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Abstract. We prove a posteriori error estimates for time discrete approximations, for
semilinear parabolic equations with solutions that might blow-up in finite time. In par-
ticular we consider the backward Euler and the Crank-Nicolson methods. The main
tools that are used in the analysis are the reconstruction technique and energy methods
combined with appropriate fixed point arguments. The final estimates we derive are
conditional and lead to error control near the blow-up time.

1. Introduction

In this paper we consider semilinear parabolic initial-and-boundary value problems of
the form

(1.1)


ut −∆u = f(u) in Ω × (0, T ],

u = 0 on ∂Ω × (0, T ],

u(·, 0) = u0 in Ω̄,

with f(u) = |u|p−1u, p ∈ N \ {1} and u0 : Ω̄ → R a given initial value that belongs to
L∞(Ω). In (1.1), Ω ⊆ Rd is a bounded domain with boundary ∂Ω and 0 < T <∞.

Consider now problem (1.1) in Ω×(0,∞). Then, it is well known that its solution might
blow-up in finite time, even if the initial value u0 belongs to L∞(Ω), cf., e.g., [37], Chapter
II. That is, there exists a t∗, 0 < t∗ <∞, such that

lim
t→(t∗)−

‖u(t)‖L∞(Ω) =∞.

On the other hand, it is also known, see for example [16], that, for L∞ initial data, problem
(1.1) admits a unique solution u ∈ C2,1

(
Ω × (0, t∗)

)
∩ C

(
Ω̄ × [0, t∗)

)
. In view of this, in

the rest of the paper we assume that T ≤ t∗ − ε for some ε > 0, i.e., we assume that the
final time T is at most ε close to the blow-up time (T is just finite when the solution does
not blow-up).

Our motivation to consider this problem is that it is the simplest nonlinear PDE with
possible blow up in finite time. Such problems become increasingly important in various
applications ranging from mathematical biology, to material science and to optics; see,
e.g., [6, 11, 22, 23, 35]. The direct computation of such solutions is possible only through
appropriate adaptive methods as illustrated in the pioneering works [2, 36]. The available
adaptive techniques are based on ad hoc mesh selection criteria that work only under
certain structural circumstances related to the nonlinear problem at hand. Our aim is
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to provide error control based on rigorous analysis for such nonlinear PDEs. The final
goal is the design and the implementation of appropriate adaptive algorithms. As a first
important step, in this paper we prove fully a posteriori error estimates, for backward
Euler and Crank-Nicolson time discrete approximations of problem (1.1). Our results
lead to error control even near the blow-up time and circumvent long standing issues
related to estimation of approximations of this class of nonlinear PDEs, in particular, with
respect to “global in time” error control and to exponential constants. The construction of
corresponding adaptive algorithms is the subject of an ongoing work and will be reported
in a forthcoming paper. Adaptive strategies for other type of parabolic problems with
blow-up solutions have been proposed for example by Acosta, Durán and Rossi, [1], and
by Groisman, [17].

Despite the fact that under reasonable restrictions on the time steps, one may prove,
in the spirit of [3], that the backward Euler and the Crank-Nicolson approximations for
problem (1.1) are well defined, even close to the blow-up time, a priori error estimates
for problem (1.1) near the blow-up time do not exist in the literature. Standard analysis
yields, in this case, estimates of limited applicability due to the constants involved. In
particular, in the final estimates, a constant of the form e1/ε appears. One of our tasks in
this paper is to address this issue in the a posteriori analysis.

The derivation of the a posteriori error estimates for problem (1.1) follows the recon-
struction approach. More specifically we use the backward Euler reconstruction which is
just the piecewise linear interpolant, cf. [33, 28], and the Crank-Nicolson reconstruction
that has been proposed by Akrivis, Makridakis and Nochetto in [4]. Our analysis is based
on energy and semigroup type techniques. A key argument provides the successful passage
from “local in time” to “global in time” error control. The final estimates we obtain are
conditional. Such estimates hold under some a posteriori, and thus in principle computa-
tionally verifiable conditions. In particular, these conditions are of the form E ≤ α, where
E is an a posteriori functional, i.e., it depends on the discrete approximations and the
data of the problem, but not on the unknown solution u, and α is a fixed, known number.
Conditional estimates have been considered in the past, e.g., by Cuesta and Makridakis,
[7], Fierro and Veeser, [9], Kessler, Nochetto and Schmidt [24], Lakkis and Nochetto, [26]
and Makridakis and Nochetto, [29].

Problems of the form (1.1) and their blow-up solutions have been extensively studied
by many authors, see, e.g., Giga and Kohn, [13]-[15], Giga, Matsui and Sasayama [16],
Filippas and Kohn, [10], Herrero and Velazquez, [19]-[21], Merle and Zaag, [30]-[32] and
Groisman, Rossi and Zaag, [18]. In particular, the asymptotic behavior of the blow-up
solutions near the blow-up time is studied in depth, yielding the blow-up rates (t∗−t)−

1
p−1 .

To obtain conditional a posteriori error estimates for (1.1) it will be helpful to consider
a slightly more general model problem,

(1.2)


ut − ν∆u = f(u) in Ω × (0, T ],

u = 0 on ∂Ω × (0, T ],

u(·, 0) = u0 in Ω̄,

with ν > 0 and where the nonlinear term f : R→ R is a twice continuously differentiable
function such that

(i) |f ′′(x)| ≤ g(ρ,R), for every ρ > 0 and R > 0 and for every x ∈ R, with |x| ≤ ρ + R
and

(ii) |f ′′(x1) − f ′′(x2)| ≤ C
Rg(ρ,R)|x1 − x2|, for every ρ > 0 and R > 0, and for every

x1, x2 ∈ R, with |x1|, |x2| ≤ ρ+R and |x1 − x2| ≤ 2R.
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In (i) and (ii), g : R2 → R is a continuous function and C is a positive constant. Obviously,
for p > 2, problem (1.1) comprises a special case of problem (1.2). Indeed, in this case,
one may easily verify that we can take

(1.3) g(ρ,R) = p(p− 1)(ρ+R)p−2

and C = p−2. This is because |f ′′(x)| = p(p−1)|x|p−2, for all x ∈ R and |f ′′(x1)−f ′′(x2)|
≤ 1

Rp(p−1)(p−2)(ρ+R)p−2, for all x1, x2 with |x1|, |x2| ≤ ρ+R. We consider problem (1.2)
first and then we specify our results for (1.1), instead of handling directly problem (1.1),
for two main reasons. The fact that in (1.2) f is general, makes the analysis less technical.
As a result, it becomes more clear how we apply fixed point arguments to obtain the final
estimates. However, because of the more general nature of problem (1.2), the conditions
to derive error bounds for problem (1.1) can be relaxed, cf. (3.2), (4.1) and Remark 4.3.
The second reason is that working first with (1.2) we obtain a posteriori error bounds
for more general cases of interest as well. In particular, problem (1.2) covers many other
interesting cases including f(u) = |u|p, p ∈ N \ {1} and f(u) = λup, λ ∈ R, p ∈ N \ {1}.
In these cases the solution of problem (1.2) might blow-up in finite time and the blow-up
rate is the same as in the case of problem (1.1), see for example [12, 31, 34, 38].

The paper is organized as follows: In Section 2 we briefly present the methods and
the corresponding reconstructions for problem (1.2) (and thus for problem (1.1)). In this
section we also point out that, in contrast to the linear case, energy techniques do not lead
directly to a posteriori error estimates in the L∞(L2) and the L2(H1)−norm for problem
(1.1), Theorem 2.1.

The main results of the paper are presented in Sections 3, 4 and 5. In Section 3 we
prove conditional a posteriori error estimates for problem (1.2) in the L∞(L∞)−norm, by
using appropriate fixed point arguments. These estimates are then combined with energy
techniques and yield upper bounds for problem (1.2) in the L∞(L2)− and L2(H1)−norms
as well, Theorem 3.1. In Section 4 we deal with problem (1.1). Since now the nonlinear
term has a particular form, a slight modification to the analysis of Section 3, leads to
conditional estimates under relaxed conditions, Theorem 4.1. Finally, in Section 5 we
discuss how the conditional estimates we have at our disposal might lead to error control
near the blow-up time.

