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ABSTRACT
We derive tight expressions for the maximum number of k-
faces, 0 ≤ k ≤ d−1, of the Minkowski sum, P1 +P2 +P3, of
three d-dimensional convex polytopes P1, P2 and P3 in Rd,
as a function of the number of vertices of the polytopes, for
any d ≥ 2. Expressing the Minkowski sum as a section of
the Cayley polytope C of its summands, counting the k-faces
of P1 + P2 + P3 reduces to counting the (k + 2)-faces of C
which meet the vertex sets of the three polytopes. In two
dimensions our expressions reduce to known results, while
in three dimensions, the tightness of our bounds follows by
exploiting known tight bounds for the number of faces of r
d-polytopes in Rd, where r ≥ d. For d ≥ 4, the maximum
values are attained when P1, P2 and P3 are d-polytopes,
whose vertex sets are chosen appropriately from three dis-
tinct d-dimensional moment-like curves.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations; G.2.1 [Discrete Mathemat-
ics]: Combinatorics

Keywords
discrete geometry; combinatorial geometry; combinatorial
complexity; Cayley trick; tight bounds; Minkowski sum;
convex polytopes

1. INTRODUCTION
We study the Minkowski sum of three d-dimensional con-

vex polytopes, or simply d-polytopes, in Rd, and derive tight
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upper bounds for the number of its k-faces, for 0 ≤ k ≤ d−1,
with respect to the number of vertices of the summands.
Given two convex polytopes P1 and P2, their Minkowski
sum P1 + P2 is the set {p1 + p2 | p1 ∈ P1, p2 ∈ P2}. This
definition extends to any number of summands and also, to
non-convex sets of points. The Minkowski sum of convex
polytopes is itself a convex polytope, namely, the convex
hull of the Minkowski sum of the vertices of its summands.

Minkowski sums are widespread operations in Computa-
tional Geometry and find applications in a wide range of
areas such as robot motion planning [14], pattern recogni-
tion [20], collision detection [15], Computer-Aided Design,
and, very recently, Game Theory. They reflect geometrically
some algebraic operations, and capture important proper-
ties of algebraic objects, such as polynomial systems. This
makes them especially useful in Computational Algebra, see
e.g., [9, 19, 1].

The geometry of the Minkowski sum can be derived from
that of its summands: its normal fan is the common refine-
ment of the normal fans of the summands (see [23] for def-
initions and details). However, its combinatorial structure
is not fully understood, partially due to the fact that most
algorithms for computing Minkowski sums have focused on
low dimensions (see, e.g., [4] for algorithms in three dimen-
sions). The recent development of algorithms that target
high dimensions [6], has led to a more extensive study of
their properties (see, e.g., [21]).

A natural and fundamental question regarding the combi-
natorial properties of Minkowski sums, concerns their com-
plexity measured as a function of the vertices, or the facets of
the summands. A complete answer, in terms of the number
of vertices or facets of the summands, does not yet exist al-
though for certain classes of polytopes the question has been
resolved (see Section 1.1 below). Most of the known results
offer tight bounds with respect to the number of vertices
of the summands; deriving tight upper bounds with respect
to the number of facets seems much harder. Knowing the
complexity of Minkowski sums is crucial in developing al-
gorithms for their computation, since it allows to quantify
their efficiency.

1.1 Previous work
The complexity of Minkowski sums depends on the ge-

ometry of their summands. Worst-case tight upper bounds
offer the best possible alternative when the geometric char-



acteristics of a specific instance of the problem are not ac-
counted for. Gritzman and Sturmfels [9] have been the
first to derive tight upper bounds for the number of k-faces
fk(P1+P2+· · ·+Pr) of P1+P2+· · ·+Pr, for all 0 ≤ k ≤ d−1,
and d, r ≥ 2, namely:

fk(P1 + P2 + · · ·+ Pr) ≤ 2
(
m
k

) d−k−1∑
j=0

(
m−k−1

j

)
,

where m denotes the number of non-parallel edges of P1,
P2, . . . , Pr. Equality occurs when Pi are generic zonotopes,
i.e., when each Pi is a Minkowski sum of edges, and the
generating edges of all polytopes are in general position.

Our knowledge of tight upper bounds for fk(P1 + · · ·+Pr)
as a function of the number of vertices or facets of the sum-
mands is much more limited, while the problem of finding
such tight bounds is far from being fully understood and re-
solved. Given two polygons P1, P2 in two dimensions, with
n1, n2 vertices (or edges) respectively, their Minkowski sum
can have at most n1 + n2 vertices; clearly, this bound holds
also for the number of edges of P1 + P2, and generalizes in
the obvious way for any number of summands (cf. [2]).

In three or more dimensions, Fukuda and Weibel [7] have
shown what they call the trivial upper bound : given r d-
polytopes P1, P2, . . . , Pr in Rd, where d ≥ 3 and r ≥ 2, we
have, for all k ≥ 0:

fk(P1 +P2 + · · ·+Pr) ≤
∑

1≤si≤ni
s1+...+sr=k+r

r∏
i=1

(
ni
si

)
, si ∈ N, (1)

where ni is the number of vertices of Pi, 1 ≤ i ≤ r. In the
same paper, Fukuda and Weibel have shown that the trivial
upper bound is tight for: (i) d ≥ 4, 2 ≤ r ≤ b d

2
c and for

all 0 ≤ k ≤ b d
2
c − r, and (ii) for the number of vertices,

f0(P1 + P2 + · · · + Pr), of P1 + P2 + · · · + Pr, when d ≥ 3
and 2 ≤ r ≤ d − 1. Karavelas and Tzanaki [12] recently
extended the range of d, r and k for which the trivial upper
bound (1) is attained. More precisely, they showed that for
any d ≥ 3, 2 ≤ r ≤ d − 1 and for all 0 ≤ k ≤ b d+r−1

2
c − r,

there exist r d-polytopes P1, P2, . . . , Pr in Rd, for which the
number of k-faces of their Minkowski sum attains the trivial
upper bound. For r ≥ d, Sanyal [18] has shown that the
trivial bound for f0(P1 +P2 + · · ·+Pr) cannot be attained,
whereas tight upper bounds for this case were very recently
shown by Weibel [22].

