The maximum number of faces of the Minkowski sum of two convex polytopes*

Menelaos I. Karavelas ${ }^{\dagger \ddagger} \quad$ Eleni Tzanaki ${ }^{\dagger \ddagger}$

Abstract

We derive tight bounds for the maximum number of k-faces, $0 \leq k \leq d-1$, of the Minkowski sum, $P_{1} \oplus P_{2}$, of two d dimensional convex polytopes P_{1} and P_{2}, as a function of the number of vertices of the polytopes.

For even dimensions $d \geq 2$, the maximum values are attained when P_{1} and P_{2} are cyclic d-polytopes with disjoint vertex sets. For odd dimensions $d \geq 3$, the maximum values are attained when P_{1} and P_{2} are $\left\lfloor\frac{d}{2}\right\rfloor$-neighborly d-polytopes, whose vertex sets are chosen appropriately from two distinct d-dimensional moment-like curves.

1 Introduction

Given two d-dimensional polytopes, or simply d polytopes, P and Q, their Minkowski sum, $P \oplus Q$, is defined as the set $\{p+q \mid p \in P, q \in Q\}$. Minkowski sums are fundamental structures in both Mathematics and Computer Science. They appear in a variety of different subjects, including Combinatorial Geometry, Computational Geometry, Computer Algebra, Computer-Aided Design \& Solid Modeling, Motion Planning, Assembly Planning, Robotics (see [15, 4] and the references therein), and, more recently, Game Theory [12], Computational Biology [11] and Operations Research [16].

Despite their apparent importance, little is known about the worst-case complexity of Minkowski sums in dimensions four and higher. In two dimensions, the worst-case complexity of Minkowski sums is well understood. Given two convex polygons P and Q with n and m vertices, respectively, the maximum number of vertices and edges of $P \oplus Q$ is $n+m$ [2]. This result can be generalized to any number of summands. If P is convex and Q is non-convex (or vice versa), the worstcase complexity of $P \oplus Q$ is $\Theta(n m)$, while if both P and Q are non-convex, the complexity of their Minkowski sum can be as high as $\Theta\left(n^{2} m^{2}\right)$ [2]. When P and Q are convex 3-polytopes (embedded in the 3-dimensional Euclidean space), the worst-case complexity of $P \oplus Q$

[^0]is $\Theta(n m)$, if both P and Q are convex, and $\Theta\left(n^{3} m^{3}\right)$, if both P and Q are non-convex (e.g., see [3]). For the intermediate cases, i.e., if only one of P and Q is convex, see [14].

Given two convex d-polytopes P_{1} and P_{2} in \mathbb{E}^{d}, $d \geq 2$, with n_{1} and n_{2} vertices, respectively, embed P_{1} and P_{2} in the hyperplanes $\left\{x_{d+1}=0\right\}$ and $\left\{x_{d+1}=1\right\}$ of \mathbb{E}^{d+1}, respectively. Then the weighted Minkowski sum $(1-\lambda) P_{1} \oplus \lambda P_{2}=\left\{(1-\lambda) p_{1}+\lambda p_{2} \mid p_{1} \in P_{1}, p_{2} \in\right.$ $\left.P_{2}\right\}, \lambda \in(0,1)$, of P_{1} and P_{2} is the intersection of the convex hull $C H_{d+1}\left(\left\{P_{1}, P_{2}\right\}\right)$ with the hyperplane $\left\{x_{d+1}=\lambda\right\}$. The embedding and reduction described above are essentially what are known as the Cayley embedding and Cayley trick, respectively [7]. From this reduction we immediately get that the worstcase complexity of $(1-\lambda) P_{1} \oplus \lambda P_{2}$ is bounded from above by the complexity of $C H_{d+1}\left(\left\{P_{1}, P_{2}\right\}\right)$, which is $O\left(\left(n_{1}+n_{2}\right)^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$. Furthermore, the complexity of $(1-\lambda) P_{1} \oplus \lambda P_{2}$ is independent of λ, which implies that the complexity of the weighted Minkowski sum of two convex polytopes is the same as the complexity of their unweighted sum. Very recently (cf. 8]), the authors of this paper have considered the problem of computing the asymptotic worst-case complexity of the convex hull of a fixed number r of convex d-polytopes lying on r parallel hyperplanes of \mathbb{E}^{d+1}. A direct corollary of our results is a tight bound on the worst-case complexity of the Minkowski sum of two convex d-polytopes for all odd dimensions $d \geq 3$. More precisely, we have shown that for $d \geq 3$ odd, the worst-case complexity of $P_{1} \oplus P_{2}$ is in $\Theta\left(n_{1} n_{2}^{\left\lfloor\frac{d}{2}\right\rfloor}+n_{2} n_{1}^{\left\lfloor\frac{d}{2}\right\rfloor}\right)$, which is a refinement of the obvious upper bound when n_{1} and n_{2} asymptotically differ.

In terms of exact bounds on the number of faces of the Minkowski sum of two polytopes, results are known only when the two summands are convex. Besides the trivial bound for convex polygons (2-polytopes), mentioned above, the first result of this nature was shown by Gritzmann and Sturmfels [6]: given r polytopes $P_{1}, P_{2}, \ldots, P_{r}$ in \mathbb{E}^{d}, with a total of n non-parallel edges, the number of l-faces, $f_{l}\left(P_{1} \oplus P_{2} \oplus \cdots \oplus P_{r}\right)$, of $P_{1} \oplus P_{2} \oplus \cdots \oplus P_{r}$ is bounded from above by $2\binom{n}{l} \sum_{j=0}^{d-1-l}\binom{n-l-1}{j}$. This bound is attained when the polytopes P_{i} are zonotopes, and their generating edges are in general position. Regarding bounds as a function
of the number of vertices or facets of the summands, Fukuda and Weibel [5] have shown that, given two 3polytopes P_{1} and P_{2} in \mathbb{E}^{3}, the number, $f_{k}\left(P_{1} \oplus P_{2}\right)$, of k-faces of $P_{1} \oplus P_{2}, 0 \leq k \leq 2$, is bounded from above as follows:

$$
\begin{aligned}
& f_{0}\left(P_{1} \oplus P_{2}\right) \leq n_{1} n_{2}, \\
& f_{1}\left(P_{1} \oplus P_{2}\right) \leq 2 n_{1} n_{2}+n_{1}+n_{2}-8, \quad \text { and } \\
& f_{2}\left(P_{1} \oplus P_{2}\right) \leq n_{1} n_{2}+n_{1}+n_{2}-6,
\end{aligned}
$$

where n_{j} is the number of vertices of $P_{j}, j=1,2$. Weibel [15] has also derived similar expressions in terms of the number of facets m_{j} of $P_{j}, j=1,2$, namely:

$$
\begin{aligned}
& f_{0}\left(P_{1} \oplus P_{2}\right) \leq 4 m_{1} m_{2}-8 m_{1}-8 m_{2}+16 \\
& f_{1}\left(P_{1} \oplus P_{2}\right) \leq 8 m_{1} m_{2}-17 m_{1}-17 m_{2}+40, \quad \text { and } \\
& f_{2}\left(P_{1} \oplus P_{2}\right) \leq 4 m_{1} m_{2}-9 m_{1}-9 m_{2}+26
\end{aligned}
$$

All these bounds are tight. Fogel, Halperin and Weibel [3] have extended the bound on the number of facets of the Minkowski sum in the case of r summands. More precisely, they have shown that given r 3-polytopes $P_{1}, P_{2}, \ldots, P_{r}$ in \mathbb{E}^{3}, where P_{j} has $m_{j} \geq d+1$ facets, the number of facets of the Minkowski sum $P_{1} \oplus P_{2} \oplus \cdots \oplus P_{r}$ is bounded from above by

$$
\sum_{1 \leq i<j \leq r}\left(2 m_{i}-5\right)\left(2 m_{j}-5\right)+\sum_{i=1}^{r} m_{i}+\binom{r}{2}
$$

and this bound is tight.
For dimensions four and higher, the only known results are worst-case bounds on the number of k-faces of the Minkowski sum of convex polytopes, as a function of the number of vertices of the summands. Fukuda and Weibel [5] have shown that the number of vertices of the Minkowski sum of $r d$-polytopes P_{1}, \ldots, P_{r}, where $r \leq d-1$ and $d \geq 2$, is bounded from above by $\prod_{i=1}^{r} n_{i}$, where n_{i} is the number of vertices of P_{i}, and this bound is tight. On the other hand, for $r \geq d$ this bound cannot be attained [13]. For higher-dimensional faces, i.e., for $k \geq 1$, Fukuda and Weibel [5] have shown that $f_{k}\left(P_{1} \oplus P_{2} \oplus \cdots \oplus P_{r}\right)$ is bounded by:

$$
\sum_{\substack{1 \leq s_{i} \leq n_{i} \\ s_{1}+\ldots+s_{r}=k+r}} \prod_{i=1}^{r}\binom{n_{i}}{s_{i}}, \quad 0 \leq k \leq d-1
$$

where n_{i} is the number of vertices of P_{i}. These bounds are tight for $d \geq 4, r \leq\left\lfloor\frac{d}{2}\right\rfloor$, and for all k with $0 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor-r$.

In this paper, we extend previous results on the exact maximum number of faces of the Minkowski sum of two convex d-polytopes $\sqrt{1}$. We show that given two d polytopes P_{1} and P_{2} in \mathbb{E}^{d} with $n_{1} \geq d+1$ and $n_{2} \geq d+1$

[^1]vertices, respectively, the maximum number of k-faces of $P_{1} \oplus P_{2}$ is bounded as follows:
\[

$$
\begin{aligned}
& f_{k-1}\left(P_{1} \oplus P_{2}\right) \leq f_{k}\left(C_{d+1}\left(n_{1}+n_{2}\right)\right) \\
& \quad-\sum_{i=0}^{\left\lfloor\frac{d+1}{2}\right\rfloor}\binom{d+1-i}{k+1-i}\left(\binom{n_{1}-d-2+i}{i}+\binom{n_{2}-d-2+i}{i}\right)
\end{aligned}
$$
\]

where $1 \leq k \leq d$, and $C_{d}(n)$ stands for the cyclic d polytope with n vertices. These expressions are shown to be tight for any $d \geq 2$ and for all $1 \leq k \leq d$, and, clearly, match all relevant previous bounds (cf. [2, 5]).

To prove the upper bounds we use the embedding in one dimension higher already described above: We consider the convex hull $P=C H_{d+1}\left(\left\{P_{1}, P_{2}\right\}\right)$, where P_{1} and P_{2} are embedded in $\left\{x_{d+1}=0\right\}$ and $\left\{x_{d+1}=1\right\}$, respectively. We first argue that, for the purposes of the worst-case upper bounds, it suffices to consider the case where P is simplicial, except possibly for its two facets P_{1} and P_{2}. We concentrate on the set \mathcal{F} of faces of P that are neither faces of P_{1} nor faces of P_{2}. The reason that we focus on \mathcal{F} is that there is a bijection between the k-faces of \mathcal{F} and the $(k-1)$-faces of $P_{1} \oplus P_{2}, 1 \leq k \leq d$, and, thus, deriving upper bounds of the number of $(k-1)$-faces of $P_{1} \oplus P_{2}$ reduces to deriving upper bounds for the number of k-faces of \mathcal{F}. We then proceed in a manner analogous to that used by McMullen [10] to prove the Upper Bound Theorem for polytopes. We consider the f-vector $\boldsymbol{f}(\mathcal{F})$ of \mathcal{F}, from this we define the h-vector $\boldsymbol{h}(\mathcal{F})$ of \mathcal{F}, and continue by:
(i) deriving Dehn-Sommerville-like equations for \mathcal{F}, expressed in terms of the elements of $\boldsymbol{h}(\mathcal{F})$ and the g-vectors of the boundary complexes of P_{1} and P_{2}, and,
(ii) establishing a recurrence relation for the elements of $\boldsymbol{h}(\mathcal{F})$.
From the latter, we inductively compute upper bounds on the elements of $\boldsymbol{h}(\mathcal{F})$, which we combine with the Dehn-Sommerville-like equations for \mathcal{F}, to get refined upper bounds for the "left-most half" of the elements of $\boldsymbol{h}(\mathcal{F})$, i.e., for the values $h_{k}(\mathcal{F})$ with $k>\left\lfloor\frac{d+1}{2}\right\rfloor$. We then establish our upper bounds by computing $f(\mathcal{F})$ from $\boldsymbol{h}(\mathcal{F})$.

