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Chapter 1

Introduction

In the area of Computational Geometry, Voronoi diagrams are one of the most studied
and researched topics, having numerous applications in various fields of science, ranging
from epidemiology (sources of infection) to computer graphics, and from ecology to au-
tonomous robot navigation. In the present work, based upon [3], we present the InSphere
predicate, allowing us to determine the position of a query sphere in three-dimensional
space relative to the tangent sphere of four given spheres.

Initially we present the abstract ideas, as well as practical results in two dimensions.
Later on, we generalise our concepts in three dimensions and give a concrete result for the
problem at hand.

1.1 General Discussion

We first define what a Voronoi diagram is. Informally, it is a special decomposition of
a metric space into subspaces. In the simplest case, it is the partitioning of a plane into
n convex regions in such a manner that each region Tq contains exactly one (generating)
point pq, and every point in Tq is closer to pq than any other point on the plane.

The convex polygons formed in the process are called Voronoi cells, and the set of all
Voronoi cells form the Voronoi diagram. A special case is the Apollonius diagram, also
known as the additively weighted Voronoi diagram, where the cells are defined in relation
to a common metric, modified by weights assigned to the generating points. The weighted
points comprising an Apollonius diagram can be represented by circles, the center being
the point itself, and the radius being the weight of the point. In three dimensions we can
think of the sites as spheres, where again the center corresponds to the center of the site,
and the radius corresponds to the weight of the given site. The terms site, sphere and circle
will be used without discrimination, as long as no confusion is introduced. We examine the
case where the metric is the Euclidean norm ‖ · ‖, and define the distance δ(p,B) between
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Figure 1.1: A simple Voronoi diagram for a set of points (left, source:
http://www.dma.fi.upm.es/mabellanas/tfcs/fvd/voronoi.html) and a sam-
ple Apollonius diagram for a set of weighted sites (right, source:
http://www.cgal.org/Manual/latest/doc html/cgal manual/packages.html).

a point p and a site B = {b, r} as:

δ(p,B) = ‖p− b‖ − r,

as well as the distance between two sites:

δ(Bi, Bj) = ‖bi − bj‖ − ri − rj.

Focusing on the case in two dimensions, to construct the Apollonius diagram of a given
set of sites, we need to be able to determine the relative position of a query site and a site
tangent to any three sites given from the initial set.

1.2 Inversion

The Inversion mapping is one of the basic tools presented in [3], and is also the basic
tool used in the present work. It is a transformation, a mapping which, so to speak, turns
a circle “inside-out”.

More formally, in two dimensions, let Bi, Bj, Bk be our three given sites, and let them
be contained in the complex plane Z. We define B∗ν , ν = i, j, k, to be the sites with centers
bν and radii r∗ν = rν − ri. It is obvious that r∗i = 0, and the other two sites may have
negative radii. We call the plane containing the sites B∗ν the Z∗ plane. The standard
inversion mapping

W (z) =
z − zi
‖z − zi‖2

,

between the complex planes Z∗ and W maps circles on the Z∗ plane that do not pass
through zi to circles on the W plane, and circles that pass through zi on the Z∗ plane to
lines on the W plane.

This approach proves to be very efficient and simple. We will have a detailed look at
the inversion mapping in the next section, where an example is given.
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Chapter 2

The case in two dimensions

Please note that all the material in this chapter already exists in [3]. It is presented
here to better show how the third dimension is added to our setup and from where do the
results emerge.

2.1 General discussion

We have already said a few words about Voronoi diagrams and their applications. We
have also noted that to construct the Apollonius diagram of a given set of weighted points
(sites), we need to be able to determine the relative position of a query site Bq with respect
to the circle tangent to three given sites Bi, Bj and Bk. More precisely, given Bi, Bj and
Bk we assume that they define a unique common tritangent circle Bt that has the following
properties:

• Bt touches the three sites at the points ti, tj anf tk, and the triangle titjtk is counter-
clockwise oriented.

• Bt either lies in the complement of the union of the disks bounded by Bi, Bj and Bk,
or lies in the intersection of the three disks bounded by Bi, Bj and Bk.

Notice that, under the conditions above, Bt does not always exist. If, however, it exists, it
is also unique. Moreover, we will assume that our sites are disjoint; this is not a restrictive
requirement; in fact, the analysis presented throughout this thesis carries over to the general
case, i.e., to the case where the sites can possibly intersect, or even have negative weights.

In the sequel we will not discuss at all the problem of existence of Bt; we will consider
it granted that the circle Bt exists, and we will focus on our actual predicate:

Do the disks bounded by Bt and Bq intersect?

This question is equivalent to asking for the sign of the expression δ(Bt, Bq). There are
three possible outcomes to this question:
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Figure 2.1: Initial experiment setup (Z-space).

1. The sign of δ(Bt, Bq) is positive; in this case the disk bounded by Bq does not intersect
the disk bounded by Bt and the InCircle predicate returns outside.

2. The sign of δ(Bt, Bq) is zero; in this case Bq is externally tangent to Bt and the
InCircle predicate returns on.

3. The sign of δ(Bt, Bq) is negative; in this case the disk bounded by Bq intersects the
disk bounded by Bt and the InCircle predicate returns inside.

We will now demonstrate how the Inversion mapping can be employed to help us find
an easy and efficient way to answer the InCircle predicate. Later on, we will present the
mathematics behind the process.

The idea is quite simple, actually. To gain better understanding of the subject, we will
present an example. Let us consider the setup presented in Fig. 2.1.

As we can see, the site Bi has the smallest radius, therefore after applying the trans-
formation r∗ν = rν − ri, ν = i, j, k, there will be no negative radii. Subtracting the radius
ri from the radii of all sites, the setup is transformed into the state in Fig. 2.2.

Now, if we had a site tangent to the initial sites, after altering the radii it should remain
tangent to all three sites. This means that it would be tangent to the sites Bj and Bk, in
Fig. 2.2, and pass through the center of the site Bi, since its radius is now 0. This leads
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Figure 2.2: Setup after the transformation r∗ν = rν − ri, ν = i, j, k (Z∗-space).

us to the conclusion that if we apply the inversion mapping through the center of the site
Bi, the tritangent circle would be transformed into a line tangent to the sites Bj and Bk,
according to the theory. The site Bi would then be situated at infinity.

There is another way to think about what the inversion mapping does. As we said, the
site B∗i is now situated at infinity, but the tritangent circle, should it exist, would continue
to be tritangent. Therefore, we can consider the site B∗q to be a circle centered at infinity,
having a radius of infinity. So the site Bq has such a big radius that when we “zoom in”
to be able to see the sites B∗j and B∗k, we can consider it to be a line.