2. Discretization methods and error control

In Subsections 2.1 and 2.2 we present the backward Euler and the Crank-Nicolson
methods and reconstructions for problem (1.2). In the analysis of Sections 3 and 4 we
use only the error equation (2.8) below, and not the particular form of the two methods.
Since, as we shall see, both methods satisfy equation (2.8) below, with different residuals,
it is natural to keep the same notation in their definition.

To this end, let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ], In := (tn−1, tn],
kn := tn − tn−1 and k := max1≤n≤N kn. For a sequence {vn}Nn=0 we use the notation

∂̄vn :=
vn − vn−1

kn
and vn−

1
2 :=

vn + vn−1

2
, n = 1, . . . , N.

In addition the following standard notation will be used in the sequel. For 1 ≤ p ≤ ∞, let
Lp := Lp(Ω) and let ‖ · ‖Lp be the corresponding norm. In the special case of p = 2, we
just write ‖ · ‖ instead of ‖ · ‖L2 . Let H−1 := H−1(Ω) be the dual space of H1

0 := H1
0 (Ω).

With ‖ · ‖−1 we denote the dual norm in H−1, i.e., for f ∈ H−1,

‖f‖−1 := sup
υ∈H1

0 , ‖∇υ‖=1

(f, υ),
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where (·, ·) is the inner product in L2. Lastly, we use the notation ‖ · ‖L∞,∞ for the
L∞(L∞)−norm.

2.1. The backward Euler method and reconstruction. We discretize problem (1.2)
only in time by the backward Euler method and we end up with approximations Un ∈ H1

0

to the values u(tn), n = 0, 1, . . . , N, defined by

(2.1) ∂̄Un − ν∆Un = f(Un), n = 1, . . . , N,

with U0 = u0.
We define U : [0, T ]→ H1

0 to be the following piecewise constant function

U(t) := Un, t ∈ In.
Function U is a first order approximation to u which is defined for every t ∈ [0, T ], but
it is discontinuous at the nodes {tn}N−1

n=0 . In order to be able to apply the reconstruction
technique, we need to introduce a continuous in time function. Thus, we consider the
piecewise linear interpolant between the nodal values Un−1 and Un,

Û(t) := Un + (t− tn)∂̄Un, t ∈ In.
Then we can easily see that, for n = 1, . . . , N,

(2.2) Û(t)− U(t) = (t− tn)∂̄Un, t ∈ In.

In other words, the difference Û − U is of first (and thus of optimal) order of accuracy in
time.

The residual r̂ : In → L2, n = 1, . . . , N, of Û is defined to be the a posteriori quantity
r̂ := Ût − ν∆Û − f(Û). Since for t ∈ In, Ût(t) = ∂̄Un, by using the method (2.1), we see
that the residual can be written as

(2.3) r̂(t) = −ν∆(Û − U)(t) +
(
f(Û)− f(U)

)
(t), t ∈ In, n = 1, . . . , N.

In view of (2.3), (2.2) and the fact that f is a locally Lipschitz continuous function, we
expect that the residual will be of optimal order of accuracy. Therefore the piecewise
linear interpolant Û is an appropriate reconstruction in the case of the backward Euler
method.

2.2. The Crank-Nicolson method and reconstruction. The Crank-Nicolson method
for problem (1.2) produces approximations {Un}Nn=0 to the values u(tn), n = 0, 1, . . . , N,
defined by

(2.4) ∂̄Un − ν∆Un−
1
2 = f(Un−

1
2 ), n = 1, . . . , N,

with U0 = u0. In this case we consider the continuous in time approximation U(t) to u(t),
for t ∈ [0, T ], by linearly interpolating between the nodal values Un−1 and Un:

U(t) := Un−
1
2 + (t− tn−

1
2 )∂̄Un, t ∈ In.

Since the Crank-Nicolson method is of second order, it is clear that, for t ∈ [0, T ], u(t)−
U(t) = O(k2). However it is well known, see for example [4], that the direct use of U in the
a posteriori error analysis yields, even in linear cases, estimates of first instead of optimal
second order of accuracy. This problem can be solved by using a reconstruction of U .

The Crank-Nicolson reconstruction Û : [0, T ]→ L2 of U , that has been proposed in [4],
is a piecewise quadratic polynomial and it is defined as

(2.5) Û(t) := Un−1 + ν∆

∫ t

tn−1

U(s) ds+
∫ t

tn−1

b(s) ds, t ∈ In,
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where b : In → L2 is the linear interpolant of f(U) at the nodes tn−1 and tn−
1
2 , i.e.,

b(t) := f(Un−
1
2 ) +

2
kn

(t− tn−
1
2 )
[
f(Un−

1
2 )− f(Un−1)

]
, t ∈ In.

From (2.5) we conclude that Û can be written as

Û(t) = Un−1 +
ν

2
(t− tn−1)∆

[
U(t) + Un−1

]
+ (t− tn−1)f(Un−

1
2 )

+
1
kn

(t− tn−1)(tn − t)
[
f(Un−

1
2 )− f(Un−1)

]
, t ∈ In.

Thus Û(tn) = U(tn) = Un, n = 0, 1, . . . , N, i.e., Û is continuous. From (2.5) it is also
easily seen that Û satisfies

(2.6) Ût(t)− ν∆U(t) = b(t), t ∈ In.

As before, the residual r̂ of Û is defined as r̂(t) :=
[
Ût − ν∆Û − f(Û)

]
(t), t ∈ In, n =

1, . . . , N. From (2.6) we see that the residual can also be written as

(2.7) r̂(t) = −ν∆(Û − U)(t) +
[
f
(
U(t)

)
− f

(
Û(t)

)]
+
[
b(t)− f

(
U(t)

)]
, t ∈ In.

If {Un}Nn=0 are second order approximations to u at the nodes tn, n = 0, 1, . . . , N, then the
residual is expected to be of second order as well. This is because as it has been proven
in [4], the difference Û − U can be expressed as

Û(t)− U(t) = −1
2

(t− tn−1)(tn − t)
[
ν∆∂̄Un +

2
kn

(
f(Un−

1
2 )− f(Un−1)

)]
, t ∈ In

and f is a locally Lipschitz continuous function.

Remark 2.1. In the analysis below we assume that Û ∈ H1
0 . This can easily be proven

in the case of problem (1.1) (cf. [25], Chapter 1, Remark 1.2). For the general cases this
is not obvious. A discussion about when Û indeed belongs to H1

0 can be found in [5].
However assuming that Û ∈ H1

0 does not comprise loss of generality since this is always
true in cases of fully discrete schemes, see for example [25], Chapter 7. �

2.3. The main error equation. Let the error ê : [0, T ]→ H1
0 be defined by ê := u− Û ,

where Û denotes the backward Euler or the Crank-Nicolson reconstruction that has been
introduced in Subsection 2.1 or 2.2, respectively. The definition of the residual immediately
yields equation

(2.8) êt(t)− ν∆ê(t) =
[
f(u)− f(Û)

]
(t)− r̂(t) t ∈ In,

for n = 1, . . . , N, with ê(0) = 0. For the backward Euler method the residual is given by
(2.3), while for the Crank-Nicolson method is given by (2.7). A first straightforward result
based on the error equation (2.8) is given in Subsection 2.4. Afterwards, a motivation and
a plan of the forthcoming analysis is provided.