To prove the lower bounds we distinguish between even and odd dimensions. In even dimensions $d \geq 2$, we show that the k-faces of the Minkowski sum of any two cyclic d-polytopes with n_{1} and n_{2} vertices, respectively, whose vertex sets are distinct, attain the upper bounds we have proved. In odd dimensions $d \geq 3$, the construction that establishes the tightness of our bounds is more intricate. We consider the $(d-1)$ dimensional moment curve $\gamma(t)=\left(t, t^{2}, t^{3}, \ldots, t^{d-1}\right)$, $t>0$, and define two vertex sets V_{1} and V_{2} with n_{1} and n_{2} vertices on $\gamma(t)$, respectively. We then embed
V_{1} (resp., V_{2}) on the hyperplane $\left\{x_{2}=0\right\}$ (resp., $\left\{x_{1}=0\right\}$) of \mathbb{E}^{d} and perturb the x_{2}-coordinates (resp., x_{1}-coordinates) of the vertices in V_{1} (resp., V_{2}), so that the polytope P_{1} (resp., P_{2}) defined as the convex hull of the vertices in V_{1} (resp., V_{2}) is full-dimensional. We then argue that by appropriately choosing the vertex sets V_{1} and V_{2}, the number of k-faces of the Minkowski sum $P_{1} \oplus P_{2}$ attains its maximum possible value. At a very high/qualitative level, the appropriate choice we refer to above amounts to choosing V_{1} and V_{2} so that the parameter values on $\gamma(t)$ of the vertices in V_{1} and V_{2}, lie within two disjoint intervals of \mathbb{R} that are far away from each other.

The structure of the rest of the paper is as follows. In Section 2 we formally give various definitions, and define what we call bineighborly polytopal complexes and discuss some properties associated with them. In Section 3 we prove our upper bounds on the number of faces of the Minkowski sum of two polytopes. In Section 4 we describe our lower bound constructions and show that these constructions attain the upper bounds proved in Section 3 . We conclude the paper with Section 5, where we summarize our results and state open problems and directions for future work.

2 Definitions and preliminaries

A convex polytope, or simply polytope, P in \mathbb{E}^{d} is the convex hull of a finite set of points V in \mathbb{E}^{d}, called the vertex set of P. A face of P is the intersection of P with a hyperplane for which the polytope is contained in one of the two closed halfspaces delimited by the hyperplane. The dimension of a face of P is the dimension of its affine hull. A k-face of P is a k-dimensional face of P. We consider the polytope itself as a trivial d-dimensional face; all the other faces are called proper faces. We use the term d-polytope to refer to a polytope the trivial face of which is d-dimensional. For a d-polytope P, the 0 -faces of P are its vertices, while the $(d-1)$-faces are called facets. For $0 \leq k \leq d$ we denote by $f_{k}(P)$ the number of k-faces of P. Note that every k-face F of P is also a k-polytope whose faces are all the faces of P contained in F. A k-simplex in $\mathbb{E}^{d}, k \leq d$, is the convex hull of any $k+1$ affinely independent points in \mathbb{E}^{d}. A polytope is called simplicial if all its proper faces are simplices. Equivalently, P is simplicial if for every vertex v of P and every face $F \in P, v$ does not belong to the affine hull of the vertices in $F \backslash\{v\}$.

A polytopal complex \mathcal{C} is a finite collection of polytopes in \mathbb{E}^{d} such that (i) $\emptyset \in \mathcal{C}$, (ii) if $P \in \mathcal{C}$ then all the faces of P are also in \mathcal{C} and (iii) the intersection $P \cap Q$ for two polytopes P and Q in \mathcal{C} is a face of both P and Q. The dimension $\operatorname{dim}(\mathcal{C})$ of \mathcal{C} is the largest dimension of a polytope in \mathcal{C}. A polytopal complex is
called pure if all its maximal (with respect to inclusion) faces have the same dimension. In this case the maximal faces are called the facets of \mathcal{C}. We use the term d complex to refer to a polytopal complex whose maximal faces are d-dimensional (i.e., the dimension of \mathcal{C} is d). A polytopal complex is simplicial if all its faces are simplices. Finally, a polytopal complex \mathcal{C}^{\prime} is called a subcomplex of a polytopal complex \mathcal{C} if all faces of \mathcal{C}^{\prime} are also faces of \mathcal{C}. An important class of polytopal complexes arise from polytopes. More precisely, a d polytope P, together with all its faces and the empty set, form a d-complex, denoted by $\mathcal{C}(P)$. The only maximal face of $\mathcal{C}(P)$, which is clearly the only facet of $\mathcal{C}(P)$, is the polytope P itself. Moreover, all proper faces of P form a pure $(d-1)$-complex, called the boundary complex $\mathcal{C}(\partial P)$, or simply ∂P, of P. The facets of ∂P are just the facets of P, and its dimension is, clearly, $\operatorname{dim}(\partial P)=\operatorname{dim}(P)-1=d-1$. For a vertex v of P, the star of v, denoted by $\operatorname{star}(v, P)$, is the polytopal complex of all faces of P that contain v, and their faces. The link of v, denoted by $\operatorname{link}(v, P)$, is the subcomplex of $\operatorname{star}(v, P)$ consisting of all the faces of $\operatorname{star}(v, P)$ that do not contain v.

Definition 2.1. ([17, Remark 8.3]) Let \mathcal{C} be a pure simplicial polytopal d-complex. A shelling $\mathbb{S}(\mathcal{C})$ of \mathcal{C} is a linear ordering $F_{1}, F_{2}, \ldots, F_{s}$ of the facets of \mathcal{C} such that for all $1<j \leq s$ the intersection, $F_{j} \cap\left(\bigcup_{i=1}^{j-1} F_{i}\right)$, of the facet F_{j} with the previous facets is non-empty and pure $(d-1)$-dimensional.
In other words, for every $i<j$ there exists some $\ell<j$ such that the intersection $F_{i} \cap F_{j}$ is contained in $F_{\ell} \cap F_{j}$, and such that $F_{\ell} \cap F_{j}$ is a facet of F_{j}.

Every polytopal complex that has a shelling is called shellable. In particular, the boundary complex of a polytope of always shellable (cf. [1]). Consider a pure shellable simplicial d-complex \mathcal{C} and let $\mathbb{S}(\mathcal{C})=$ $\left\{F_{1}, \ldots, F_{s}\right\}$ be a shelling order of its facets. The restriction $R\left(F_{j}\right)$ of a facet F_{j} is the set of all vertices $v \in F_{j}$ such that $F_{j} \backslash\{v\}$ is contained in one of the earlier facet ${ }^{2}$. The main observation here is that when we construct \mathcal{C} according to the shelling $\mathbb{S}(\mathcal{C})$, the new faces at the j-th step of the shelling are exactly the vertex sets G with $R\left(F_{j}\right) \subseteq G \subseteq F_{j}$ (cf. [17, Section 8.3]). Moreover, notice that $R\left(F_{1}\right)=\emptyset$ and $R\left(F_{i}\right) \neq R\left(F_{j}\right)$ for all $i \neq j$.

The f-vector $\boldsymbol{f}(P)=\left(f_{-1}(P), f_{0}(P), \ldots, f_{d-1}(P)\right)$ of a d-polytope P (or its boundary complex ∂P) is defined as the $(d+1)$-dimensional vector consisting of the number, $f_{k}(P)$, of k-faces of $P,-1 \leq k \leq d-1$,

[^2]where $f_{-1}(P)=1$ refers to the empty set. The h-vector $\boldsymbol{h}(P)=\left(h_{0}(P), h_{1}(P), \ldots, h_{d}(P)\right)$ of a d-polytope P (or its boundary complex ∂P) is defined as the $(d+1)$ dimensional vector, where
\[

$$
\begin{equation*}
h_{k}(P)=\sum_{i=0}^{k}(-1)^{k-i}\binom{d-i}{d-k} f_{i-1}(P) \tag{2.1}
\end{equation*}
$$

\]

$0 \leq k \leq d$. It is easy to verify from equations (2.1) that the elements of $\boldsymbol{f}(P)$ determine the elements of $\boldsymbol{h}(P)$ and vice versa.

For simplicial polytopes, the number $h_{k}(P)$ counts the number of facets of P in a shelling of ∂P, whose restriction has size k; this number is independent of the particular shelling chosen (cf. [17, Theorem 8.19]). Moreover, the elements of $\boldsymbol{f}(P)$ (or, equivalently, $\boldsymbol{h}(P)$) are not linearly independent; they satisfy the so called Dehn-Sommerville equations, which can be written in a very concise form as: $h_{k}(P)=h_{d-k}(P), 0 \leq k \leq$ d. An important implication of the existence of the Dehn-Sommerville equations is that if we know the face numbers $f_{k}(P)$ for all $0 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor-1$, we can determine the remaining face numbers $f_{k}(P)$ for all $\left\lfloor\frac{d}{2}\right\rfloor \leq k \leq$ $d-1$. Both the f-vector and h-vector of a simplicial d-polytope are related to the so called g-vector. For a simplicial d-polytope P its g-vector is the $\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)$ dimensional vector $\boldsymbol{g}(P)=\left(g_{0}(P), g_{1}(P), \ldots, g_{\left\lfloor\frac{d}{2}\right\rfloor}(P)\right)$, where $g_{0}(P)=1$, and $g_{k}(P)=h_{k}(P)-h_{k-1}(P)$, $1 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor$ (see also [17, Section 8.6]). Using the convention that $h_{d+1}(P)=0$, we can actually extend the definition of $g_{k}(P)$ for all $0 \leq k \leq d+1$, while using the Dehn-Sommerville equations for P yields: $g_{d+1-k}(P)=-g_{k}(P), 0 \leq k \leq d+1$. The Upper Bound Theorem for polytopes can equivalently be expressed in terms of the g-vector:

Corollary 2.1. ([17, Corollary 8.38]) We consider simplicial d-polytopes P of fixed dimension d and fixed number of vertices $n=g_{1}(P)+d+1 . \boldsymbol{f}(P)$ has its componentwise maximum if and only if all the components of $\boldsymbol{g}(P)$ are maximal, with

$$
\begin{equation*}
g_{k}(P)=\binom{g_{1}(P)+k-1}{k}=\binom{n-d-2+k}{k} \tag{2.2}
\end{equation*}
$$

Also, $f_{k-1}(P)$ is maximal if an only if $g_{i}(P)$ is maximal for all i with $i \leq \min \left\{k,\left\lfloor\frac{d}{2}\right\rfloor\right\}$.
2.1 Bineighborly polytopal complexes. Let \mathcal{C} be a d-complex, and let V be the vertex set of \mathcal{C}. Let $\left\{V_{1}, V_{2}\right\}$ be a partition of V and define \mathcal{C}_{1} (resp., \mathcal{C}_{2}) to be the subcomplex of \mathcal{C} containing the faces of \mathcal{C} whose vertices are vertices in V_{1} (resp., V_{2}).