Having this in mind, consider another detail: given two circles, we can find four bitan-
gent lines – two internal and two external. Which one do we need to find? The answer is
quite clear if we remind ourselves that this is the line which comes from the transformation
of the tritangent site Bi. It is then obvious that the sites B∗j and B∗k must be situated on
the same side of the line, therefore we are searching an external tangent. To select one of
the two possible solutions, we define a orientation of the line, and request that there is a
concrete ordering to the sites. This provides for a unique solution of the problem, and as
we will see, it is the solution that proves to be correct.

So, following that train of thought, we apply the inversion mapping, and also find the
tangent line to the sites B∗j and B∗k which satisfies the aforementioned requirements. The
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Figure 2.3: Inverted sites and bitangent line (W-space).

result is shown in Fig. 2.3.
What we now have is the line which corresponds to the circle tangent to our three

initial sites. According to what we discussed before, it would suffice to calculate the sign
of the signed distance of a point p from the line, instead of controlling whether the point
p is at the internal of the circle Bq. We will see later how this sign is defined and what
conventions we make.

To prove our theory that the line corresponds to the site we are searching, we will make
one last step and apply the inversion mapping to the line. It sends us back to the initial
space Z, and what it transforms into is a circle whose equation will be presented in a while.
Just below is the figure of the initial setup, along with the line mapped into the space Z
through the inversion mapping. We can very well see that it is indeed the tritangent site
we are in search of (see Fig. 2.4).

2.2 The DistanceFromBitangent Predicate

Now it’s time to become more formal and give austere mathematical explanations for
the previous discussion.

We define the site B = {b, r} = {(bx, by) , r} and the line L := αx + βy + γ = 0. The
signed distance of B from L is defined as follows:

δ(B,L) = δ(b, L)− r, where δ(b, L) =
αxb + βyb + γ√

a2 + b2
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Figure 2.4: Initial setup with the resulting tritangent circle (Z-space).

We consider three sites Bi, Bj and Bk, and the oriented line Lij which has the following
properties:

• Lij is tangent to both Bi and Bj

• Bi and Bj are to the left of Lij

• Moving in the positive direction of Lij, we encounter Bi first and Bj next

Our goal is to compute the sign of the distance of Bk from Lij. This is more general
than what we discussed previously, as in the previous discussion we assumed that the point
p has a weight of 0, for simplicity. We will see how the task is affronted when we want to
check the situation of a weighted point in relation to the bitangent line.

Consider aijxλ + bijyλ + cij = rλ, λ = i, j to be the system of equations the bitangent
line satisfies. We need another restriction to be able to determine the coefficients aij, bij
and cij, so we will use the condition a2

ij + b2
ij = 1. The computations necessary are present

in [3], and the resulting coefficients are as follows:

aij =
Dx
ijD

r
ij +Dy

ij

√
∆ij(

Dx
ij

)2
+
(
Dy
ij

)2 ,
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bij =
Dy
ijD

r
ij −Dx

ij

√
∆ij(

Dx
ij

)2
+
(
Dy
ij

)2 ,

cij =
Dx
ijD

xr
ij +Dy

ijD
yr
ij +Dxy

ij

√
∆ij(

Dx
ij

)2
+
(
Dy
ij

)2 ,

where

Ds
λν =

∣∣∣∣sλ 1
sν 1

∣∣∣∣ , Dst
λν =

∣∣∣∣sλ tλ
sν tν

∣∣∣∣ , s, t ∈ {x, y, r} , λ, ν ∈ {i, j} ,

and

∆ij =
(
Dx
ij

)2
+
(
Dy
ij

)2 −
(
Dr
ij

)2
.

Taking into consideration the fact that a2
ij + b2

ij = 1, and substituting the above equa-
tions into the expression for δ(Bk, Lij), we get the following result:

δ(Bk, Lij) =
Dx
ijD

xr
ijk +Dy

ijD
yr
ijk +Dxy

ijk

√
∆ij(

Dx
ij

)2
+
(
Dy
ij

)2 ,

where

Dst
λµν =

∣∣∣∣∣∣
sλ tλ 1
sµ tµ 1
sν tν 1

∣∣∣∣∣∣ , s, t ∈ {x, y, r} , λ, µ, ν ∈ {i, j, k} .

The sign of the quantity δ(Bk, Lij) clearly depends solely on the numerator, so we need
to determine the sign of the quantity Dx

ijD
xr
ijk +Dy

ijD
yr
ijk +Dxy

ijk

√
∆ij.

It is notable that the above quantity is of the form X0 +X1

√
Y , where X0 = Dx

ijD
xr
ijk +

Dy
ijD

yr
ijk, X1 = Dxy

ijk and Y = ∆ij. The sign of X0 +X1

√
Y can be determined as follows:

sign(X0 +X1

√
Y ) =


sign(X0) , if Y = 0
sign(X1) , if X0 = 0
sign(X0) , if X1 = 0
sign(X0) , if sign(X0) = sign(X1)
sign(X0) sign(X2

0 −X2
1Y ) , otherwise

where the function sign(X) returns the sign of the quantity X as follows:

sign(X) =


−1 , if X < 0

0 , if X = 0
1 , if X > 0

.

We have shown that the answer to our initial question can be given by calculating
the above quantity. It is shown in [3] that the algebraic degree of the DistanceFrom-
Bitangent predicate is 6. We will now proceed to describe a setup in the 3-dimensional
Euclidean space and find a similar method to answer the same question in 3 dimensions.
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Chapter 3

The case in three dimensions

To be able to affront the problem in three dimensions, we follow the logic we previously
discussed. We must generalize, however, so we need to redefine our setup and follow in the
steps presented in the previous chapter.

3.1 Problem formulation

Since we will be working in three dimensions, our sites will now be spheres. A site will
be defined as B = {b, r} = {(bx, by, bz) , r} and we will have four given sites Bi, Bj, Bk

and Bm in our initial setup. What we search is the relative position of another, query site
Bq, with respect to the site tangent to out initial sites: we need to determine if the ball
bounded by the sphere Bt that is tangent to Bi, Bj, Bk and Bm is intersected by the ball
bounded by Bq. As in the 2D analogue, this is equivalent to determining the sign of the
distance δ(Bt, Bq). This is our InSphere predicate, and as in two dimensions, it has three
possible outcomes:

1. The sign of δ(Bt, Bq) is positive; in this case the ball bounded by Bq does not intersect
the ball bounded by Bt and the InSphere predicate returns outside.

2. The sign of δ(Bt, Bq) is zero; in this case Bq is externally tangent to Bt and the
InSphere predicate returns on.

3. The sign of δ(Bt, Bq) is negative; in this case the ball bounded by Bq intersects the
ball bounded by Bt and the InSphere predicate returns inside.

