {1, 2, ..., n− 1}}

(d) Create an index set for which to examine segment convexity, i.e.,

S = {i : QiQi+1 > 0, i ∈ {1, 2, ..., n− 2}}

2. Iterate

(a) Assign the set of problematix indices I = ∅.
(b) Compute the interpolating spline with the current ν−values by using the algorithm

described in [2]. Employ the input parameters Stol and SNmax .

(c) For each i ∈ C verify that the co-circularity criterion holds. If the check fails, set

I = I ∪ {i− 1, i, i+ 1} .

(d) For each index i ∈ K verify that the nodal convexity criterion holds. If the check
fails, set

I = I ∪ {i− 1, i, i+ 1} .

(e) For each index i ∈ S, verify that segment convexity is satisfied. If the check fails,
set

I = I ∪ {i− 1, i, i+ 1, i+ 2} .

3. Verify convergence

51

(a) If the problematic indices set I is empty, exit and output the current values for
the control points di and tension values νi, i = 0, 1, ..., n.

(b) If the problematic indices set I is not empty, increase the tension values corresponding
to these indices, and go to step 2. In other words,

∀ i ∈ I ν
(k+1)
i =

{
f
(
ν
(k)
i

)
, i ∈ I

ν
(k)
i , i 6∈ I

where f : R → R is a user-defined increase function, for example f(x) = 2x or
f(x) = x+ 1, and k indicates iteration index.

It should be noted that practical considerations introduce some details to the algorithm. By
definition, the quantities Qi, i = 1, 2, ..., n − 1 can have values either 1, 0 or -1. This is
perfectly logical, as they are essentially sign indicators. However, employing the formula for
these quantities directly results in different results, varying from -1 to 1, due to numerical
errors. For this reason, the value of the quantities Qi is determined based on a more adaptive
approach. We set

Qi =

{
sign(σi),

∣∣∣ |σi| − 1
∣∣∣ < Qtol,

0, otherwise,

where Qtol is a user-provided tolerance parameter, and

σi =
Pi · Vi
‖Vi‖

, i = 1, 2, ..., n− 1.

Another consideration is the way in which we verify segment convexity. We require that
the sign of the product of the curvature and both quantities Qi and Qi+1 be positive in the
segment i. Perhaps one of the easiest ways to do this, is to examine the behavior of the
function defined by this product numerically. We define

Cn(t) = κg(t;Si)Qn, n ∈ i, i+ 1, t ∈ [0, 1]

for an index i at which segment convexity should be verified. In order to examine the behavior
of Cn(t), we will need to find a root of its derivative, which will give us an extremum for Cn(t).
The quantities Qi are independent on the parameter t as they are defined with reference to
the geodesics. Also, the denominator of the geodesic curvature is simply a regularizing
positive quantity for t ∈ (0, 1), hence we will examine only the numerator, for which we have

d

dt

(
S(t) ·

[
Ṡ(t)× S̈(t)

])
= Ṡ(t) ·

[
Ṡ(t)× S̈(t)

]
+ S(t) · d

dt

[
Ṡ(t)× S̈(t)

]
(3.31)

The first term amounts to 0, while for the derivative of the cross-product we employ the
relative identity and have

d

dt

[
Ṡ(t)× S̈(t)

]
= S̈(t)× S̈(t) + Ṡ(t)× ...

S (t)

= Ṡ(t)× ...
S (t)

(3.32)

52

thus finally

d

dt

(
S(t) ·

[
Ṡ(t)× S̈(t)

])
= S(t) ·

[
Ṡ(t)× ...

S (t)
]
. (3.33)

Therefore, in order to find an extremum of Cn(t), we need to find a root for the function

Ċn(t) =
(
S(t) ·

[
Ṡ(t)× ...

S (t)
])
Qn, n ∈ {i, i+ 1} , t ∈ [0, 1].

We do this by implementing a simple bisection method, and compute an approximation of
the root t∗ of Ċn(t). Assuming that the function Cn(t) does not change its monotony on
either side of t∗, we compare the signs of Cn(t) at t = 0, t = 1 and t = t∗. If the function is
positive at all of these parametric values, segment convexity is considered to be satisfied.

Another point which is worth mentioning is that the derivative of the spline curve ought to
be continuous in any case. Empirically, this has been found to be false when we use directly
the approximation given by the finite difference method. The reason is that the parameter t
is essentially arc length, hence the magnitude of the vectors computed by the finite difference
scheme depends on the length of the segment in which it is computed. The alignment of
these vectors is consistent along the path of S(t), but their magnitude is not. A simple
solution is to consider one of the segments (for instance, the first) to have a reference (unit)
length, and consider the factors

Nd
i =

`ref
`di

where `i = θ(Pi, Pi+1) is the length of the i-th segment, `ref is the length of the reference
segment, and d is the order of the derivative computed. Hence, the first derivative of the
curve S(t) in the segment i should be

Ṡi(t) = N1
i · FiniteDifferenceApproximation,

while the second derivative should be

S̈i(t) = N2
i · FiniteDifferenceApproximation.

53

Chapter 4

Conclusions

In the previous chapter we have discussed and described a method for computing in an
automated way the control points and tension values which produce a piecewise cubic
spherical spline that interpolates a given set of points on the sphere and satisfies the criteria
for shape preservation as stated in section 3.3. We have seen that when the appropriate
tension values increase, the resulting spline satisfies our demands, but there are limitations
to what we can do.

We need to draw attention to the fact that in subsection 3.4.2 we saw that the asymptotic
limit for the quantity Ṡ(t) × S̈(t) as the corresponding tension values go to infinity, is null
at both t = 0 and t = 1. Since t is our local parameter, the meaning of this limit is
that at each interpolation node, for large enough tension values, the above cross-product
vanishes, and this is a shortcoming of our method. Ideally, the limit for this quantity would
be a non-zero constant, something that could perhaps be achieved by considering a more
complex expression, involving normalizing terms which would lead to the desired result. This
is a potential course of future enquiry, however it needs to be underlined that in the tests
conducted so far the anticipated asymptotic behavior has not been manifested. In all cases
presented in the next chapter, convergence was achieved before the quantities of interest
could become small enough to be considered nil.

Another aspect we must consider is the formulation of the criteria for shape preservation.
The introduction of the geodesic curvature κg(t;S) allows us to properly formulate the
requirements to capture convexity on curved surfaces. In the co-circularity criterion, we
need to note that while the criterion is verified when the nodes are not given in the suitable
order, the requirement implicitly satisfied the nodal convexity criterion, which is a desired
trait of the algorithm. Of more interest is the convexity criterion regarding a whole segment,
where again geodesic curvature plays a major role. It has also helped us see that when the
tension values affecting the spline in the segment [Pi, Pi+1] increase, the spline in this segment
approaches the geodesic arc between the nodes Pi and Pi+1. These and other observations
we will see in the results of the next section.

54

Chapter 5

Results

The code implementing the algorithm described in the previous section has been tested
for 20 input cases. Note that the limitation that the maximum geodesic distance between
consecutive nodes must not exceed π/2 is not respected in all cases, for illustrative purposes.
In the following pages we present the results for every test case. The parameters used for
all cases are the same, excluding the set of input points. The values of the parameters used
are the following.

Parameter Value

Btol 1e-10

BNmax 100

Stol 1e-10

SNmax 1000

ε 1e-3

h 1e-3

Also, for every case the tension value increase function has been defined as

f(νi) = νi + 10

For each one of the test cases, we have included the input points passed to the program,
as well as plots representing the unit sphere, the geodesics between the input points (in
red dashed curves), and the spline resulting from the algorithm (purple solid curve). For
every case, the binormal vectors Vi, i = 1, 2, ..., n − 1 are also included in the figures. In
each figure, the starting node P0 is marked with a black x-mark in order to facilitate the
reader’s orientation on the curve. Whenever the segment convexity criterion needs to be
verified, the “fan” of vectors Ṡ(t) × S̈(t), t ∈ [0, 1] is included in the figure (red when the
criterion is not satisfied in the corresponding segment, green when the criterion is satisfied).
In these cases, we have also included plots which demonstrate the evolution of the quantities[
Ṡ(t)× S̈(t)

]
· Qκ, κ ∈ {i, i+ 1} , t ∈ [0, 1] for the intervals of interest. The segment

55

[Pi, Pi+1] , i = 0, 1, ..., n− 1 is called for brevity segment i.

The following table summarizes the problems exhibited by each case. The increase of the
appropriate tension values has led to the satisfaction of the requirements which were not met
initially (with all tension values equal to 0). In some cases, all requirements were fulfilled with
the initial tension values all set to 0. In these cases we have not only G2, but C2-continuity
at the interpolation nodes. We draw attention to the particular interest of each case in the
corresponding section.

Case examined Co-circularity Nodal convexity Segment convexity

Case 1 •
Case 2

Case 3 • •
Case 4 •
Case 5

Case 6

Case 7 • •
Case 8

Case 9

Case 10

Case 11 • •
Case 12

Case 13

Case 14 •
Case 15

Case 16

Case 17 •
Case 18

Case 19 •
Case 20

56

5.1 Case 1

This case requires co-circularity to be satisfied at nodes P1 and P3, hence the tension values
increased are {0, 1, 2, 3, 4}. As we can see from the final tension values, co-circularity is
validated for node P1 before it is validated for node P3. Also, note than the last and first
node coincide, however this does not affect the form of the spline.

X Y Z

1.000000, 0.000000, 0.000000

0.707100, 0.707100, 0.000000

0.000000, 1.000000, 0.000000

0.000000, 0.000000, 1.000000

0.000000, -0.879700, 0.475500

1.000000, 0.000000, 0.000000

Figure 5.1: Case 1 initial setting on the sphere from different viewpoints. All tension values
are equal to zero.

57

Figure 5.2: Case 1 final setting on the sphere from different viewpoints. Tension values
are {220, 220, 260, 260, 260, 0}.

58

5.2 Case 2

The input nodes to this case are points (sparsely) sampled
from the Spherical Spiral. The parametric equations for the
Spherical Spiral are

x = cos(t) cos(c)

y = sin(t) cos(c)

z = − sin(c)

with c = tan−1(αt), where α is a given constant. This curve
describes the trajectory of a ship traveling from the south to
the north pole of a sphere while maintaining a fixed (but not
right) angle with the meridians. An example is given on the
figure to the right with α = 0.075.