Definition 2.2. Let \mathcal{C} be a d-complex. We say that \mathcal{C} is $\left(k, V_{1}\right)$-bineighborly if we can partition the vertex set V of \mathcal{C} into two non-empty subsets V_{1} and $V_{2}=V \backslash V_{1}$ such that for every $\emptyset \subset S_{j} \subseteq V_{j}, j=1,2$, with $\left|S_{1}\right|+\left|S_{2}\right| \leq k$, the vertices of $S_{1} \cup S_{2}$ define a face of \mathcal{C} (of dimension $\left.\left|S_{1}\right|+\left|S_{2}\right|-1\right)$.

We introduce the notion of bineighborly polytopal complexes because they play an important role when considering the maximum complexity of the Minkowski sum of two d-polytopes P_{1} and P_{2}. As we will see in the upcoming section, the number of $(k-1)$-faces of $P_{1} \oplus P_{2}$ is maximal for all $1 \leq k \leq l, l \leq\left\lfloor\frac{d-1}{2}\right\rfloor$, if and only if the convex hull P of P_{1} and P_{2}, when embedded in the hyperplanes $\left\{x_{d+1}=0\right\}$ and $\left\{x_{d+1}=1\right\}$ of \mathbb{E}^{d+1}, respectively, is $\left(l+1, V_{1}\right)$-bineighborly, where V_{1} stands for the vertex set of P_{1}. Even more interestingly, in any odd dimension $d \geq 3$, the number of k-faces of $P_{1} \oplus P_{2}$ is maximized for all $0 \leq k \leq d-1$, if and only if P is ($\left\lfloor\frac{d+1}{2}\right\rfloor, V_{1}$)-bineighborly.

A direct consequence of our definition is the following: suppose that \mathcal{C} is a $\left(l, V_{1}\right)$-bineighborly polytopal complex, and let F be a k-face F of $\mathcal{C}, 1 \leq k<l$, such that at least one vertex of F is in V_{1} and at least one vertex of F is in V_{2}; then F is simplicial (i.e., F is a k simplex). Another immediate consequence of Definition 2.2 is that a k-neighborly d-complex \mathcal{C} is also $\left(k, V^{\prime}\right)$ bineighborly for every non-empty subset V^{\prime} of its vertex set. It is also easy to see that if a d-complex \mathcal{C} is (k, V_{1})-bineighborly, $k \geq 2$, then \mathcal{C} is $(k-1)$-neighborly. On the other hand, if \mathcal{C} is $\left(k, V_{1}\right)$-bineighborly, while \mathcal{C}_{1} and \mathcal{C}_{2} are k-neighborly, then \mathcal{C} is also k-neighborly. Let \mathcal{B} be the set of faces of \mathcal{C} that are not faces of either \mathcal{C}_{1} or \mathcal{C}_{2}, and denote by n_{j} the cardinality of $V_{j}, j=1,2$. Then, for all $1 \leq k \leq d$,

$$
f_{k-1}(\mathcal{B}) \leq \sum_{j=1}^{k-1}\binom{n_{1}}{j}\binom{n_{2}}{k-j}=\binom{n_{1}+n_{2}}{k}-\binom{n_{1}}{k}-\binom{n_{2}}{k},
$$

where equality holds if and only if \mathcal{C} is $\left(k, V_{1}\right)$ bineighborly (cf. [9]). As a final remark, notice that, if $f_{l-1}(\mathcal{B})$ is equal to its maximal value for some l, then $f_{k-1}(\mathcal{B})$ is equal to its maximal value for all k with $1 \leq k \leq l-1$.

3 Upper bounds

Let P_{1} and P_{2} be two d-polytopes in \mathbb{E}^{d}, with n_{1} and n_{2} vertices, respectively. Let us embed P_{1} (resp., P_{2}) in the hyperplane Π_{1} (resp., Π_{2}) of \mathbb{E}^{d+1} with equation $\left\{x_{d+1}=0\right\}$ (resp., $\left\{x_{d+1}=1\right\}$), and let $\tilde{\Pi}$ be a hyperplane in \mathbb{E}^{d+1} parallel and in-between Π_{1} and Π_{2}. (see Fig. (1). Call P the convex hull $C H_{d+1}\left(\left\{P_{1}, P_{2}\right\}\right)$, and let \mathcal{F} be the set of proper faces of P having non-

Figure 1: The d-polytopes P_{1} and P_{2} are embedded in the hyperplanes $\Pi_{1}=\left\{x_{d+1}=0\right\}$ and $\Pi_{2}=\left\{x_{d+1}=0\right\}$ of \mathbb{E}^{d+1}. The polytope \tilde{P} is the intersection of $C H_{d+1}\left(\left\{P_{1}, P_{2}\right\}\right)$ with the hyperplane $\tilde{\Pi}=\left\{x_{d+1}=\lambda\right\}$.
empty intersection with $\tilde{\Pi}$. Note that $\tilde{P}=P \cap \tilde{\Pi}$ is a d polytope, which is, in general, non-simplicial, and whose proper non-trivial faces are intersections of the form $F \cap \tilde{\Pi}$ where $F \in \mathcal{F}$. As we have already observed in the introductory section, \tilde{P} is combinatorially equivalent to the Minkowski sum $P_{1} \oplus P_{2}$. Furthermore, $f_{k-1}\left(P_{1} \oplus\right.$ $\left.P_{2}\right)=f_{k-1}(\tilde{P})=f_{k}(\mathcal{F}), 1 \leq k \leq d$. The rest of this section is devoted to deriving upper bounds for $f_{k}(\mathcal{F})$, which also become upper bounds for $f_{k-1}\left(P_{1} \oplus P_{2}\right)$.

Karavelas and Tzanaki [8, Lemma 2] have shown that the vertices of P_{1} and P_{2} can be perturbed in such a way that:
(i) the vertices of P_{1}^{\prime} and P_{2}^{\prime} remain in Π_{1} and Π_{2}, respectively, and both P_{1}^{\prime} and P_{2}^{\prime} are simplicial;
(ii) $P^{\prime}=C H_{d+1}\left(\left\{P_{1}^{\prime}, P_{2}^{\prime}\right\}\right)$ is also simplicial, except possibly the facets P_{1}^{\prime} and P_{2}^{\prime};
(iii) the number of vertices of P_{1}^{\prime} and P_{2}^{\prime} is the same as the number of vertices of P_{1} and P_{2}, respectively, whereas $f_{k}(P) \leq f_{k}\left(P^{\prime}\right)$ for all $k \geq 1$,
where P_{1}^{\prime} and P_{2}^{\prime} are the polytopes in Π_{1} and Π_{2} we get after perturbing the vertices of P_{1} and P_{2}, respectively. It, thus, suffices to consider the case where all three P_{1}, P_{2}, and P are simplicial, except possibly the facets P_{1} and P_{2} of P.

Let \mathcal{K} be the polytopal complex whose faces are all the faces of \mathcal{F}, as well as the faces of P that are subfaces of faces in \mathcal{F}. It is easy to see that the d-faces of \mathcal{K} are
exactly the d-faces of \mathcal{F}, and, thus, \mathcal{K} is a pure simplicial d-complex, with the d-faces of \mathcal{F} being the facets of \mathcal{K}. Moreover, the set of k-faces of \mathcal{K} is the disjoint union of the sets of k-faces of $\mathcal{F}, \partial P_{1}$ and ∂P_{2}. This implies, for $-1 \leq k \leq d:$

$$
f_{k}(\mathcal{K})=f_{k}(\mathcal{F})+f_{k}\left(\partial P_{1}\right)+f_{k}\left(\partial P_{2}\right)
$$

where $f_{d}\left(\partial P_{j}\right)=0, j=1,2$, and conventionally we set $f_{-1}(\mathcal{F})=-1$

Let y_{1} (resp., y_{2}) be a point below Π_{1} (resp., above Π_{2}), such that the vertices of P_{1} (resp., P_{2}) are the only vertices of P visible from y_{1} (resp., y_{2}) (see Fig. (2). Let Q be the $(d+1)$-polytope that is the convex hull of the vertices of P_{1}, P_{2}, y_{1} and y_{2}. Observe that the faces of ∂P (and thus all faces of \mathcal{F}), except for the facets P_{1} and P_{2} of ∂P, are all faces of the boundary complex ∂Q. The faces of ∂Q that are not faces of \mathcal{F} are the faces in the star \mathcal{S}_{1} of y_{1} (resp., the star \mathcal{S}_{2} of y_{2}), while the boundary complex ∂P_{1} of P_{1} (resp., ∂P_{2} of P_{2}) is nothing but $\operatorname{link}\left(y_{1}, \partial Q\right)$ (resp., $\left.\operatorname{link}\left(y_{2}, \partial Q\right)\right)$.

It is easy to realize that the set of k-faces of ∂Q is the disjoint union of the k-faces of $\mathcal{F}, \mathcal{S}_{1}$ and \mathcal{S}_{2}. This implies that, for $-1 \leq k \leq d$:

$$
\begin{equation*}
f_{k}(\partial Q)=f_{k}(\mathcal{F})+f_{k}\left(\mathcal{S}_{1}\right)+f_{k}\left(\mathcal{S}_{2}\right) \tag{3.3}
\end{equation*}
$$

The k-faces of ∂Q in \mathcal{S}_{j} are either k-faces of ∂P_{j} or k faces defined by y_{j} and a $(k-1)$-face of ∂P_{j}. Hence, we

Figure 2: The polytope Q is created by adding two vertices y_{1} and y_{2}. The vertex y_{1} (resp., y_{2}) is below P_{1} (resp., above P_{2}), and is visible by the vertices of P_{1} (resp., P_{2}) only.
have, for $j=1,2$, and $0 \leq k \leq d$:

$$
\begin{equation*}
f_{k}\left(\mathcal{S}_{j}\right)=f_{k}\left(\partial P_{j}\right)+f_{k-1}\left(\partial P_{j}\right) \tag{3.4}
\end{equation*}
$$

where $f_{-1}\left(\partial P_{j}\right)=1$ and $f_{d}\left(\partial P_{j}\right)=0$. Combining relations (3.3) and (3.4), we get, for $0 \leq k \leq d$:

$$
\begin{align*}
f_{k}(\partial Q)= & f_{k}(\mathcal{F})+f_{k}\left(\partial P_{1}\right)+f_{k-1}\left(\partial P_{1}\right) \\
& +f_{k}\left(\partial P_{2}\right)+f_{k-1}\left(\partial P_{2}\right) \tag{3.5}
\end{align*}
$$

We call $\mathcal{K}_{j}, j=1,2$, the subcomplex of ∂Q consisting of either faces of \mathcal{K} or faces of $\mathcal{S}_{j} . \mathcal{K}_{j}$ is a pure simplicial d-complex the facets of which are either facets in the star \mathcal{S}_{j} of y_{j} or facets of \mathcal{K}. Furthermore, \mathcal{K}_{j} is shellable. To see this first notice that ∂Q is shellable (Q is a polytope). Consider a line shelling $F_{1}, F_{2}, \ldots, F_{s}$ of ∂Q that shells $\operatorname{star}\left(y_{2}, \partial Q\right)$ last, and let $F_{\lambda+1}, F_{\lambda+2}, \ldots, F_{s}$ be the facets of ∂Q that correspond to \mathcal{S}_{2}. Trivially, the subcomplex of ∂Q, the facets of which are $F_{1}, F_{2}, \ldots, F_{\lambda}$, is shellable; however, this subcomplex is nothing but \mathcal{K}_{1}. The argument for \mathcal{K}_{2} is analogous.