Tight bounds for all face numbers, i.e., for all 0 ≤ k ≤ d−
1, expressed as a function of the number of vertices or facets
of the summands, are only known for two d-polytopes when
d ≥ 3. Fukuda and Weibel [7] were the first to derive such
bounds for two 3-polytopes in R3 in terms of the number
of vertices of the polytopes, while tight bounds in terms of
the number of facets of the two polytopes were proved by
Weibel [21]. Weibel’s bound for f2(P1 +P2) in [21] has been
generalized to the number of facets, f2(P1 +P2 + · · ·+Pr), of
the Minkowski sum of any number of 3-polytopes by Fogel,
Halperin and Weibel [5]. For d-polytopes in Rd, where d ≥ 4,
Karavelas and Tzanaki [13], have shown that

fk−1(P1 + P2) ≤ fk(Cd+1(n1 + n2))

−
b d+1

2
c∑

i=0

(
d+1−i
k+1−i

) ((
n1−d−2+i

i

)
+
(
n2−d−2+i

i

))
,

(2)

for all 1 ≤ k ≤ d, where ni = f0(Pi), i = 1, 2, and Cd(n)
stands for the cyclic d-polytope with n vertices. The bounds
in (2) have been shown to be tight, and match the corre-
sponding bounds for 2- and 3-polytopes.

1.2 Overview
In this paper we use various basic concepts from discrete

geometry and, in particular, polytope theory; the interested
reader may refer to [23] for definitions and details. In this
work we continue the line of research in [13], extending the
methods to the case of three d-polytopes in Rd. This turns
out to be far from trivial. Allowing just one more summand
significantly raises the problem’s intricacy. In particular,
deriving Lemmas 4, 5 and 8, which are essential in proving
our upper bounds, requires much more involved techniques
compared to the case of two polytopes. This is also the
case when establishing the tightness of the upper bounds in
Section 3: in our constructions an additional difficulty had to
be overcome, since we require that not only the face numbers
of the sum of the three polytopes are maximal, but also those
of the three pairwise sums of the three polytopes. Even
more importantly, the case of three d-polytopes provides a
valuable insight towards our ultimate goal, the general case
of r d-polytopes in Rd, for any d, r ≥ 2. Using the tools
and methodology applied in this paper, some of the results
obtained here can be generalized to the case d, r ≥ 2 (see
Section 4), while others still remain elusive. We state our
main result to be proved in the following two sections.

Theorem 1. Let P1, P2 and P3 be three d-polytopes in
Rd, d ≥ 2, with ni ≥ d+ 1 vertices, 1 ≤ i ≤ 3. Then, for all
1 ≤ k ≤ d, we have:

fk−1(P1 + P2 + P3) ≤ fk+1(Cd+2(n[3]))

−
b d+2

2
c∑

i=0

(
d+2−i
k+2−i

) ∑
∅⊂S⊂[3]

(−1)|S|
(
nS−d−3+i

i

)
− δ
(b d

2
c+1

k−b d
2
c

) 3∑
i=1

(ni−b d2 c−2

b d
2
c+1

)
,

where [3] = {1, 2, 3}, δ = d − 2b d
2
c, and nS =

∑
i∈S ni,

∅ ⊂ S ⊆ [3]. Moreover, for any d ≥ 2, there exist three
d-polytopes in Rd for which the bounds above are attained.

To establish the upper bounds (cf. Section 2) we first lift
the three d-polytopes in Rd+2 using an affine basis of R2,
and form the convex hull C of the embedded polytopes in
Rd+2. The polytope C is known as the Cayley polytope of the
Pi’s. Exploiting the bijection between the set F[3], consisting
of the k-faces of C that contain vertices from each Pi, and
the (k − 2)-faces of P1 + P2 + P3, we reduce the derivation
of upper bounds for fk−2(P1 + P2 + P3) to deriving upper
bounds for fk(F[3]), 2 ≤ k ≤ d+ 1.

The rest of our upper bound proof follows the main steps
of McMullen’s proof of the Upper bound Theorem for poly-
topes [17]. We add auxiliary vertices to appropriate faces of
the Cayley polytope C, resulting in a simplicial polytope Q
whose face set contains F[3]. We then consider the f -vector
f(∂Q) and the h-vector h(∂Q) of the boundary complex ∂Q
of Q, and derive expressions for their entries via the corre-
sponding vectors for F[3]. Using these expressions, we con-
tinue by deriving Dehn-Sommerville-like equations for F[3].
As an intermediate step we define the subcomplex K[3] of



C as the closure, under subface inclusion, of F[3], and de-
rive expressions for its f - and h-vectors (cf. relations (3)
and (9) with R = [3]). This allows us to write the Dehn-
Sommerville-like equations for F[3] in the very concise form:

hd+2−k(F[3]) = hk(K[3]), 0 ≤ k ≤ d+ 2.

Using a well known relation by McMullen (cf. rel. (12)),
along with the expressions that relate the h-vector of ∂Q
with those of F[3] and K[3], we establish a recurrence relation
for the elements of h(F[3]) (see Lemma 6). This recurrence
relation is then used to prove upper bounds on the elements
of h(F[3]) and h(K[3]). These upper bounds combined with
the Dehn-Sommerville-like equations for F[3], yield refined

upper bounds for the values hk(F[3]) when k > b d+2
2
c. We

end by establishing our upper bounds on the number of k-
faces, 0 ≤ k ≤ d− 1, of P1 + P2 + P3 by computing f(F[3])
from h(F[3]). At the same time we establish conditions on
a subset of the elements of the vectors f(FR), ∅ ⊂ R ⊆
[3], that are sufficient and necessary in order for the upper
bounds in the number of k-faces of P1 +P2 +P3 to be tight
for all k (FR stands for the set of faces of C that have at
least one vertex from each Pi for all i ∈ R, but no vertex
from any Pj with j 6∈ R).