Notice that the three spheres Bi, Bj, Bk and Bm can have may commonly tangent
spheres. Among those we are interested in those that satisfy the following conditions:

• The common tangent sphere Bt either lies in the complement of the union of the
balls bounded by Bi, Bj, Bk and Bm, or lies in the intersection of the balls bounded
by the four spheres.

13
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Figure 3.1: Initial experiment setup (Z-space).

• If ti, tj, tk, tm are the points of tangency of Bi, Bj, Bk, Bm with Bt, respectively, the
tetrahedron titjtktm is required to be positively oriented.

The sphere Bt that satisfies the above requirements does not always exist; if it exists,
however, it is unique. Determining its existence is beyond the scope of this thesis. In what
follows we will assume that the four input spheres Bi, Bj, Bk and Bm are such that the
sphere Bt, satisfying that conditions above, is indeed defined.

As in the two-dimensional case, affronting the problem directly is quite difficult, more
so now that we have to deal with another dimension. We shall see that the inversion
mapping is a very handy tool and offers a simple solution.

3.2 Presentation

We saw in the previous chapter that the tangent site in two dimensions was “trans-
formed” into a line. Much alike, in three dimensions, the tangent site is transformed into
a plane. Therefore, following the same line of thought, instead of determining the position
of our query site in relation to our tangent sphere, we only need to determine its position
in relation to a tangent plane, which is much easier to find and calculate. It may be a little
too soon, but we will present some experimental results, and later on we will concentrate
on the theory.

Fig. 3.1 presents the initial setup for our experiment.
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Figure 3.2: Setup after the transformation r∗ν = rν − ri, ν = i, j, k, q (Z∗-space).

As in the previous procedure, we apply the transformation r∗ν = rν − rm, ν = i, j, k,m.
Note again that the site Bm has the smallest radius, therefore the transformation will lead
to non-negative radii. Applying the transformation of the radii, our system falls into the
state shown in Fig. 3.2.

The next step is to apply the Inversion mapping to our whole system. Generalising
from the case in two dimensions, it is easy to see that we must apply the mapping through
the point b∗m, the center of B∗m. Spheres that do not pass through this point will be mapped
to spheres on the W-space, and spheres that do pass through b∗m will be mapped to planes
in this space. Therefore, our initial system transforms into a system of three spheres, and
the site B∗m, now merely a point, is situated at infinity. Again, holding in mind that, should
we have a sphere tangent to our sites, it would be transformed into a plane (for reasons
discussed earlier), we proceed to find the tangent plane. Our results are shown in Fig. 3.3.

Now, to show that the plane we have found in the W-space corresponds to the tangent
sphere in the Z-space, we apply the inversion mapping to the plane. We can see in Fig. 3.4
that the results are quite what we hoped for.

So we conclude that the plane we found in the W-space indeed corresponds to the
sphere we are searching in the Z-space. Analogously, it is equivalent that we determine
the relative position of a query site Bq to the tangent plane in the W-space instead of the
tangent sphere in the Z-space. We will show how much simpler expressions we will have to
deal with and will present the criteria based on which we proceed during the computations.
We must also justify the selection of our plane: given three spheres in general position,
there are eight planes tangent to them: which one do we need to choose, and why? The
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Figure 3.3: Inverted sites and tritangent plane (W-space).

Figure 3.4: Initial setup with resulting quadritangent sphere (Z-space).

answer follows in the next section.
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3.3 Application

Formally, we define the site B = {β, r} = {(βx, βy, βz) , r} and the plane Π := ax +
by + cz + d = 0. Now, the signed distance of B from Π is defined by the relation

δ(B,Π) = δ(β,Π)− r, where δ(β,Π) =
aβx + bβy + cβz + d√

a2 + b2 + c2

and a2 + b2 + c2 = 1

Consider four sites, Bi, Bj, Bk, Bq, and the (oriented) plane Πijk such that:

1. The centers of the sites Bi, Bj and Bk are not collinear

2. Πijk is tangent to Bi, Bj and Bk

3. Bi, Bj and Bk are situated on the positive1 side of Πijk

4. Moving counter-clockwise on Πijk we encounter Bi, Bj and Bk in this order

What we seek to compute is the sign of the distance of Bq from Πijk. Let aijkxλ +
bijkyλ+cijkzλ+dijk = rλ, λ = i, j, k, be the equations of the tangent planes in question.
Assuming a2

ijk + b2
ijk + c2

ijk = 1, we have four equations to determine the four coefficients
aijk, bijk, cijk and dijk of the plane tangent to all three sites.

(1) aijkxi + bijkyi + cijkzi = ri − dijk
(2) aijkxj + bijkyj + cijkzj = rj − dijk
(3) aijkxk + bijkyk + cijkzk = rk − dijk
(4) a2

ijk + b2
ijk + c2

ijk = 1

From the first three equations, it is easy to verify by Crammer’s rule that the following
solution holds:

aijk =
Dyzr
ijk − dD

yz
ijk

Dxyz
ijk

, bijk = −
Dxzr
ijk − dDxz

ijk

Dxyz
ijk

, cijk =
Dxyr
ijk − dD

xy
ijk

Dxyz
ijk

,

where

Dpst
λµν =

∣∣∣∣∣∣
pλ sλ tλ
pµ sµ tµ
pν sν tν

∣∣∣∣∣∣ , Dst
λµν =

∣∣∣∣∣∣
sλ tλ 1
sµ tµ 1
sν tν 1

∣∣∣∣∣∣ , λ, µ, ν ∈ {i, j, k}, p, s, t ∈ {x, y, z, r}.

From (4) we get that(
Dyzr
ijk − dD

yz
ijk

)2
+
(
Dxzr
ijk − dDxz

ijk

)2
+
(
Dxyr
ijk − dD

xy
ijk

)2
=
(
Dxyz
ijk

)2
.

1The positive side of Πijk is defined to be the half-space in the positive direction of the normal to the
plane, namely, the vector [a, b, c]T .
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Expanding the squares and reordering the terms of the equation leads us to a second
order polynomial with respect to d:[(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]
d2 − 2

[
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk

]
d

+
[(
Dyzr
ijk

)2
+
(
Dxzr
ijk

)2
+
(
Dxyr
ijk

)2 −
(
Dxyz
ijk

)2
]

= 0.