Notice that Q is a simplicial $(d+1)$-polytope, while \mathcal{K}_{1} and \mathcal{K}_{2} are simplicial d-complexes; hence, for $0 \leq$
$k \leq d+1:$

$$
h_{k}(\mathcal{Y})=\sum_{i=0}^{k}(-1)^{k-i}\binom{d+1-i}{d+1-k} f_{i-1}(\mathcal{Y})
$$

where \mathcal{Y} stands for either $\partial Q, \mathcal{K}_{1}$ or \mathcal{K}_{2}. We define the f-vector of \mathcal{F} to be the $(d+2)$-vector $\boldsymbol{f}(\mathcal{F})=$ $\left(f_{-1}(\mathcal{F}), f_{0}(\mathcal{F}), \ldots, f_{d}(\mathcal{F})\right)$ (recall that $\left.f_{-1}(\mathcal{F})=-1\right)$; from this we can also define the $(d+2)$-vector $\boldsymbol{h}(\mathcal{F})=$ $\left(h_{0}(\mathcal{F}), h_{1}(\mathcal{F}), \ldots, h_{d+1}(\mathcal{F})\right)$, where

$$
\begin{equation*}
h_{k}(\mathcal{F})=\sum_{i=0}^{k}(-1)^{k-i}\binom{d+1-i}{d+1-k} f_{i-1}(\mathcal{F}) \tag{3.6}
\end{equation*}
$$

$0 \leq k \leq d+1$. We call this vector the h-vector of \mathcal{F}. As for polytopal complexes and polytopes, the f-vector of \mathcal{F} defines the h-vector of \mathcal{F} and vice versa. In particular, solving the defining equations of the elements of $\boldsymbol{h}(\mathcal{F})$ in terms of the elements of $\boldsymbol{f}(\mathcal{F})$ we get, for $0 \leq k \leq d+1$:

The next lemma associates the elements of $\boldsymbol{h}(\partial Q)$, $\boldsymbol{h}\left(\mathcal{K}_{1}\right), \boldsymbol{h}\left(\mathcal{K}_{2}\right), \boldsymbol{h}(\mathcal{F}), \boldsymbol{h}\left(\partial P_{1}\right)$ and $\boldsymbol{h}\left(\partial P_{2}\right)$. The last relation in the lemma can be thought of as the analogue of the Dehn-Sommerville equations for \mathcal{F}.

Lemma 3.1. For all $0 \leq k \leq d+1$, and $j=1$, 2 , we have:

$$
\begin{align*}
h_{k}(\partial Q) & =h_{k}(\mathcal{F})+h_{k}\left(\partial P_{1}\right)+h_{k}\left(\partial P_{2}\right), \tag{3.8}\\
h_{k}\left(\mathcal{K}_{j}\right) & =h_{k}(\mathcal{F})+h_{k}\left(\partial P_{j}\right)+g_{k}\left(\partial P_{3-j}\right) \tag{3.9}\\
h_{d+1-k}(\mathcal{F}) & =h_{k}(\mathcal{F})+g_{k}\left(\partial P_{1}\right)+g_{k}\left(\partial P_{2}\right) \tag{3.10}
\end{align*}
$$

Proof. Let \mathcal{Y} denote either \mathcal{F} or a pure simplicial subcomplex of ∂Q. We define the operator $\mathcal{S}_{k}(\cdot ; \delta, \nu)$ whose action on \mathcal{Y} is as follows:

$$
\mathcal{S}_{k}(\mathcal{Y} ; \delta, \nu)=\sum_{i=1}^{\delta}(-1)^{k-i}\binom{\delta-i}{\delta-k} f_{i-\nu}(\mathcal{Y})
$$

It is easy to verify (cf. [9]) that if \mathcal{Y} is δ-dimensional (this includes the case $\mathcal{Y} \equiv \mathcal{F}$), then

$$
\mathcal{S}_{k}(\mathcal{Y} ; \delta, 1)=h_{k}(\mathcal{Y})-(-1)^{k}\binom{\delta}{\delta-k} f_{-1}(\mathcal{Y})
$$

while if \mathcal{Y} is $(\delta-1)$-dimensional, then

$$
\mathcal{S}_{k}(\mathcal{Y} ; \delta, 1)=h_{k}(\mathcal{Y})-h_{k-1}(\mathcal{Y})-(-1)^{k}\binom{\delta}{\delta-k} f_{-1}(\mathcal{Y})
$$

and

$$
\mathcal{S}_{k}(\mathcal{Y} ; \delta, 2)=h_{k-1}(\mathcal{Y})
$$

Applying the operator $\mathcal{S}_{k}(\cdot ; d+1,1)$ to ∂Q and using relation (3.5) we get:

$$
\begin{aligned}
\mathcal{S}_{k}(\partial Q ; d+1,1)= & \mathcal{S}_{k}(\mathcal{F} ; d+1,1) \\
& +\mathcal{S}_{k}\left(\partial P_{1} ; d+1,1\right) \\
& +\mathcal{S}_{k}\left(\partial P_{1} ; d+1,2\right) \\
& +\mathcal{S}_{k}\left(\partial P_{2} ; d+1,1\right) \\
& +\mathcal{S}_{k}\left(\partial P_{2} ; d+1,2\right)
\end{aligned}
$$

which, given that $f_{-1}(\partial Q)=f_{-1}\left(\partial P_{1}\right)=f_{-1}\left(\partial P_{2}\right)=1$ and $f_{-1}(\mathcal{F})=-1$, simplifies to relation (3.8).

Recall that the set of k-faces of \mathcal{K} is the disjoint union of the k-faces of \mathcal{F}, the k-faces of ∂P_{1}, and the k-faces of ∂P_{2}. Moreover, the k-faces of $\mathcal{K}_{j}, j=1,2$, are either k-faces of \mathcal{K} or k-faces of the star \mathcal{S}_{j} of y_{j} that contain y_{j}. The latter faces are in one-to-one correspondence with the $(k-1)$-faces of ∂P_{j}, i.e., we get, for $0 \leq k \leq d$ and $j=1,2$:

$$
f_{k}\left(\mathcal{K}_{j}\right)=f_{k}(\mathcal{K})+f_{k-1}\left(\partial P_{j}\right)
$$

which finaly gives, for $0 \leq k \leq d$ and $j=1,2$:

$$
f_{k}\left(\mathcal{K}_{j}\right)=f_{k}(\mathcal{F})+f_{k}\left(\partial P_{1}\right)+f_{k}\left(\partial P_{2}\right)+f_{k-1}\left(\partial P_{j}\right)
$$

Once again, applying the operator $\mathcal{S}_{k}(\cdot ; d+1,1)$ to the expression for $f_{k}\left(\mathcal{K}_{j}\right)$, we get relation (3.9).

We end the proof of this lemma by considering relations (3.10). Using (3.8), the Dehn-Sommerville equations for ∂Q can be rewritten as

$$
\begin{aligned}
& h_{d+1-k}(\mathcal{F})+h_{d+1-k}\left(\partial P_{1}\right)+h_{d+1-k}\left(\partial P_{2}\right) \\
& \quad=h_{k}(\mathcal{F})+h_{k}\left(\partial P_{1}\right)+h_{k}\left(\partial P_{2}\right)
\end{aligned}
$$

Using the Dehn-Sommerville equations for P_{j} : $h_{d-k}\left(\partial P_{j}\right)=h_{k}\left(\partial P_{j}\right), 0 \leq k \leq d, j=1,2$, in the above relations, we get, for $0 \leq k \leq d+1$:

$$
\begin{aligned}
& h_{d+1-k}(\mathcal{F})+h_{k-1}\left(\partial P_{1}\right)+h_{k-1}\left(\partial P_{2}\right) \\
& \quad=h_{k}(\mathcal{F})+h_{k}\left(\partial P_{1}\right)+h_{k}\left(\partial P_{2}\right)
\end{aligned}
$$

which finally give relations (3.10).
Recall that the main goal in this section is to derive upper bounds for the elements of $\boldsymbol{h}(\mathcal{F})$. The most critical step toward this goal is a recurrence inequality for the elements of $\boldsymbol{h}(\mathcal{F})$ described in the following lemma.

Lemma 3.2. For all $0 \leq k \leq d$,

$$
\begin{align*}
h_{k+1}(\mathcal{F}) \leq & \frac{n_{1}+n_{2}-d-1+k}{k+1} h_{k}(\mathcal{F}) \tag{3.11}\\
& +\frac{n_{1}}{k+1} g_{k}\left(\partial P_{2}\right)+\frac{n_{2}}{k+1} g_{k}\left(\partial P_{1}\right)
\end{align*}
$$

Proof. Let us denote by V the vertex set of ∂Q, and by V_{j} the vertex set of $\partial P_{j}, j=1,2$. Let \mathcal{Y} / v be a shorthand for $\operatorname{link}(v, \mathcal{Y})$, where v is a vertex of \mathcal{Y}, and \mathcal{Y} stands for either $\partial Q, \mathcal{K}_{1}, \mathcal{K}_{2}, \partial P_{1}$ or ∂P_{2}. Then (cf. [10]), for $0 \leq k \leq d$, we have:

$$
\begin{equation*}
(k+1) h_{k+1}(\partial Q)+(d+1-k) h_{k}(\partial Q)=\sum_{v \in V} h_{k}(\partial Q / v) \tag{3.12}
\end{equation*}
$$

while, for $0 \leq k \leq d-1$ and $j=1,2$, we have:

$$
\begin{equation*}
(k+1) h_{k+1}\left(\partial P_{j}\right)+(d-k) h_{k}\left(\partial P_{j}\right)=\sum_{v \in V_{j}} h_{k}\left(\partial P_{j} / v\right) \tag{3.13}
\end{equation*}
$$

Recall that the link of y_{j} in ∂Q is ∂P_{j}, and observe that the link of $v \in V_{j}$ in ∂Q coincides with the link of v in \mathcal{K}_{j}. Expressing $h_{k}(\partial Q)$ in terms of $h_{k}(\mathcal{F})$ and $h_{k}\left(\partial P_{j}\right)$, $j=1,2$, in conjuction with relations (3.12) and (3.13), and noting that:

$$
h_{k}\left(\partial Q / y_{j}\right)=h_{k}\left(\partial P_{j}\right)
$$

and

$$
\sum_{v \in V_{1} \cup V_{2}} h_{k}(\partial Q / v)=\sum_{v \in V_{1}} h_{k}\left(\mathcal{K}_{1} / v\right)+\sum_{v \in V_{2}} h_{k}\left(\mathcal{K}_{2} / v\right)
$$

we arrive at the following equality:

$$
\begin{aligned}
(k+1) h_{k+1} & (\mathcal{F})+(d+1-k) h_{k}(\mathcal{F}) \\
& =\sum_{j=1}^{2} \sum_{v \in V_{j}}\left[h_{k}\left(\mathcal{K}_{j} / v\right)-h_{k}\left(\partial P_{j} / v\right)\right]
\end{aligned}
$$

Let us now consider a vertex $v \in V_{1}$, and a shelling $\mathbb{S}(\partial Q)$ of ∂Q that shells star $(v, \partial Q)$ first and $\operatorname{star}\left(y_{2}, \partial Q\right)$ last (such a shelling does exit since v and y_{2} are not visible to each other). Notice that $\mathbb{S}(\partial Q)$ induces a shelling $\mathbb{S}\left(\mathcal{K}_{1}\right)$ for \mathcal{K}_{1} that shells $\operatorname{star}\left(v, \mathcal{K}_{1}\right)$ first. On the other hand, $\mathbb{S}\left(\mathcal{K}_{1}\right)$ also induces (cf. [17, Lemma 8.7]):
(i) a shelling $S\left(\mathcal{K}_{1} / v\right)$ for \mathcal{K}_{1} / v, and
(ii) a shelling $\mathbb{S}\left(\partial P_{1}\right)$ for ∂P_{1} that shells $\operatorname{star}\left(v, \partial P_{1}\right)$ first (recall that $\left.\partial P_{1} \equiv \partial Q / y_{1} \equiv \mathcal{K}_{1} / y_{1}\right)$.
Finally, $\mathbb{S}\left(\partial P_{1}\right)$ induces a shelling $\mathbb{S}\left(\partial P_{1} / v\right)$ for $\partial P_{1} / v$. The interested reader may refer to Figs. 5-10 at the end of this paper, where we show a shelling $\mathbb{S}\left(\mathcal{K}_{1}\right)$ of \mathcal{K}_{1} that shells $\operatorname{star}\left(v, \mathcal{K}_{1}\right)$ first, along with the induced shellings $\mathbb{S}\left(\mathcal{K}_{1} / v\right)$ and $\mathbb{S}\left(\partial P_{1}\right)$. In particular, Figs. 5 7 show the step-by-step construction of \mathcal{K}_{1} from $\mathbb{S}\left(\mathcal{K}_{1}\right)$. Fig. 8 shows the step-by-step construction of $\operatorname{star}\left(v, \mathcal{K}_{1}\right)$ from $\mathbb{S}\left(\mathcal{K}_{1}\right)$, as well as the corresponding induced construction of \mathcal{K}_{1} / v from the induced shelling $\mathbb{S}\left(\mathcal{K}_{1} / v\right)$. Finally, Figs. 9 and 10 show the step-by-step construction of ∂P_{1} from the shelling $S\left(\partial P_{1}\right)$ induced by $S\left(\mathcal{K}_{1}\right)$, along with the corresponding steps of the construction of \mathcal{K}_{1} from $\mathbb{S}\left(\mathcal{K}_{1}\right)$, i.e., we only depict the steps of $\mathbb{S}\left(\mathcal{K}_{1}\right)$ that induce facets of $S\left(\partial P_{1}\right)$.