In Section 3 we describe the constructions that establish
the tightness of our upper bounds. For d = 2 and d = 3 we
rely on previous results. For d ≥ 4 we define three convex
d-polytopes, whose vertices lie on three distinct moment-like
d-curves, and show that the sets FR, ∅ ⊂ R ⊆ [3], associ-
ated with them satisfy the sufficient and necessary condi-
tions mentioned above. We conclude with Section 4, where
we discuss the case of four or more summands and directions
for future work.

A more detailed presentation of the results presented in
this paper, including the complete proofs, may be found
in [11].

2. UPPER BOUNDS

2.1 The Cayley trick, f-vectors, h-vectors and
Dehn-Sommerville-like equations

Recall that [3] stands for the set {1, 2, 3}, and denote by
Xj := {R ⊆ [3] | |R| = j}, the set of all subsets of [3] of
cardinality j, for 1 ≤ j ≤ 3. Consider three d-polytopes
P1, P2 and P3 in Rd, and choose the basis e2,1 = (0, 0),
e2,2 = (1, 0), e2,3 = (0, 1), as the preferred affine basis of
R2. The Cayley embedding of the Pi’s is defined via the
maps µi(x) = (e2,i,x), and we denote by C the (d + 2)-
polytope we get by taking the convex hull of the sets Vi =
{µi(v) | v ∈ Vi}, where Vi is the vertex set of Pi. This is
known as the Cayley polytope of the Pi. Similarly, by taking
appropriate affine bases, we define the Cayley polytope CR
of all polytopes Pi, i ∈ R, where R ∈ Xj , j = 1, 2. These are
the Cayley polytopes of all pairs of Pi’s and, trivially, the
Pi’s themselves. Clearly, CR ≡ Pi, for R ∈ X1. Moreover,
C ≡ C[3].

For any ∅ ⊂ R ⊆ [3], let VR denote the union of the sets

Vi, i ∈ R. In the sequel we shall identify CR ⊂ Rd+|R|−1,
for all R ∈ Xj , j = 1, 2, with the affinely isomorphic and
combinatorially equivalent polytope conv(VR) ⊂ C ⊂ Rd+2.
This will allow us to study properties of these subsets of C
by examining the corresponding Cayley polytopes which lie
in lower dimensional spaces.

We shall denote by FR, ∅ ⊂ R ⊆ [3], the set of proper
faces of CR, with the property that F ∈ FR if F ∩ Vi 6= ∅,
for all i ∈ R. In other words, FR consists of all the proper
faces of CR that have at least one vertex from each Vi, for
all i ∈ R. Clearly, if |R| ≥ 2, then f0(FR) = 0. Moreover,
if R ∈ X1 then FR ≡ ∂Pi. The dimension of FR is the
maximum dimension of the faces in FR, i.e., dim(FR) =
maxF∈FR dim(F ) = d+ |R| − 2.

Let W be the d-flat of Rd+2:

W = { 1
3
e2,1 + 1

3
e2,2 + 1

3
e2,3} × Rd,

and consider the weighted Minkowski sum 1
3
P1 + 1

3
P2 + 1

3
P3.

Note that this is nothing more than P1+P2+P3, scaled down
by 1

3
, hence these two sums are combinatorially equivalent.

The Cayley trick [10] says that the intersection of W with C
is combinatorially equivalent (isomorphic) to the weighted
Minkowski sum 1

3
P1 + 1

3
P2 + 1

3
P3, hence, also to the un-

weighted Minkowski sum P1 + P2 + P3 (see also Fig. 1).
Moreover, every face of P1 +P2 +P3 is the intersection of a
face of F[3] with W . This implies that fk−1(P1 +P2 +P3) =
fk+1(F[3]), for all 1 ≤ k ≤ d.

x2

x1

(0, 1)

(1, 0)

(0, 1
3
)

(1
3
, 0)(0, 0)

P1

P2

P3

W

Figure 1: Schematic of the Cayley trick for three
polytopes. The three polytopes P1, P2 and P3 are
shown in red, green and blue, respectively. The
polytope 1

3
P1 + 1

3
P2 + 1

3
P3 is shown in black.

The Cayley polytope C need not be simplicial. To compute
the upper bounds for the number of k-faces of P1 +P2 +P3,
we shall construct a simplicial polytope Q from C in two
steps: First, in the rest of the paper we assume that C is “as
simplicial as possible”, i.e., all faces of C are simplicial except
for the trivial faces of CR, for all ∅ ⊂ R ⊆ [3]. Otherwise,
we can employ the so called bottom-vertex triangulation [16],
where we triangulate every face of C except the trivial faces
of CR (i.e., CR themselves and not their proper faces) for all
∅ ⊂ R ⊆ [3]. The resulting complex is polytopal (cf. [3])
and all of its faces are simplicial, except for the seven trivial
faces above. Moreover, it has the same number of vertices
as C, while the number of its k-faces is never less than the
number of k-faces of C.

Under the “as simplicial as possible” assumption above,
the faces in FR are simplicial. We shall denote by KR the



closure, under subface inclusion, of FR, i.e., KR contains all
the faces in FR and all the faces that are subfaces of faces
in FR. It is easy to see that KR does not contain any of the
trivial faces of CS , S ⊆ R, and, thus, KR is a pure simplicial
(d + |R| − 2)-complex, whose facets are precisely the facets
in FR. It is also clear that FR ≡ KR ≡ ∂PR, for R ∈ X1.
Moreover, K[3] is the boundary complex ∂C of the Cayley
polytope C, except for its three facets (i.e., (d+1)-faces) CR,
R ∈ X2, and its three ridges (i.e., d-faces) Pi, 1 ≤ i ≤ 3.

Consider a k-face F of KR, ∅ ⊂ R ⊆ [3]. By the definition
of KR, F is either a k-face of FR, or a k-face of FS for some
nonempty subset S of R. Hence:

fk(KR) =
∑
∅⊂S⊆R

fk(FS), −1 ≤ k ≤ d+ |R| − 2, (3)

where, in order for the above equation to hold for k = −1,
we set f−1(FR) = (−1)|R|−1. In what follows we use the
convention that fk(FR) = 0, for any k < −1 or k > d +
|R| − 2.