Remark 2.2. Our analysis is general and can be straightforwardly extended to other
Crank-Nicolson reconstructions or to any numerical scheme in which a reconstruction
function is known. In particular we can alternatively consider the Crank-Nicolson recon-
struction proposed by Lozinski, Picasso and Prachittham in [27], or we can discretize by
any other Runge-Kutta method and use the reconstruction discussed in [5]. �



6 IRENE KYZA AND CHARALAMBOS MAKRIDAKIS

2.4. A first error estimate: Motivation. In this subsection we apply energy techniques
to the error equation (2.8) for the special case f(u) = |u|u and ν = 1. We first observe
that energy techniques do not lead directly to fully a posteriori error bounds because of
the nature of the nonlinearity. To this end, for n = 1, . . . , N, we take in (2.8) the L2−inner
product with ê to obtain

(2.9)

1
2
d

dt
‖ê(t)‖2 + ‖∇ê(t)‖2 ≤

(
[|u|u− |Û |Û ](t), ê(t)

)
+

1
2
‖r̂(t)‖2−1 +

1
2
‖∇ê(t)‖2, t ∈ In.

Note now that

(2.10)
(
[|u|u− |Û |Û ](t), ê(t)

)
≤
(
2‖Û(t)‖L∞ + ‖ê(t)‖L∞

)
‖ê(t)‖2,

because
| |u|u− |Û |Û | ≤ ê2 + 2|Û | |ê|.

Invoking (2.10) in (2.9) and applying Gronwall’s inequality we conclude to:

Theorem 2.1. If f(u) = |u|u, then the following error estimate holds for problem (1.1)

(2.11)
max

0≤t≤T

{
‖ê(t)‖2 +

∫ t

0
e2

R t
s

[
2‖Û(τ)‖L∞+‖ê(τ)‖L∞

]
dτ‖∇ê(s)‖2 ds

}
≤
∫ T

0
e2

R T
s

[
2‖Û(τ)‖L∞+‖ê(τ)‖L∞

]
dτ‖r̂(s)‖2−1 ds. �

Using similar arguments as above, we can prove estimates of the form (2.11) for the cases
f(u) = |u|p−1u, p ∈ N \ {1, 2}, as well. Obviously, estimate (2.11) is not an a posteriori
estimate because of the presence of e2

R T
0 ‖ê(τ)‖L∞ dτ in the right-hand side. Naturally,

Theorem 2.1 leads to two questions:
• Is a fully a posteriori result of the form (2.11) possible?
• What is the behavior of the constant, especially near the blow-up time?
Our aim in the next section is to show that it is indeed possible to control a posteri-
ori

∫ T
0 ‖ê(τ)‖L∞ dτ and thus to obtain fully a posteriori error control, of course under

assumptions of conditional type.
In addition, despite the fact that (2.11) is not yet a fully a posteriori estimate, it provides

the following important insight: The appearance of the term

e2
R T
0

[
2‖Û(τ)‖L∞+‖ê(τ)‖L∞

]
dτ

in the right-hand side relates to the constant of the final estimate. In fact, the main term
in the constant of our estimate will be

e
R T
0 ‖Û(τ)‖L∞ dτ .

Roughly speaking, for reasonably good approximations, we expect that Û will behave as
the exact solution u, Û ∼ u. If we further assume now that the exact solution blows-up
at the finite time t∗, we obtain that ‖u(t)‖L∞ ∼ (t∗ − t)−

1
p−1 , near the blow-up time,

cf. Introduction, where of course p = 2 in this special case. Let T := t∗ − ε. A simple
calculation reveals that

e
R T
0

1
t∗−t dt =

t∗

ε
.

Therefore, we expect that

e
R T
0 ‖Û(τ)‖L∞ dτ ∼ C(t∗)

εq
,
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for some q > 0 and a constant C(t∗), which depends only on t∗. In other words, the
appearance of e

R T
0 ‖Û(τ)‖L∞ dτ in the estimate (2.11), combined with the blow-rate of the

exact solution, is expected to lead to upper bounds that grow polynomially instead of
exponentially, as we approach the blow-up time. We discuss this issue in detail in Section 5,
see also Remark 4.3.

3. A posteriori error estimates for general f

3.1. Main ideas. As we have already discussed, to prove a posteriori error estimates in
the L∞(L2)−norm, we first need to estimate a posteriori the term

∫ T
0 ‖ê(τ)‖L∞ dτ, cf.

Theorem 2.1. So, our goal in the next subsection is to prove conditional a posteriori
error estimates in the L∞(L∞)−norm for problem (1.2) using fixed point arguments.
In some parts of the proof, we follow arguments from [7]. Furthermore the bootstrap-
type argument we use has conceptual similarities to the “thought experiment” of [24],
Sections 3.3-3.4.The forthcoming analysis is technically involved and requires careful use
of conditional assumptions and new key ideas.

More specifically, in our analysis, the introduction of a new, uniform partition {Tm}Mm=0

of [0, T ] of time step δ > 0 plays a significant role. As we shall see this partition is artificial,
i.e., it will be used only for theoretical purposes, and at the end of the analysis it will allow
a slight improvement to the error estimates, cf. Remark 3.2 below.

This step-by-step procedure, instead of considering the whole time interval [0, T ], to
prove the conditional estimates, is required in order to pass from “local in time” to “global
in time” estimates. This is because in the analysis the term

∫ t
0 ‖f

′(Û(s)‖|L∞ ds, t ∈ [0, T ],
must be controlled; in particular, a condition of the form

(3.1)
∫ t

0
‖f ′(Û)(s)‖L∞ ds < 1, t ∈ [0, T ],

must be satisfied, cf. (3.12) below. It is clear that (3.1) can be verified only if t is “suf-
ficiently small”. Then, obviously, condition (3.1) leads to local in time estimates. The
artificial partition of length δ is chosen as a main tool to overcome this obstacle. On the
other hand, one may wonder why not to use the initial partition {tn}Nn=0. One of the
reasons is that we want to avoid to introduce additional restrictions to the time steps.
In fact, using a uniform partition we can guarantee that the whole interval [0, T ] will be
covered, even if δ is approaching 0+. This is something we cannot generally do with the
(nonuniform in principle) partition {tn}Nn=0.

3.2. Estimates in the L∞(L∞)−norm using fixed point arguments. We first assume
that ‖f ′(Û)‖L∞,∞ < ∞. Then we choose 0 < R̂ ≤ 1 and time steps kn, n = 0, 1, . . . , N,
such that

(3.2) Tg(‖Û‖L∞,∞ , R̂)R̂ ≤ 1
4(2 + C)

and

(3.3) e2
R T
0 ‖f

′(Û)(τ)‖L∞ dτ

∫ T

0
‖r̂(τ)‖L∞ dτ ≤

1
4
(
1− 1

2(2 + C)
)
R̂.

Finally, we choose δ > 0 such that

(3.4) δ‖f ′(Û)‖L∞,∞ ≤
3
8

and M := T
δ ∈ N. Let Tm := mδ, m = 0, 1, . . . ,M, be a uniform partition of [0, T ].
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Remark 3.1. (Can conditions (3.2)and (3.3) be satisfied simultaneously? ) Let us consider
the function G : R→ R,

G(ρ) := max
{1

8
, T max

0≤R≤1
g(ρ,R)

}
.

Since the function g is continuous, G is well defined. Also, for every ρ ∈ R,

(3.5) G(ρ) ≥ 1
8
.

We choose the time steps kn, n = 1, . . . , N, such that

(3.6) e2
R T
0 ‖f

′(Û)(τ)‖L∞ dτG(‖Û‖L∞,∞)
∫ T

0
‖r̂(τ)‖L∞ dτ ≤

1
4
(
1− 1

2(2 + C)
) 1

4(2 + C)
.

We next set
R̂ :=

1
4(2 + C)

· 1
G(‖Û‖L∞,∞)

.

Relation (3.5) yields that 0 < R̂ ≤ 1. Besides that, the definition of G asserts that

Tg(‖Û‖L∞,∞ , R̂)R̂ ≤ G(‖Û‖L∞,∞)R̂ =
1

4(2 + C)
.