X Y Z

0.433084, 0.200366, 0.878801

-0.678528, 0.228623, 0.698092

0.213169, -0.767765, 0.604232

0.569245, 0.670167, 0.476274

-0.945461, -0.102825, -0.309079

0.569245, -0.670167, -0.476274

0.213169, 0.767765, -0.604232

-0.678528, -0.228623, -0.698092

0.511748, -0.389021, -0.766014

59

Figure 5.3: Case 2 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Plots for Case 2, Segment 1, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Plots for Case 2, Segment 2, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plots for Case 2, Segment 4, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S4)Q4

κg(t;S4)Q5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Plots for Case 2, Segment 5, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S5)Q5

κg(t;S5)Q6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Plots for Case 2, Segment 6, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S6)Q6

κg(t;S6)Q7

61

5.3 Case 3

This case requires segment convexity to be verified on two neighboring segments. We can see
that in the initial setting the fan of the vectors of the cross-product are not aligned with the
binormal at P3, but when the appropriate tension values reach high enough values, segment
convexity is satisfied.

X Y Z

1.000000, 0.000000, 0.000000

0.653600, 0.270600, 0.706800

0.500400, 0.500000, 0.706800

0.000400, 0.500200, 0.865900

-0.924000, 0.001500, 0.382500

0.000800, -0.980800, 0.195000

Figure 5.4: Case 3 initial setting on the sphere from different viewpoints. All tension values
are equal to 0.

62

Figure 5.5: Case 3 final setting on the sphere from different viewpoints. Tension values
are {0, 160, 160, 160, 160, 160}.

63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Plots for Case 3, Segment 2, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Plots for Case 3, Segment 2, ν−values = {50, 50, 50, 50}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Plots for Case 3, Segment 2, ν−values = {100, 100, 100, 100}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Plots for Case 3, Segment 2, ν−values = {160, 160, 160, 160}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Plots for Case 3, Segment 3, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Plots for Case 3, Segment 3, ν−values = {50, 50, 50, 50}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Plots for Case 3, Segment 3, ν−values = {100, 100, 100, 100}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Plots for Case 3, Segment 3, ν−values = {160, 160, 160, 160}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

65

5.4 Case 4

In this case, segment convexity is required for Segment 2, and co-circularity is requested ad
node P1. Within three iterations, the requirements regarding co-circularity are satisfied –
convexity is valid with zero tension values.

X Y Z

0.587785, 0.000000, -0.809017

0.809017, -0.000000, -0.587785

0.809017, -0.000000, 0.587785

-0.654509, 0.475528, 0.587785

0.250000, 0.181636, -0.951057

Figure 5.6: Case 3 initial setting on the sphere from different viewpoints. All tension values
are equal to 0.

66

Figure 5.7: Case 4 final setting on the sphere from different viewpoints. Tension values
are {30, 30, 30, 0, 0}.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Plots for Case 4, Segment 2, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Plots for Case 4, Segment 2, ν−values = {30, 30, 0, 0}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

68

5.5 Case 5

This is another example of points sampled from the Spherical Spiral. In this case, however,
we have sampled points closer to the equator, avoiding the poles. As can be seen from the
figure, many segments require convexity to be verified, and the criterion is indeed satisfied
for every segment. Note how the points appear collinear, but are actually not – they do not
lie on geodesics.

X Y Z

0.828900, 0.215100, 0.516300

0.555000, 0.683100, 0.474800

0.043000, 0.901900, 0.429800

-0.512100, 0.769700, 0.381400

-0.887200, 0.322900, 0.329600

-0.922600, -0.270900, 0.274600

-0.591200, -0.776800, 0.216800

-0.015700, -0.987500, 0.156700

0.577400, -0.810900, 0.094800

0.949600, -0.311900, 0.031700

0.949600, 0.311900, -0.031700

0.577400, 0.810900, -0.094800

-0.015700, 0.987500, -0.156700

-0.591200, 0.776800, -0.216800

-0.922600, 0.270900, -0.274600

-0.887200, -0.322900, -0.329600

-0.512100, -0.769700, -0.381400

0.043000, -0.901900, -0.429800

0.555000, -0.683100, -0.474800

0.828900, -0.215100, -0.516300

69

Figure 5.8: Case 5 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Plots for Case 5, Segment 1, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Plots for Case 5, Segment 2, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Plots for Case 5, Segment 3, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Plots for Case 5, Segment 4, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S4)Q4

κg(t;S4)Q5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Plots for Case 5, Segment 5, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S5)Q5

κg(t;S5)Q6

71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Plots for Case 5, Segment 6, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S6)Q6

κg(t;S6)Q7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Plots for Case 5, Segment 7, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S7)Q7

κg(t;S7)Q8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Plots for Case 5, Segment 8, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S8)Q8

κg(t;S8)Q9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Plots for Case 5, Segment 10, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S10)Q10

κg(t;S10)Q11

72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Plots for Case 5, Segment 11, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S11)Q11

κg(t;S11)Q12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Plots for Case 5, Segment 12, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S12)Q12

κg(t;S12)Q13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Plots for Case 5, Segment 13, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S13)Q13

κg(t;S13)Q14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Plots for Case 5, Segment 14, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S14)Q14

κg(t;S14)Q15

73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Plots for Case 5, Segment 15, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S15)Q15

κg(t;S15)Q16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Plots for Case 5, Segment 16, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S16)Q16

κg(t;S16)Q17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Plots for Case 5, Segment 17, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S17)Q17

κg(t;S17)Q18

74

5.6 Case 6

In this generic case we can see that all criteria are satisfied with all tension values set to 0,
hence the resulting curve is C2-continuous. Note how the default behavior of the ν-spline
satisfies the node convexity criterion at nodes P2 and P4. Also note that no two consecutive
binormals have the same sign, thus eliminating the segment convexity requirement.

X Y Z

0.721375, 0.366154, -0.587835

0.538720, 0.540781, -0.646016

-0.813290, 0.015269, -0.581658

-0.177499, 0.940630, 0.289325

0.373575, -0.314647, 0.872605

0.597205, 0.057249, -0.800043

Figure 5.9: Case 6 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

75

5.7 Case 7

In this case we can see that segment convexity is requested for four consecutive segments.
It is verified for two of them, but not for the other two. A single increase of the appropriate
tension values is sufficient to cause the spline to bend, satisfying the convexity requirements
for the problematic segments.

X Y Z

0.561370, 0.357729, 0.746253

0.455491, 0.888784, -0.050908

-0.631673, 0.774457, -0.034716

0.394154, -0.617118, 0.681034

0.094836, 0.902925, 0.419204

-0.634718, 0.352093, 0.687869

-0.540772, -0.078641, 0.837485

Figure 5.10: Case initial setting on the sphere from different viewpoints. All tension values
are equal to zero.

76

Figure 5.11: Case 7 final setting on the sphere from different viewpoints. Tension values
are {10, 10, 10, 10, 10, 0, 0}.

77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

Plots for Case 7, Segment 1, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Plots for Case 7, Segment 1, ν−values = {10, 10, 10, 10}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Plots for Case 7, Segment 2, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Plots for Case 7, Segment 2, ν−values = {10, 10, 10, 10}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Plots for Case 7, Segment 3, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Plots for Case 7, Segment 3, ν−values = {10, 10, 10, 0}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Plots for Case 7, Segment 4, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S4)Q4

κg(t;S4)Q5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Plots for Case 7, Segment 4, ν−values = {10, 10, 0, 0}

t

C
(t

)

κg(t;S4)Q4

κg(t;S4)Q5

79

5.8 Case 8

This is a case demonstrating another example where a C2-continuous curve satisfies all
shape-preserving criteria. We begin from node P0 which is the “outermost” here, and proceed
spiraling inwards, thus creating an inherently convex setting. In the three internal segments
for which convexity is required, we can see that zero-tension parameters produce a suitable
curve.

X Y Z

0.963358, -0.137129, 0.230513

0.919701, -0.382540, 0.088395

0.488113, -0.755353, -0.437250

-0.851766, -0.455639, -0.258627

-0.023080, -0.071187, 0.997196

0.852590, -0.296186, 0.430540

-0.375458, -0.920964, 0.104198

Figure 5.12: Case 8 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Plots for Case 8, Segment 2, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Plots for Case 8, Segment 3, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Plots for Case 8, Segment 4, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S4)Q4

κg(t;S4)Q5

82

5.9 Case 9

Another example where all shape-reserving criteria are satisfied with zero-tension values.

X Y Z

-0.273240, 0.423877, 0.863521

-0.015828, 0.833876, -0.551724

0.404872, 0.384930, -0.829402

-0.415558, 0.206476, -0.885821

-0.476242, 0.754058, -0.452316

Figure 5.13: Case 9 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Plots for Case 9, Segment 2, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

84

5.10 Case 10

Here again shape-preservation is verified with all tension values equal to 0. It is interesting
to note that node convexity is satisfied at node P3. Here again no two consecutive binormals
have the same sign, thus segment convexity is not required.

X Y Z

0.422968, 0.293534, 0.857284

0.261673, 0.422327, 0.867852

-0.673178, 0.295242, 0.677985

-0.576687, 0.815392, 0.050673

0.162503, 0.330596, -0.929677

Figure 5.14: Case 10 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

85

5.11 Case 11

In this case, similarly to Case 7, a single increase step for the appropriate tension values is
sufficient to satisfy the segment convexity criterion. We can see that in Segments 2 and 3
the curve does not satisfy our requirements with zero tension values, while augmenting only
once bends the curve sufficiently to cause it to satisfy the convexity criteria.

X Y Z

0.821695, -0.297540, -0.486094

-0.003780, 0.480555, 0.876956

0.236220, 0.649826, 0.722444

-0.059150, 0.998160, -0.013354

-0.628260, -0.222031, -0.745649

-0.223151, -0.973184, -0.055827

Figure 5.15: Case 11 initial setting on the sphere from different viewpoints. All tension
values are equal to zero.

86

Figure 5.16: Case 11 final setting on the sphere from different viewpoints. Tension values
are {0, 10, 10, 10, 10, 10}.