To complete the construction of the simplicial polytope
Q, we are going to define auxiliary vertices in Rd+2 not con-
tained in Vi, i = 1, 2, 3. For every ∅ ⊂ R ⊂ [3] we add a
vertex yR in the relative interior of CR and, following [3],
we consider the complex arising by taking successive stellar
subdivisions of ∂C as follows:

(i) we form the complex arising from ∂C by taking the
stellar subdivisions st(y{i}, C{i}) for all 1 ≤ i ≤ 3, then

(ii) we form the complex arising from the one constructed
in the previous step by taking the stellar subdivisions
st(yR, C′R) for every R ∈ X2. C′R is the complex ob-
tained by taking, for every S ⊂ R, the stellar subdivi-
sion of yS over the boundary complex of CS .

This complex is polytopal and isomorphic to the boundary
complex of a (d + 2)-polytope, which we shall denote as Q
(see also Fig. 2). The boundary complex ∂Q is a simpli-
cial (d + 1)-sphere. The simpliciality of ∂Q will allow us
to utilize its Denh-Sommerville equations in order to prove
Dehn-Sommerville-like equations for F[3] in the upcoming
Lemma 2. We shall denote by V := V1 ∪V2 ∪V3 ∪{yR | ∅ ⊂
R ⊂ [3]} the vertex set of Q.

By distinguishing cases with respect to the auxiliary ver-
tices yR that a k-face F of ∂Q contains, we can count the
number of all k-faces of ∂Q, for all 0 ≤ k ≤ d+ 1:

fk(∂Q) = fk(F[3]) +
∑
R∈X2

[fk(FR) + fk−1(FR)]

+
∑
R∈X1

[fk(FR) + 3fk−1(FR) + 2fk−2(FR)].
(4)

Relation (4) also holds for k ∈ {−1, 0}, since, by convention,
we have set fl(FS) = 0 for all l < −1 and ∅ ⊂ S ⊆ [3].

Denote by Y a generic subset of faces of C. Y will either
be a subcomplex of the boundary complex ∂C of C, or one of
the FR’s. Let δ be the dimension of Y. Then we can define
the h-vector of Y as

hk(Y) =

δ+1∑
i=0

(−1)k−i
(
δ+1−i
δ+1−k

)
fi−1(Y). (5)

Another quantity that will be heavily used in the rest of
the paper is that we call the m-order g-vector of Y, the k-th

x2

x1

(0, 1)

(1, 0)(0, 0)

P1

P2

P3

y{2,3}

y{1,2}

y{1,3}

Figure 2: The (d+ 2)-polytope Q.

element of which is given by the following recursive formula:

g
(m)
k (Y) =

{
hk(Y), m = 0,

g
(m−1)
k (Y)− g(m−1)

k−1 (Y), m > 0.
(6)

Observe that for m = 0 we get the h-vector of Y, for m =
1 we get the g-vector of Y, while, in general, g(m)(Y) is
nothing but the m-order backward finite difference of h(Y).

We next define the summation operator Sk(·;D, ν) whose
action on Y is as follows:

Sk(Y;D, ν) =

D+1∑
i=0

(−1)k−i
(
D+1−i
D+1−k

)
fi−1−ν(Y). (7)

Assuming that the dimension of Y is δ, ν ≥ 0, δ ≤ D, and
D−δ−ν ≥ 0, it is easy to verify that for any k ≥ 0 we have:

Sk(Y;D, ν) = g
(D−δ−ν)
k−ν (Y). (8)

Applying the summation operator in (7) to relations (3)
and (4), while using (8), we can prove the following lemma
which relates the h-vectors of FR and KR with each other,
and with the h-vector of ∂Q. The last among the relations
proved in the following lemma can be thought of as the ana-
logue of the Dehn-Sommerville equations for F[3] and K[3].

Lemma 2. The following relations hold:

(i) For all ∅ ⊂ R ⊆ [3] and 0 ≤ k ≤ d+ |R| − 1, we have:

hk(KR) =
∑
∅⊂S⊆R

g
(|R|−|S|)
k (FS), (9)

(ii) For all 0 ≤ k ≤ d+ 2, we have:

hk(∂Q) = hk(F[3]) +
∑
R∈X2

hk(FR)

+
∑
R∈X1

[hk(FR) + hk−1(FR)],
(10)

and

hd+2−k(F[3]) = hk(K[3]). (11)



2.2 Recurrence relation for h(F[3])

Recall that we denote by V the vertex set of ∂Q and by
Vi the (Cayley embedding of the) vertex set of ∂Pi, 1 ≤
i ≤ 3. Let Y/v denote the link of vertex v of Y in the
simplicial complex Y. McMullen [17] showed that for any
δ-dimensional polytope P the following relation holds, for
all 0 ≤ k ≤ δ − 1:

(k + 1)hk+1(∂P ) + (δ − k)hk(∂P ) =
∑

v∈vert(∂P )

hk(∂P/v).

(12)
Applying relation (12) to the (d+2)-dimensional polytope
Q, we have, for all 0 ≤ k ≤ d+ 1:

(k + 1)hk+1(∂Q) + (d+ 2− k)hk(∂Q)

=
∑
v∈V[3]

hk(∂Q/v) +
∑

∅⊂R⊂[3]

hk(∂Q/yR), (13)

where we used the fact that V is the disjoint union of the
vertex sets V[3] = V1 ∪ V2 ∪ V3 and {yR | ∅ ⊂ R ⊂ [3]}.
The following lemma offers convenient expressions for the
elements in the sums of the right-hand side of (13) in terms
of the h-vectors of the FR’s and KR’s.

Lemma 3. The h-vectors of the complexes ∂Q/v, v ∈ Vi,
i = 1, 2, 3, ∂Q/yR, R ∈ X1, and ∂Q/yR, R ∈ X2 are given
by the following relations:

hk(∂Q/v) = hk(K[3]/v) +
∑

{i}⊆R⊂[3]

hk−1(KR/v)

+ hk−2(K{i}/v), v ∈ Vi, i ∈ [3],

(14)

hk(∂Q/yR) = hk(FR) + hk−1(FR), R ∈ X1, (15)

hk(∂Q/yR) =
∑
∅⊂S⊆R

hk(FS), R ∈ X2. (16)

Using Lemmas 2 and 3, we can manipulate relation (13),
to arrive at the generalization of relation (12) for F[3].