Considering the equation to be in the form Ad2 +Bd+ Γ = 0 with

A =
(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2

B = −2
[
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk

]
Γ =

(
Dyzr
ijk

)2
+
(
Dxzr
ijk

)2
+
(
Dxyr
ijk

)2 −
(
Dxyz
ijk

)2

and knowing that (a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc, we employ the discriminant
identity ∆′ = B2 − 4AΓ :

B2 = 4
[(
Dyzr
ijkD

yz
ijk

)2
+
(
Dxzr
ijkD

xz
ijk

)2
+
(
Dxyr
ijk D

xy
ijk

)2
+ 2Dyzr

ijkD
yz
ijkD

xzr
ijkD

xz
ijk

+2Dyzr
ijkD

yz
ijkD

xyr
ijk D

xy
ijk + 2Dxzr

ijkD
xz
ijkD

xyr
ijk D

xy
ijk

]

4AΓ = 4
[(
Dyzr
ijkD

yz
ijk

)2
+
(
Dxzr
ijkD

yz
ijk

)2
+
(
Dxyr
ijk D

yz
ijk

)2 −
(
Dxyz
ijk D

yz
ijk

)2

+
(
Dyzr
ijkD

xz
ijk

)2
+
(
Dxzr
ijkD

xz
ijk

)2
+
(
Dxyr
ijk D

xz
ijk

)2 −
(
Dxyz
ijk D

xz
ijk

)2

+
(
Dyzr
ijkD

xy
ijk

)2
+
(
Dxzr
ijkD

xy
ijk

)2
+
(
Dxyr
ijk D

xy
ijk

)2 −
(
Dxyz
ijk D

xy
ijk

)2
]

After eliminations and regrouping, we get that:

∆′ = 4
[(
Dxyz
ijk D

yz
ijk

)2
+
(
Dxyz
ijk D

xz
ijk

)2
+
(
Dxyz
ijk D

xy
ijk

)2

−
(
Dxzr
ijkD

yz
ijk

)2 −
(
Dxyr
ijk D

yz
ijk

)2 −
(
Dyzr
ijkD

xz
ijk

)2

−
(
Dxyr
ijk D

xz
ijk

)2 −
(
Dyzr
ijkD

xy
ijk

)2 −
(
Dxzr
ijkD

xy
ijk

)2

+ 2Dyzr
ijkD

yz
ijkD

xzr
ijkD

xz
ijk + 2Dyzr

ijkD
yz
ijkD

xyr
ijk D

xy
ijk + 2Dxzr

ijkD
xz
ijkD

xyr
ijk D

xy
ijk

]
=

4
[(
Dxyz
ijk

)2
[(
Dxy
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dyz
ijk

)2
]
−
(
Dxzr
ijkD

yz
ijk −D

yzr
ijkD

xz
ijk

)2−

−
(
Dxyr
ijk D

yz
ijk −D

yzr
ijkD

xy
ijk

)2 −
(
Dxyr
ijk D

xz
ijk −Dxzr

ijkD
xy
ijk

)2
]

It can be proven that the following relations hold:

Dac
ijD

b
ij −Dbc

ijD
a
ij = Dab

ijD
c
ij

Dbd
ijD

ac
ij −Dad

ij D
bc
ij = Dab

ijD
cd
ij

Dacd
ijkD

bc
ijk −Dbcd

ijkD
ac
ijk = Dabc

ijkD
cd
ijk
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where a, b, c, d ∈ {x, y, z, r}.
We are now able to proceed a little further in our simplification and ∆′ takes the form

∆′ = 4
(
Dxyz
ijk

)2
[(
Dxy
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dyz
ijk

)2 −
(
Dxr
ijk

)2 −
(
Dyr
ijk

)2 −
(
Dzr
ijk

)2
]

We introduce the quantity ∆ =
(
Dxy
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dyz
ijk

)2−
(
Dxr
ijk

)2−
(
Dyr
ijk

)2−
(
Dzr
ijk

)2

or, equivalently, ∆′ = 4
(
Dxyz
ijk

)2
∆, which will prove more useful in the sequel.

Supposing that ∆′ > 0, the solutions for d should be

d1,2 =
−B ±

√
∆

2A
=

2
[
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk

]
±
√

∆′

2
[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk ±D

xyz
ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2

From our initial assumptions, it follows that if ti, tj and tk are the common points of
the plane Πijk and the sites Bi, Bj and Bk respectively, then these points are not collinear
(since the centers of the sites are not collinear). This translates into the triangle formed
by ti, tj, tk having non-zero area, which in turn means that Dxyz

ijk 6= 0. This is a result we
will use a little later.

The conditions presented along with the formulation of our problem in Z-space are
equivalent to requiring, in W-space that:

1. The spheres Bi, Bj and Bk must be on the positive side of the plane Πijk.

2. The triangle titjtk lying in the plane Πijk must be properly oriented. The actual
requirement in Z-space is that the tetrahedron titjtktm is positively oriented. The
same must hold for the tetrahedron t∗i t

∗
j t
∗
kbm in Z∗-space. However, the inversion

transformation maps bm to the point at infinity, which means that the triangle titjtk
in W-space must be positively oriented when seen from the point at the infinity.
We can see this positive orientation in the following manner: we consider a point
p = (xp, yp, zp) in our space. If the point p is on the positive side of the plane Πijk,
then the (signed) volume of the tetrahedron {ti, tj, tk, p} is positive. If we let the
point p move towards infinity (while staying on the positive halfspace with respect
to Πijk, then sign of the afore-mentioned volume is expressed by the cross-product
of the vectors ~vij and ~vik, which, as we discuss below, in our case is equivalent to the
cross-product of the vectors ~cij and ~cik, with respect to direction.

Recall that we have assumed that moving counter-clockwise on the plane Πijk, we
encounter the sites in the order Bi, Bj, Bk. If we are to define a “positive” side on our
plane, we need a way of knowing which side is which. An excellent way of defining the
positive side of our plane is the cross product. Since we requested that the sites are visited
in the order Bi, Bj, Bk while moving counter-clockwise, and having in mind the right-hand
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rule, let us consider the points ti, tj, tk as defined previously. It has been shown that these
points form a triangle, and we can define the vectors connecting them: let the vector ~vij
be the vector beginning at ti and ending at tj. Then the quantity we are interested in
would be the cross-product of the vectors ~vij and ~vik. These points can be found, but
at this stage they are unknown. We can consider, however, the triangle bi, bj, bk formed
by the centers of the sites, and it is evident that the triangle ti, tj, tk is the projection
of the triangle bi, bj, bk onto the plane Πijk. Therefore, instead of calculating the cross-
product of the vectors ~vij and ~vik, we only need to calculate the cross-product of the
vectors ~cij = [xj − xi, yj − yi, zj − zi] and ~cik = [xk − xi, yk − yi, zk − zi]. If we call this
quantity Pijk, i.e.,

Pijk = ~cij × ~cik,

after a few computations we find that Pijk =
[
Dyz
ijk,−Dxz

ijk, D
xy
ijk

]T
.