87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

Plots for Case 11, Segment 2, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

Plots for Case 11, Segment 2, ν−values = {10, 10, 10, 10}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

Plots for Case 11, Segment 3, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Plots for Case 11, Segment 3, ν−values = {10, 10, 10, 10}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

88

5.12 Case 12

This is another case where shape-preservation is satisfied with zero tension parameters. Note
the behavior of the curve in Segment 1 – for both P1 and P2 nodal convexity is required and
granted.

X Y Z

0.667140, 0.645016, 0.372665

0.695001, 0.176847, -0.696921

0.076007, 0.663362, -0.744428

-0.271177, -0.456538, -0.847370

Figure 5.17: Case 12 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

89

5.13 Case 13

This example also shows the fulfillment of all shape-preserving criteria with zero tension
values. Segment convexity is required for Segment 1, and is satisfied with zero tension
values.

X Y Z

0.349298, -0.244607, 0.904521

-0.299771, 0.896771, 0.325483

-0.928258, -0.371670, 0.014084

-0.333118, -0.868790, 0.366383

Figure 5.18: Case 13 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

Plots for Case 13, Segment 1, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

91

5.14 Case 14

This is an interesting case where node convexity is not verified for node P1 initially, as can
be seen from the figures. Increasing the tension values causes the curve to “tighten” and fall
in the correct half-space on both sides of P1.

X Y Z

0.904370, 0.420098, 0.075045

0.041134, 0.385725, 0.921697

0.797571, 0.510032, 0.322099

0.692873, 0.680188, 0.239313

Figure 5.19: Case 14 initial setting on the sphere from different viewpoints. All tension
values are equal to zero.

92

Figure 5.20: Case 14 final setting on the sphere from different viewpoints. Tension values
are {280, 280, 280, 0}.

93

5.15 Case 15

A simple setup forming a “knot” with just four input points. Segment convexity is required,
and as we can see it is found to be valid with the initial zero-tension values.

X Y Z

0.774478, 0.077635, 0.627819

0.405894, 0.664839, 0.627087

0.669358, 0.517036, 0.533510

0.524525, 0.310779, 0.792647

Figure 5.21: Case 15 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Plots for Case 15, Segment 1, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

95

5.16 Case 16

Here we can see another convex setup which satisfies both nodal and segment requirements.

X Y Z

0.974665, 0.197237, 0.105474

0.872768, 0.037515, 0.486692

0.429167, 0.886710, 0.171932

0.783579, 0.500632, 0.367928

Figure 5.22: Case 16 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

96

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Plots for Case 16, Segment 1, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

97

5.17 Case 17

In this setup nodal convexity is not satisfied at node P3, but by incrementing the corresponding
tension values the criterion is satisfied. Note that the procedure does not have an adverse
effect on the convexity of Segment 1.

X Y Z

0.168300, 0.699821, 0.694208

0.617717, 0.700415, 0.357553

0.783579, 0.500632, 0.367928

0.077453, 0.326002, 0.942191

0.779081, 0.437652, 0.448880

Figure 5.23: Case 17 initial setting on the sphere from different viewpoints. All tension
values are equal to zero.

98

Figure 5.24: Case 17 final setting on the sphere from different viewpoints. Tension values
are {0, 0, 50, 50, 50}.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Plots for Case 17, Segment 1, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Plots for Case 17, Segment 1, ν−values = {0, 0, 50, 50}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

100

5.18 Case 18

Another interesting case where segment convexity is verified with zero tension values.

X Y Z

0.678714, 0.572556, 0.459921

0.287136, 0.410225, 0.865603

0.187111, 0.673429, 0.715180

0.039320, 0.043193, 0.998293

0.779081, 0.437652, 0.448880

Figure 5.25: Case 18 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Plots for Case 18, Segment 2, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S2)Q2

κg(t;S2)Q3

102

5.19 Case 19

This is a case similar to Case 17, where node convexity is not initially verified but is achieved
within 2 increment steps of the appropriate tension values. We can see again that the
convexity of Segment 1 is not affected negatively.

X Y Z

0.441525, 0.864293, 0.240941

0.512342, 0.453462, 0.729299

0.875010, 0.472468, 0.105504

0.768660, 0.555493, 0.317157

0.876014, 0.480475, 0.041743

0.212173, 0.965682, 0.149801

Figure 5.26: Case 19 initial setting on the sphere from different viewpoints. All tension
values are equal to zero.

103

Figure 5.27: Case 19 final setting on the sphere from different viewpoints. Tension values
are {0, 0, 20, 20, 20, 0}.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Plots for Case 19, Segment 1, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

104

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

Plots for Case 19, Segment 1, ν−values = {0, 0, 20, 20}

t

C
(t

)

κg(t;S1)Q1

κg(t;S1)Q2

105

5.20 Case 20

This setup is identical to Case 1, we have only switches the locations of nodes P1 and P2.
This is to illustrate that co-circularity is not requested in this case where the ordering of the
co-circular nodes is not respected, and the algorithm terminates with the initial zero tension
values.

X Y Z

1.000000, 0.000000, 0.000000

0.000000, 1.000000, 0.000000

0.707100, 0.707100, 0.000000

0.000000, 0.000000, 1.000000

0.000000, -0.879700, 0.475500

1.000000, 0.000000, 0.000000

Figure 5.28: Case 20 initial setting on the sphere from different viewpoints. This is also
the final setting, meaning that the curve satisfies all shape-preserving requirements with all
tension values equal to zero.

106

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Plots for Case 20, Segment 3, ν−values = {0, 0, 0, 0}

t

C
(t

)

κg(t;S3)Q3

κg(t;S3)Q4

107

Chapter 6

Appendix

6.1 Code

6.1.1 Example configuration file

File: config
1 input_file input/data20.txt

2 input_type cartesian

3 increase_type plus

4 initial_nu 0.0

5 increase_factor 10.0

6 Stol 1e-10

7 Snmax 1000

8 epsilon 1e-3

9 normal_tol 1e-4

10 h 1e-4

11 Bnmax 100

12 Btol 1e-10

108

6.1.2 Makefile

File: Makefile
1

2 CC=g++

3 ARGS=-llapack -lblas

4

5 spi: obj/main.o obj/fd.o obj/nuspl.o obj/opt.o \

6 obj/shape.o obj/spnode.o obj/util.o

7 $(CC) -o spi obj/main.o obj/fd.o obj/nuspl.o \

8 obj/opt.o obj/shape.o obj/spnode.o obj/util.o $(ARGS)

9

10 obj/main.o: main.cpp

11 $(CC) -c main.cpp -o obj/main.o

12

13 obj/fd.o: src/FiniteDifference.cpp src/FiniteDifference.hpp

14 $(CC) -c src/FiniteDifference.cpp -o obj/fd.o

15

16 obj/nuspl.o: src/NuSpline.cpp src/NuSpline.hpp

17 $(CC) -c src/NuSpline.cpp -o obj/nuspl.o

18

19 obj/opt.o: src/Options.cpp

20 $(CC) -c src/Options.cpp -o obj/opt.o

21

22 obj/shape.o: src/ShapePreservation.cpp src/ShapePreservation.hpp

23 $(CC) -c src/ShapePreservation.cpp -o obj/shape.o

24

25 obj/spnode.o: src/SplineNode.cpp src/SplineNode.hpp

26 $(CC) -c src/SplineNode.cpp -o obj/spnode.o

27

28 obj/util.o: src/Utility.cpp src/Utility.hpp

29 $(CC) -c src/Utility.cpp -o obj/util.o

30

31 clean:

32 rm -rfv obj /*.o spi

109

6.1.3 Main

File: main.cpp
1 #include <iostream >

2 #include "src/Utility.hpp"

3 #include "src/SplineNode.hpp"

4 #include "src/NuSpline.hpp"

5 #include "src/ShapePreservation.hpp"

6 #include "src/Options.cpp"

7

8 using namespace std;

9

10 typedef ublas::vector <double > Vec;

11 typedef std::vector <SplineNode > SVec;

12

13

14 // Central point of the method

15 int main(int argc , char** argv) {

16

17 if (argc < 2) {

18 cout << "No config file provided!" << endl;

19 cout << "Usage: " << argv [0] << " config_file" << endl;

20 return -1;

21 }

22

23 // Read options and print values on screen

24 cout << "\t #### OPTIONS ####" << endl;

25 cout << "-----------------------------------" << endl;

26 Options *opt = new Options ();

27 ReadOptions(argv[1], opt);

28

29 cout << "Input file: " << opt ->input_file << endl;

30 cout << "Points type: " << opt ->input_type << endl;

31 cout << "Increase type: " << opt ->increase_type << endl;

32 cout << "Increase factor: " << opt ->increase_factor << endl;

33 cout << "Initial tension: " << opt ->initial_nu << endl;

34 cout << "Stol: " << opt ->Stol << endl;

35 cout << "Snmax: " << opt ->Snmax << endl;

36 cout << "epsilon: " << opt ->epsilon << endl;

37 cout << "normal_tol: " << opt ->normal_tol << endl;

38 cout << "h: " << opt ->h << endl;

39 cout << "Bnmax: " << opt ->Bnmax << endl;

40 cout << "Btol: " << opt ->Btol << endl;

41 cout << "-----------------------------------" << endl << endl;

42

43 // Read input points

44 mp_type points;

45 SVec nodes;

46 if (opt ->input_type.compare("cartesian") == 0)

47 ReadCartesianPoints(opt ->input_file , &points);

48 else if (opt ->input_type.compare("spherical") == 0)

49 ReadSphericalPoints(opt ->input_file , &points);

50 else {

51 printf("Please control your options file! Select a valid points format! \n");

52 return -1;

53 }

54

55 // Create a vector of SplineNodes with the points read

56 for (mp_type :: iterator it = points.begin(); it != points.end(); it++) {

57 SplineNode *sn = new SplineNode (*it, opt ->initial_nu);

58 nodes.push_back (*sn);

59 }

60

110

61 // Create a NuSpline object and initialize it

62 NuSpline *spl = new NuSpline ();

63 spl ->Init(&nodes , *opt);

64

65 // Boolean masks

66 bool idx_coll[nodes.size()];

67 bool idx_ncnv[nodes.size()];

68 bool idx_scnv[nodes.size()];

