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Abstract. In this paper we study the semiclassical behavior of the scattering data of a non-self-adjoint Dirac operator with a
real, positive, multi-humped, fairly smooth but not necessarily analytic potential decaying at infinity. We provide the rigorous
semiclassical analysis of the Bohr-Sommerfeld condition for the location of the eigenvalues, the norming constants, and the
reflection coefficient.
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1. Introduction

Consider the initial value problem (IVP) for the one-dimensional focusing nonlinear Schrödinger
equation with cubic nonlinearity (focusing NLS) for the complex field u(x, t), i.e.{

i�∂tu + �
2

2 ∂
2
xu + |u|2u = 0, (x, t) ∈ R × R

u(x, 0) = A(x), x ∈ R
(1.1)

in which A is a real valued function and � is a fixed (at first) positive number.
Zakharov and Shabat in [20] have proved back in 1972 that (1.1) is (in a certain technical sense)

integrable via the Inverse Scattering Method. A crucial step of the method is the analysis of the following
eigenvalue (EV) problem

D�[u] = λu (1.2)

where

• D� is the Dirac (or Zakharov–Shabat) operator

D� =
[
i�∂x −iA

−iA −i�∂x

]
(1.3)
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• u = [u1u2]T is a function from R to C
2 and

• λ ∈ C is a “spectral” parameter.

If a solution u is in L2(R;C2), the corresponding λ is an eigenvalue. The EVs of this problem are
related to coherent structures (e.g. solitons and breathers) for the IVP (1.1) (see [15]). The real part of
such an EV represents the speed of the soliton while the imaginary part is related to its amplitude. On the
other hand the continuous spectrum corresponds to bounded (but not L2) “generalized” eigenfunctions u;
in our case it is the real line.

In fact the method of Zakharov–Shabat considers (1.1) by pursuing the following procedure: first
studying and characterizing appropriate scattering data for the potential A, then following the (trivial)
evolution of such data with respect to time (when we let the potential of the Dirac operator evolve
according to the NLS equation) and finally using an inverse scattering process to recover the actual
solution of (1.1). The scattering data for the Dirac operator in (1.3) consist of

• its eigenvalues, associated to their eigenfunctions
• some norming constants, related to the L2-norms of these eigenfunctions and finally
• the so-called reflection coefficient, defined on the continuous spectrum.

Now let us suppose that � is small compared to the magnitudes of x, t that we are interested in. We are
led to the mathematical question: what is the behavior of the solutions of IVP (1.1) as � ↓ 0? Because of
the work of Zakharov and Shabat, the first step in the study of this IVP in the semiclassical limit � ↓ 0
has to be the asymptotic spectral analysis of the scattering problem (1.2) as � ↓ 0, keeping the function
A fixed. This is our main objective here. Indeed, we shall show that the reflection coefficient R(λ) is
small in �.1 We will also provide rigorous uniform errors for the so-called Bohr-Sommerfeld estimates
of the EVs.

The rigorous analysis of this direct scattering problem was initiated in [7] (in the case of real analytic
data) and more generally in [9] for data only required to be somewhat smooth but symmetric and attain-
ing only one local minimum. A different case where the initial data function is complex analytic and
rapidly oscillating was rigorously studied in [6]. The rigorous analysis of the inverse scattering problem
was initiated much earlier in [11] by use of an ansatz which was justified later in [12]. The eigenvalue
problem (1.2) is not and cannot be written as an EV problem for a self-adjoint operator. What we study
here is a semiclassical WKB problem (or Liouville Green problem) for the corresponding non-self-adjoint
Dirac operator with potential A. Our main results are stated in Theorems 5.3 and 5.10, Corollary 5.12,
Theorems 6.1 and 6.2.

Our method is necessarily different from the exact WKB method employed in [7] which requires
analyticity. Instead, we extend our previous work [9] (where the potential is considered to be a positive,
smooth and even bell-shaped function) in which we employed methods going back to Langer and Olver.
Working on the same lines, we now discard the evenness assumption and additionally let the potential
have multiple “humps” (instead of just a single assumed in [9]). Our ideas here are strongly influenced by
Yafaev’s work in [19] (where an analogous problem is treated for the self-adjoint Schrödinger operator)
and Olver’s paper [16].