From our discussion above it is clear that the condition that we need to satisfy is that
the dot product of the vectors Pijk and ~n be positive, i.e., we require that:

Pijk · ~n > 0.

It is known that the normal vector to a plane given in the form ax+ by+ cz+ d = 0 is the

vector
[
a, b, c

]T
, hence in our case ~n =

[
aijk, bijk, cijk

]T
or, in expanded form

~n =

[
Dyzr
ijk − dD

yz
ijk

Dxyz
ijk

, −
Dxzr
ijk − dDxz

ijk

Dxyz
ijk

,
Dxyr
ijk − dD

xy
ijk

Dxyz
ijk

]T
In sequel are presented the steps to calculate the inner product Pijk · ~n:

Pijk · ~n =
(
Dyz
ijk,−D

xz
ijk, D

xy
ijk

)
·

(
Dyzr
ijk − dD

yz
ijk

Dxyz
ijk

,−
Dxzr
ijk − dDxz

ijk

Dxyz
ijk

,
Dxyr
ijk − dD

xy
ijk

Dxyz
ijk

)T

= Dyz
ijk

Dyzr
ijk − dD

yz
ijk

Dxyz
ijk

+Dxz
ijk

Dxzr
ijk − dDxz

ijk

Dxyz
ijk

+Dxy
ijk

Dxyr
ijk − dD

xy
ijk

Dxyz
ijk

=
Dyzr
ijkD

yz
ijk

Dxyz
ijk

−
d
(
Dyz
ijk

)2

Dxyz
ijk

+
Dxzr
ijkD

xz
ijk

Dxyz
ijk

−
d
(
Dxz
ijk

)2

Dxyz
ijk

+
Dxyr
ijk D

xy
ijk

Dxyz
ijk

−
d
(
Dxy
ijk

)2

Dxyz
ijk

=
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk

Dxyz
ijk

− d
(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2

Dxyz
ijk

.

Substitution for d yields:

Pijk · ~n =
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk

Dxyz
ijk

−[[
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk

]
±Dxyz

ijk

√
∆
] [(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]
Dxyz
ijk
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=
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk

Dxyz
ijk

−
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk ±D

xyz
ijk

√
∆

Dxyz
ijk

= −
(
±
√

∆
)
.

We need the result to be positive, in other words

Pijk · ~n > 0 ⇐⇒ −
(
±
√

∆
)
> 0.

Since ∆ > 0 by hypothesis, we conclude that the the solution we are interested in is

d = −B−
√

∆
2A

, or

d =
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk −D

xyz
ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2 .

Substituting in the initial relations, we conclude that

aijk =
Dyzr
ijk − dD

yz
ijk

Dxyz
ijk

=
Dyzr
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]
−Dyz

ijk

[
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk −D

xyz
ijk

√
∆
]

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dyzr
ijk

[(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]
−Dyz

ijk

[
Dxzr
ijkD

xz
ijk +Dxyr

ijk D
xy
ijk

]
+Dxyz

ijk D
yz
ijk

√
∆

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dxz
ijk

[
Dyzr
ijkD

xz
ijk −Dxzr

ijkD
yz
ijk

]
+Dxy

ijk

[
Dyzr
ijkD

xy
ijk −D

xyr
ijk D

yz
ijk

]
+Dxyz

ijk D
yz
ijk

√
∆

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dxz
ijk

[
−Dxyz

ijk D
zr
ijk

]
+Dxy

ijk

[
−Dxyz

ijk D
yr
ijk

]
+Dxyz

ijk D
yz
ijk

√
∆

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
−Dxz

ijkD
zr
ijk −D

xy
ijkD

yr
ijk +Dyz

ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2 ,

bijk = −
Dxzr
ijk − dDxz

ijk

Dxyz
ijk
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=
−Dxzr

ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

+Dxz
ijk

[
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk −D

xyz
ijk

√
∆
]

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
−Dxzr

ijk

[(
Dxy
ijk

)2
+
(
Dyz
ijk

)2
]

+Dxz
ijk

[
Dxyr
ijk D

xy
ijk +Dyzr

ijkD
yz
ijk

]
−Dxyz

ijk D
xz
ijk

√
∆

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dxy
ijk

[
Dxyr
ijk D

xz
ijk −Dxzr

ijkD
xy
ijk

]
+Dyz

ijk

[
Dyzr
ijkD

xz
ijk −Dxzr

ijkD
yz
ijk

]
−Dxyz

ijk D
xz
ijk

√
∆

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dxy
ijk

[
Dxyz
ijk D

xr
ijk

]
+Dyz

ijk

[
−Dxyz

ijk D
zr
ijk

]
−Dxyz

ijk D
xz
ijk

√
∆

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dxy
ijkD

xr
ijk −D

yz
ijkD

zr
ijk −Dxz

ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2 , and

cijk =
Dxyr
ijk − dD

xy
ijk

Dxyz
ijk

=
Dxyr
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]
−Dxy

ijk

[
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk −D

xyz
ijk

√
∆
]

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dxyr
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
]
−Dxy

ijk

[
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk

]
+Dxyz

ijk D
xy
ijk

√
∆

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dyz
ijk

[
Dxyr
ijk D

yz
ijk −D

yzr
ijkD

xy
ijk

]
+Dxz

ijk

[
Dxyr
ijk D

xz
ijk −Dxzr

ijkD
xy
ijk

]
+Dxyz

ijk D
xy
ijk

√
∆

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dyz
ijk

[
Dxyz
ijk D

yr
ijk

]
+Dxz

ijk

[
Dxyz
ijk D

xr
ijk

]
+Dxyz

ijk D
xy
ijk

√
∆

Dxyz
ijk

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]

=
Dyz
ijkD

yr
ijk +Dxz

ijkD
xr
ijk +Dxy

ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2 .

Finally, our equations are:

aijk =
−Dxz

ijkD
zr
ijk −D

xy
ijkD

yr
ijk +Dyz

ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2 ,

bijk =
Dxy
ijkD

xr
ijk −D

yz
ijkD

zr
ijk −Dxz

ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2 ,
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cijk =
Dyz
ijkD

yr
ijk +Dxz

ijkD
xr
ijk +Dxy

ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2 ,

dijk =
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk −D

xyz
ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2 .