69 bool idx[nodes.size()];

70

71 bool flag = false;

72

73 // Begin iterations

74 do {

75 bool convergence;

76

77 cout << "Tension values:" << endl;

78 for (int i = 0; i < nodes.size(); i++) {

79 cout << nodes[i]. GetNu() << " ";

80 }

81 cout << endl;

82

83 // Compute the nu -spline with the current tension values

84 convergence = spl ->Execute (&nodes , opt ->Snmax , opt ->Stol);

85 if (! convergence) {

86 cout << "Spline could not be computed correctly with " \

87 "Snmax = " << opt ->Snmax << " and Stol = " << opt ->Stol << endl;

88 cout << "Please change options and try again! Exiting ..." << endl << endl;

89 return -1;

90 }

91

92 // Set all masks to False

93 for (int i = 0; i < nodes.size(); i++) {

94 idx_coll[i] = false;

95 idx_ncnv[i] = false;

96 idx_scnv[i] = false;

97 idx[i] = false;

98 }

99

100 cout << "Criteria!" << endl;

101 // Check shape -preservation criteria

102 VerifyCocircularity (Spline , nodes , idx_coll , opt);

103 VerifyNodeConvexity (Spline , nodes , idx_ncnv , opt);

104 VerifySegmentConvexity(Spline , nodes , idx_scnv , opt);

105

106 cout << "Co-circularity: " << \

107 (Verify(idx_coll , nodes.size()) ? "NOT OK" : "OK") << endl;

108 cout << "Nodal convexity: " << \

109 (Verify(idx_ncnv , nodes.size()) ? "NOT OK" : "OK") << endl;

110 cout << "Segment convexity: " << \

111 (Verify(idx_scnv , nodes.size()) ? "NOT OK" : "OK") << endl;

112

113 // Logical OR for the masks

114 for (int i = 0; i < nodes.size(); i++) {

115 idx[i] = (idx_coll[i] || idx_ncnv[i] || idx_scnv[i]);

116 }

117

118 // Check whether there are tension values to increase

119 flag = Verify(idx , nodes.size());

120 if (flag) {

121 // If yes , print out the boolean mask ...

122 cout << "Index mask:" << endl;

123 for (int i = 0; i < nodes.size(); i++) {

124 cout << idx[i] << " ";

125 }

111

126 cout << endl << endl;

127

128 // ...and increment the tension values

129 AugmentNuValues (&nodes , idx , opt);

130 }

131

132 } while (flag); // Iterate while tension values are not OK

133

134 // Print out results

135 cout << endl << "===" << endl;

136 cout << "\t Final tension values and control points" << endl;

137 cout << "---" << endl;

138 for (int i = 0; i < nodes.size(); i++) {

139 Vec v = nodes[i].GetD();

140 double nu = nodes[i].GetNu();

141 cout << "Node " << i << ": Tension value = " << nu << \

142 ", \t Control point = [" << v(0) << ", " << v(1) << ", " << v(2) << "]" << endl;

143 }

144

145 return 0;

146 }

112

6.1.4 Options

File: src/Options.cpp
1 #ifndef __OPTIONS_H_INCLUDED

2 #define __OPTIONS_H_INCLUDED

3

4 #include <string >

5

6 class Options{

7

8 public:

9 std:: string input_file; // Name of the input file

10 std:: string input_type; // Input type (cartesian or spherical)

11 std:: string increase_type; // Mode in which to increase tension

12 // values. Either ’times’ or ’plus’

13 double increase_factor; // Value operating on the tensions

14 // (either multiplication or addition)

15 double initial_nu; // Initial tension value (for all nodes)

16 double Stol; // Tolerance for the spline algorithm

17 int Snmax; // Max iterations for the spline algorithm

18 double epsilon; // Threshold after which nodes are considered co -circular

19 double normal_tol; // Threshold for convexity indicators

20 double h; // Stem size for the finite difference approximations

21 int Bnmax; // Max iterations for the bisection method

22 double Btol; // Tolerance for the bisection method

23

24 // Simple initialization

25 Options () {

26 input_file = "";

27 input_type = "";

28 increase_type = "plus";

29 increase_factor = 1.0;

30 initial_nu = 0.0;

31 Stol = 0.0;

32 Snmax = 0;

33 epsilon = 0.0;

34 normal_tol = 0.0;

35 h = 0.0;

36 Bnmax = 0;

37 Btol = 0.0;

38 }

39 };

40

41 #endif

113

6.1.5 SplineNode

File: src/SplineNode.hpp
1 #ifndef __SPLINENODE_H_INCLUDED

2 #define __SPLINENODE_H_INCLUDED

3

4 #include <iostream >

5 #include <boost/numeric/ublas/matrix.hpp >

6 #include <boost/numeric/ublas/io.hpp >

7 #include <boost/numeric/bindings/traits/ublas_vector2.hpp >

8

9 using namespace std;

10

11 typedef boost:: numeric ::ublas::vector <double > Vec;

12

13 class SplineNode {

14 private:

15 Vec P; // Point on the sphere

16 Vec L; // Left aux. point

17 Vec R; // Right aux. point

18 Vec d; // Control point (Nielson spline def.)

19 double Q; // Convexity indicator

20 double nu; // Tension value

21 double ti; // Knot spacing value

22 double hi; // Step parameter (h[i] = t[i] - t[i-1])

23

24 public:

25 SplineNode ();

26 SplineNode(Vec , double);

27

28 Vec GetP();

29 Vec GetL();

30 Vec GetR();

31 Vec GetD();

32 double GetQ();

33 double GetNu();

34 double GetTi();

35 double GetHi();

36

37 void SetP(Vec);

38 void SetL(Vec);

39 void SetR(Vec);

40 void SetD(Vec);

41 void SetQ(double);

42 void SetNu(double);

43 void SetHi(double);

44 void SetTi(double);

45

46 void Print();

47 };

48

49 #endif

114

File: src/SplineNode.cpp
1 #include "SplineNode.hpp"

2

3 using namespace std;

4

5 typedef boost:: numeric ::ublas::vector <double > Vec;

6

7 SplineNode :: SplineNode (){

8 this ->nu = 0;

9 }

10

11 SplineNode :: SplineNode(Vec P, double nu_value) {

12 this ->P = P;

13 this ->d = P;

14 this ->nu = nu_value;

15 }

16

17 Vec SplineNode ::GetP() { return this ->P; }

18 Vec SplineNode ::GetL() { return this ->L; }

19 Vec SplineNode ::GetR() { return this ->R; }

20 Vec SplineNode ::GetD() { return this ->d; }

21 double SplineNode ::GetQ() { return this ->Q; }

22 double SplineNode ::GetNu () { return this ->nu; }

23 double SplineNode ::GetTi () { return this ->ti; }

24 double SplineNode ::GetHi () { return this ->hi; }

25

26 void SplineNode :: SetNu(double val) { this ->nu = val; }

27 void SplineNode ::SetP(Vec P) { this ->P = P; }

28 void SplineNode ::SetL(Vec L) { this ->L = L; }

29 void SplineNode ::SetR(Vec R) { this ->R = R; }

30 void SplineNode ::SetD(Vec d) { this ->d = d; }

31 void SplineNode :: SetHi(double val) { this ->hi = val; }

32 void SplineNode ::SetQ(double Q) { this ->Q = Q; }

33 void SplineNode :: SetTi(double val) { this ->ti = val; }

34

35 void SplineNode :: Print() {

36 std::cout << "P = " << this ->P << ", d = " << this ->d << std::endl;

37 }

115

6.1.6 NuSpline

File: src/NuSpline.hpp
1 #ifndef __NUSPLINE_H_INCLUDED

2 #define __NUSPLINE_H_INCLUDED

3

4 #include <iostream >

5 #include <boost/numeric/ublas/matrix.hpp >

6 #include <boost/numeric/ublas/io.hpp >

7 #include <boost/numeric/bindings/traits/ublas_vector2.hpp >

8 #include "SplineNode.hpp"

9 #include "Options.cpp"

10 #include "Utility.hpp"

11

12 using namespace std;

13

14 class NuSpline {

15 ublas::vector <double > F(std::vector <SplineNode > nodes , int i);

16 double ComputeError(mp_type , mp_type , int);

17 double alpha (std::vector <SplineNode > , int);

18 double delta (std::vector <SplineNode > , int);

19 double gamma (std::vector <SplineNode > , int);

20 double beta (std::vector <SplineNode > , int);

21 double lambda(std::vector <SplineNode > , int);

22 double mu (std::vector <SplineNode > , int);

23

24 public:

25 void Init (std::vector <SplineNode > *, Options);

26 void Update (std::vector <SplineNode > *);

27 bool Execute(std::vector <SplineNode > *, int , double);

28

29 };

30

31 #endif

116

File: src/NuSpline.cpp
1 #include "NuSpline.hpp"

2

3 typedef ublas::vector <double > Vec;

4 typedef std::vector <SplineNode > SVec;

5 typedef std::vector < Vec > mp_type;

6

7 // Initialization method. Takes care of setting initial

8 // values for quantities needed in the computation of

9 // the nu -spline. All the info relative to a node is

10 // stored in the corresponding member of the vector.