In other words, (3.2) holds. Finally, from (3.6), we immediately conclude the validity of
(3.3). Now, regarding the question if condition (3.6) (or equivalently, condition (3.3)) is
realistic, this will be the subject of discussion in Section 5. At this point we just conclude
that conditions (3.2) and (3.3) can be satisfied simultaneously. �

3.2.1. Estimate of maxt∈[Tm−1,Tm] ‖ê(t)‖L∞. The purpose here is to estimate ê in the
L∞(L∞)−norm in each subinterval [Tm−1, Tm], m = 1, . . . ,M . Recall that {Tm}Mm=0 is
an artificial partition of [0, T ] which is used only in the proof of the final estimates, and
must not be confused with the partition {tn}Nn=0. In order to avoid any confusion, for
m = 1, . . . ,M, we will use the notation L∞,∞m for the space C

(
[Tm−1, Tm];L∞(Ω)

)
and

‖ · ‖L∞,∞m
for the norm corresponding to the space L∞,∞m .

Since the function f is twice continuously differentiable, we can write

(3.7) f(u)− f(Û) = f ′(Û)ê+
∫ 1

0
(1− τ)f ′′(Û + τ ê) dτ ê2.

Then, in each [Tm−1, Tm], the error ê satisfies

(3.8)


êt − ν∆ê = f ′(Û)ê+

∫ 1

0
(1− τ)f ′′(Û + τ ê) dτ ê2 − r̂ in Ω × [Tm−1, Tm],

ê = 0 on ∂Ω × [Tm−1, Tm],

ê(·, Tm−1) = ê(Tm−1) in Ω̄,

with ê(0) = 0. Through (3.8) a sequence of problems {Pm}Mm=1 is defined. Recall that the
error ê is a time-continuous function and thus this sequence of problems is well defined.
Assuming that ê(Tm−1) ∈ L∞, we define the operator Φ : L∞,∞m → L∞,∞m as

(3.9)

Φ(w)(t) =e(t−Tm−1)ν∆ê(Tm−1) +
∫ t

Tm−1

e(t−s)ν∆f ′(Û)(s)w(s) ds

+
∫ t

Tm−1

e(t−s)ν∆{∫ 1

0
(1− τ)f ′′(Û + τw) dτ w2

}
(s) ds

−
∫ t

Tm−1

e(t−s)ν∆r̂(s) ds, t ∈ [Tm−1, Tm].
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The aim is to prove that the operator Φ is, in every interval [Tm−1, Tm], m = 1, . . . ,M,

a contraction in the L∞(L∞)−norm, in the closed ball B(0, R̂;L∞,∞m ) of center 0 and
radius R̂ > 0. If we manage to achieve this, then by Banach’s fixed point Theorem, Φ will
have a unique fixed point in each interval [Tm−1, Tm], m = 1, . . . ,M, which, by Duhamel’s
principle, will also be the unique solution of problem (3.8). Therefore the problem

(3.10)


êt − ν∆ê = f(u)− f(Û)− r̂ in Ω × (0, T ],

ê = 0 on ∂Ω × (0, T ],

ê(0) = 0 in Ω̄,

will have a unique solution, the L∞(L∞)−norm of which will be estimated through the
analysis below.

To this end, we will derive preliminary estimates for ‖Φ(w)(t)‖L∞ and ‖Φ(w1)(t) −
Φ(w2)(t)‖L∞ in a generic interval [Tm−1, Tm] and then we will use induction with respect
to m to complete the proof. Next we shall use the following standard lemma:

Lemma 3.1. (General form of Maximum Principle, Thomée, [39], page 93.) Let et∆ be
the solution operator for the problem

wt −∆w = 0 in Ω, t > 0,
w = 0 on ∂Ω, t > 0,

w(·, 0) = υ in Ω.

In other words, w(t) = et∆υ. Then, the following estimate is valid

(3.11) ‖et∆υ‖L∞ ≤ ‖υ‖L∞ , t > 0, υ ∈ L∞. �

Estimate (3.11) yields,

(3.12)

‖Φ(w)(t)‖L∞ ≤‖ê(Tm−1)‖L∞ +
∫ t

Tm−1

‖f ′(Û)(s)‖L∞ ds ‖w‖L∞,∞m

+ δ

∫ 1

0
(1− τ)‖f ′′(Û + τw)‖L∞,∞m

dτ ‖w‖2L∞,∞m

+
∫ t

Tm−1

‖r̂(s)‖L∞ ds, t ∈ [Tm−1, Tm].

Let w ∈ B(0, R̂;L∞,∞m ). Then, for every τ ∈ [0, 1], we have that τw ∈ B(0, R̂;L∞,∞m ).
Hence, |(Û + τw)(x, t)| ≤ ‖Û‖L∞,∞ + R̂, for every w ∈ B(0, R̂;L∞,∞m ), τ ∈ [0, 1], and for
every (x, t) ∈ Ω×[Tm−1, Tm], m = 1, . . . ,M. Accordingly, assumption (i) (cf. Introduction)
yields, for m = 1, . . . ,M,

(3.13) sup
τ∈[0,1]

‖f ′′(Û + τw)‖L∞,∞m
≤ g(‖Û‖L∞,∞ , R̂).

Combining (3.12) and (3.13) we conclude, for w ∈ B(0, R̂;L∞,∞m ), m = 1, . . . ,M, the
estimate

(3.14)

‖Φ(w)‖L∞,∞m
≤‖ê(Tm−1)‖L∞ +

∫ Tm

Tm−1

‖f ′(Û)(s)‖L∞ ds ‖w‖L∞,∞m

+
δ

2
g(‖Û‖L∞,∞ , R̂)R̂ ‖w‖L∞,∞m

+
∫ Tm

Tm−1

‖r̂(s)‖L∞ ds.
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Regarding the contraction property, one calculates for t ∈ [Tm−1, Tm],

Φ(w1)(t)− Φ(w2)(t) =
∫ t

Tm−1

e(t−s)ν∆f ′(Û)(s)
(
w1(s)− w2(s)

)
ds

+
∫ t

Tm−1

e(t−s)ν∆
{

(w1 − w2)(w1 + w2)
∫ 1

0
(1− τ)f ′′(Û + τw1) dτ

+ w2
2

∫ 1

0
(1− τ)

(
f ′′(Û + τw1)− f ′′(Û + τw2)

)
dτ
}

(s) ds.

Using again (3.11) we get

(3.15)

‖Φ(w1)− Φ(w2)‖L∞,∞m
≤
∫ Tm

Tm−1

‖f ′(Û)(s)‖L∞ ds ‖w1 − w2‖L∞,∞m

+
δ

2

[
(‖w1‖L∞,∞m

+ ‖w2‖L∞,∞m
)‖w1 − w2‖L∞,∞m

sup
τ∈[0,1]

‖f ′′(Û + τw1)‖L∞,∞

+ ‖w2‖2L∞,∞m
sup
τ∈[0,1]

‖f ′′(Û + τw1)− f ′′(Û + τw2)‖L∞,∞m

]
.

Let w1, w2 ∈ B(0, R̂;L∞,∞m ). Since τ ∈ [0, 1], we have that τw1, τw2 ∈ B(0, R̂; L∞,∞m ).
On the other hand, since w1, w2 ∈ B(0, R̂;L∞,∞m ), it is easily seen that ‖w1 − w2‖L∞,∞ ≤
2R̂. We obtain, in view of assumption (i), that for m = 1, . . . ,M,

(3.16) sup
τ∈[0,1]

‖f ′′(Û + τw1)‖L∞,∞m
≤ g(‖Û‖L∞,∞ , R̂),

and

(3.17) sup
τ∈[0,1]

‖f ′′(Û + τw1)− f ′′(Û + τw2)‖L∞,∞m
≤ C

R̂
g(‖Û‖L∞,∞ , R̂)‖w1 − w2‖L∞,∞m

,

in light of assumption (ii) (cf. Introduction). The combination of (3.15) with (3.16)-(3.17)
reveals, for every w1, w2 ∈ B(0, R̂;L∞,∞m ), that

(3.18)
‖Φ(w1)− Φ(w2)‖L∞,∞m

≤δ‖f ′(Û)‖L∞,∞‖w1 − w2‖L∞,∞m

+ δ
2 + C

2
g(‖Û‖L∞,∞ , R̂)R̂ ‖w1 − w2‖L∞,∞m

.