Let us recall that, given Bq = {(xq, xq, xq), rq}, the signed distance of Bq and the plane
Πijk is given by

δ(Bq,Πijk) =
aijkxq + bijkyq + cijkzq + dijk√

a2
ijk + b2

ijk + c2
ijk

− rq

From our initial assumptions, we have that
√
a2
ijk + b2

ijk + c2
ijk = 1, so we really need

to compute the sign of the expression

δ(Bq,Πijk) = aijkxq + bijkyq + cijkzq + dijk − rq =

=

[
−Dxz

ijkD
zr
ijk −D

xy
ijkD

yr
ijk +Dyz

ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2

]
xq

+

[
Dxy
ijkD

xr
ijk −D

yz
ijkD

zr
ijk −Dxz

ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2

]
yq

+

[
Dyz
ijkD

yr
ijk +Dxz

ijkD
xr
ijk +Dxy

ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2

]
zq

+
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk −D

xyz
ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2 − rq =

=

[
−Dxz

ijkD
zr
ijk −D

xy
ijkD

yr
ijk +Dyz

ijk

√
∆
]
xq(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2

+

[
Dxy
ijkD

xr
ijk −D

yz
ijkD

zr
ijk −Dxz

ijk

√
∆
]
yq(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2

+

[
Dyz
ijkD

yr
ijk +Dxz

ijkD
xr
ijk +Dxy

ijk

√
∆
]
zq(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2

+
Dyzr
ijkD

yz
ijk +Dxzr

ijkD
xz
ijk +Dxyr

ijk D
xy
ijk −D

xyz
ijk

√
∆(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2

−

[(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
]
rq(

Dyz
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dxy
ijk

)2
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=

[
−Dyr

ijkxq +Dxr
ijkyq −D

xy
ijkrq +Dxyr

ijk

]
Dxy
ijk(

Dxy
ijk

)2
+
(
Dyz
ijk

)2
+
(
Dxz
ijk

)2

+

[
−Dzr

ijkxq +Dxr
ijkzq −Dxz

ijkrq +Dxzr
ijk

]
Dxz
ijk(

Dxy
ijk

)2
+
(
Dyz
ijk

)2
+
(
Dxz
ijk

)2

+

[
−Dzr

ijkyq +Dyr
ijkzq −D

yz
ijkrq +Dyzr

ijk

]
Dyz
ijk(

Dxy
ijk

)2
+
(
Dyz
ijk

)2
+
(
Dxz
ijk

)2

−
[
−Dyr

ijkxq +Dxz
ijkyq −D

xy
ijkzq +Dxyz

ijk

]√
∆(

Dxy
ijk

)2
+
(
Dyz
ijk

)2
+
(
Dxz
ijk

)2

=
Dxyr
ijkqD

xy
ijk +Dxzr

ijkqD
xz
ijk +Dyzr

ijkqD
yz
ijk −D

xyz
ijkq

√
∆(

Dxy
ijk

)2
+
(
Dyz
ijk

)2
+
(
Dxz
ijk

)2 ,

where the following representations have been used:∣∣∣∣∣∣∣∣
uµ vµ wµ mµ

uν vν wν mν

uλ vλ wλ mλ

uθ vθ wθ mθ

∣∣∣∣∣∣∣∣ = Duvwm
µνλθ ,

∣∣∣∣∣∣∣∣
uµ vµ wµ 1
uν vν wν 1
uλ vλ wλ 1
uθ vθ wθ 1

∣∣∣∣∣∣∣∣ = Duvw
µνλθ ,

u, v, w,m ∈ {x, y, z, r} , µ, ν, λ, θ ∈ {i, j, k, q} .
In conclusion:

δ(Bq,Πijk) =
Dxyr
ijkqD

xy
ijk +Dxzr

ijkqD
xz
ijk +Dyzr

ijkqD
yz
ijk −D

xyz
ijkq

√
∆(

Dxy
ijk

)2
+
(
Dyz
ijk

)2
+
(
Dxz
ijk

)2 .

Since the quantity
(
Dxy
ijk

)2
+
(
Dyz
ijk

)2
+
(
Dxz
ijk

)2
is strictly positive under the hypothesis

that there are no degeneracies, the the sign of the distance of the site Bq from the plane
Πijk is determined by the sign of the quantity

Q = Dxyr
ijkqD

xy
ijk +Dxzr

ijkqD
xz
ijk +Dyzr

ijkqD
yz
ijk −D

xyz
ijkq

√
∆

where the expressions represent, respectively:

Duvw
λµν =

∣∣∣∣∣∣
uλ vλ wλ
uµ vµ wµ
uν vν wν

∣∣∣∣∣∣ , Duv
λµν =

∣∣∣∣∣∣
uλ vλ 1
uµ vµ 1
uν vν 1

∣∣∣∣∣∣ ,

Duvwm
κλµν =

∣∣∣∣∣∣∣∣
uκ vκ wκ mκ

uλ vλ wλ mλ

uµ vµ wµ mµ

uν vν wν mν

∣∣∣∣∣∣∣∣ , Duvw
κλµν =

∣∣∣∣∣∣∣∣
uκ vκ wκ 1
uλ vλ wλ 1
uµ vµ wµ 1
uν vν wν 1

∣∣∣∣∣∣∣∣ ,

u, v, w,m ∈ {x, y, z, r} , κ, λ, µ, ν ∈ {i, j, k, q} ,

∆ =
(
Dxy
ijk

)2
+
(
Dxz
ijk

)2
+
(
Dyz
ijk

)2 −
(
Dxr
ijk

)2 −
(
Dyr
ijk

)2 −
(
Dzr
ijk

)2
.
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3.4 The InSphere predicate

Now let us consider the problem we initially set to solve. All sites are considered to be
spheres in our three-dimensional complex space Z, and are in the form Bλ = {bλ, rλ} =
{(xλ, yλ, zλ), rλ}. Our setup consists of four sites, Bi, Bj, Bk, B`, and let Bt be the site
tangent to all four sites. Given another site Bq, we want to determine the situation of Bq

in relation to Bt.
According to our previous discussion, if we apply the inversion transformation to our setup,
the procedure would be as follows:

• The first step is to apply the transformation r∗ν = rν − r`, ν ∈ {i, j, k, `}, which will
transform the sites Bν into the sites B∗ν , ν ∈ {i, j, k, `}. Obviously, the radius of the
site B` is now 0, hence the site has been reduced to the point b` = {x`, y`, z`}.

• Next we must apply the inversion transformation through the point b`. For every
site we now have:

uν =
x∗ν
p∗ν
, vν =

y∗ν
p∗ν
, wν =

z∗ν
p∗ν
, ρν =

r∗ν
p∗ν

x∗ν = xν − x`, y∗ν = yν − y`, z∗ν = zν − z`,
p∗ν = (x∗ν)

2 + (y∗ν)
2 + (z∗ν)

2 − (r∗ν)
2 , ν ∈ {i, j, k}.