Lemma 4. The following relation holds, for all 0 ≤ k ≤
d+ 1:

(k + 1)hk+1(F[3]) + (d+ 2− k)hk(F[3])

=
∑

∅⊂R⊆[3]

(−1)3−|R|
∑
v∈VR

g
(3−|R|)
k (KR/v). (17)

The last intermediate step that we need in order to de-
rive the recurrence relation for the elements of h(F[3]) is
to bound the right-hand side of (17) by an expression that
does not involve the links KR/v. This is the subject of the
following lemma.

Lemma 5. The following relation holds, for all 0 ≤ k ≤
d+ 1: ∑

∅⊂R⊆[3]

(−1)3−|R|
∑
v∈VR

g
(3−|R|)
k (KR/v)

≤
∑

∅⊂R⊆[3]

(−1)3−|R|
∑
v∈VR

g
(3−|R|)
k (KR).

(18)

y{1}

y{1,2}

y{1,3}

x2

x1

(0, 1)

(1, 0)(0, 0)

P1

P2

P3

y{3}

y{2}

∂Q′

Figure 3: The (d+ 1)-complex ∂Q′ that we get from
∂Q be removing all faces incident to y{2,3}.

Proof Sketch. First observe that by rearranging terms
we can rewrite relation (18) as follows:

3∑
i=1

∑
v∈Vi

∑
{i}⊆R⊆[3]

(−1)3−|R| g
(3−|R|)
k (KR/v)

≤
3∑
i=1

∑
v∈Vi

∑
{i}⊆R⊆[3]

(−1)3−|R| g
(3−|R|)
k (KR).

(19)

Clearly, to show that relation (19) holds, it suffices to prove
that, for all i ∈ [3], and for all v ∈ Vi,∑

{i}⊆R⊆[3]

(−1)3−|R| g
(3−|R|)
k (KR/v)

≤
∑

{i}⊆R⊆[3]

(−1)3−|R| g
(3−|R|)
k (KR).

(20)

We shall sketch a proof of relation (20) for i = 1 and for any
v ∈ V1; the remaining two cases are entirely similar. We
shall define a subset G of ∂Q such that it contains all faces
in F[3] and it satisfies a relation from which we can easily
obtain relation (20). The first step towards this construction
is to consider the polytopal (d + 1)-complex ∂Q′ we get by
removing from ∂Q the faces that are incident to y{2,3} (see
Fig. 3). Let X denote the set of faces of ∂Q′ that are either
faces in the star S{1,2} of y{1,2} in ∂Q′ or faces in the star
S{1,3} of y{1,3} in ∂Q′. Now define G as the set of faces of
∂Q′ that are either faces in F[3] or faces in F{2,3}.

The sets X and G form a disjoint union of the faces in
∂Q′, which implies that:

fk(∂Q′) = fk(X ) + fk(G), −1 ≤ k ≤ d+ 1.

By applying the summation operator Sk(·; d + 1, 0) we im-
mediately get the corresponding h-vector relation:

hk(∂Q′) = hk(X ) + hk(G), 0 ≤ k ≤ d+ 2.

We next show that there exists a shelling S(∂Q′) of ∂Q′
such that the facets in X appear before the facets in G,
and for this particular shelling, hk(G) counts the number of
restrictions of size k that correspond to facets of ∂Q′ that
are also facets of G. Notice that S(∂Q′) is an initial segment
of a shelling of ∂Q that shells the star of y{2,3} last.



The same argument also shows that ∂Q′/v can be seen as
the disjoint union of the sets X/v and G/v, and that

hk(∂Q′/v) = hk(X/v) + hk(G/v), 0 ≤ k ≤ d+ 1.

As for hk(G), we can argue that hk(G/v) counts the number
of restrictions of size k that correspond to facets of ∂Q′/v
that are also facets of G/v.

To prove that

hk(G/v) ≤ hk(G), 0 ≤ k ≤ d+ 2, (21)

we consider the dual graph G∆(∂Q) of ∂Q, oriented ac-
cording to the shelling S(∂Q), as well as the dual graph
G∆(∂Q/v) of ∂Q/v, also oriented according to the shelling
S(∂Q/v). We will denote by V∆(Y) the subset of vertices of
G∆(∂Q) that are the duals of the facets in ∂Q that belong to
Y, where Y stands for a subset of the set of faces of ∂Q. Since
S(∂Q/v) is induced from S(∂Q), G∆(∂Q/v) is isomorphic
to the subgraph of G∆(∂Q) defined over V∆(star(v, ∂Q)).
Moreover, hk(∂Q) counts the number of vertices of V∆(∂Q)
with in-degree equal to k, while hk(G) counts the number
of vertices of V∆(G) of in-degree k in G∆(∂Q) (for the par-
ticular shelling S(∂Q) of ∂Q that we have chosen). Con-
sequently, hk(G) counts the number of vertices of V∆(G)
of in-degree k in G∆(∂Q); in an analogous manner, we
can conclude that hk(G/v) counts the number of vertices
of V∆(star(v,G)) with in-degree k in G∆(∂Q/v). Since,
however, G∆(∂Q/v) is the subgraph of G∆(∂Q) that cor-
responds to the face v∆ of G∆(∂Q), the number of vertices
of V∆(star(v,G)) with in-degree k cannot exceed the number
of vertices of V∆(G) with in-degree k. Hence, we get relation
(21). Inequality (20) in now established by showing that its
left- and right-hand side are equal to hk(G/v) and hk(G),
respectively.

Using inequality (18) in Lemma 5, we finally arrive at the
following recurrence relation for the elements of h(F[3]).

Lemma 6. For all 0 ≤ k ≤ d+ 1, we have:

hk+1(F[3]) ≤
n[3]−d−2+k

k+1
hk(F[3]) +

3∑
i=1

ni
k+1

gk(F[3]\{i}).