Let F be a facet in $S\left(\mathcal{K}_{1}\right)$. If F induces a facet for $\mathbb{S}\left(\mathcal{K}_{1} / v\right)$, denote by F / v this facet of \mathcal{K}_{1} / v. Similarly, if F induces a facet for $\mathbb{S}\left(\partial P_{1}\right)$, call F_{1} this facet of ∂P_{1}. Finally, if F_{1} induces a facet for $S\left(\partial P_{1} / v\right)$, let F_{1} / v be this facet of $\partial P_{1} / v$. Let $G \subseteq F, G / v \subseteq F / v$, $G_{1} \subseteq F_{1}$ and $G_{1} / v \subseteq F_{1} / v$ be the minimal new faces associated with $F, F / v, F_{1}$ and F_{1} / v in the corresponding shellings, let λ be the cardinality of G, and observe that $F_{1}=F \cap \partial P_{1}, F_{1} / v=(F / v) \cap \partial P_{1}$, $G_{1}=G \cap \partial P_{1}$ and $G_{1} / v=(G / v) \cap \partial P_{1}$. As long as we shell $\operatorname{star}\left(v, \mathcal{K}_{1}\right), G$ induces G / v, and, in fact, the faces G and G / v coincide (see also Fig. 8). Similarly, as long as we $\operatorname{shell} \operatorname{star}\left(v, \partial P_{1}\right), G_{1}$ induces G_{1} / v, and, in fact, the faces G_{1} and G_{1} / v coincide. Hence, as long as we shell $\operatorname{star}\left(v, \mathcal{K}_{1}\right)$ (i.e., as long as $\left.v \in F\right)$, we have $h_{k}\left(\mathcal{K}_{1} / v\right)=h_{k}\left(\mathcal{K}_{1}\right)$ and $h_{k}\left(\partial P_{1} / v\right)=h_{k}\left(\partial P_{1}\right)$, for all $k \geq 0$, and, thus, $h_{k}\left(\mathcal{K}_{1} / v\right)-h_{k}\left(\partial P_{1} / v\right)=$ $h_{k}\left(\mathcal{K}_{1}\right)-\bar{h}_{k}\left(\partial P_{1}\right)$, for all $k \geq 0$. After the shelling $\mathrm{S}\left(\mathcal{K}_{1}\right)$ has left $\operatorname{star}\left(v, \mathcal{K}_{1}\right)$, there are no more facets in $S\left(\mathcal{K}_{1} / v\right)$ and $S\left(\partial P_{1} / v\right)$. This implies that, after $\mathbb{S}\left(\mathcal{K}_{1}\right)$ has left $\operatorname{star}\left(v, \mathcal{K}_{1}\right)$ (i.e., v is not a vertex of F anymore $)$, the values of $h_{k}\left(\mathcal{K}_{1} / v\right)$ and $h_{k}\left(\partial P_{1} / v\right)$ remain unchanged for all $k \geq 0$. However, the values
of $h_{k}\left(\mathcal{K}_{1}\right)$ and $h_{k}\left(\partial P_{1}\right)$ may increase for some k. More precisely, if F does not induce a facet for $S\left(\partial P_{1}\right)$, then $h_{\lambda}\left(\mathcal{K}_{1}\right)$ is increased by one, $h_{k}\left(\mathcal{K}_{1}\right)$ does not change for $k \neq \lambda$, while $h_{k}\left(\partial P_{1}\right)$ remains unchanged for all $k \geq 0$. Thus, $h_{\lambda}\left(\mathcal{K}_{1} / v\right)-h_{\lambda}\left(\partial P_{1} / v\right)<h_{\lambda}\left(\mathcal{K}_{1}\right)-h_{\lambda}\left(\partial P_{1}\right)$, while $h_{k}\left(\mathcal{K}_{1} / v\right)-h_{k}\left(\partial P_{1} / v\right) \leq h_{k}\left(\mathcal{K}_{1}\right)-h_{k}\left(\partial P_{1}\right)$, for all $k \neq \lambda$. If, however, F induces F_{1}, then the minimal new face G_{1} in $\mathbb{S}\left(\partial P_{1}\right)$ due to F_{1} coincides with G (see also Figs. 9 and 10). Therefore, in this case, both $h_{\lambda}\left(\mathcal{K}_{1}\right)$ and $h_{\lambda}\left(\partial P_{1}\right)$ are increased by one, while $h_{k}\left(\mathcal{K}_{1}\right)$ and $h_{k}\left(\partial P_{1}\right)$ remain unchanged for $k \neq \lambda$. Summarizing, for all $v \in V_{1}$, and for all $0 \leq k \leq d$, we have:

$$
h_{k}\left(\mathcal{K}_{1} / v\right)-h_{k}\left(\partial P_{1} / v\right) \leq h_{k}\left(\mathcal{K}_{1}\right)-h_{k}\left(\partial P_{1}\right)
$$

The argument for $v \in V_{2}$ is analogous, which means that for all $v \in V_{2}$, and for all $0 \leq k \leq d$:

$$
h_{k}\left(\mathcal{K}_{2} / v\right)-h_{k}\left(\partial P_{2} / v\right) \leq h_{k}\left(\mathcal{K}_{2}\right)-h_{k}\left(\partial P_{2}\right)
$$

Using relations (3.9), we, thus, get for every vertex $v \in V_{j}, j=1,2$, and for all $0 \leq k \leq d:$

$$
\begin{aligned}
\sum_{v \in V_{j}}\left[h_{k}\left(\mathcal{K}_{j} / v\right)-h_{k}\left(\partial P_{j} / v\right)\right] & \leq \sum_{v \in V_{j}}\left[h_{k}\left(\mathcal{K}_{j}\right)-h_{k}\left(\partial P_{j}\right)\right] \\
& =n_{j}\left[h_{k}(\mathcal{F})+g_{k}\left(\partial P_{3-j}\right)\right] .
\end{aligned}
$$

We thus arrive at the following inequality, for $0 \leq k \leq d$:

$$
\begin{aligned}
& (k+1) h_{k+1}(\mathcal{F})+(d+1-k) h_{k}(\mathcal{F}) \\
& \quad \leq\left(n_{1}+n_{2}\right) h_{k}(\mathcal{F})+n_{1} g_{k}\left(\partial P_{2}\right)+n_{2} g_{k}\left(\partial P_{1}\right)
\end{aligned}
$$

which gives the recurrence inequality in the statement of the lemma.

Using the recurrence relation from Lemma 3.2 we get the following bounds on the elements of $\boldsymbol{h}(\mathcal{F})$ (a detailed proof of the lemma may be found in [9]):

Lemma 3.3. For all $0 \leq k \leq d+1$,

$$
h_{k}(\mathcal{F}) \leq\binom{ n_{1}+n_{2}-d-2+k}{k}-\binom{n_{1}-d-2+k}{k}-\binom{n_{2}-d-2+k}{k} .
$$

Equality holds for all k with $0 \leq k \leq l$ if and only if $l \leq\left\lfloor\frac{d+1}{2}\right\rfloor$ and P is $\left(l, V_{1}\right)$-bineighborly.

Sketch of proof. The upper bound holds (as equality) for $k=0$. For $k \geq 1$, we use induction on k in conjunction with the upper bounds for the elements of the g-vector of a polytope (cf. Corollary 2.1).

Regarding the equality claim, the claim for $l=0$ is obvious. Consider now that $l \geq 1$. Suppose first that P is $\left(l, V_{1}\right)$-bineighborly. Then, for all i with $0 \leq i \leq l$ we have:

$$
f_{i-1}(\mathcal{F})=\binom{n_{1}+n_{2}}{i}-\binom{n_{1}}{i}-\binom{n_{2}}{i} .
$$

Substituting $f_{i-1}(\mathcal{F})$ in the defining equations (3.6) for $\boldsymbol{h}(\mathcal{F})$, and after some calculations, we conclude that

$$
h_{k}(\mathcal{F})=\binom{n_{1}+n_{2}-d-2+k}{k}-\binom{n_{1}-d-2+k}{k}-\binom{n_{2}-d-2+k}{k},
$$

for all $0 \leq k \leq l$.
Suppose now that the inequality for $h_{k}(\mathcal{F})$ holds as equality for all $0 \leq k \leq l$. Substituting $h_{i}(\mathcal{F}), 0 \leq i \leq l$, in (3.7), and after some calculations, we get:

$$
f_{l-1}(\mathcal{F})=\binom{n_{1}+n_{2}}{l}-\binom{n_{1}}{l}-\binom{n_{2}}{l} .
$$

Hence, P is $\left(l, V_{1}\right)$-bineighborly.
Using the Dehn-Sommerville-like relations (3.10), along with the bounds from the previous lemma, we derive alternative bounds for $h_{k}(\mathcal{F})$, which are of interest, since they refine the bounds for $h_{k}(\mathcal{F})$ from Lemma 3.3 for large values of k, namely for $k>\left\lfloor\frac{d+1}{2}\right\rfloor$.

Lemma 3.4. For all $0 \leq k \leq d+1$,

$$
h_{d+1-k}(\mathcal{F}) \leq\binom{ n_{1}+n_{2}-d-2+k}{k}
$$

Equality holds for all k with $0 \leq k \leq l$ if and only if $l \leq\left\lfloor\frac{d}{2}\right\rfloor$ and P is l-neighborly.

Proof. The upper bound claim is a direct consequence of the Dehn-Sommerville-like relations (3.10) for $\boldsymbol{h}(\mathcal{F})$, the upper bounds from Lemma 3.3, and the Upper Bound Theorem for polytopes as stated in Corollary 2.1. Furthermore, the inequality in the statement of the lemma holds as equality for all $0 \leq k \leq l$, where $l \leq\left\lfloor\frac{d}{2}\right\rfloor$, if and only if the following two conditions hold:
(i) Inequalities in Lemma 3.3 hold as equalities for all $0 \leq k \leq l \leq\left\lfloor\frac{d}{2}\right\rfloor$.
(ii) For $j=1,2$, and for all $0 \leq k \leq l \leq\left\lfloor\frac{d}{2}\right\rfloor$, we have $g_{k}\left(\partial P_{j}\right)=\binom{n_{j}-d-2+k}{k}$.
The first condition holds true if and only if P is $\left(l, V_{1}\right)$ bineighborly, while the second condition holds true if and only if $P_{j}, j=1,2$, is l-neighborly, i.e., conditions (i) and (ii) hold true if and only if P is l-neighborly.

