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The condensed exciton-photon system

Photons trapped in a cavity (wavefunction ψC ) give rise to

excitons (wavefunction ψX ). The Bose condensed system is

described by Schrödinger eqns with nonlinearity for mean-fields:

i∂tψX =
(
ωX + g |ψX |2

)
ψX + γψC

i∂tψC =
(
ωC − 1

2∂xx
)
ψC + γψX .

• The coupling constant is half the Rabi frequency γ = ΩR/2.

• Losses are typically included by adding imaginary part to ωX , ωC .

• Photon pumping would be modelled by an additional term on the

rhs of the 2nd equation.

We look into the conservative system.



Static solitons

A traveling-wave in the polariton field with carrier frequency ω has

the form

ψX (x , t) = φX (x − ct)e i(kx−ωt)

ψC (x , t) = φC (x − ct)e i(kx−ωt).

We only consider static solitons c = 0. They satisfy (φX , φC real)(
gφ2X −$X

)
φX + γφC = 0

−1
2φ
′′
C −$CφC + γφX = 0

with the notation $X = ω − ωX , $C = ω − ωC .

Uniform solutions (far-field for solitons):

φ±∞X = ±
√

1

g

(
$X −

γ2

$C

)
φ±∞C =

γ

$C
φ±∞X .



Exciton-photon relation

$X < 0 $X > 0

g < 0 �X

�C

�X

�C

g > 0 �X

�C

�X

�C

(
gφ2X −$X

)
φX + γφC = 0



A single differential equation for soliton solutions
Special case: g$X < 0. The 1st eqn defines a monotonic relation

between φC and φX . Thus the 2nd eqn can be written in the form

φ′′C (x) + U ′(φC (x)) = 0,

which results in the conservation of an energy-type function

1
2(φ′C )2 + U(φC ) = K (const)

General case

• Multiplying 1st eqn by φ′C and 2nd eqn by γφ′X and adding the

two integrates the system exactly.

• Eliminate φC in favor of φX to obtain a first-order ODE for

φX (x).



1st order ODE: dark soliton solutions
Use the variable

ζ(x) := g φX (x)2.

This satisfies

(3ζ −$X )2ζ ′2 = 8 ζQ(ζ) ,

where

Q(ζ) = −$C

[
ζ3 − 1

2
(3ζ∞ +$X )ζ2 + ζ∞$X ζ + K

]
, K : constant.

and ζ∞ = $X − γ2

$C
.

For a soliton ζS(x) to exist, the cubic polynomial Q(ζ) must have

a double root that serves as the soliton’s far-field value. Choose

K = −1

2

γ2

$C
ζ2∞

for which Q(ζ) has a double root at ζ = ζ∞.



Dark soliton profiles

Exciton and photon frequencies: ωX = 0, ωC = 1
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Far-field

ζ∞ = $X −
γ2

$C
= ω − ωX −

γ2

ω − ωC
.

• ζ∞ →∞ for ω → ωC .

• ζ∞ → 0 for ω → ωLP (lower polariton frequency).



Cubic polynomial φC = φC (φX )
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Dark soliton profiles
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For positive detuning and ωX < ω < ωC

• the exciton field jumps at x = 0 (center of soliton) between the

values φX (0) = ±
√
$X/g (ζ(0) = $X ),

• the photon field is continuous and φC (0) = 0.

This possibility secures continuous φC and φ′C at center of soliton

x = 0, thus satisfying the differential equations.



Six bright and dark soliton bands
The square modulus |φX (x)|2 of the exciton field for two bright

solitons, two dark solitons, two discontinuous solitons.
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Gross-Pitaevskii equation

• Solve the 1st equation for φX as a power series in φC up to the

3rd degree term.

• Insert φX = φX (φC ) into the 2nd equation.

We obtain a GP model for the photon field

1
2φ
′′ − ε$C φ− g̃φ3 = 0.

where

ε =
γ2

$X$C
− 1, g̃ = ($C

$X
)2g .

The condition ε = 0 gives the polariton frequencies.

• We have a system of interacting photons (mediated by excitons).

• There seems to be no analogous way to derive a GP equation for

the exciton field.



Healing length

In principle, two healing lengths ξX , ξC for exciton and photon

fields:

ξX = 2

∣∣∣∣φX (x = ±∞)

φ′X (0)

∣∣∣∣ ξ2C =
ξ2X
η2
, η ≡ $X$C

γ2
.

We find

ξ2X =
4η2

$C (η − 1)
, ξ2C =

4

$C (η − 1)
.

The GP model gives

(ξGPC )2 =
4φ(±∞)2

φ′(0)2
=

4η

$C (η − 1)
.

This underestimates the ξC by a factor of η. The two agree at the

linear limit η = 1.



Photons in potential
Recall the coupled systems for excitons and photons. Write 1st

equation as(
gφ2X −$X

)
φX + γφC = 0⇒ φX =

γφC
$X − gφX (x)2

.

Substitute in the 2nd equation

−1
2φ
′′
C −$CφC + γφX = 0⇒ −1

2φ
′′
C + V (x)φC = $CφC .

The photon field satisfies a

Schrödinger eqn with potential

V (x) =
γ2

$X − gφX (x)2
.

The photon field lives in a

potential created by the exciton

field.
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Potential V (x) due to a soliton.



Concluding remarks

• We studied the conservative exciton-photon condensed system.

• Dark and bright solitons in the photon-exciton system have been

calculated, by exact integration.

• We have six soliton bands, including two bands of discontinuous

solitons.

• Conservative solitons may approximately describe structures in

high-Q microcavities.

• Solitons may be created in the region between two pump spots.