11 void NuSpline ::Init(SVec *nodes , Options opt) {

12

13 int N = (*nodes).size();

14

15 // Set spacing and knot values

16

17 (*nodes)[0]. SetTi (0.0);

18 (*nodes)[0]. SetHi (0.0);

19

20 for (int i = 1; i < N - 1; i++) {

21 (*nodes)[i].SetHi(GeoDist((* nodes)[i-1]. GetP(), (* nodes)[i].GetP()));

22 (*nodes)[i].SetTi((*nodes)[i-1]. GetTi() + (*nodes)[i].GetHi ());

23 }

24

25 (*nodes)[N-1]. SetHi(GeoDist((*nodes)[N-1]. GetP(), (*nodes)[N-2]. GetP()));

26 (*nodes)[N-1]. SetTi((*nodes)[N-2]. GetTi() + (* nodes)[N-1]. GetHi ());

27

28 // Set Left and Right auxiliary points

29

30 (*nodes)[0]. SetR(G((* nodes)[0]. GetD(), (*nodes)[1]. GetD(), mu((* nodes), 0)));

31 for (int i = 1; i < N-1; i++) {

32 (*nodes)[i].SetL (G((* nodes)[i-1]. GetD(), (* nodes)[i].GetD(), lambda ((* nodes), i)));

33 (*nodes)[i].SetR (G((* nodes)[i].GetD(), (*nodes)[i+1]. GetD(), mu((* nodes), i)));

34 }

35 (*nodes)[N-1]. SetL (G((*nodes)[N-2]. GetD(), (*nodes)[N-1]. GetD(), lambda ((* nodes), N-1)));

36

37

38 // Set convexity indicators Qi

39

40 for (int i = 1; i < N - 1; i++) {

41 Vec Ll = dG((* nodes)[i-1]. GetP(), (* nodes)[i].GetP(), 1.0);

42 Vec Lr = dG((* nodes)[i].GetP(), (*nodes)[i+1]. GetP(), 0.0);

43 Vec cr = CrossProduct(Ll , Lr);

44 double q = ublas:: inner_prod ((* nodes)[i].GetP(), cr) / ublas:: norm_2(cr);

45

46 if (fabs(fabs(q) - 1.0) < opt.normal_tol) {

47 if (q < 0.0) {

48 (*nodes)[i].SetQ(-1.0);

49 } else {

50 (*nodes)[i].SetQ(1.0);

51 }

52 } else {

53 (*nodes)[i].SetQ(0.0);

54 }

55 }

56

57 }

58

59

60 // This procedure updates the auxiliary values Li and Ri

61 // for each SplineNode. This has to be done at each iteration ,

62 // otherwise the progress made by the algorithm is lost.

63 void NuSpline :: Update(SVec *nodes) {

117

64 int N = (*nodes).size();

65 (*nodes)[0]. SetR(G((* nodes)[0]. GetD(), (*nodes)[1]. GetD(), mu((* nodes), 0)));

66 for (int i = 1; i < N-1; i++) {

67 (*nodes)[i].SetL (G((* nodes)[i-1]. GetD(), (* nodes)[i].GetD(), lambda ((* nodes), i)));

68 (*nodes)[i].SetR (G((* nodes)[i].GetD(), (*nodes)[i+1]. GetD(), mu((* nodes), i)));

69 }

70 (*nodes)[N-1]. SetL (G((*nodes)[N-2]. GetD(), (*nodes)[N-1]. GetD(), lambda ((* nodes), N-1)));

71 }

72

73

74 // Compute the quantity alpha_i

75 double NuSpline ::alpha(SVec nodes , int i) {

76 return GeoDist(nodes[i-1]. GetD(), nodes[i].GetD());

77 }

78

79 // Compute the quantity delta_i

80 double NuSpline ::delta(SVec nodes , int i) {

81 assert(i > 0 && i < nodes.size() -1);

82

83 double num = nodes[i].GetHi();

84 double den = num + nodes[i+1]. GetHi ();

85

86 double val = num/den;

87

88 assert (!(val < 0.0 || val > 1.0));

89

90 return val;

91 }

92

93

94 // Compute the quantity beta_i

95 double NuSpline ::beta(SVec nodes , int i) {

96 return GeoDist(nodes[i].GetL(), nodes[i].GetR());

97 }

98

99

100 // Compute the quantity gamma_i

101 double NuSpline ::gamma(SVec nodes , int i) {

102 double hi = nodes[i].GetHi();

103 double hi1 = nodes[i+1]. GetHi();

104 double nu = nodes[i].GetNu();

105 double val = (2 * (hi + hi1)) / (nu*hi*hi1 + 2*(hi + hi1));

106

107 assert (!(val < 0.0 || val > 1.0));

108

109 return val;

110 }

111

112

113 // Compute the quantity lambda_i

114 double NuSpline :: lambda(SVec nodes , int i) {

115 double num = gamma(nodes , i-1)*nodes[i-1]. GetHi() + nodes[i].GetHi ();

116 double den = num;

117

118 // CAUTION: this is the point at which we take into account

119 // the fact that the indices for h_i go up until n+1.

120 // If the indices are within acceptable range , we add the

121 // second part of the denominator , otherwise we just leave

122 // it as is. This is consistent with the theory , as h_{n+1} = 0

123 // but needs to be handled , as it leads to severe numerical

124 // errors if not.

125 if (i < (nodes.size() - 1)) {

126 den = den + (gamma(nodes , i)*nodes[i+1]. GetHi());

127 }

128

118

129 double val = num/den;

130

131 assert (!(val < 0.0 || val > 1.0));

132

133 return val;

134 }

135

136

137 // Compute the quantity mu_i

138 double NuSpline ::mu(SVec nodes , int i) {

139 double num = gamma(nodes , i)*nodes[i]. GetHi();

140 double den = num + nodes[i+1]. GetHi ();

141

142 // CAUTION: this is the point at which we take into account

143 // the fact that the indices for h_i go up until n+1.

144 // If the indices are within acceptable range , we add the

145 // second part of the denominator , otherwise we just leave

146 // it as is. This is consistent with the theory , as h_{n+1} = 0

147 // but needs to be handled , as it leads to severe numerical

148 // errors if not.

149 if (i < (nodes.size() -2)) {

150 den = den + gamma(nodes , i+1)*nodes[i+2]. GetHi ();

151 }

152

153 double val = num/den;

154

155 assert (!(val < 0.0 || val > 1.0));

156

157 return val;

158 }

159

160

161 // Execute an iteration of the approximating scheme as described

162 // in Nielson. Essentially , calculate the successive value for

163 // the control point d_i from the previous values of the control

164 // points d_{i-1}, d_i , d_{i+1}

165 Vec NuSpline ::F(SVec nodes , int i){

166 double ai = alpha(nodes , i);

167 double ai1 = alpha(nodes , i+1);

168 double di = delta(nodes , i);

169 double bi = beta(nodes , i);

170 double li = lambda(nodes , i);

171 double mi = mu(nodes , i);

172

173 double num1 = sin(bi);

174 double num2 = (sin((1.0-di)*bi) * sin((1.0-li)*ai)) / sin(ai);

175 double num3 = (sin(di*bi) * sin(mi*ai1)) / sin(ai1);

176 double den = (sin((1.0-di)*bi) * sin(li*ai)) / sin(ai) + \

177 (sin(di*bi) * sin((1.0-mi)*ai1)) / sin(ai1);

178

179 Vec qi = nodes[i].GetP();

180 Vec d_prev = nodes[i-1]. GetD();

181 Vec d_next = nodes[i+1]. GetD();

182

183 qi = (num1/den)*qi;

184 d_prev = -(num2/den)*d_prev;

185 d_next = -(num3/den)*d_next;

186

187 Vec f(3);

188 f = qi + d_prev + d_next;

189

190 return f;

191 }

192

193

119

194 // Compute the error (difference) between successive approximations.

195 // This is a form of relative error measuring the change from one step

196 // to the next. If the difference is too small , we need not continue ,

197 // as convergence has been manifested and successive steps do not offer

198 // significant improvements. Similar measure is used in fixed -point methods.

199 double NuSpline :: ComputeError(mp_type nd, mp_type od, int N){

200

201 double num , den , r;

202

203 num = 0.0;

204 den = 0.0;

205

206 for (int i = 0; i < N; i++) {

207 Vec cur = nd[i];

208 Vec pre = od[i];

209 Vec np = cur - pre;

210

211 num = num + ublas:: inner_prod(np , np);

212 den = den + ublas:: inner_prod(cur , cur);

213 }

214

215 r = sqrt(num/den);

216 return r;

217 }

218

219

220 // This method executes the algorithm described in Nielson. Before

221 // calling this , one should call Init() so that the necessary values

222 // are present. When the procedure ends , all pertaining values are

223 // stored in the vector of SplineNodes , and the boolean value returned

224 // indicates whether convergence has been achieved or not.

225 bool NuSpline :: Execute(SVec *nodes , int Nmax , double tol) {

226 cout << "Executing now!" << endl;

227 int iter = 0;

228 double err = 10.0* tol; // Just consider something big enough

229 int N = (*nodes).size();

230

231

232 // Compy the current control points into a suitable container

233 mp_type ctrd;

234 for (int i = 0; i < N; i++) {

235 ctrd.push_back ((* nodes)[i].GetD());

236 }

237

238 // Keep another copy (needed to compute the error)

239 mp_type oldd = ctrd;

240

241 // Iterate while convergence is not reached and iterations

242 // are within a reasonable range

243 while (err > tol && iter < Nmax) {

244 // Keep the old estimate

245 oldd = ctrd;

246

247 // For each point , compute a new estimate for the control point

248 for (int i = 1; i < N-1; i++) {

249 ctrd[i] = F(*nodes , i);

250 }

251

252 // Set the new estimate at each node

253 for (int i = 1; i < N-1; i++) {

254 (*nodes)[i].SetD(ctrd[i]);

255 }

256

257 // Update the nodes appropriately: since the control poitns

258 // have changed , the auxiliary values Li and Ri need to

120

259 // change as well.

260 Update(nodes);

261

262 // Increment counter and compute the error

263 iter = iter + 1;

264 err = ComputeError(ctrd , oldd , N);

265 }

266

267 // Tell the calling function whether the result is OK

268 return (err < tol);

269

270 }

121

6.1.7 ShapePreservation

File: src/ShapePreservation.hpp
1 #ifndef __SHAPEPRESERVATION_H_DEFINED

2 #define __SHAPEPRESERVATION_H_DEFINED

3

4 #include <boost/numeric/ublas/matrix.hpp >

5 #include <boost/numeric/ublas/io.hpp >

6 #include <boost/numeric/bindings/traits/ublas_vector2.hpp >

7 #include "Options.cpp"

8 #include "FiniteDifference.hpp"

9 #include "Utility.hpp"

10

11 namespace ublas = boost :: numeric :: ublas;

12

13 typedef ublas::vector <double > Vec;

14 typedef std::vector <SplineNode > SVec;

15

16 void VerifyCocircularity (Vec (*f)(SVec , int , double), SVec , bool *, Options *);

17 void VerifyNodeConvexity (Vec (*f)(SVec , int , double), SVec , bool *, Options *);

18 void VerifySegmentConvexity(Vec (*f)(SVec , int , double), SVec , bool *, Options *);

19 double ObjFun (Vec (*f)(SVec , int , double), SVec , int , int , Options *, double);

20 double DerivObjFun (Vec (*f)(SVec , int , double), SVec , int , int , Options *, double);

21 bool ExamineSegment (Vec (*f)(SVec , int , double), SVec , int , Options *);

22

23 #endif

122

File: src/ShapePreservation.cpp
1 #include "ShapePreservation.hpp"

2

3 namespace ublas = boost :: numeric :: ublas;

4 typedef ublas::vector <double > Vec;

5

6

7 // Verify that the co-circularity criterion is satisfied at the nodes

8 // for which it is required. For every node i for which the criterion

9 // fails , the elements {i-1, i, i+1} of the boolean vector idx are

10 // set true. This is to indicate that the nu-values of these nodes

11 // need to be incremented by the corresponding function (not here).