Let us first assume (for simplicity) that the EVs of D� are purely imaginary for small enough values of
� (see Assumption 4.3 and Remark 1.2 that follows). Then, as it is explained in §4, the EV problem (1.2)

1as long as λ is not too close to 0; this is enough for our purposes.



CORRECTED  P
ROOF

N. Hatzizisis and S. Kamvissis / WKB problem for the Dirac operator with a multi-humped potential 3

under consideration becomes a single linear differential equation of second order

d2y

dx2
= [�−2f (x, μ) + g(x, μ)

]
y (1.4)

where y is related to u [cf. (1.2)] while μ ∈ R+ is a parameter that substitutes λ. The functions f , g that
appear in (1.4) above, are given by the following formulae

f (x, μ) = μ2 − A(x)2

and

g(x, μ) = 3

4

[
A′(x)

A(x) + μ

]2

− 1

2

A′′(x)
A(x) + μ

.

As the zeros of f play a crucial role in the study of the solutions of (1.4), we give the following
definition.

Definition 1.1. Consider a differential equation of the form (1.4) in which μ > 0 is a parameter and
x ∈ �, where � ⊆ R is an interval. The zeros in � (with respect to x) of the function f (x, μ) are called
the turning points (or transition points) of the above differential equation.

Remark 1.2. The assumption that the EVs of D� are purely imaginary is convenient for our proof but
not absolutely necessary. In Section A of the appendix we shall see that the method of Olver can be
extended to the case where the real part of the EVs is non-zero and small in �. This is good enough for
example in the case where the potential A is smooth; a standard application of the theory of pseudo-
differential operators with smooth symbols shows that indeed the real part of the EVs is non-zero and
small in �.

The presentation of our work in the forthcoming sections will be as follows. In section §2 we shall
construct approximate solutions of (1.4) when A is positive and has a single local maximum in some
open neighborhood N in R. The idea is that even if A has several local maxima, we can consider
separately EVs coming from different “humps”. We thus generalize results obtained in [9]: we dispense
with the eveness assumption considered in [9] but we also focus on EVs coming from a single hump
accounting for all possiblilities of the behavior of A outside N . More precisely, in §2.1, we apply the
Liouville transform to change equation (1.4) to a new one of the form

d2X

dζ 2
= [�−2

(
ζ 2 − α2

)+ ψ(ζ, α)
]
X (1.5)

for some new variables ζ , X and a function ψ , along the lines first discussed in [16]; here the role of the
spectral parameter is assumed by the new variable α. In §2.2 we prove a useful lemma concerning the
continuity of ψ which we use in §2.3 to prove Theorem 2.13 about approximate solutions to (1.5) for
ζ � 0. In this case, the approximate solutions are expressed in terms of Parabolic Cylinder Functions
(PCFs).

Next, in §2.4, we compute asymptotics for the solutions constructed previously and in §2.5 we “con-
nect” the approximants for ζ � 0 to approximants for ζ � 0 using the so-called connection coefficients.
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Fig. 1. Barriers and wells for a potential A at a specific energy level μ.

Finally, in subsection §2.6, we combine the assembled results to prove some theorems concerning action
integrals and quantization conditions.

The presentation of the material in section §3 follows the same manner of that in §2. The main differ-
ence now is that A behaves locally as a single “basin”. If we apply now the Liouville transform to (1.4)
we end up with

d2X

dζ 2
= [�−2

(
β2 − ζ 2

)+ ψ(ζ, β)
]
X (1.6)

for the same variables ζ , X as in (1.5) and a function ψ (here the bar does not denote complex conju-
gation); the spectral paremeter is now β. Again, ψ can be proven to be continuous; we do this in §3.2.
In paragraph §3.3 (cf. Theorem 3.9) we construct approximants to (1.6) for ζ � 0 expressed in terms
of modified Parabolic Cylinder Functions (mPCFs). After finding their asymptotic behavior in §3.4, we
connect them with the approximate solutions for ζ � 0 and obtain the relevant connection formulas.
The final subsection, namely §3.6, is the place where a “fixing behavior” is observed giving rise to a
definition of fixing conditions (along the lines of Yafaev; see Definition 5.7 in [19]).