To complete the analysis we use induction with respect to m.
• 1st Step.

Recall that ê(0) = 0 and let w ∈ B(0, R̂;L∞,∞1 ). Then the combination of (3.14) with
conditions (3.2)-(3.4) ensures that

‖Φ(w)‖L∞,∞1
≤ 3

8
R̂+

1
8(2 + C)

R̂+
1
4

(1− 1
2(2 + C)

)R̂ =
5
8
R̂ ≤ R̂.

In other words, Φ maps the ball B(0, R̂;L∞,∞m ) on itself. The use of (3.18) gives, in view
of (3.2) and (3.4), that

‖Φ(w1)− Φ(w2)‖L∞,∞1
≤ 1

2
‖w1 − w2‖L∞,∞1

,

for every w1, w2 ∈ B(0, R̂;L∞,∞1 ). Accordingly, Φ : B(0, R̂;L∞,∞1 ) → B(0, R̂;L∞,∞1 ) is a
contraction. Therefore, according to Banach’s fixed point Theorem, there exists a unique
fixed point ê ∈ B(0, R̂;L∞,∞1 ) of Φ which is also the unique solution of problem (3.8) for
m = 1. The following elementary lemma is useful.
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Lemma 3.2. Let β > 0 and α := β
1+β . Then for 0 ≤ x ≤ α, there holds 1

1−x ≤ e(1+β)x.

Proof. We just note that 0 < α < 1 and for 0 ≤ x ≤ α, h(x) := e(1+β)x(1 − x) − 1 is an
increasing function. Since h(0) = 0, the proof is complete. �

Now, since ê ∈ B(0, R̂;L∞,∞1 ) is the unique fixed point of operator Φ, we conclude, in
view of (3.14), (3.4) and of Lemma 3.2 (with α = 1

2), the estimate

max
t∈[0,T1]

‖ê(t)‖L∞ ≤ e2
R T1
0 ‖f ′(Û)(s)‖L∞ dseδ g(‖Û‖L∞,∞ ,R̂)R̂

∫ T1

0
‖r̂(s)‖L∞ ds.

• 2nd Step (Inductive step).
We next assume that for an arbitrary m (2 ≤ m ≤M),

(3.19)

max
t∈[Tm−2,Tm−1]

‖ê(t)‖L∞ ≤e2
R Tm−1
0 ‖f ′(Û)(s)‖L∞ ds·

e(m−1)δ g(‖Û‖L∞,∞ ,R̂)R̂

∫ Tm−1

0
‖r̂(s)‖L∞ ds.

Because of (3.2), the estimate

(3.20) e(m−1)δ g(‖Û‖L∞,∞ ,R̂)R̂ ≤ eTg(‖Û‖L∞,∞ ,R̂)R̂ ≤ e
1
8 ,

is valid. Therefore, by condition (3.3) and (3.19)-(3.20), we obtain

(3.21)
‖ê(Tm−1)‖L∞ ≤ e2

R Tm−1
0 ‖f ′(Û)(s)‖L∞ dse(m−1)δ g(‖Û‖L∞,∞ ,R̂)R̂

∫ Tm−1

0
‖r̂(s)‖L∞ ds

≤ e
1
8

4
R̂ ≤ 3

8
R̂.

Proceeding as in the first step of the induction and combining (3.14) with conditions
(3.2)-(3.3) and with (3.21), we see that for w ∈ B(0, R̂;L∞,∞m ),

‖Φ(w)‖L∞,∞m
≤ R̂,

i.e., operator Φ maps the ball B(0, R̂;L∞,∞m ) on itself. Moreover, proceeding as before,
we can prove that Φ : B(0, R̂;L∞,∞m ) → B(0, R̂;L∞,∞m ) is a contraction with constant
≤ 1

2 . Thus, Φ has a unique fixed point ê ∈ B(0, R̂;L∞,∞m ), which is the unique solution
of problem (3.8). Relations (3.14), (3.19) and (3.21), conditions (3.2) and (3.4), and
Lemma 3.2 (with α = 1

2) give

‖ê‖L∞,∞m
≤e

2
R Tm
Tm−1

‖f ′(Û)(s)‖L∞ ds
eδ g(‖Û‖L∞,∞ ,R̂)R̂{

e2
R Tm−1
0 ‖f ′(Û)(s)‖L∞ dse(m−1)δ g(‖Û‖L∞,∞ ,R̂)R̂

∫ Tm−1

0
‖r̂(s)‖L∞ ds

+
∫ Tm

Tm−1

‖r̂(s)‖L∞ ds
}
,

or

‖ê‖L∞,∞m
≤ e2

R Tm
0 ‖f ′(Û)(s)‖L∞ dsemδ g(‖Û‖L∞,∞ ,R̂)R̂

∫ Tm

0
‖r̂(s)‖L∞ ds.

In other words, since for m = 1, . . . ,M, mδ ≤ T , the following a posteriori error estimate
is valid

(3.22) max
Tm−1≤t≤Tm

‖ê(t)‖L∞ ≤ e2
R T
0 ‖f

′(Û)(s)‖L∞ dseTg(‖Û‖L∞,∞ ,R̂)R̂

∫ T

0
‖r̂(s)‖L∞ ds.
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3.2.2. Estimation of ‖ê‖L∞,∞. From the analysis above and the estimate (3.22), it is clear
that problem (3.10) has a unique solution for which the following a posteriori estimate is
valid

(3.23) ‖ê‖L∞,∞ ≤ e2
R T
0 ‖f

′(Û)(s)‖L∞ dseTg(‖Û‖L∞,∞ ,R̂)R̂

∫ T

0
‖r̂(s)‖L∞ ds,

where 0 < R̂ ≤ 1 has been chosen such that condition (3.2) is satisfied. Furthermore,
ê ∈ B

(
0, R̂;L∞(L∞)

)
.

Remark 3.2. δ in condition (3.4) is only needed for theoretical purposes. Indeed, as we
can see from conditions (3.2)-(3.3), δ does not affect the choice of R̂ or the choice of the
time steps kn, n = 1, . . . , N , neither does it appear in estimate (3.23). Since δ is only
needed for theoretical purposes, it can become as small as we wish. Actually, we can let
δ → 0+. But then, according to Lemma 3.2, condition (3.3) can be relaxed and estimate
(3.23) can be improved. In particular, condition (3.3) can be written as

(3.24) e(1+β)
R T
0 ‖f

′(Û)(τ)‖L∞ dτ

∫ T

0
‖r̂(s)‖L∞ ds ≤

1
4
(
1− 1

2(2 + C)
)
R̂,

and estimate (3.23) can be written as

(3.25) ‖ê‖L∞,∞ ≤ e(1+β)
R T
0 ‖f

′(Û)(s)‖L∞ ds · e
(1+β)

2
Tg(‖Û‖L∞,∞ ,R̂)R̂

∫ T

0
‖r̂(s)‖L∞ ds,

where β is any real number with β ≥ 1
15 . �

3.3. The final estimates. Taking in the error equation (2.8) the L2−inner product with
ê and using relation (3.7) we obtain

(3.26)

1
2
d

dt
‖ê(t)‖2 + ν‖∇ê(t)‖2 ≤‖f ′

(
Û(t)

)
‖L∞ ‖ê(t)‖2

+
1
2

sup
τ∈[0,1]

‖f ′′(Û + τ ê)‖L∞,∞‖ê‖L∞,∞ ‖ê(t)‖2

+
1

2ν
‖r̂(t)‖2−1 +

ν

2
‖∇ê(t)‖2.