(22)

Proof Sketch. Using Lemma 5, we can bound the left
hand side of relation (17) by the right hand side of relation
(18), which involves g-vectors, of various orders, of the com-
plexes KR, where ∅ ⊂ R ⊆ [3]. These can be substituted by
their equal values from relation (9) with R = [3] and for all
R ∈ X2. This gives an inequality involving h-vectors and g-
vectors of F[3] and FR, R ∈ X2, which simplifies to relation
(22).

2.3 Establishing the upper bounds
In this paragraph we establish upper bounds for the num-

ber of (k+2)-faces of F[3], 0 ≤ k ≤ d−1, which immediately
yield upper bounds for the number of k-faces of P1 +P2 +P3.
Our starting point is the recurrence relation (22). Using this
recurrence relation, along with the corresponding relation
for h(FR), R ∈ X2 (cf. [13, Lemma 3.2]), we can derive the
upper bounds for h(F[3]) and h(K[3]) stated in the following
two lemmas, as well as necessary and sufficient conditions
for these bounds to be tight (see also Section A of the Ap-
pendix for the proof of Lemma 7). These conditions will be
exploited in Section 3 in order to prove the tightness of our
upper bounds.

Lemma 7. For all 0 ≤ k ≤ d+ 2, we have:

hk(F[3]) ≤
∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+k
k

)
, nS =

∑
i∈S

ni.

(23)
Equality holds for some 0 ≤ k ≤ b d+2

2
c, if and only if

fl−1(F[3]) =
∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
, for all 0 ≤ l ≤ k.

Lemma 8. For all 0 ≤ k ≤ d+ 2, we have:

hk(K[3]) ≤
(n[3]−d−3+k

k

)
. (24)

Furthermore, for d ≥ 3 and d odd, we have:

hb d
2
c+1(K[3]) ≤

(n[3]−b d2 c−3

b d
2
c+1

)
−

3∑
i=1

(ni−b d2 c−2

b d
2
c+1

)
. (25)

Equality holds for some k, where 0 ≤ k ≤ b d+1
2
c, if and only

if, for 1 ≤ |R| ≤ 3, fl−1(FR) =
∑
∅⊂S⊆R(−1)|R|−|S|

(
nS
l

)
,

for all 0 ≤ l ≤ min{k, b d+|R|−1
2
c}.

Utilizing the bounds from Lemmas 7 and 8, along with
the Dehn-Sommerville-like equations (11), we arrive at the
following theorem concerning upper bounds on the number
of k-faces of the Minkowski sum of three convex d-polytopes
in Rd.

Theorem 9. Let P1, P2 and P3 be three d-polytopes in
Rd, d ≥ 2, with ni ≥ d+ 1 vertices, 1 ≤ i ≤ 3. Then, for all
1 ≤ k ≤ d, we have:

fk−1(P1 + P2 + P3) ≤ fk+1(Cd+2(n[3]))

−
b d+2

2
c∑

i=0

(
d+2−i
k+2−i

) ∑
∅⊂S⊂[3]

(−1)|S|
(
nS−d−3+i

i

)
− δ
(b d

2
c+1

k−b d
2
c

) 3∑
i=1

(ni−b d2 c−2

b d
2
c+1

)
,

(26)

where δ = d − 2b d
2
c, and nS =

∑
i∈S ni. Equality holds for

all 1 ≤ k ≤ d, if and only if

fl−1(FR) =
∑
∅⊂S⊆R

(−1)|R|−|S|
(
nS
l

)
, (27)

for all 0 ≤ l ≤ b d+|R|−1
2
c, ∅ ⊂ R ⊆ [3].

Proof Sketch. Our upper bounds will follow from the
fact that fk−1(P1 + P2 + P3) = fk+1(F[3]), 1 ≤ k ≤ d. It,
then, suffices to establish upper bounds for fk(F[3]) for all
0 ≤ k ≤ d+ 1. Indeed, writing the f -vector of F[3] in terms
of its h-vector, and using relation (11), we get:

fk−1(F[3]) =

b d+2
2
c∑

i=0

(
d+2−i
k−i

)
hi(F[3])+

b d+1
2
c∑

j=0

(
j

k−d−2+j

)
hj(K[3]).

(28)
From Lemmas 7 and 8, the two sums above are bounded,
respectively, by the following quantities:

b d+2
2
c∑

i=0

(
d+2−i
k−i

) ∑
∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+i
i

)
,

b d+1
2
c∑

i=0

(
j

k−d−2+j

)(n[3]−d−3+j

j

)
− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑
i=1

(ni−b d2 c−2

b d
2
c+1

)
,



where δ = d − 2b d
2
c. Combining relation (28) with the

bounds above, and after a few calculations we arrive at the
following:

fk−1(F[3]) ≤ fk−1(Cd+2(n[3]))

−
b d+2

2
c∑

i=0

(
d+2−i
k−i

) ∑
∅⊂S⊂[3]

(−1)|S|
(
nS−d−3+i

i

)
− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑
i=1

(ni−b d2 c−2

b d
2
c+1

)
.

From the derivation of the upper bounds above (see also
relation (28)), it is clear that the bounds are tight if and
only if:

(1) hk(F[3]) is maximal, for all 0 ≤ k ≤ b d+2
2
c, and

(2) hk(K[3]) is maximal, for all 0 ≤ k ≤ b d+1
2
c.

According to Lemma 7 and Lemma 8, these conditions are,
respectively, equivalent to requiring that:

(i) fl−1(F[3]) =
∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
, for all 0 ≤ l ≤

b d+2
2
c, and

(ii) fl−1(FR) =
∑
∅⊂S⊆R(−1)|R|−|S|

(
nS
l

)
, for all 0 ≤ l ≤

min{b d+1
2
c, b d+|R|−1

2
c}, and for all ∅ ⊂ R ⊆ [3].

For R ≡ [3], condition (i) implies condition (ii), while for

R ⊂ [3], min{b d+1
2
c, b d+|R|−1

2
c} = b d+|R|−1

2
c. We, there-

fore, conclude that the bounds in (26) are attained if and

only if, conditions (27) hold true for all 0 ≤ k ≤ b d−|R|+1
2
c

and for all ∅ ⊂ R ⊆ [3].