We are now ready to compute upper bounds for the face numbers of \mathcal{F}. Writing $\boldsymbol{f}(\mathcal{F})$ in terms of $\boldsymbol{h}(\mathcal{F})$ (cf. eq. (3.7)), in conjunction with the bounds on the elements of $\boldsymbol{h}(\mathcal{F})$ from Lemmas 3.3 and 3.4 we get, for $0 \leq k \leq d+1$:

$$
\begin{array}{r}
f_{k-1}(\mathcal{F})=\sum_{i=0}^{\left\lfloor\frac{d+1}{2}\right\rfloor}\binom{d+1-i}{k-i} h_{i}(\mathcal{F})+\sum_{i=\left\lfloor\frac{d+1}{2}\right\rfloor+1}^{d+1}\binom{d+1-i}{k-i} h_{i}(\mathcal{F}) \\
=\sum_{i=0}^{\left\lfloor\frac{d+1}{2}\right\rfloor}\binom{d+1-i}{k-i} h_{i}(\mathcal{F})+\sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor}\binom{i}{k-d-1+i} h_{d+1-i}(\mathcal{F})
\end{array}
$$

$$
\begin{aligned}
\leq & \sum_{i=0}^{\left\lfloor\frac{d+1}{2}\right\rfloor}\binom{d+1-i}{k-i}\binom{n_{1}+n_{2}-d-2+i}{i} \\
& -\sum_{i=0}^{\left\lfloor\frac{d+1}{2}\right\rfloor}\binom{d+1-i}{k-i} \sum_{j=1}^{2}\binom{n_{j}-d-2+i}{i} \\
& +\sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor}\binom{i}{k-d-1+i}\binom{n_{1}+n_{2}-d-2+i}{i} \\
= & \sum_{i=0}^{\frac{d+1}{2}}\left(\binom{d+1-i}{k-i}+\binom{i}{k-d-1+i}\right)\binom{n_{1}+n_{2}-d-2+i}{i} \\
& -\sum_{i=0}^{\left\lfloor\frac{d+1}{2}\right\rfloor}\binom{d+1-i}{k-i} \sum_{j=1}^{2}\binom{n_{j}-d-2+i}{i} \\
= & f_{k-1}\left(C_{d+1}\left(n_{1}+n_{2}\right)\right) \\
& -\sum_{i=0}^{\left\lfloor\frac{d+1}{2}\right\rfloor}\binom{d+1-i}{k-i} \sum_{j=1}^{2}\binom{n_{j}-d-2+i}{i},
\end{aligned}
$$

where $C_{d}(n)$ stands for the cyclic d-polytope with n vertices, and $\sum_{i=0}^{\frac{\delta}{2}}{ }^{*} T_{i}$ denotes the sum of the elements $T_{0}, T_{1}, \ldots, T_{\left\lfloor\frac{\delta}{2}\right\rfloor}$ where the last term is halved if δ is even. Since for all $1 \leq k \leq d, f_{k-1}\left(P_{1} \oplus P_{2}\right)=f_{k}(\mathcal{F})$, we arrive at the central theorem of this paper, stating upper bounds for the face numbers of the Minkowski sum of two d-polytopes (the equality claims follow from the equality claims in Lemmas 3.3 and 3.4).

THEOREM 3.1. Let P_{1} and P_{2} be two d-polytopes in \mathbb{E}^{d}, $d \geq 2$, with $n_{1} \geq d+1$ and $n_{2} \geq d+1$ vertices, respectively. Let also P be the convex hull in \mathbb{E}^{d+1} of P_{1} and P_{2} embedded in the hyperplanes $\left\{x_{d+1}=0\right\}$ and $\left\{x_{d+1}=1\right\}$ of \mathbb{E}^{d+1}, respectively. Then, for $1 \leq k \leq d$, we have:

$$
\begin{aligned}
& f_{k-1}\left(P_{1} \oplus P_{2}\right) \leq f_{k}\left(C_{d+1}\left(n_{1}+n_{2}\right)\right) \\
& \quad-\sum_{i=0}^{\left\lfloor\frac{d+1}{2}\right\rfloor}\binom{d+1-i}{k+1-i}\left(\binom{n_{1}-d-2+i}{i}+\binom{n_{2}-d-2+i}{i}\right) .
\end{aligned}
$$

Furthermore:

(i) Equality holds for all $1 \leq k \leq l$ if an only if $l \leq\left\lfloor\frac{d-1}{2}\right\rfloor$ and P is $\left(l+1, \bar{V}_{1}\right)$-bineighborly.
(ii) For $d \geq 2$ even, equality holds for all $1 \leq k \leq d$ if an only if P is $\left\lfloor\frac{d}{2}\right\rfloor$-neighborly.
(iii) For $d \geq 3$ odd, equality holds for all $1 \leq k \leq d$ if an only if P is $\left(\left\lfloor\frac{d+1}{2}\right\rfloor, V_{1}\right)$-bineighborly.

4 Lower bounds

In this section we show that the upper bounds given in Theorem 3.1 are tight.

Fukuda and Weibel [5] have proved tight bounds for $f_{k}\left(P_{1} \oplus P_{2} \oplus \ldots \oplus P_{r}\right)$ for $d \geq 4, r \leq\left\lfloor\frac{d}{2}\right\rfloor$, and for all k with $0 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor-r$. These upper bounds are attained, for $r=2$, when considering two cyclic d-polytopes P_{1} and P_{2}, with n_{1} and n_{2} vertices, respectively, with disjoint vertex sets. This construction gives, in fact, tight bounds on the number of k-faces of the Minkowski sum for all $0 \leq k \leq d-1$, when d is even. As in Section 3, embed P_{1} and P_{2} in the hyperplanes $\left\{x_{d+1}=0\right\}$ and $\left\{x_{d+1}=1\right\}$ of \mathbb{E}^{d+1}, let $P=C H_{d+1}\left(\left\{P_{1}, P_{2}\right\}\right)$ and, call \mathcal{F} the set of proper faces of P that are neither faces of P_{1} nor faces of P_{2}. We then have

$$
\begin{aligned}
& f_{\left\lfloor\frac{d}{2}\right\rfloor-1}(\mathcal{F})=f_{\left\lfloor\frac{d}{2}\right\rfloor-2}\left(P_{1} \oplus P_{2}\right) \\
& =\sum_{j=1}^{\left\lfloor\frac{d}{2}\right\rfloor-1}\binom{n_{1}}{j}\binom{n_{2}}{\left\lfloor\frac{d}{2}\right\rfloor-j} \\
& =\binom{n_{1}+n_{2}}{\left\lfloor\frac{d}{2}\right\rfloor}-\binom{n_{1}}{\left\lfloor\frac{d}{2}\right\rfloor}-\binom{n_{2}}{\left\lfloor\frac{d}{2}\right\rfloor},
\end{aligned}
$$

which implies that P is $\left(\left\lfloor\frac{d}{2}\right\rfloor, V_{1}\right)$-bineighborly. Since P_{1} and P_{2} are $\left\lfloor\frac{d}{2}\right\rfloor$-neighborly, we further conclude that P is $\left\lfloor\frac{d}{2}\right\rfloor$-neighborly, which, by Theorem 3.1 suggests that $f_{k}\left(P_{1} \oplus P_{2}\right)$ is equal to its maximum value for all $0 \leq k \leq d-1$.

If $d \geq 5$ and d is odd, however, the construction in [5] gives tight bounds for $f_{k}\left(P_{1} \oplus P_{2}\right)$ for all $0 \leq$ $k \leq\left\lfloor\frac{d}{2}\right\rfloor-2$, which, according to Theorem 3.1] are not sufficient to establish that the bounds are tight for the face numbers of all dimensions. To establish the tightness of the bounds in Theorem 3.1 for all k, we need to construct two d-polytopes P_{1} and P_{2}, with n_{1} and n_{2} vertices, respectively, such that $f_{\left\lfloor\frac{d}{2}\right\rfloor}(\mathcal{F})=$ $f_{\left\lfloor\frac{d}{2}\right\rfloor-1}\left(P_{1} \oplus P_{2}\right)=\binom{n_{1}+n_{2}}{\left\lfloor\frac{d+1}{2}\right\rfloor}-\binom{n_{1}}{\left\lfloor\frac{d+1}{2}\right\rfloor}-\binom{n_{2}}{\left\lfloor\frac{d+1}{2}\right\rfloor}$, i.e., we need to construct P_{1} and P_{2} such that P is $\left(\left\lfloor\frac{d+1}{2}\right\rfloor, V_{1}\right)$ bineighborly. We start off with a technical lemma (its proof may be found in [9]).

Lemma 4.1. Let $k \geq 2$ and $\ell \geq 2$, such that $k+\ell$ is odd, and let $D_{k, \ell}(\tau)$ be the $(k+\ell) \times(k+\ell)$ determinant:
$\left|\begin{array}{cccccccc}1 & 1 & \cdots & 1 & 0 & 0 & \cdots & 0 \\ x_{1} \tau & x_{2} \tau & \cdots & x_{k} \tau & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 & y_{1} & y_{2} & \cdots & y_{\ell} \\ x_{1}^{2} \tau^{2} & x_{2}^{2} \tau^{2} & \cdots & x_{k}^{2} \tau^{2} & y_{1}^{2} & y_{2}^{2} & \cdots & y_{\ell}^{2} \\ x_{1}^{3} \tau^{3} & x_{2}^{3} \tau^{3} & \cdots & x_{k}^{3} \tau^{3} & y_{1}^{3} & y_{2}^{3} & \cdots & y_{\ell}^{3} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ x_{1}^{m} \tau^{m} & x_{2}^{m} \tau^{m} & \cdots & x_{k}^{m} \tau^{m} & y_{1}^{m} & y_{2}^{m} & \cdots & y_{\ell}^{m}\end{array}\right|$,
where $m=k+\ell-3,0<x_{1}<x_{2}<\ldots<x_{k}$, $0<y_{1}<y_{2}<\ldots<y_{\ell}$, and $\tau>0$. Then, there exists some $\tau_{0}>0$ such that for all $\tau \in\left(0, \tau_{0}\right)$, the determinant $D_{k, \ell}(\tau)$ is strictly positive.

In what follows $d \geq 3$ and d is odd. We denote by $\gamma(t), t>0$, the $(d-1)$-dimensional moment curve $\gamma(t)=\left(t, t^{2}, \ldots, t^{d-1}\right)$, and we define two additional d dimensional moment-like curves in \mathbb{E}^{d+1} :

$$
\begin{aligned}
& \gamma_{1}(t ; \zeta)=\left(t, \zeta t^{d}, t^{2}, t^{3}, \ldots, t^{d-1}, 0\right), \quad \text { and } \\
& \gamma_{2}(t ; \zeta)=\left(\zeta t^{d}, t, t^{2}, t^{3}, \ldots, t^{d-1}, 1\right)
\end{aligned}
$$

where $t>0$ and $\zeta \geq 0$. Choose $n_{1}+n_{2}$ real numbers $\alpha_{i}, i=1, \ldots, n_{1}$, and $\beta_{i}, i=1, \ldots, n_{2}$, such that $0<\alpha_{1}<\alpha_{2}<\ldots<\alpha_{n_{1}}$ and $0<\beta_{1}<\beta_{2}<\ldots<\beta_{n_{2}}$. Let τ be a strictly positive parameter determined below, and let U_{1} and U_{2} be the $(d-1)$-dimensional point sets

$$
\begin{aligned}
& U_{1}=\left\{\gamma_{1}\left(\alpha_{1} \tau\right), \ldots, \gamma_{1}\left(\alpha_{n_{1}} \tau\right)\right\}, \quad \text { and } \\
& U_{2}=\left\{\gamma_{2}\left(\beta_{1}\right), \ldots, \gamma_{2}\left(\beta_{n_{2}}\right)\right\},
\end{aligned}
$$

where $\boldsymbol{\gamma}_{j}(\cdot)$ is used to denote $\boldsymbol{\gamma}_{j}(\cdot ; 0)$, for simplicity. Call Q_{j} the cyclic $(d-1)$-polytope defined as the convex hull of the points in $U_{j}, j=1,2$. Let $Q=C H_{d+1}\left(\left\{Q_{1}, Q_{2}\right\}\right)$, and let \mathcal{F}_{Q} be the set of proper faces of Q that are neither faces of Q_{1} nor faces of Q_{2}. Then:

Lemma 4.2. There exists a sufficiently small positive value τ^{\star} for τ, such that the $(d+1)$-polytope Q is $\left(\left\lfloor\frac{d+1}{2}\right\rfloor, U_{1}\right)$-bineighborly.