In (3.26) we have also used the Cauchy-Schwarz and the Young inequalities. Proceeding
as in the proof of (3.13) and recalling that ê ∈ B

(
0, R̂;L∞(L∞)

)
, we conclude that

sup
τ∈[0,1]

‖f ′′(Û + τ ê)‖L∞,∞ ≤ g(‖Û‖L∞,∞ , R̂).

Also, ‖ê‖L∞,∞ ≤ R̂. Thus, (3.26) gives now

1
2
d

dt
‖ê(t)‖2 +

ν

2
‖∇ê(t)‖2 ≤‖f ′

(
Û(t))

∥∥
L∞
‖ê(t)‖2 +

1
2
g(‖Û‖L∞,∞ , R̂)R̂ ‖ê(t)‖2

+
1

2ν
‖r̂(t)‖2−1.

The above relation yields
d

dt

(
e−2

R t
0 ‖f

′
(
Û(τ)

)
‖L∞ dτe−g(‖Û‖L∞,∞ ,R̂)R̂ t‖ê(t)‖2

)
+ νe−2

R t
0 ‖f

′
(
Û(τ)

)
‖L∞ dτe−g(‖Û‖L∞,∞ ,R̂)R̂ t‖∇ê(t)‖2

≤ 1
ν

e−2
R t
0 ‖f

′
(
Û(τ)

)
‖L∞ dτe−g(‖Û‖L∞,∞ ,R̂)R̂ t‖r̂(t)‖2−1.
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Integrating from 0 to t, and recalling that ê(0) = 0, we conclude

‖ê(t)‖2 + ν

∫ t

0
e2

R t
s ‖f

′
(
Û(τ)

)
‖L∞ dτeg(‖Û‖L∞,∞ ,R̂)R̂ (t−s)‖∇ê(s)‖2 ds

≤ 1
ν

∫ t

0
e2

R t
s ‖f

′
(
Û(τ)

)
‖L∞ dτeg(‖Û‖L∞,∞ ,R̂)R̂ (t−s)‖r̂(s)‖2−1 ds.

Thus we have proved the main result in this section.

Theorem 3.1. Let ê = u−Û be the error. Then, the following a posteriori error estimates
are valid for problem (1.2)

(3.27)
max

0≤t≤T

{
‖ê(t)‖2 + ν

∫ t

0
e2

R t
s ‖f

′
(
Û(τ)

)
‖L∞ dτeg(‖Û‖L∞,∞ ,R̂)R̂ (t−s)‖∇ê(s)‖2 ds

}
≤ 1
ν

∫ T

0
e2

R T
s ‖f

′
(
Û(τ)

)
‖L∞ dτeg(‖Û‖L∞,∞ ,R̂)R̂ (T−s)‖r̂(s)‖2−1 ds,

and

(3.28) max
0≤t≤T

‖ê(t)‖L∞ ≤ e(1+β)
R T
0 ‖f

′(Û)(s)‖L∞ dseTg(‖Û‖L∞,∞ ,R̂)R̂

∫ T

0
‖r̂(s)‖L∞ ds,

where β ≥ 1
15 , and R̂ and the time steps kn, n = 1, . . . , N, have been chosen so that

conditions (3.2) and (3.24) be satisfied. �

Remark 3.3. The term eTg(‖Û‖L∞,∞ ,R̂)R̂, which appears in the estimates above, is negli-
gible. Indeed, from (3.2) we have that eTg(‖Û‖L∞,∞ ,R̂)R̂ ≤ e

1
8 . �

4. A posteriori error estimates for f(u) = |u|p−1u

We are now ready to discuss problem (1.1). Our aim is to show that the results of
Section 3 can be further improved in the case where f(u) = |u|p−1u. In the forthcoming
analysis we avoid the repetition of similar arguments; whenever the analysis is modified,
we discuss the differences in detail.

4.1. Conditional estimates using fixed point arguments and energy techniques.
As in the general case, we assume that ‖f ′(Û)‖L∞,∞ < ∞, i.e., ‖Û‖L∞,∞ < ∞ . Using
the notation of the previous section, we choose again 0 < R̂ ≤ 1 and the time steps
kn, n = 1, . . . , N, so that

(4.1)
∫ T

0
Ep(s; Û , R̂) ds :=

[ p∑
j=2

(
p

j

)∫ T

0
‖Û(s)‖p−jL∞ ds R̂j−2

]
R̂ ≤ 1

16

and

(4.2) e2
R T
0 ‖f

′(Û)(τ)‖L∞ dτ

∫ T

0
‖r̂(s)‖L∞ ds ≤

3
16
R̂,

be satisfied. We finally choose δ > 0 so that

(4.3) δp
(
‖Û‖L∞,∞ + R̂

)p−1 ≤ 3
8

is satisfied, where M := T
δ ∈ N and Tm := mδ, m = 0, 1, . . . ,M, is a uniform partition of

[0, T ].
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Remark 4.1. Condition (4.3) implies that

(4.4) δ‖f ′(Û)‖L∞,∞ = δp‖Û‖p−1
L∞,∞ ≤

3
8

is satisfied (compare with (3.4)). Condition (4.3) is more restrictive than (3.4). However,
recall that (4.3) will only be used for theoretical purposes and that in practice we only use
conditions (4.1) and (4.2). As we will see in Remark 4.3, condition (4.1) is less restrictive
compared to (3.2). �

We recall that in each time-interval [Tm−1, Tm], the error satisfies the problem

(4.5)


êt −∆ê = f(u)− f(Û)− r̂ in Ω × [Tm−1, Tm],

ê = 0 on ∂Ω × [Tm−1, Tm],

ê(·, Tm−1) = ê(Tm−1) in Ω̄,

with ê(0) = 0. We assume that ê(Tm−1) ∈ L∞ and we define the operator

(4.6)

Φ(w)(t) =e(t−Tm−1)∆ê(Tm−1) +
∫ t

Tm−1

e(t−s)∆(f(Û + w)− f(Û)
)
(s) ds

−
∫ t

Tm−1

e(t−s)∆r̂(s) ds, t ∈ [Tm−1, Tm].

If p > 2, then the operator Φ is equivalently written (for ν = 1) in the form (3.9).
Assume first that p > 2. Then

f ′′(x) = p(p− 1)|x|p−3x

Accordingly, in view of (3.9), we have

Φ(w)(t) = e(t−Tm−1)∆ê(Tm−1) +
∫ t

Tm−1

e(t−s)∆f ′
(
Û(s)

)
w(s) ds

+ p(p− 1)
∫ t

Tm−1

e(t−s)∆
{∫ 1

0
(1− τ)|Û + τw|p−3(Û + τw) dτ w2

}
(s) ds

−
∫ t

Tm−1

e(t−s)∆r̂(s) ds.

Let w ∈ B(0, R̂;L∞,∞m ). Then

(4.7)

‖Φ(w)‖L∞,∞ ≤ ‖ê(Tm−1)‖L∞ +
∫ Tm

Tm−1

‖f ′
(
Û(s)

)
‖L∞ ds ‖w‖L∞,∞m

+ p(p− 1)
∫ Tm

Tm−1

∫ 1

0
(1− τ)(‖Û(s)‖L∞ + τR̂)p−2 dτ ds R̂ ‖w‖L∞,∞m

+
∫ Tm

Tm−1

‖r̂(s)‖L∞ ds.

Moreover,

(4.8) (‖Û(s)‖L∞ + τR̂)p−2 =
p−2∑
j=0

(
p− 2
j

)
‖Û(s)‖p−2−j

L∞ τ jR̂j
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Thus,

(4.9)

p(p− 1)
∫ 1

0
(1− τ)

(
‖Û(s)‖L∞ + τ‖w‖L∞,∞m

)p−2
dτ

=
p−2∑
j=0

p(p− 1)
(j + 1)(j + 2)

(
p− 2
j

)
‖Û(s)‖p−2−j

L∞ R̂j

=
p−2∑
j=0

(
p

j + 2

)
‖Û(s)‖p−2−j

L∞ R̂j =
p∑
j=2

(
p

j

)
‖Û(s)‖p−jL∞ R̂j−2.