12 void VerifyCocircularity(Vec (*fun)(std::vector <SplineNode >, int , double),

13 std::vector <SplineNode > nodes ,

14 bool *idx ,

15 Options *opt){

16

17 for (int i = 1; i < nodes.size() -1; i++) {

18 if (nodes[i].GetQ() == 0.0) {

19 double d1 = GeoDist(nodes[i-1]. GetP(), nodes[i].GetP());

20 double d2 = GeoDist(nodes[i].GetP(), nodes[i+1]. GetP());

21 double d3 = GeoDist(nodes[i-1]. GetP(), nodes[i+1]. GetP());

22 if ((d3 > d1) && (d3 > d2)) {

23 double kk = kappa(fun , nodes , i, opt , 0);

24 if (fabs(kk) > opt ->epsilon) {

25 idx[i-1] = true;

26 idx[i] = true;

27 idx[i+1] = true;

28 }

29 }

30 }

31 }

32 }

33

34

35

36 // Verify that the node convexity criterion is satisfied.

37 // For every node i for which the criterion fails , the elements

38 // {i-1, i, i+1} of the boolean vector idx are set true.

39 // This is to indicate that the nu -values of these nodes

40 // need to be incremented by the corresponding function (not here).

41 void VerifyNodeConvexity(Vec (*fun)(std::vector <SplineNode >, int , double),

42 std::vector <SplineNode > nodes ,

43 bool *idx ,

44 Options *opt){

45 for (int i = 0; i < nodes.size() -1; i++) {

46 if (nodes[i].GetQ() != 0.0) {

47 double kk = kappa(fun , nodes , i, opt , 0.0);

48 if (kk*nodes[i].GetQ() < 0.0) {

49 idx[i-1] = true;

50 idx[i] = true;

51 idx[i+1] = true;

52 }

53 }

54 }

55 }

56

57

58

59 // Verify that the segment convexity criterion is satisfied.

60 // For every node i for which the criterion fails , the elements

61 // {i-1, i, i+1, i+2} of the boolean vector idx are set true.

62 // This is to indicate that the nu -values of these nodes

63 // need to be incremented by the corresponding function (not here).

123

64 void VerifySegmentConvexity(Vec (*fun)(std::vector <SplineNode >, int , double),

65 std::vector <SplineNode > nodes ,

66 bool *idx ,

67 Options *opt){

68

69 // Iterate through the internal nodes (note that node n-1 is examined in segment n-2)

70 for (int i = 1; i < nodes.size() - 2; i++) {

71 // Neither of the end -nodes of the segment i can be co-circular with their neighbors

72 if (nodes[i].GetQ()*nodes[i+1]. GetQ() > 0.0) {

73 // For each segment that passes the controls , check the convexity of the spline

74 bool condition = ExamineSegment(fun , nodes , i, opt);

75 // In the case that the control fails , mark the indices

76 if (! condition) {

77 idx[i-1] = true;

78 idx[i] = true;

79 idx[i+1] = true;

80 idx[i+2] = true;

81 }

82 }

83 }

84 }

85

86

87

88

89 // Examine the convexity of segment i.

90 // If this function is invoked , all checks for the segment i have

91 // already been verified by the calling function.

92 bool ExamineSegment(Vec (*fun)(std::vector <SplineNode >, int , double),

93 std::vector <SplineNode > nodes ,

94 int i,

95 Options *opt){

96

97 // Initial interval (for t) in which we check convexity

98 double a = 0.0;

99 double b = 1.0;

100

101 // Sentinel values

102 bool c1 = false;

103 bool c2 = false;

104 bool condition = false;

105

106 // Here we are examining the segment convexity predicate involving

107 // the binormal Q_i.

108

109 // Objective function values at the ends of the interval [a, b].

110 // The fourth argument of the below functions defines the use

111 // of the i-th binormal.

112 double fa = ObjFun(fun , nodes , i, i, opt , a);

113 double fb = ObjFun(fun , nodes , i, i, opt , b);

114

115 // If the values of the objective function at both ends is positive ,

116 // we can continue with the control at the internal of the interval.

117 // Otherwise , there is no point: the criterion has already failed.

118 if ((fa > 0.0) && (fb > 0.0)) {

119

120 // Implement a simple bisection search for the root

121 // of the derivative of the objective finction.

122 // The root of the derivative provides the location

123 // of an extremum for the objective function.

124 int N = 0;

125 double root = (a + b) / 2.0;

126 while (N < opt ->Bnmax) {

127 double m = (a + b) / 2.0;

128 double dfm = DerivObjFun(fun , nodes , i, i, opt , m);

124

129 if (dfm == 0.0 || ((b-a) / 2.0) < opt ->Btol) {

130 root = m;

131 break;

132 }

133

134 double dfa = dfm = DerivObjFun(fun , nodes , i, i, opt , a);

135 if (dfm * dfa > 0) {

136 a = m;

137 } else {

138 b = m;

139 }

140 N++;

141 }

142

143 // Get the value of the objective function at its extremum.

144 double fr = ObjFun(fun , nodes , i, i, opt , root);

145

146 // If this value is positive , assume the function is

147 // positive in the entire interval [a, b].

148 if (fr > 0.0) {

149 c1 = true;

150 }

151 }

152

153

154

155 // Repeat the same procedure , but now for the binormal Q_{i+1}

156

157 a = 0.0;

158 b = 1.0;

159

160 // The fourth argument in the below functions defines

161 // the use of the (i+1)-th binormal.

162 fa = ObjFun(fun , nodes , i, i+1, opt , a);

163 fb = ObjFun(fun , nodes , i, i+1, opt , b);

164

165 if ((fa > 0.0) && (fb > 0.0)) {

166 int N = 0;

167 double root = (a + b) / 2.0;

168 while (N < opt ->Bnmax) {

169 double m = (a + b) / 2.0;

170 double dfm = DerivObjFun(fun , nodes , i, i+1, opt , m);

171 if (dfm == 0.0 || ((b-a) / 2.0) < opt ->Btol) {

172 root = m;

173 break;

174 }

175

176 double dfa = dfm = DerivObjFun(fun , nodes , i, i+1, opt , a);

177 if (dfm * dfa > 0) {

178 a = m;

179 } else {

180 b = m;

181 }

182 N++;

183 }

184

185 // Same logic as before

186 double fr = ObjFun(fun , nodes , i, i+1, opt , root);

187 if (fr > 0.0) {

188 c2 = true;

189 }

190 }

191

192 // If both sentinel values are true , the criterion is satisfied.

193 condition = (c1 && c2);

125

194 return condition;

195 }

196

197

198

199 // Objective function.

200 // By definition , product of the geodesic curvature with the

201 // convexity indicator at each node.

202 double ObjFun(Vec (*fun)(std::vector <SplineNode >, int , double),

203 std::vector <SplineNode > nodes ,

204 int node_index , // Essentially , segment index

205 int ind_index , // Indicator index

206 Options *opt ,

207 double t) {

208

209 double rr = kappa(fun , nodes , node_index , opt , t) * nodes[ind_index].GetQ();

210 return rr;

211 }

212

213

214

215 // Objective function derivative.

216 // By definition , product of the derivative of the geodesic

217 // curvature with the convexity indicator at each node.

218 double DerivObjFun(Vec (*fun)(std::vector <SplineNode >, int , double),

219 std::vector <SplineNode > nodes ,

220 int node_index ,

221 int ind_index ,

222 Options *opt ,

223 double t) {

224

225 double rr = dkappa(fun , nodes , node_index , opt , t) * nodes[ind_index].GetQ();

226 return rr;

227 }

126

6.1.8 FiniteDifference

File: src/FiniteDifference.hpp
1 #ifndef __FINITEDIFFERENCE_H_INCLUDED

2 #define __FINITEDIFFERENCE_H_INCLUDED

3

4 #include <iostream >

5 #include <boost/numeric/ublas/matrix.hpp >

6 #include <boost/numeric/ublas/io.hpp >

7 #include <boost/numeric/bindings/traits/ublas_matrix.hpp >

8 #include <boost/numeric/bindings/lapack/gesv.hpp >

9 #include <boost/numeric/bindings/traits/ublas_vector2.hpp >

10 #include "SplineNode.hpp"

11

12 #define _USE_MATH_DEFINES

13 #include <math.h>

14

15 namespace ublas = boost :: numeric :: ublas;

16 namespace lapack = boost:: numeric :: bindings :: lapack;

17

18 typedef ublas::vector <int > iVec;

19 typedef ublas::vector <double > Vec;

20 typedef std::vector <SplineNode > SVec;

21

22 class FiniteDifference {

23 private:

24 int p; // Accuracy order

25 int d; // Derivative order

26 int iMax; // Maximum index

27 int iMin; // Minimum index

28 string type; // Type of scheme (fwd , bwd or ctr)

29 iVec idx; // Indices (or multiples) of h

30 Vec C; // Coefficients for the sum of auxiliary terms

31

32 // Simple implementation of the factorial function.

33 // Convention has been made to consider the factorial

34 // of 0 and negative integers equal to 1. In reality ,

35 // no negative numbers are passed as input , but...

36 // better safe than sorry.

37 int Factorial(int);

38

39 public:

40 // The constructor calculates everything necessary

41 // to compute the derivative of a given function

42 FiniteDifference(int , int , string);

43

44 // Computes the approximation of the derivative of the function

45 // f, passed as argument here. The order of the derivative , as

46 // well as the order of approximation , depend on the parameters

47 // with which the instance of the class has been initialized.