Proof. Let $t_{i}=\alpha_{i} \tau, t_{i}^{\epsilon}=\left(\alpha_{i}+\epsilon\right) \tau, 1 \leq i \leq n_{1}$, and $s_{i}=$ $\beta_{i}, s_{i}^{\epsilon}=\beta_{i}+\epsilon, 1 \leq i \leq n_{2}$, where $\epsilon>0$ is chosen such that $\alpha_{i}+\epsilon<\alpha_{i+1}$, for all $1 \leq i<n_{1}$, and $\beta_{i}+\epsilon<\beta_{i+1}$, for all $1 \leq i<n_{2}$. Choose a subset U of $U_{1} \cup U_{2}$ of size $\left\lfloor\frac{d+1}{2}\right\rfloor$, such that $U \cap U_{j} \neq \emptyset, j=1,2$. We denote by μ (resp., ν) the cardinality of $U \cap U_{1}$ (resp., $U \cap U_{2}$), and, clearly, $\mu+\nu=\left\lfloor\frac{d+1}{2}\right\rfloor$. Let $\gamma_{1}\left(t_{i_{1}}\right), \gamma_{1}\left(t_{i_{2}}\right), \ldots, \gamma_{1}\left(t_{i_{\mu}}\right)$ be the vertices in $U \cap U_{1}$, where $i_{1}<i_{2}<\ldots<i_{\mu}$, and analogously, let $\gamma_{2}\left(s_{j_{1}}\right), \gamma_{2}\left(s_{j_{2}}\right), \ldots, \gamma_{2}\left(s_{j_{\nu}}\right)$ be the vertices in $U \cap U_{2}$, where $j_{1}<j_{2}<\ldots<j_{\nu}$. Let $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d+1}\right)$ and define the $(d+2) \times(d+2)$ determinant $H_{U}(\boldsymbol{x})$ as shown in Fig. 3. The equation $H_{U}(\boldsymbol{x})=0$ is the equation of a hyperplane in \mathbb{E}^{d+1} that passes through the points in U.

Consider the case $\boldsymbol{u} \in U_{1} \backslash U$. Then, $\boldsymbol{u}=$ $\gamma_{1}(t)=\left(t, 0, t^{2}, t^{3}, \ldots, t^{d-1}, 0\right), t=\alpha \tau$, for some $\alpha \notin\left\{\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{\mu}}\right\}$. In this case, we can transform $H_{U}(\boldsymbol{u})$ in the form of the determinant $D_{k, \ell}(\tau)$ of Lemma 4.1, where $k=2 \mu+1$ and $\ell=2 \nu$, by subtracting the last row of $H_{U}(\boldsymbol{u})$ from the first, and by performing an even number of row and column swaps. The case $\boldsymbol{u} \in U_{2} \backslash U$ is entirely analogous.

$$
\begin{aligned}
& H_{U}(\boldsymbol{x})=\left|\begin{array}{cccccccccc}
1 & 1 & 1 & \cdots & 1 & 1 & 1 & 1 & \cdots & 1 \\
\boldsymbol{x} & \gamma_{1}\left(t_{i_{1}}\right) & \gamma_{1}\left(t_{i_{1}}^{\epsilon}\right) & \cdots & \gamma_{1}\left(t_{i_{\mu}}\right) & \gamma_{1}\left(t_{i_{\mu}}^{\epsilon}\right) & \gamma_{2}\left(s_{j_{1}}\right) & \gamma_{2}\left(s_{j_{1}}^{\epsilon}\right) & \cdots & \gamma_{2}\left(s_{j_{\nu}}\right) \\
\gamma_{2}\left(s_{j_{\nu}}^{\epsilon}\right)
\end{array}\right| \\
& =\left|\begin{array}{ccccccccccc}
1 & 1 & 1 & \cdots & 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\
x_{1} & t_{i_{1}} & t_{i_{1}}^{\epsilon} & \cdots & t_{i_{\mu}} & t_{i_{\mu}}^{\epsilon} & 0 & 0 & \cdots & 0 & 0 \\
x_{2} & 0 & 0 & \cdots & 0 & 0 & s_{j_{1}} & s_{j_{1}}^{\epsilon} & \cdots & s_{j_{\nu}} & s_{j_{\nu}}^{\epsilon} \\
x_{3} & t_{i_{1}}^{2} & \left(t_{i_{1}}^{\epsilon}\right)^{2} & \cdots & t_{i_{\mu}}^{2} & \left(t_{i_{\mu}}^{\epsilon}\right)^{2} & s_{j_{1}}^{2} & \left(s_{j_{1}}^{\epsilon}\right)^{2} & \cdots & s_{j_{\nu}}^{2} & \left(s_{j_{\nu}}^{\epsilon}\right)^{2} \\
x_{4} & t_{i_{1}}^{3} & \left(t_{i_{1}}^{\epsilon}\right)^{3} & \cdots & t_{i_{\mu}}^{3} & \left(t_{i_{\mu}}^{\epsilon}\right)^{3} & s_{j_{1}}^{3} & \left(s_{j_{1}}^{\epsilon}\right)^{3} & \cdots & s_{j_{\nu}}^{3} & \left(s_{j_{\nu}}^{\epsilon}\right)^{3} \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
x_{d} & t_{i_{1}}^{d-1} & \left(t_{i_{1}}^{\epsilon}\right)^{d-1} & \cdots & t_{i_{\mu}}^{d-1} & \left(t_{i_{\mu}}^{\epsilon}\right)^{d-1} & s_{j_{1}}^{d-1} & \left(s_{j_{1}}^{\epsilon}\right)^{d-1} & \cdots & s_{j_{\nu}}^{d-1} & \left(s_{j_{\nu}}^{\epsilon}\right)^{d-1} \\
x_{d+1} & 0 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1
\end{array}\right|
\end{aligned}
$$

Figure 3: The determinant $H_{U}(\boldsymbol{x})$.

$$
\left.\begin{aligned}
F_{V}(\boldsymbol{x} ; \zeta) & =\left|\begin{array}{cccccccccc}
1 & 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 \\
\boldsymbol{x} & \gamma_{1}\left(t_{i_{1}} ; \zeta\right) & \gamma_{1}\left(t_{i_{1}}^{\epsilon} ; \zeta\right) & \cdots & \gamma_{1}\left(t_{i_{\mu}}^{\epsilon} ; \zeta\right) & \gamma_{2}\left(s_{j_{1}} ; \zeta\right) & \gamma_{2}\left(s_{j_{1}}^{\epsilon} ; \zeta\right) & \cdots & \gamma_{2}\left(s_{j_{\nu}}^{\epsilon} ; \zeta\right)
\end{array}\right| \\
& =\left|\begin{array}{cccccccccc}
1 & 1 & 1 & \cdots & 1 & 1 & 1 & 1 & \cdots & 1 \\
x_{1} & t_{i_{1}} & t_{i_{1}}^{\epsilon} & \cdots & t_{i_{\mu}} & t_{i_{\mu}}^{\epsilon} & \zeta s_{j_{1}}^{d} & \zeta\left(s_{j_{1}}^{\epsilon}\right)^{d} & \cdots & \zeta s_{j_{\nu}}^{d} \\
x_{2} & \zeta t_{i_{1}}^{d} & \zeta\left(t_{i_{1}}^{\epsilon}\right)^{d} & \cdots & \zeta\left(s_{j_{\nu}}^{\epsilon}\right)^{d} \\
x_{3} & t_{i_{1}}^{2} & \left(t_{i_{1}}^{\epsilon}\right)^{2} & \cdots & \zeta\left(t_{i_{\mu}}^{\epsilon}\right)^{d} & t_{i_{\mu}}^{2} & \left(t_{i_{\mu}}^{\epsilon}\right)^{2} & s_{j_{1}}^{2} & \left(s_{j_{1}}^{\epsilon}\right)^{2} & \cdots \\
x_{3} & t_{i_{1}}^{3} & \left(t_{i_{1}}^{\epsilon}\right)^{3} & \cdots & t_{i_{\mu}}^{3} & \left(t_{i_{\mu}}^{\epsilon}\right)^{3} & s_{j_{1}}^{3} & \left(s_{j_{1}}^{\epsilon}\right)^{3} & \cdots & s_{j_{\nu}} \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & s_{j_{\nu}}^{\prime} & \left(s_{j_{\nu}}^{\epsilon}\right)^{2} \\
x_{j_{\nu}} & \left(s_{j_{\nu}}^{\epsilon}\right)^{3} \\
x_{d} & t_{i_{1}}^{d-1} & \left(t_{i_{1}}^{\epsilon}\right)^{d-1} & \cdots & t_{i_{\mu}-1}^{d-1} & \left(t_{i_{\mu}}^{\epsilon}\right)^{d-1} & s_{j_{1}}^{d-1} & \left(s_{j_{1}}^{\epsilon}\right)^{d-1} & \cdots & s_{j_{\nu}}^{d-1}
\end{array}\right|\left(s_{j_{\nu}}^{\epsilon}\right)^{d-1}
\end{aligned} \right\rvert\,
$$

Figure 4: The determinant $F_{V}(\boldsymbol{x} ; \zeta)$.

Since we have $\binom{n_{1}+n_{2}}{\left\lfloor\frac{d+1}{2}\right\rfloor}-\binom{n_{1}}{\left\lfloor\frac{d+1}{2}\right\rfloor}-\binom{n_{2}}{\left\lfloor\frac{d+1}{2}\right\rfloor}$ possible subsets U, and for each U there are $\left(n_{1}+n_{2}-\left\lfloor\frac{d+1}{2}\right\rfloor\right)$ vertices in $\left(U_{1} \cup U_{2}\right) \backslash U$ choose a value τ^{\star} for τ that is small enough, so that all

$$
\left(n_{1}+n_{2}-\left\lfloor\frac{d+1}{2}\right\rfloor\right)\left[\binom{n_{1}+n_{2}}{\left\lfloor\frac{d+1}{2}\right\rfloor}-\binom{n_{1}}{\left\lfloor\frac{d+1}{2}\right\rfloor}-\binom{n_{2}}{\left\lfloor\frac{d+1}{2}\right\rfloor}\right]
$$

possible determinants $H_{U}(\boldsymbol{u})$ are strictly positive. Call $U_{j}^{\star}, j=1,2$, the vertex sets we get for $\tau=\tau^{\star}, Q_{j}^{\star}$ the corresponding polytopes, and Q^{\star} the resulting convex hull. Then for each $U^{\star} \subseteq U_{1}^{\star} \cup U_{2}^{\star}$, where $U^{\star} \cap U_{j}^{\star} \neq \emptyset$, $j=1,2$, the equation $H_{U^{\star}}(\boldsymbol{x})=0, \boldsymbol{x} \in \mathbb{E}^{d+1}$, is the equation of a supporting hyperplane for Q^{\star} passing through the vertices of U^{\star} (and those only); hence, Q^{\star} is $\left(\left\lfloor\frac{d+1}{2}\right\rfloor, U_{1}^{\star}\right)$-bineighborly.