3. TIGHTNESS OF UPPER BOUNDS
In this section we show that the bounds in Theorem 9 are

tight. We distinguish between the cases d = 2, d = 3 and
d ≥ 4. For d = 2, it is easy to verify that for k = 1, 2, the
right-hand side of inequality (26) evaluates to n1 + n2 + n3,
which is known to be tight.

3.1 Three dimensions
In order to prove that our upper bounds are tight, we

exploit two results: one by Fukuda and Weibel [7] and one
by Weibel [22]. Theorem 3 in [22] relates the number of k-
faces of the Minkowski sum of r d-polytopes P1, . . . , Pr in
Rd, where r ≥ d, to the number of k-faces of the Minkowski
sum of subsets of these polytopes of size at most d − 1.
In the same paper, Weibel also presented a construction of
r simplicial d-polytopes, such that any subset S of these
polytopes of size at most d − 1 has the maximum possible
number of vertices, namely, f0(PS) =

∏
i∈S ni. Specializing

this construction for r = d = 3, we deduce that it is possible
to construct three simplicial 3-polytopes P1, P2, P3 in R3,
such that f0(Pi) = ni, 1 ≤ i ≤ 3, and f0(Pi + Pj) = ninj ,
1 ≤ i < j ≤ 3. Then, from [22, Theorem 3] we get:

f0(P1+P2+P3) = n1n2 + n2n3 + n1n3 − n1 − n2 − n3 + 2,

which matches the expression for the upper bound in The-
orem 9 for k = 0. Since all Pi’s are simplicial, we have
that

f1(Pi) = 3ni − 6 and f2(Pi) = 2ni − 4,

for all 1 ≤ i ≤ 3. On the other hand, since f0(Pi + Pj) is
maximal, for all 1 ≤ i < j ≤ 3, we get, by [7, Corollary 4],
that fk(Pi + Pj) is also maximal for k = 1, 2, and for all
1 ≤ i < j ≤ 3. Hence:

f1(Pi + Pj) = 2ninj + ni + nj − 8,

f2(Pi + Pj) = ninj + ni + nj − 6.

Combining the above with [22, Theorem 3] we obtain:

f1(P1+P2+P3) = 2n1n2+2n2n3+2n1n3−n1−n2−n3−6,

and

f2(P1 + P2 + P3) = n1n2 + n2n3 + n1n3 − 6,

which again match the expressions for the upper bounds in
Theorem 9 for k = 1, 2.

3.2 Four or more dimensions
We now focus on the case d ≥ 4. We shall construct three

d-polytopes P1, P2 and P3 in Rd, such that they satisfy the
conditions in relation (27). Consequently, as Theorem 9
asserts, these polytopes attain the upper bounds in (26).

Consider the following d-dimensional moment-like curves
in Rd:

γ1(t) = (t, ζt2, ζt3, t4, t5, . . . , td),

γ2(t) = (ζt, t2, ζt3, t4, t5, . . . , td), (29)

γ3(t) = (ζt, ζt2, t3, t4, t5, . . . , td),

where t > 0, and ζ ≥ 0. Let e1,1 = (0), e1,2 = (1) be the
standard affine basis of R and recall that e2,1 = (0, 0), e2,2 =
(1, 0), e2,3 = (0, 1) is the standard affine basis of R2. We
shall define three polytopes as the convex hulls of points,
chosen appropriately on each of these d-curves. Let xi,j ,
1 ≤ j ≤ ni, 1 ≤ i ≤ 3, be n[3] positive real numbers, such
that xi,j < xi,j+1, 1 ≤ j ≤ ni−1, and let τ be a positive real
parameter. Also let νi = 3 − i, 1 ≤ i ≤ 3, and set ζ = τM ,
where M ≥ d(d + 1). We are going to define three vertex
sets Vi, i = 1, 2, 3, as follows:

Vi = {γ(xi,1τ
νi),γ(xi,2τ

νi), . . .γ(xi,niτ
νi)}. (30)

Call Pi the d-polytope we get as the convex hull of the ver-
tices in Vi, and let Vi be the image of Vi via the Cayley
embedding. As in Section 2, call C the Cayley polytope of
the Pi’s in Rd+2, and let FR, ∅ ⊂ R ⊆ [3], be the set of faces
of CR with at least one vertex from each Vi, i ∈ R. Note that,
by construction, Pi is a b d

2
c-neighborly polytope in Rd with

ni vertices, which immediately implies that conditions (27)
hold for R ∈ X1 and for all 0 ≤ l ≤ b d

2
c. Hence, it suffices

to show that, for 2 ≤ |R| ≤ 3 and for all 0 ≤ l ≤ b d+|R|−1
2
c:

fl−1(FR) =
∑
∅⊂S⊆R

(−1)|R|−|S|
(
nS
l

)
, (31)

which we succeed by choosing a sufficiently small value for
τ .

In more detail, to prove that conditions (31) hold for R ∈
X2 ∪ X3 and for all |R| ≤ l ≤ b d+|R|−1

2
c, we adopt the key

idea used in the proofs of [23, Theorem 0.7 & Corollary
0.8] on basic properties of cyclic d-polytopes, and adapt this
idea to our setting. Let us choose some R ∈ X2 ∪ X3. We
essentially show that the parameter τ can be chosen so that

for any 0 ≤ l ≤ b d+|R|−1
2
c, any subset U of VR = ∪i∈RVi

of size l, such that U contains at least one vertex from each



Pi, i ∈ R, defines a (l − 1)-face of FR. At a more technical
level, for each U ⊆ VR, such that U ∩ Vi 6= ∅, for all i ∈
R, we define a hyperplane HU(x) in Rd+|R|−1 that passes
through the vertices in U. We then show that for τ small
enough HU(x) is, in fact, a supporting hyperplane for CR,
where recall that CR stands for the Cayley polytope of the
polytopes Pi with i ∈ R. Let us call τ? the value of τ for
which relation (31) holds true for all R ∈ X2 ∪ X3 and for

all |R| ≤ l ≤ b d+|R|−1
2
c. Since f−1(FR) = (−1)|R|−1, for all

∅ ⊂ R ⊆ [3], while fl−1(FR) = 0, for all 1 ≤ l ≤ |R|, we
conclude that for τ ≡ τ?, conditions (31) actually hold for

all 0 ≤ l ≤ b d+|R|−1
2
c.