Note that if the quadritangent sphere Bq were present, it would be transformed into
a plane by the inversion. The point b`, on the other hand, is situated at infinity,
related to our remaining objects. We are now working in the space W , and our sites
will be mapped onto the sites Wν = {(uν , vν , wν), ρν}, ν ∈ {i, j, k}.

• We proceed to find the plane Π := au+bv+cw+d = 0 tangent to the sites Wi,Wj,Wk.
As we previously showed, the coefficients a, b, c and d are found to be

aijk =
−Duw

ijkD
wρ
ijk −Duv

ijkD
vρ
ijk +Dvw

ijk

√
∆(

Dvw
ijk

)2
+
(
Duw
ijk

)2
+
(
Duv
ijk

)2

bijk =
Duv
ijkD

uρ
ijk −Dvw

ijkD
wρ
ijk −Duw

ijk

√
∆(

Dvw
ijk

)2
+
(
Duw
ijk

)2
+
(
Duv
ijk

)2

cijk =
Dvw
ijkD

vρ
ijk +Duw

ijkD
uρ
ijk +Duv

ijk

√
∆(

Dvw
ijk

)2
+
(
Duw
ijk

)2
+
(
Duv
ijk

)2

dijk =
Dvwρ
ijk D

vw
ijk +Duwρ

ijk D
uw
ijk +Duvρ

ijk D
uv
ijk −Duvw

ijk

√
∆(

Dvw
ijk

)2
+
(
Duw
ijk

)2
+
(
Duv
ijk

)2

where

Dk`m
λµν =

∣∣∣∣∣∣
kλ `λ mλ

kµ `µ mµ

kν `ν mν

∣∣∣∣∣∣ , Dk`
λµν =

∣∣∣∣∣∣
kλ `λ 1
kµ `µ 1
kν `ν 1

∣∣∣∣∣∣ ,
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k, `,m ∈ {u, v, w} , λ, µ, ν ∈ {i, j, k}

and

∆ =
(
Duv
ijk

)2
+
(
Duw
ijk

)2
+
(
Dvw
ijk

)2 −
(
Duρ
ijk

)2 −
(
Dvρ
ijk

)2 −
(
Dwρ
ijk

)2
.

• Now, to find the sign of the distance of the query site Bq from the quadritangent
plane, we can apply the inversion transformation previously described, thus ending
up with the inverted site Wq. It is now sufficient to calculate the sign of the distance
of the site Wq from the tritangent plane Π. As previously shown, our quest boils
down to determining the sign of the quantity

Q = Duvρ
ijkqD

uv
ijk +Duwρ

ijkqD
uw
ijk +Dvwρ

ijkqD
vw
ijk −Duvw

ijkq

√
∆,

where

Dk`mn
κλµν =

∣∣∣∣∣∣∣∣
kκ `κ mκ nκ
kλ `λ mλ nλ
kµ `µ mµ nµ
kν `ν mν nν

∣∣∣∣∣∣∣∣ , Dk`m
κλµν =

∣∣∣∣∣∣∣∣
kκ `κ mκ 1
kλ `λ mλ 1
kµ `µ mµ 1
kν `ν mν 1

∣∣∣∣∣∣∣∣ ,

k, `,m, n ∈ {u, v, w, ρ} , κ, λ, µ, ν ∈ {i, j, k, q}

and the other quantities remain as previously defined.

Note that all the expressions are now expressed in terms of the spaceW . In the previous
section we used x, y, z and r (which belong to the space Z) to simplify our calculations,
but we must be careful with our variables. What we would like, is to express our results
in terms of our initial variables, so that we need not apply the inversion transformation.
We seek an expression as fast and simple as possible.

It is easily seen that the following holds:

Duv
ijk =

∣∣∣∣∣∣
ui vi 1
uj vj 1
uk vk 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
x∗i
p∗i

y∗i
p∗i

1
x∗j
p∗j

y∗j
p∗j

1
x∗k
p∗k

y∗k
p∗k

1

∣∣∣∣∣∣∣∣ =
1

p∗i p
∗
jp
∗
k

∣∣∣∣∣∣
x∗i y∗i p∗i
x∗j y∗j p∗j
x∗k y∗k p∗k

∣∣∣∣∣∣ ,

Duvw
ijk =

∣∣∣∣∣∣
ui vi wi
uj vj wj
uk vk wk

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
x∗i
p∗i

y∗i
p∗i

z∗i
p∗i

x∗j
p∗j

y∗j
p∗j

z∗j
p∗j

x∗k
p∗k

y∗k
p∗k

z∗k
p∗k

∣∣∣∣∣∣∣∣ =
1

p∗i p
∗
jp
∗
k

∣∣∣∣∣∣
x∗i y∗i z∗i
x∗j y∗j z∗j
x∗k y∗k z∗k

∣∣∣∣∣∣ .
Hence we define the quantity ∣∣∣∣∣∣

k∗λ `∗λ m∗λ
k∗µ `∗µ m∗µ
k∗ν `∗ν m∗ν

∣∣∣∣∣∣ = Ek`m
λµν ,
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and it holds that

Dπθ
λµν =

1

p∗i p
∗
jp
∗
k

Ek`p
λµν , Dπθη

λµν =
1

p∗i p
∗
jp
∗
k

Ek`m
λµν

πν = k∗ν/p
∗
ν , θν = `∗ν/p

∗
ν , ην = m∗ν/p

∗
ν ,

π, θ, η ∈ {u, v, w, ρ}, k, `,m ∈ {x, y, z, r}, λ, µ, ν ∈ {i, j, k, q}.

It is easily verified that ∆ can be easily transformed into an expression of out initial
coordinates:

∆ =
(
Duv
ijk

)2
+
(
Duw
ijk

)2
+
(
Dvw
ijk

)2 −
(
Duρ
ijk

)2 −
(
Dvρ
ijk

)2 −
(
Dwρ
ijk

)2 ⇒

Γ′ =

[
1

p∗i p
∗
jp
∗
k

]2 [(
Exyp
ijk

)2
+
(
Exzp
ijk

)2
+
(
Eyzp
ijk

)2 −
(
Exrp
ijk

)2 −
(
Eyrp
ijk

)2 −
(
Ezrp
ijk

)2
]

We consider the expression

Γ =
[
p∗i p
∗
jp
∗
k

]2
Γ′ =

(
Exyp
ijk

)2
+
(
Exzp
ijk

)2
+
(
Eyzp
ijk

)2 −
(
Exrp
ijk

)2 −
(
Eyrp
ijk

)2 −
(
Ezrp
ijk

)2

which will prove useful in porting Q into out initial coordinates. Now we observe that the
relations between the quantities D and E holds again in four dimensions:

Dπθη
λµνξ =

1

p∗i p
∗
jp
∗
kp
∗
q

Ek`mp
λµνξ , Dπθησ

λµνξ =
1

p∗i p
∗
jp
∗
kp
∗
q

Ek`mn
λµνξ ,

πν = k∗ν/p
∗
ν , θν = `∗ν/p

∗
ν , ην = m∗ν/p

∗
ν , σν = n∗ν/p

∗
ν ,

π, θ, η, σ ∈ {u, v, w, ρ}, k, `,m, n ∈ {x, y, z, r}, λ, µ, ν, ξ ∈ {i, j, k, q}.