48 Vec Val(Vec (*f)(SVec , int , double), SVec , int , double , double);

49 };

50

51 #endif

127

File: src/FiniteDifference.cpp
1 #include "FiniteDifference.hpp"

2

3 namespace ublas = boost :: numeric :: ublas;

4 namespace lapack = boost:: numeric :: bindings :: lapack;

5

6 typedef ublas::vector <int > iVec;

7 typedef ublas::vector <double > Vec;

8 typedef std::vector <SplineNode > SVec;

9

10

11 // Simple implementation of the factorial function.

12 // Convention has been made to consider the factorial

13 // of 0 and negative integers equal to 1. In reality ,

14 // no negative numbers are passed as input , but...

15 // better safe than sorry.

16 int FiniteDifference :: Factorial(int x) {

17 return (x < 2 ? 1 : (x * Factorial(x-1)));

18 }

19

20 // The constructor calculates everything necessary

21 // to compute the derivative of a given function

22 FiniteDifference :: FiniteDifference(int d, int p, string type) {

23

24 // Keep parameters for later use

25 this ->p = p;

26 this ->d = d;

27 this ->type = type;

28

29 // Set index limits based on scheme mode

30 if (type.compare("fwd") == 0) {

31 iMin = 0;

32 iMax = d+p-1;

33 } else if (type.compare("bwd") == 0) {

34 iMax = 0;

35 iMin = -(d+p-1);

36 } else {

37 iMax = floor((d+p-1) /2);

38 iMin = -iMax;

39 }

40

41 int N = d + p;

42

43 // Construct a matrix and a vector to express the problem

44 // AC = b

45 // where C are the coefficients we seek.

46 ublas::matrix <double , ublas:: column_major > A(N,N);

47 Vec b(N);

48

49 // idx keeps the multiples of h used for each term

50 // of the Taylor sum (i.e. -1h, 0h, 1h etc)

51 idx = iVec(N);

52

53 int ii = 0;

54 int jj = 0;

55

56 // Construct the matrix A

57 for (int i = iMin; i <= iMax; i++) {

58 idx(ii) = i;

59 for (int j = 0; j <= N-1; j++) {

60 A(jj++, ii) = pow((float)i, (float)j);

61 }

62 ii++;

63 jj = 0;

128

64 }

65

66 // Fill the vector b with zeros ...

67 for (int i = 0; i < N; i++) {

68 b(i) = 0.0;

69 }

70 // ..and only set the appropriate element to be unit.

71 b(d) = 1.0;

72

73 // Solve the linear system (the solution is stored in b)

74 lapack ::gesv(A, b);

75 // Keep the solution on the desired vector

76 C = b;

77 }

78

79

80 // Computes the approximation of the derivative of the function

81 // f, passed as argument here. The order of the derivative , as

82 // well as the order of approximation , depend on the parameters

83 // with which the instance of the class has been initialized.

84 Vec FiniteDifference ::Val(Vec (*fun)(SVec , int , double),

85 SVec nodes ,

86 int index ,

87 double t,

88 double h) {

89

90 int N = p + d;

91

92 // Compute ’time steps ’ at which to compute the

93 // auxiliary terms of the Taylor sum

94 Vec tt(N);

95 for (int i = 0; i < N; i++) {

96 tt(i) = h*idx(i) + t;

97 }

98

99 Vec s(3);

100 s(0) = 0.0; s(1) = 0.0; s(2) = 0.0;

101

102 // Compute each term of the function at the appropriate

103 // time and compute the weighted sum of the terms

104 for (int i = 0; i < N; i++) {

105 Vec v = (*fun)(nodes , index , tt(i));

106 s = s + v*C(i);

107 }

108

109 // We have missed essential parts: the factorial

110 // and some terms of h, so we need to update our

111 // approximation. We use double precision in order

112 // not to lose accuracy and avoid truncation errors

113 double fd = (double)Factorial(d);

114 double hd = (double)pow(h, d);

115

116 s = (fd/hd)*s;

117

118 return s;

119 }

129

6.1.9 Utility

File: src/Utility.hpp
1

2 #ifndef __UTILITY_H_INCLUDED

3 #define __UTILITY_H_INCLUDED

4

5 #include <iostream >

6 #include <string >

7 #include <fstream >

8 #include <boost/geometry.hpp >

9 #include <boost/geometry/geometries/point_xy.hpp >

10 #include <boost/geometry/multi/geometries/multi_point.hpp >

11 #include <boost/numeric/ublas/matrix.hpp >

12 #include <boost/numeric/ublas/io.hpp >

13 #include <boost/numeric/bindings/traits/ublas_vector2.hpp >

14 #include "Options.cpp"

15 #include "SplineNode.hpp"

16 #include "FiniteDifference.hpp"

17

18 #define _USE_MATH_DEFINES

19 #include <math.h>

20

21 namespace ublas = boost:: numeric ::ublas;

22 namespace bgeom = boost:: geometry;

23

24 typedef ublas::vector <double > Vec;

25 typedef std::vector <SplineNode > SVec;

26 typedef std::vector < Vec > mp_type;

27

28 // Typedef for spherical equatorial points.

29 typedef boost:: geometry ::model ::point <

30 double , 2, boost:: geometry ::cs:: spherical_equatorial <boost:: geometry ::radian >

31 > spherical_point;

32

33 // Typedef for cartesian points.

34 typedef boost:: geometry ::model ::point <

35 double , 3, boost:: geometry ::cs:: cartesian

36 > cartesian_point;

37

38 // Convesion of spherical points to cartesian coordinate system

39 template <typename SphericalPoint >

40 cartesian_point

41 Spherical2Cartesian(SphericalPoint const &);

42

43 // Conversion of cartesian points to spherical -equatorial system

44 template <typename CartesianPoint >

45 spherical_point

46 Cartesian2Spherical(CartesianPoint const &);

47

48 // Geodesic Distance (or distace on the sphere)

49 double GeoDist(Vec , Vec);

50

51 // Read options from external text file and return an object

52 void ReadOptions(char *, Options *);

53

54 // Read input points from text file , assuming spherical -equatorial coordinates

55 void ReadSphericalPoints(std::string , mp_type *);

56

57 // Read input points from text file , assuming cartesian coordinates

58 void ReadCartesianPoints(std::string , mp_type *);

59

60 // Geodesic on the sphere between points p and q at ’time’ t

130

61 Vec G(Vec , Vec , double);

62

63 // Derivative of the geodesic between p and q on the sphere , at ’time’ t

64 Vec dG(Vec , Vec , double);

65

66 // Simple cross -product. No ready solution was found.

67 Vec CrossProduct(Vec , Vec);

68

69 // Accept a boolean vector and return true if at least one element is True

70 bool Verify(const bool *, int);

71

72 // Augment the tension values that should be augmented

73 void AugmentNuValues(SVec *, const bool *, Options *);

74

75 // Compute a point on the Spline on segment i, for ’local’

76 // parameter value equal to t

77 Vec Spline(SVec , int , double);

78

79 // Normalizing factor for the finite difference approximations

80 // of the derivatives of the spline curve.

81 double fact(SVec , int , int);

82

83 // Geodesic curvature

84 double kappa(Vec (*fun)(SVec , int , double), SVec , int , Options *, double);

85

86 // Derivative of the geodesic curvature

87 double dkappa(Vec (*fun)(SVec , int , double), SVec , int , Options *, double);

88

89 #endif

131

File: src/Utility.cpp
1 #include "Utility.hpp"

2

3 namespace ublas = boost:: numeric ::ublas;

4 namespace bgeom = boost:: geometry;

5

6 typedef ublas::vector <double > Vec;

7 typedef std::vector <SplineNode > SVec;

8 typedef std::vector < Vec > mp_type;

9

10 // Typedef for spherical equatorial points.

11 typedef boost:: geometry ::model ::point <

12 double , 2, boost:: geometry ::cs:: spherical_equatorial <boost:: geometry ::radian >

13 > spherical_point;

14

15 // Typedef for cartesian points.

16 typedef boost:: geometry ::model ::point <

17 double , 3, boost:: geometry ::cs:: cartesian

18 > cartesian_point;

19

20

21 // Tension value increase function -- signature only!

22 double f(double);

23

24

25 // Convesion of spherical points to cartesian coordinate system

26 template <typename SphericalPoint >

27 cartesian_point

28 Spherical2Cartesian(SphericalPoint const& spherical_point)

29 {

30

31 double lon = bgeom :: get_as_radian <0>(spherical_point);

32 double lat = bgeom :: get_as_radian <1>(spherical_point);

33

34 double x = cos(lat)*cos(lon);

35 double y = cos(lat)*sin(lon);

36 double z = sin(lat);

37

38 return cartesian_point(x, y, z);

39 }

40

41

42 // Conversion of cartesian points to spherical -equatorial system

43 template <typename CartesianPoint >

44 spherical_point

45 Cartesian2Spherical(CartesianPoint const& cartesian_point)

46 {

47 double x = bgeom::get <0>(cartesian_point);

48 double y = bgeom::get <1>(cartesian_point);

49 double z = bgeom::get <2>(cartesian_point);

50

51 double lat = atan2(z, sqrt(x*x+y*y));

52 double lon = atan2(y, x);

53

54 return spherical_point(lon , lat);

55 }

56

57

58 // Geodesic Distance (or distace on the sphere)

59 double GeoDist(Vec x, Vec y) {

60 double val = ublas :: inner_prod(x, y)/(ublas:: norm_2(x)*ublas :: norm_2(y));

61 // The argument of arccos must be in the interval [-1, 1]

62 val = (val < -1.0 ? -1.0 : (val > 1.0 ? 1.0 : val));

63 double theta = acos(val);

132

64 return theta;

65 }

66

67

68 // Read options from external text file and return an object

69 void ReadOptions(char* filename , Options *opt) {

70

71 std::map <std::string , std::string > *options = new std::map <std::string , std::string >();

72 std:: ifstream f;

73 std:: string key , value;

74

75 f.open(filename);

76 while (f >> key >> value) {

77 (* options)[key] = value;

78 }

79 f.close();

80

81 opt ->input_file = (* options)["input_file"];