Combining (4.7)-(4.9) we obtain, for w ∈ B(0, R̂;L∞,∞m ), that

(4.10)

‖Φ(w)‖L∞,∞ ≤ ‖ê(Tm−1)‖L∞ +
∫ Tm

Tm−1

‖f ′
(
Û(s)

)
‖L∞ ds ‖w‖L∞,∞m

+
( p∑
j=2

(
p

j

)∫ Tm

Tm−1

‖Û(s)‖p−jL∞ ds R̂j−2
)
R̂ ‖w‖L∞,∞m

+
∫ Tm

Tm−1

‖r̂(s)‖L∞ ds.

Now let p = 2. Then (4.6) yields

‖Φ(w)‖L∞,∞m
≤‖ê(Tm−1)‖L∞ +

∫ Tm

Tm−1

‖
(
|Û + w|(Û + w)− |Û |Û

)
(s)‖L∞ ds

+
∫ Tm

Tm−1

‖r̂(s)‖L∞ ds.

It is easily seen that ‖
(
|Û+w|(Û+w)−|Û |Û

)
(s)‖L∞ ≤ (2‖Û(s)‖L∞+‖w(s)‖L∞)‖w(s)‖L∞ .

Consequently, for w ∈ B(0, R̂;L∞,∞m ),

‖Φ(w)‖L∞,∞m
≤‖ê(Tm−1)‖L∞ +

∫ Tm

Tm−1

‖f ′(Û)(s)‖L∞ ds ‖w‖L∞,∞m
+ δR̂ ‖w‖L∞,∞m

+
∫ Tm

Tm−1

‖r̂(s)‖L∞ ds.

Therefore (4.10) is valid for p = 2 as well; hence (4.10) holds for integers p ≥ 2.
On the other hand, for t ∈ [Tm−1, Tm],

Φ(w1)(t)− Φ(w2)(t) =
∫ t

Tm−1

e(t−s)∆(f(Û + w1)− f(Û + w2)
)
(s) ds.

Hence,

(4.11) ‖Φ(w1)− Φ(w2)‖L∞,∞m
≤
∫ Tm

Tm−1

‖
(
f(Û + w1)− f(Û + w2)

)
(s)‖L∞ ds.

Notice now that

(4.12)
|f(Û + w1)− f(Û + w2)|(s) =

∣∣ |Û + w1|p−1(Û + w1)− |Û + w2|p−1(Û + w2)
∣∣(s)

≤
[
|Û + w1|p−1|w1 − w2|+ |(Û + w1)p−1 − (Û + w2)p−1| |Û + w2|

]
(s).

In addition,

(4.13) (Û + w1)p−1 − (Û + w2)p−1 = (w1 − w2)
p−2∑
j=0

(Û + w1)p−2−j(Û + w2)j .
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Let w1, w2 ∈ B(0, R̂;L∞,∞m ). Then, relations (4.12)-(4.13) ensure that

(4.14)

‖
(
f(Û + w1)− f(Û + w2)

)
(s)‖L∞

≤
[
(‖Û(s)‖L∞ + R̂)p−1 + (p− 1)(‖Û(s)‖L∞ + R̂)p−1

]
‖w1 − w2‖L∞,∞m

= p(‖Û(s)‖L∞ + R̂)p−1‖w1 − w2‖L∞,∞m
.

Relation (4.14) yields, in view of (4.11), for every w1, w2 ∈ B(0, R̂;L∞,∞m ),

(4.15) ‖Φ(w1)− Φ(w2)‖L∞,∞m
≤ pδ

(
‖Û‖L∞,∞ + R̂

)p−1‖w1 − w2‖L∞,∞m
.

Using now an inductive argument, cf. Section 3.2, we can prove, for m = 1, . . . ,M, that
the operator Φ : L∞,∞m → L∞,∞m is a contraction and the validity of the following local
estimate

max
Tm−1≤t≤Tm

‖ê(t)‖L∞ ≤e2
R Tm
0 ‖f ′(Û)(s)‖L∞ ds e2

R Tm
0 Ep(s;Û ,R̂) ds

∫ Tm

0
‖r̂(s)‖L∞ ds.

Finally, we can derive the following a posteriori estimate for the error in the L∞(L∞)−norm

(4.16) max
0≤t≤T

‖ê(t)‖L∞ ≤ e2
R T
0 ‖f

′(Û)(s)‖L∞ ds e2
R T
0 Ep(s;Û ,R̂) ds

∫ T

0
‖r̂(s)‖L∞ ds,

where f(x) = |x|p−1x, p ∈ N, p > 1.
As we have seen in Remark 3.2, the coefficient 2 in the exponential terms of estimate

(4.16) and of condition (4.2), can be improved to 1 + β with β ≥ 1
15 . So, condition (4.2)

and estimate (4.16) can be written as

(4.17) e(1+β)p
R T
0 ‖Û(s)‖p−1

L∞ ds

∫ T

0
‖r̂(s)‖L∞ ds ≤

3
16
R̂,

and

(4.18) max
0≤t≤T

‖ê(t)‖L∞ ≤ e(1+β)p
R T
0 ‖Û(s)‖p−1

L∞ ds e(1+β)
R T
0 E(s;Û ,R̂) ds

∫ T

0
‖r̂(s)‖L∞ ds,

respectively.

Remark 4.2. Estimate (4.16) indicates that the error ê is uniformly bounded in the
L∞(L∞)−norm. This is possible, even when the final time T is near the possible discrete
blow-up time. In fact, this result is in complete agreement (for d = 1) with Theorem 1 in
the paper [8] of Fermanian and Zaag. �

Proceeding as in Section 3.3 we obtain, in view of conditions (4.1) and (4.17),

(4.19)

1
2
d

dt
‖ê(t)‖2 + ‖∇ê(t)‖2 ≤‖f ′(Û)(t)‖L∞‖ê(t)‖2

+ p(p− 1)
∫ 1

0
(1− τ)(‖Û(t)‖L∞ + τR̂)p−2 dτ R̂ ‖ê(t)‖2

+
1
2
‖r̂(t)‖2−1 +

1
2
‖∇ê(t)‖2.

Invoking (4.9) in (4.19), we arrive at the estimate

1
2
d

dt
‖ê(t)‖2 +

1
2
‖∇ê(t)‖2L2 ≤‖f ′(Û)(t)‖L∞‖ê(t)‖2 + Ep(t; Û , R̂)‖ê(t)‖2 +

1
2
‖r̂(t)‖2−1.
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Following the same steps as in Section 3.3, we finally conclude the estimate

‖ê(t)‖2 +
∫ t

0
e2p

R t
s ‖Û(τ)‖p−1

L∞ dτe2
R t
s Ep(τ ;Û ,R̂) dτ ‖∇ê(s)‖2 ds

≤
∫ t

0
e2p

R t
s ‖Û(τ)‖p−1

L∞ dτe2
R t
s Ep(τ ;Û ,R̂) dτ ‖r̂(s)‖2−1 ds, ∀t ∈ [0, T ].

We collect the results of this section so far in the following theorem.