We can now express the solutions we have found for the coefficients of the plane in
terms of the initial coordinates:

aijk =
−Exzp

ijk E
zrp
ijk − E

xyp
ijk E

yrp
ijk + Eyzp

ijk

√
Γ(

Eyzp
ijk

)2
+
(
Exzp
ijk

)2
+
(
Exyp
ijk

)2

bijk =
Exyp
ijk E

xrp
ijk − E

yzp
ijk E

zrp
ijk − E

xzp
ijk

√
Γ(

Eyzp
ijk

)2
+
(
Exzp
ijk

)2
+
(
Exyp
ijk

)2

cijk =
Eyzp
ijk E

yrp
ijk + Exzp

ijk E
xrp
ijk + Exyp

ijk

√
Γ(

Eyzp
ijk

)2
+
(
Exzp
ijk

)2
+
(
Exyp
ijk

)2
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dijk =
Eyzr
ijk E

yzp
ijk + Exzr

ijk E
xzp
ijk + Exyr

ijk E
xyp
ijk − E

xyz
ijk

√
Γ(

Eyzp
ijk

)2
+
(
Exzp
ijk

)2
+
(
Exyp
ijk

)2

If we apply the Inversion transformation to the plane with the above coefficients, we
end up with the equation of a sphere, as we expect:(

x− x` +
aijk
2dijk

)
+

(
y − y` +

bijk
2dijk

)
+

(
z − z` +

cijk
2dijk

)
=

1

4d2
ijk

We conclude that the sphere tangent to our initial four spheres has its center situated
at

bt =

(
x` −

aijk
2dijk

, y` −
bijk

2dijk
, z` −

cijk
2dijk

)
and its radius is equal to rt = 1

2dijk
− r`, where recall that B` = {(x`, y`, z`), r`} is the site

through which we apply the inversion.
We can now proceed and transform the quantity Q:

Q = Duvρ
ijkqD

uv
ijk +Duwρ

ijkqD
uw
ijk +Dvwρ

ijkqD
vw
ijk −Duvw

ijkq

√
∆ ⇐⇒

Q =
1(

p∗i p
∗
jp
∗
k

)2
p∗q

[
Exyrp
ijkq E

xyp
ijk + Exzrp

ijkq E
xzp
ijk + Eyzrp

ijkq E
yzp
ijk − E

xyzp
ijkq

√
Γ
]

Since the quantity 1

(p∗i p∗jp∗k)
2
p∗q

is constantly positive in the non-degenerate case, we are

left with the expression

Q′′ = Exyrp
ijkq E

xyp
ijk + Exzrp

ijkq E
xzp
ijk + Eyzrp

ijkq E
yzp
ijk − E

xyzp
ijkq

√
Γ

We observe that the expression can be viewed in the form

Q′′ = Y0 + Y1

√
Γ

where

Y0 = Exyrp
ijkq E

xyp
ijk + Exzrp

ijkq E
xzp
ijk + Eyzrp

ijkq E
yzp
ijk

Y1 = −Exyzp
ijkq

We have already seen in Chapter 2 that the sign of quantities in the above form can be
determined in the following way:

sign(Y0 + Y1

√
Γ) =


sign(Y0) , if Γ = 0
sign(Y1) , if Y0 = 0
sign(Y0) , if Y1 = 0
sign(Y0) , if sign(Y0) = sign(Y1)
sign(Y0) sign(Y 2

0 − Y 2
1 Γ) , otherwise

.
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If we denote the degree of an algebraic expression by the operator deg(X), we can easily
see that

deg
(
Ek`m
λµν

)
= 3, deg

(
Ek`p
λµν

)
= 4, deg

(
Ek`mn
λµνξ

)
= 4, deg

(
Ek`mp
λµνξ

)
= 5

λ, µ, ν, ξ ∈ {i, j, k, q}, k, `,m, n ∈ {x, y, z, q}.

It is obvious that

deg(Γ) = 8, deg(Y0) = 9, deg(Y1) = 5.

To determine the sign of the quantity Q′′, we may need to compute the sign of the quantity
Y 2

0 −Y 2
1 Γ. At a first glance, the algebraic degree of the expression Y 2

0 −Y 2
1 Γ is 18. However,

it can be shown that Y 2
0 − Y 2

1 Γ can be factorized as follows:

Y 2
0 − Y 2

1 Γ =
[
Exyrp
ijkq E

xyp
ijk + Exzrp

ijkq E
xzp
ijk + Eyzrp

ijkq E
yzp
ijk

]2
−
(
Exyzp
ijk

)2
[(
Exyp
ijk

)2
+
(
Exzp
ijk

)2
+
(
Eyzp
ijk

)2 −
(
Exrp
ijk

)2 −
(
Eyrp
ijk

)2 −
(
Ezrp
ijk

)2
]

=
[(
Exyp
ijk

)2
+
(
Exzp
ijk

)2
+
(
Eyzp
ijk

)2
] [(

Exyrp
ijkq

)2
+
(
Exzrp
ijkq

)2
+
(
Eyzrp
ijkq

)2 −
(
Exyzp
ijkq

)2
]
.

The quantity
(
Exyp
ijk

)2
+
(
Exzp
ijk

)2
+
(
Eyzp
ijk

)2
cannot be zero, since this would amount to Y0

being zero, and this case has already been taken into account. We can therefore conclude
that the sign of the above quantity is strictly positive. Hence, the InSphere predicate can
be answered by computing the sign of the quantities Γ, Y0, Y1 and Q, where:

Q =
(
Exyrp
ijkq

)2
+
(
Exzrp
ijkq

)2
+
(
Eyzrp
ijkq

)2 −
(
Exyzp
ijkq

)2
.

The algebraic degree of the quantity Q is 10. We, thus, arrive at our main theorem in this
work:

Theorem 1. The InSphere predicate can be evaluated by determining the sign of quantities
of algebraic degree at most 10 (in the input quantities).
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