82 opt ->input_type = (* options)["input_type"];

83 opt ->increase_type = (* options)["increase_type"];

84 opt ->increase_factor = atof ((* options)["increase_factor"].c_str ());

85 opt ->initial_nu = atof ((* options)["initial_nu"]. c_str());

86 opt ->Stol = atof ((* options)["Stol"].c_str ());

87 opt ->epsilon = atof ((* options)["epsilon"].c_str());

88 opt ->normal_tol = atof ((* options)["normal_tol"]. c_str());

89 opt ->h = atof ((* options)["h"]. c_str());

90 opt ->Btol = atof ((* options)["Btol"].c_str ());

91 opt ->Bnmax = atoi ((* options)["Bnmax"].c_str ());

92 opt ->Snmax = atoi ((* options)["Snmax"].c_str ());

93

94 }

95

96

97 // Read input points from text file , assuming spherical -equatorial coordinates

98 void ReadSphericalPoints(std:: string filename , mp_type *pts) {

99 std:: ifstream f;

100 f.open(filename.c_str());

101 double phi , theta;

102 while (f >> phi >> theta) {

103 cartesian_point cp = Spherical2Cartesian(spherical_point(phi , theta));

104 Vec v(3);

105 v(0) = cp.get <0>(); v(1) = cp.get <1>(); v(2) = cp.get <2>();

106 pts ->push_back(v);

107 }

108 f.close();

109

110 return;

111 }

112

113

114 // Read input points from text file , assuming cartesian coordinates

115 void ReadCartesianPoints(std:: string filename , mp_type *pts) {

116 std:: ifstream f;

117 f.open(filename.c_str());

118 double x, y, z;

119 while (f >> x >> y >> z) {

120 Vec v(3);

121 v(0) = x; v(1) = y; v(2) = z;

122 pts ->push_back(v);

123 }

124 f.close();

125

126 return;

127 }

128

133

129

130 // Geodesic on the sphere between points p and q at ’time’ t

131 Vec G(Vec p, Vec q, double t) {

132 assert (!(t < 0.0 || t > 1.0));

133

134 double theta = GeoDist(p, q);

135 if (theta < std:: numeric_limits <double >:: epsilon ()) {

136 return p;

137 }

138

139 Vec pt = (sin ((1.0 -t)*theta)/sin(theta))*p + (sin(t*theta)/sin(theta))*q;

140 return pt;

141 }

142

143

144 // Derivative of the geodesic between p and q on the sphere , at ’time’ t

145 Vec dG(Vec p, Vec q, double t) {

146

147 assert (!(t < 0.0 || t > 1.0));

148

149 double theta = GeoDist(p, q);

150 Vec v = (-theta*cos((1.0-t)*theta)/sin(theta))*p + (theta*cos(t*theta)/sin(theta))*q;

151

152 return v;

153 }

154

155

156 // Simple cross -product. No ready solution was found.

157 Vec CrossProduct(Vec x, Vec y) {

158

159 Vec cp(3);

160

161 cp(0) = x(1)*y(2) - x(2)*y(1);

162 cp(1) = x(2)*y(0) - x(0)*y(2);

163 cp(2) = x(0)*y(1) - x(1)*y(0);

164

165 return cp;

166 }

167

168

169 // Accept a boolean vector and return true if at least one element is True

170 bool Verify(const bool *idx , int N) {

171 bool b = false;

172 for (int i = 0; i < N; i++) {

173 b = (b || idx[i]);

174 }

175

176 return b;

177 }

178

179

180 // Increase the tension values that should be increased

181 void AugmentNuValues(SVec *nodes , const bool *idx , Options *opt) {

182 for (int i = 0; i < (* nodes).size(); i++) {

183 if (idx[i]) {

184 if (opt ->increase_type.compare("plus") == 0) {

185 (*nodes)[i].SetNu((double)(*nodes)[i].GetNu () + (double)opt ->increase_factor);

186 } else {

187 (*nodes)[i].SetNu((double)(*nodes)[i].GetNu () * (double)opt ->increase_factor);

188 }

189 }

190 }

191 }

192

193

134

194 // Compute a point on the Spline on segment i, for ’local’

195 // parameter value equal to t

196 Vec Spline(SVec nodes , int i, double t) {

197

198 // Initial quantities

199 Vec Pi = nodes[i].GetP();

200 Vec Ri = nodes[i].GetR();

201 Vec Li1 = nodes[i+1]. GetL();

202 Vec Pi1 = nodes[i+1]. GetP();

203

204 // First order de Casteljau

205 Vec x = G(Pi, Ri, t);

206 Vec y = G(Ri, Li1 , t);

207 Vec z = G(Li1 , Pi1 , t);

208

209 // Second order de Casteljau

210 Vec u = G(x, y, t);

211 Vec w = G(y, z, t);

212

213 // Third order de Casteljau

214 Vec p = G(u, w, t);

215

216 return p;

217 }

218

219

220

221 // Normalizing factor for the finite difference approximations

222 // of the derivatives of the spline curve.

223 double fact(SVec nodes , int i, int d) {

224

225 // Consider the length of the first segment to be ’reference ’.

226 double dref = GeoDist(nodes [0]. GetP(), nodes[1].GetP());

227 // Compute the length of the current segment.

228 double dcur = GeoDist(nodes[i].GetP(), nodes[i+1]. GetP());

229 // Compute the factor and return it.

230 double v = dref / pow(dcur , (double)d);

231 return v;

232 }

233

234

235

236 // Geodesic curvature

237 double kappa(Vec (*fun)(SVec , int , double), SVec nodes , int i, Options *opt , double t) {

238

239 // Automatically decide which scheme type to use.

240 // For simplicity , use the same type for both the first

241 // and second derivative.

242 string type = "ctr";

243 if ((t + 5.0*opt ->h) > 1.0) {

244 type = "bwd";

245 }

246 if ((t - 5.0*opt ->h) < 0.0) {

247 type = "fwd";

248 }

249

250 FiniteDifference *fd1 = new FiniteDifference (1, 4, type);

251 FiniteDifference *fd2 = new FiniteDifference (2, 4, type);

252

253 // Normalize the derivatives by using the corresponding factors

254 Vec dS = fact(nodes , i, 1) * fd1 ->Val(fun , nodes , i, t, opt ->h);

255 Vec ddS = fact(nodes , i, 2) * fd2 ->Val(fun , nodes , i, t, opt ->h);

256

257 double v = ublas:: inner_prod(fun(nodes , i, t), CrossProduct(dS , ddS));

258

135

259 return v;

260 }

261

262

263

264 // Derivative of the geodesic curvature

265 double dkappa(Vec (*fun)(SVec , int , double), SVec nodes , int i, Options *opt , double t) {

266

267 // Automatically decide which scheme type to use.

268 // For simplicity , use the same type for both the first

269 // and third derivative.

270 string type = "ctr";

271 if ((t + 6.0*opt ->h) > 1.0) {

272 type = "bwd";

273 }

274 if ((t - 6.0*opt ->h) < 0.0) {

275 type = "fwd";

276 }

277

278 FiniteDifference *fd1 = new FiniteDifference (1, 4, type);

279 FiniteDifference *fd3 = new FiniteDifference (3, 4, type);

280

281 // Normalize the derivatives by using the corresponding factors

282 Vec dS = fact(nodes , i, 1) * fd1 ->Val(fun , nodes , i, t, opt ->h);

283 Vec ddS = fact(nodes , i, 3) * fd3 ->Val(fun , nodes , i, t, opt ->h);

284

285 double v = ublas:: inner_prod(fun(nodes , i, t), CrossProduct(dS , ddS));

286

287 return v;

288 }

136

Bibliography

[1] Menelaos I. Karavelas and Panagiotis D. Kaklis. Spatial Shape-preserving Interpolation
Using ν-Splines. Numerical Algorithms, 23(2-3):217–250, 2000.

[2] Gregory M. Nielson. ν-Quaternion Splines for the Smooth Interpolation of
Orientations. IEEE Transactions on Visualization and Computer Graphics,
10(2):224–229, March/April 2004.

[3] Panagiotis D. Kaklis. Personal communication.

[4] Panagiotis D. Kaklis and Menelaos I. Karavelas. Shape-preserving interpolation in R3.
IMA Journal of Numerical Analysis, 17(3):373–419, June 1997.

[5] Panagiotis D. Kaklis and Nickolas S. Sapidis. Convexity-preserving interpolatory
parametric splines of non-uniform polynomial degree. Comput. Aided Geom. Des.,
12(1):1–26, February 1995.

[6] Panagiotis D. Kaklis and Dimitrios G. Pandelis. Convexity-preserving polynomial
splines of non-uniform degree. IMA Journal of Numerical Analysis, 10(2):223–234,
1990.

[7] Gerald E. Farin. Curves and Surfaces for CAGD (5th edition). Academic Press, 2002.

[8] David F. Rogers. Chapter 1 - Curve and surface representation. In David F.
Rogers, editor, An Introduction to NURBS, The Morgan Kaufmann Series in Computer
Graphics, pages 1 – 15. Morgan Kaufmann, San Francisco, 2001.

[9] Wolfgang Boehm and Andreas Müller. On de Casteljau’s algorithm. Computer Aided
Geometric Design, 16(7):587 – 605, 1999.

[10] David Eberly. Derivative Approximation by Finite Differences. Geometric Tools, LLC,
May 2001. http://www.geometrictools.com/Documentation/FiniteDifferences.pdf.

137

	Abstract
	Introduction
	Linear interpolation
	Splines
	The de Casteljau algorithm
	Geodesics
	C- and G-continuity
	Shape-preservation
	Discrete derivatives

	Spherical splines
	Interpolation on the sphere
	Spherical nu-splines
	Shape-preservation on the sphere
	Qualitative asymptotic analysis
	Control point limits
	Curve limits

	Algorithm & Implementation

	Conclusions
	Results
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Case 7
	Case 8
	Case 9
	Case 10
	Case 11
	Case 12
	Case 13
	Case 14
	Case 15
	Case 16
	Case 17
	Case 18
	Case 19
	Case 20

	Appendix
	Code
	Example configuration file
	Makefile
	Main
	Options
	SplineNode
	NuSpline
	ShapePreservation
	FiniteDifference
	Utility