Combining the analysis above with that for three 3-poly-
topes in R3 at the beginning of this section, we conclude that
the upper bounds in Theorem 9 are actually tight for any
d ≥ 2, as already stated in Theorem 1 in the introductory
section of the paper.

4. OPEN PROBLEMS
Our ultimate goal is to extend our results for the Mink-

owski sum of r d-polytopes in Rd, for r ≥ 4 and d ≥ 3.
Towards this direction, we can extend our methodology and
tools so as to prove relations for r polytopes that general-
ize certain relations that hold true for two or three poly-
topes. For example, the Dehn-Sommerville-like equations in
the Lemma 2 (cf. rel. (11)) generalize to:

hd+r−1−k(F[r]) = hk(K[r]), 0 ≤ k ≤ d+ r − 1, (32)

where [r] = {1, 2, . . . , r}, while FR and KR, ∅ ⊂ R ⊆ [r],
are defined as in Section 2. Notice that, since for r = 1
we have F[1] ≡ K[1] ≡ ∂P1, the equations in (32) reduce to
the well-known Dehn-Sommerville equations for a simplicial
d-polytope.

On the other hand, a recurrence relation similar to (22) in
Lemma 6 is not as straightforward to obtain. However, we
conjecture that the following recurrence relation holds for
all 0 ≤ k ≤ d+ r − 2:

hk+1(F[r]) ≤
n[r]−d−r+1+k

k+1
hk(F[r]) +

r∑
i=1

ni
k+1

gk(F[r]\{i}),

where n[r] =
∑r
i=1 ni.

The bounds presented in this paper refer to polytopes of
the same dimension. We would like to derive similar bounds
for two or more polytopes when the dimensions of these
polytopes differ, as well as in the special case of simple poly-
topes. Finally, a similar problem is to express the number
of k-faces of the Minkowski sum of r d-polytopes in terms
of the number of facets of these polytopes. Results in this
direction are known for d = 2 and d = 3 only. We would like
to derive such expressions for any d ≥ 4 and any number, r,
of summands.
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APPENDIX
A. PROOF OF LEMMA 7

We start by proving a lemma that establishes bounds for
the g-vector of FR, R ∈ X2.

Lemma 10. Let R be a non-empty subset of [3] of cardi-
nality 2. Then, for all 0 ≤ k ≤ d+ 2, we have:

gk(FR) ≤
∑
∅⊂S⊆R

(−1)|S|
(
nS−d−3+k

k

)
. (33)

Equality holds for some k, where 0 ≤ k ≤ b d+1
2
c, if and only

if fl−1(FR) =
∑
∅⊂S⊆R(−1)|S|

(
nS
l

)
, for all 0 ≤ l ≤ k.

Proof. The bound clearly holds, as equality, for k = 0.
For k ≥ 1, from [13, Lemma 3.2] we have:
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Subtracting hk−1(FR) from both sides of (34) we get:

gk(FR) ≤ nR−d−2
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Using now the upper bounds for hk−1(FR), gk−1(FS), ∅ ⊂
S ⊂ R, and noting that nR−d−2 ≥ 2(d+1)−d−2 = d > 0,
we deduce, for any k ≥ 1, that gk(FR) is bounded by above
by the quantity:
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We focus now on the equality claim. Suppose first that
fl−1(FR) =
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)
, for all 0 ≤ l ≤ k. Then,

by [13, Lemma 3.3], hλ(FR) =
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for λ = k − 1, k, which gives:
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Suppose now that gk(FR) =
∑
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(
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)
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By relation (35), we conclude that hk−1(FR) must be equal
to its upper bound (cf. [13, Lemma 3.3]), since, otherwise,
gk(FR) would not be maximal, which contradicts our as-
sumption on the value of gk(FR). This gives:
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Now the fact that hk(FR) is maximal, implies that hl(FR)
must be equal to its maximal value for all 0 ≤ l < k. To
see this suppose that hl(FR) is not maximal for some l,
with 0 ≤ l < k, and among all such l choose the largest
one. Then, Lemmas 3.2 and 3.3 in [13] imply that hl+1(FR)
cannot be maximal, which contradicts the maximality of l.
Summarizing, we deduce that if gk(FR) is equal to its upper
bound in (33), so is hl(FR) for all 0 ≤ l ≤ k. By Lemma 3.3

in [13], this implies that fl−1(FR) =
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for all 0 ≤ l ≤ k.

We are now ready to prove Lemma 7; we do so by induc-
tion on k.

The result clearly holds for k = 0, since
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Suppose the bound holds for some k ≥ 0. We will show
that it holds for k + 1. Using relation (22), Lemma 10, and
the fact that, for any k ≥ 0,

n[3] − d− 2 + k ≥ 3(d+ 1)− d− 2 = 2d+ 1 > 0,

we have:
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It is easy to see that the right-hand side of the above in-
equality is equal to:
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where we used the fact that:
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The rest of the proof is concerned with the equality claim.
Assume first that fl−1(F[3]) =

∑
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)
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all 0 ≤ l ≤ k. Then we have:
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In the above relation we used the combinatorial identity (cf.
[8, eq. (5.25)]):∑
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where k ← i, l← d+ 2, m← d+ 2− k, n← 0, and s← nS .
Suppose now that
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Since relation (22) holds for all k ≥ 0, we conclude that
hl(F[3]) must be equal to its upper bound in (23), for all
0 ≤ l < k. To see this suppose that (23) is not tight for some
l, with 0 ≤ l < k, and among all such l choose the largest
one. Then, relation (22) implies that hl+1(F[3]) cannot be
equal to its upper bound from (23), which contradicts the
maximality of l. Hence, if hk(F[3]) is equal to its upper
bound in (23), so is hl(F[3]) for all 0 ≤ l < k, which gives,
for all l with 0 ≤ l ≤ k:
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where, in order to get from (36) to (37), we used the com-
binatorial identity (cf. [8, eq. (5.26)]):∑
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with k ← i, l ← d+ 2, m← d+ 2− l, q ← nS − d− 3, and
n← nS − d− 3.