We assume we have chosen τ to be equal to τ^{\star}, and, call $U_{j}^{\star}, Q_{j}^{\star}, j=1,2$, the corresponding vertex sets and
$(d-1)$-polytopes. Perturb the vertex sets U_{1}^{\star} and U_{2}^{\star}, to get the vertex sets V_{1} and V_{2} by considering vertices on the curves $\gamma_{1}(t ; \zeta)$ and $\gamma_{2}(t ; \zeta)$, with $\zeta>0$. More precisely, define the sets V_{1} and V_{2} as:

$$
\begin{aligned}
& V_{1}=\left\{\gamma_{1}\left(\alpha_{1} \tau^{\star} ; \zeta\right), \ldots, \gamma_{1}\left(\alpha_{n_{1}} \tau^{\star} ; \zeta\right)\right\}, \quad \text { and } \\
& V_{2}=\left\{\gamma_{2}\left(\beta_{1} ; \zeta\right), \ldots \gamma_{2}\left(\beta_{n_{2}} ; \zeta\right)\right\}
\end{aligned}
$$

where $\zeta>0$. Let P_{j} be the convex hull of the vertices in $V_{j}, j=1,2$, and notice that P_{j} is a $\left\lfloor\frac{d}{2}\right\rfloor$-neighborly d-polytope. Let $P=C H_{d+1}\left(\left\{P_{1}, P_{2}\right\}\right)$, and let \mathcal{F}_{P} be the set of proper faces of P that are neither faces of P_{1} nor faces of P_{2}. As in the proof of Lemma 4.2, choose $V \subseteq V_{1} \cup V_{2}$, such that $V \cap V_{j} \neq \emptyset, j=1,2$, and let U^{\star} be the set of vertices in $U_{1}^{\star} \cup U_{2}^{\star}$ that correspond to vertices in V. Let $F_{V}(\boldsymbol{x} ; \zeta)$ be the determinant shown in Fig. 4 The equation $F_{V}(\boldsymbol{x} ; \zeta)=0$ is the equation of a hyperplane in \mathbb{E}^{d+1} that passes through
the points in V. Since for any $\boldsymbol{v} \in\left(V_{1} \cup V_{2}\right) \backslash V$, $\lim _{\zeta \rightarrow 0^{+}} F_{V}(\boldsymbol{v} ; \zeta)=F_{U^{\star}}\left(\boldsymbol{u}^{\star} ; 0\right)=H_{U^{\star}}\left(\boldsymbol{u}^{\star}\right)>0$, where \boldsymbol{u}^{\star} is the point in $\left(U_{1}^{\star} \cup U_{2}^{\star}\right) \backslash U^{\star}$ that corresponds to \boldsymbol{v}, we conclude that there exists a value $\zeta_{0}>0$ for ζ, such that, for all $\zeta \in\left(0, \zeta_{0}\right)$, the equation $F_{V}(\boldsymbol{x} ; \zeta)=0$ represents a supporting hyperplane for P, that passes through the vertices of V, and those only. By choosing ζ to be small enough, so that all possible $\left(n_{1}+n_{2}-\left\lfloor\frac{d+1}{2}\right\rfloor\right)\left[\binom{n_{1}+n_{2}}{\left\lfloor\frac{d+1}{2}\right\rfloor}-\binom{n_{1}}{\left\lfloor\frac{d+1}{2}\right\rfloor}-\binom{n_{2}}{\left\lfloor\frac{d+1}{2}\right\rfloor}\right]$ determinants $F_{V}(\boldsymbol{v} ; \zeta)$ are positive, the $(d+1)$-polytope P becomes $\left(\left\lfloor\frac{d+1}{2}\right\rfloor, V_{1}\right)$-bineighborly; by Theorem 3.1 this establishes the tightness of our bounds for all $f_{k}\left(P_{1} \oplus P_{2}\right), 0 \leq k \leq d-1$.

5 Summary and open problems

In this paper we have computed the maximum number of k-faces, $f_{k}\left(P_{1} \oplus P_{2}\right), 0 \leq k \leq d$, of the Minkowski sum of two d-polytopes P_{1} and P_{2} as a function of the number of vertices of the two polytopes. Furthermore, we have presented constructions that attain these maximal values. It remains an open problem to extend our results to the Minkowski sum of $r d$-polytopes in \mathbb{E}^{d}, for $d \geq 4$ and $r \geq 3$. A related open problem is to express the number of k-faces of the Minkowski sum of $r d$-polytopes in terms of the number of facets of these polytopes. Results in this direction are only known for $d \leq 3$. We would like to derive such expressions for $d \geq 4$.

Acknowledgements

The authors would like to thank Efi Fogel for his suggestions for improving the presentation of the material in this paper. The work in this paper has been partially supported by the FP7-REGPOT-2009-1 project "Archimedes Center for Modeling, Analysis and Computation".

References

[1] H. Bruggesser and P. Mani. Shellable decompositions of cells and spheres. Math. Scand., 29:197-205, 1971.
[2] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition, 2000.
[3] Efi Fogel, Dan Halperin, and Christophe Weibel. On the exact maximum complexity of Minkowski sums of polytopes. Discrete Comput. Geom., 42:654-669, 2009.
[4] Efraim Fogel. Minkowski Sum Construction and other Applications of Arrangements of Geodesic Arcs on the Sphere. PhD thesis, Tel-Aviv University, October 2008.
[5] Komei Fukuda and Christophe Weibel. f-vectors of Minkowski additions of convex polytopes. Discrete Comput. Geom., 37(4):503-516, 2007.
[6] Peter Gritzmann and Bernd Sturmfels. Minkowski addition of polytopes: Computational complexity and applications to Gröbner bases. SIAM J. Disc. Math., 6(2):246-269, May 1993.
[7] Birkett Huber, Jörg Rambau, and Francisco Santos. The Caylay Trick, lifting subdivisions and the BohneDress theorem on zonotopal tilings. J. Eur. Math. Soc., 2(2):179-198, June 2000.
[8] Menelaos I. Karavelas and Eleni Tzanaki. Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes. In Proc. 27th Annu. ACM Sympos. Comput. Geom. (SCG'11), pages 397-406, Paris, France, June 13-15, 2011.
[9] Menelaos I. Karavelas and Eleni Tzanaki. The maximum number of faces of the Minkowski sum of two convex polytopes, October 2011. arXiv:1106.6254v2 [cs.CG]
[10] Peter McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17:179-184, 1970.
[11] L. Pachter and B. Sturmfels, editors. Algebraic statistics for computational biology. Cambridge University Press, New York, 2005.
[12] J. Rosenmüller. Game Theory: Stochastics, information, strategies and Cooperation, volume 25 of Theory and Decision Library, Series C. Kluwer Academic Publishers, Dordrecht, 2000.
[13] Raman Sanyal. Topological obstructions for vertex numbers of Minkowski sums. J. Comb. Theory, Ser. A, 116(1):168-179, 2009.
[14] Micha Sharir. Algorithmic motion planning. In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 47, pages 1037-1064. Chapman \& Hall/CRC, London, 2nd edition, 2004.
[15] Christophe Weibel. Minkowski Sums of Polytopes: Combinatorics and Computation. PhD thesis, École Polytechnique Fédérale de Lausanne, 2007.
[16] H. Zhang. Observable Markov decision processes: A geometric technique and analysis. Operations Research, 58(1):214-228, January-February 2010.
[17] Günter M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.

Figure 5: Top left: The complex \mathcal{K}_{1} (from Fig. (2) with the vertex v shown in orange. Remaining subfigures (from left to right and top to bottom): the first eight steps of the construction of \mathcal{K}_{1} from a shelling $\mathbb{S}\left(\mathcal{K}_{1}\right)=\left\{F_{1}, F_{2}, \ldots, F_{26}\right\}$ that shells $\operatorname{star}\left(v, \mathcal{K}_{1}\right)$ first. The facets in green are the facets of $\operatorname{star}\left(v, \mathcal{K}_{1}\right)$. All other facets are shown in either blue or yellow, depending on whether we see their exterior or interior side (w.r.t. the interior of the polytope Q). The minimal new faces at each step of the shelling are shown in red; recall that the minimal new face corresponding to F_{1} is \emptyset. In all subfigures, the faces of $\operatorname{star}\left(y_{2}, \partial Q\right)$ that do not belong to $\partial Q / y_{2} \equiv \partial P_{2}$ are shown in gray.

Figure 6: From left to right and top to bottom: The next twelve steps of the construction of \mathcal{K}_{1} from $\mathbb{S}\left(\mathcal{K}_{1}\right)$. Colors are as in Fig. 5 .

Figure 7: From left to right and top to bottom: The final twelve steps of the construction of \mathcal{K}_{1} from $\mathbb{S}\left(\mathcal{K}_{1}\right)$. Colors are, again, as in Fig. 5.

Figure 8: The first six steps of $\mathbb{S}\left(\mathcal{K}_{1}\right)$ and the corresponding steps in the induced shelling $\mathbb{S}\left(\mathcal{K}_{1} / v\right)$ of \mathcal{K}_{1} / v (recall that $\mathbb{S}\left(\mathcal{K}_{1}\right)$ shells star $\left(v, \mathcal{K}_{1}\right)$ first). Rows $1 \& 3$: The steps of $\mathbb{S}\left(\mathcal{K}_{1}\right)$. Rows $2 \& 4$: The steps of $\mathbb{S}\left(\mathcal{K}_{1} / v\right)$. \mathcal{K}_{1} / v is shown with green solid segments (the facets of \mathcal{K}_{1} / v, that have not been added yet, are highlighted as black solid segments). The minimal new faces at each step of the shellings $\mathbb{S}\left(\mathcal{K}_{1}\right)$ and $\mathbb{S}\left(\mathcal{K}_{1} / v\right)$ are shown in red. As expected, the minimal new faces, at corresponding steps, coincide.

Figure 9: The first six steps of the construction of ∂P_{1} from the shelling $\mathbb{S}\left(\partial P_{1}\right)$ induced by $\mathbb{S}\left(\mathcal{K}_{1}\right)$, along with the corresponding steps of the construction of \mathcal{K}_{1} from $\mathbb{S}\left(\mathcal{K}_{1}\right)$. Rows $1 \& 3$: the steps of $\$\left(\mathcal{K}_{1}\right)$ that induce facets for $\mathbb{S}\left(\partial P_{1}\right)$. Rows $2 \& 4$: The corresponding steps of $\$\left(\partial P_{1}\right)$. ∂P_{1} is shown with green solid/dashed segments (the facets of ∂P_{1}, that have not been added yet, are highlighted as black solid/dashed segments). The minimal new faces at each step of the shellings $\mathbb{S}\left(\mathcal{K}_{1}\right)$ and $\mathbb{S}\left(\partial P_{1}\right)$ are shown in red. As expected, the minimal new faces, at corresponding steps, coincide.

Figure 10: The last three steps of the construction of ∂P_{1} from the shelling $\mathbb{S}\left(\partial P_{1}\right)$ induced by $\mathbb{S}\left(\mathcal{K}_{1}\right)$, along with the corresponding steps of the construction of \mathcal{K}_{1} from $\mathbb{S}\left(\mathcal{K}_{1}\right)$. Top row: The steps of $\mathbb{S}\left(\mathcal{K}_{1}\right)$. Bottom row: The steps of $\mathbb{S}\left(\mathcal{K}_{1} / v\right)$. Colors are as in Fig. 9

[^0]: *The full version of the paper may be found in [9].
 ${ }^{\dagger}$ Department of Applied Mathematics, University of Crete, P.O. Box 2208, GR-714 09 Heraklion, Greece; emails: \{mkaravel, etzanaki\}@tem.uoc.gr
 \ddagger Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, P.O. Box 1385, GR71110 Heraklion, Greece.

[^1]: ${ }^{1}$ In the sequel, all polytopes are considered to be convex.

[^2]: ${ }^{2}$ For simplicial faces, we identify the face with its vertex set.