Theorem 4.1. Let ê = u − Û denote the error. Then, if we choose 0 < R̂ ≤ 1 and
the time steps kn, n = 1, . . . , N, so that the conditions (4.1) and (4.17) be satisfied, the
following a posteriori estimates are valid for problem (1.1)

(4.20)
max

0≤t≤T

{
‖ê(t)‖2 +

∫ t

0
e2p

R t
s ‖Û(τ)‖p−1

L∞ dτe2
R t
s Ep(τ ;Û ,R̂) dτ ‖∇ê(s)‖2 ds

}
≤
∫ T

0
e2p

R T
s ‖Û(τ)‖p−1

L∞ dτe2
R T
s Ep(τ ;Û ,R̂) dτ ‖r̂(s)‖2−1 ds

and

(4.21) max
0≤t≤T

‖ê(t)‖L∞ ≤e(1+β)p
R T
0 ‖Û(τ)‖p−1

L∞ dτe(1+β)
R T
0 Ep(τ ;Û ,R̂) dτ

∫ T

0
‖r̂(s)‖L∞ ds,

where β is any real number greater than 1
15 . �

Remark 4.3. (Comparison of conditions (4.1) and (3.2).) Let

ps(d) =
{

d+2
d−2 , d ≥ 3
∞ d = 1, 2

and let p ∈ (1, ps), We assume that the data of problem (1.1) are such that its solution
blows-up at some finite time t∗. Then it is known that the blow-up rate for the quantity
‖u(t)‖L∞ is 1

(t∗−t)
1
p−1

. In fact, there exists a constant D, depending only on d, p and Ω,

such that, [16, 18, 30],

(4.22) ‖u(t)‖L∞ ≤ D
1

(t∗ − t)
1
p−1

, t ∈ [0, t∗).

Our aim is to obtain reasonable estimates that are valid even close to the blow-up time.
Next we will investigate if conditions (4.1) and (3.2) make sense in that case. To this end,
we assume that for some t∗d > T

(4.23) ‖Û(t)‖L∞ ∼
1

(t∗d − t)
1
p−1

, t ∈ [0, T ].

Note that the ideal situation will be t∗ = t∗d. If Û is a good approximation to u then t∗ and
t∗d should be close. We denote by ε̃ = |t∗ − t∗d| and let T ∗ := min{t∗, t∗d}. Since T ∗ > T we
set T := T ∗ − ε. Next, we investigate the form of our conditions in the case where ε̃ ∼ ε
both being small numbers. Similar conclusions can be drown under alternative reasonable
scenarios.

As we have mentioned in the Introduction, for p ≥ 3, problem (1.1) is a special case
of problem (1.2). By the analysis of Section 3, we can easily see that the quantity
g(‖Û‖L∞,∞ , R̂), which appears in condition (3.2), has a polynomial dependence on the
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quantity ‖Û‖L∞,∞ . In particular, for a given p, there exist constants Dj , j = 0, 1, . . . , p−2,
depending only on p, such that

g(‖Û‖L∞,∞ , R̂) =
p−2∑
j=0

Dj‖Û‖jL∞,∞R̂
p−2−j ,

cf. (1.3). Since ‖Û(t)‖L∞ ∼ 1

(t∗d−t)
1
p−1

and t∗d is an approximation to T ∗, we have for

0 ≤ t ≤ T ∗−ε, that ‖Û‖jL∞,∞ ∼
1

ε
j

p−1

for j = 0, 1, . . . , p−2. Consequently, condition (3.2)

in this special case, takes the form

(4.24)
( p−2∑
j=0

Ej
R̂p−2−j

ε
j

p−1

)
R̂ ≤ 1

4(2 + C)
,

where the constants Dj , j = 0, 1, . . . , p−2, are independent of ε and of R̂. Condition (4.24)
requires restrictions on R̂ as ε tends to zero. On the contrary, notice that in condition
(4.1) quantities of the form

(4.25)
∫ T ∗−ε

0
‖Û(s)‖p−jL∞ ds, j = 2, . . . , p,

appear. Since for j = 2, . . . , p,

(4.26)
∫ T ∗−ε

0

1

(t∗ − t)
p−j
p−1

dt =
p− 1
j − 1

(
(t∗)

j−1
p−1 − ε

j−1
p−1
)
,

condition (4.1) is expected to yield

(4.27)
[ p∑
j=2

Fj
(
(t∗)

j−1
p−1 − ε

j−1
p−1
)
R̂j−2

]
R̂ ≤ 1

16
,

where the constants Fj , j = 2, . . . , p, are independent of ε and of R̂. Condition (4.27) is
clearly less restrictive than condition (4.24) and does not substantially affect the choice of
R̂ while ε tends to zero, or equivalently, while we approach the blow-up time. �

5. Time steps close to the blow-up time

In this section we provide arguments that support the claim that our results lead to
feasible error control near the blow-up time for the cases p = 2 or 3 and d = 2. We empha-
size again that an important verification of this claim will be done through sophisticated
adaptive algorithms. This is the subject of a forthcoming work.

Here we follow the notation and assumptions made in Remark 4.3. We assume that for
some t∗d > T, (4.23) holds. We emphasize here that (4.23) is not required for our estimates
to hold. We use this assumption only to check the form of the constants and whether the
conditional assumptions make sense. Similar conclusions can be drown under alternative
reasonable hypotheses. If Û is a good approximation to u then t∗ and t∗d should be close;
let ε̃ = |t∗ − t∗d|, T ∗ = min{t∗, t∗d}, and T = T ∗ − ε. Next, we investigate the form of
conditions and constants in the case where ε̃ ∼ ε, both being small numbers.

We start with condition (4.1). Then, it suffices to choose R̂ > 0 such that

(5.1) R̂ ≤ 1
16T

, when p = 2,
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and

(5.2)
(

3
∫ T ∗−ε

0
‖Û(s)‖L∞ ds+ (T ∗ − ε)R̂

)
R̂ ≤ 1

16
, when p = 3.

Then according to (4.25), (4.26) in Remark 4.3, we expect that∫ T ∗−ε

0
‖Û(s)‖L∞ ds ≤ D(

√
T ∗ −

√
ε)

for some constant D which depends only on the domain Ω. Consequently, both of (5.1)
and (5.2) impose realistic restrictions on R̂.

Regarding (4.17), we first notice that∫ T ∗−ε

0
‖Û(t)‖p−1

L∞ dt ≤ E1 ln
T ∗

ε
,

where the constant E1 depends only on p, d and Ω. Thus,

ep
R T∗−ε
0 ‖Û(t)‖p−1

L∞ dt ≤ E2
1

εq3(p)

and

e(1+β)p
R T∗−ε
0 ‖Û(t)‖p−1

L∞ dt ≤ E3
1

εq4(p,β)
,

where the constants E2, E3 are independent of ε. Therefore, for the condition (4.17) to be
satisfied, it suffices to choose the time steps kn, n = 1, . . . , N , in such a way

(5.3) E3
1

εq4(p,β)

∫ T ∗−ε

0
‖r̂(s)‖L∞ ds ≤

3
16
R̂.

Let us now consider a fixed ε. Given the rate of convergence of backward Euler and
Crank-Nicolson methods, their residual r̂ will tend to zero as the size of the time steps
decrease. Therefore, with a suitable choice of the time steps, (5.3) will be satisfied. At this
point we emphasize the fact that due to the presence of 1

εq4(p,β) and not of an exponential
on 1

ε , we anticipate that (5.3) will be satisfied under reasonable choices on the sizes of the
time steps. Finally, we observe that as ε becomes smaller, we have to choose smaller time
steps. This is something we expect, because as we approach the blow-up time, the choice
of extremely small time steps is a necessity, see [36] and [2].

It is important here to notice that the blow-up rate of the solution is such that the term
ep

R T∗−ε
0 ‖Û(τ)‖p−1

L∞ dτ tends to infinity with polynomial, instead of exponential rate, while ε
tends to zero (this is true for every p; not only for p = 2 or 3). As a consequence, the
conditions required in the present analysis are, with a suitable choice of the time steps,
realistic. Moreover, choosing again the time steps appropriately, our results provide upper
bounds with reasonable constants for the L∞(L2)− and the L∞(L∞)−norm, respectively.
As we have mentioned in the Introduction, this is not feasible via standard a priori error
analysis, since in the upper bounds of the a priori error estimates a term of the form
e

1
ε appears, i.e., the upper bound tends exponentially to infinity while ε tends to zero.

However, via the analysis of this paper, the goal of error control near the blow-up time
seems a feasible task.
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