Remark 1.3. Let us denote by RA ⊂ R+ the range of the potential function A : R → R+ and take an
μ ∈ RA. Assuming that equation A(x) = μ has a finite number of solutions, these divide the domain R

of A to a finite number of intervals where A(x) > μ and to (finitely many) intervals where A(x) < μ

(see Fig. 1). We call the former “barriers” and the latter“wells”. When an interval giving rise to a barrier
(well) is bounded, we say that we have a barrier (well) of finite width or simply a finite barrier (well).
Correspondingly, when we have unbounded intervals, we are in the presence of infinite barriers (or
wells), i.e. barriers (wells) of infinite width.

Next, in paragraph §5, we study the semiclassical spectrum of our operator with multiple potential
humps. After the introduction of the necessary notation in §4.1, we show in paragraphs §§4.2–4.4 how
our problem can be transformed to one where Olver’s theory (as adapted in sections §§2–3) can be
applied. The results about the EVs and their corresponding quantization conditions are presented in §5.1.
We show that for each EV there exists at least one barrier for which an associated Bohr-Sommerfeld
quantization condition can be obtained, essentially in the same way as for the one barrier problem. Also,
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we establish a one-to-one correspondence between the EVs of the Dirac operator D� lying in iR (i.e.
imaginary axis) and their WKB approximations.

The last component of the semiclassical scattering data is the reflection coefficient. This has been
already studied in [9]; nothing changes in the multi-humped case. For the sake of completeness we
present it briefly in paragraph §6 (the reflection coefficient away from zero is presented in §6.1 while the
behavior closer to zero is found in §6.2).

In Section A of the appendix we show that Assumption 4.3 is not necessary when A is smooth. Then,
since the motivation of our problem is the application to the semiclassical NLS, we discuss the effect
of our direct scattering estimates to the inverse scattering problem in Section B of the appendix. It turns
out that the asymptotic analysis of the inverse problem already conducted for the bell-shaped case in
[11] and [12] is still relevant. The main change affects the new density of eigenvalues, which fortunately
still retains its nice properties that enable the asymptotic analysis of the associated Riemann–Hilbert
factorization problem.

For the sake of the reader, as the approximate solutions to our problems involve Airy, Parabolic Cylin-
der Functions and modified Parabolic Cylinder Functions, we present all the necessary results concern-
ing these in Sections C and D of the appendix. Finally, in Section E we present a theorem concerning
integral equations which is the backbone of the theory that we use in order to arrive at our results.

Before we start our main exposition, we specify some notation used throughout our work.

• Complex conjugation is denoted with a star superscript, “∗”; i.e. z∗ is the complex conjugate of z
(we emphasize that a bar over a number, does not indicate its complex conjugate).

• The letters c, C denote generically positive constants (unless specified otherwise), appearing mainly
in estimates.

• For the Wronskian of two functions f , g we use the symbol W[f, g].
• The notation f 2(x) denotes the square of the value of the function f at x; hence, the symbols f 2(x)

and f (x)2 are used interchangeably and are not to be confused with the composition f ◦ f .
• The transpose of a matrix M is denoted by MT .
• For the complement of a set B we write �(B).
• For a set 	 ⊆ R, when we write i	 we mean the set {iκ | κ ∈ 	} ⊂ C. Also, for z1, z2 ∈ C the set

[z1, z2] ⊂ C denotes the closed line segment starting at z1 and ending at z2.
• For the restriction of a function f : R → R to the interval � ⊆ R we have f |� : � → R.
• The closure of a set 	 ⊆ R is denoted by clos(	).
• Take a set 	 ⊆ R and consider a function f : 	 → R. The set Rf = {f (x) | x ∈ 	} ⊆ R

represents its range.
• Unless otherwise specified, f −1 shall always denote the inverse of an invertible function f .
• If T is an operator, then σ(T ), σess(T ) and σp(T ) denote its spectrum, essential (continuous) spec-

trum and point spectrum respectively.

2. Passage through a potential barrier

We start the investigation of the behavior of the solutions to the following equation which turns out to
be equivalent to our spectral Dirac spectral problem (see §4)

d2y

dx2
=
{
�

−2
[
μ2 − A2(x)

]+ 3

4

[
A′(x)

A(x) + μ

]2

− 1

2

A′′(x)
A(x) + μ

}
y (2.1)
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where μ > 0 and the potential function A : R → R+ is characterized by a barrier of finite width
(also called finite barrier) in some bounded interval in R. Precisely, we consider one of the following
assumptions for A.

For the case where the finite barrier lies between two wells of finite width (called finite wells), we
assume the following.

Assumption 2.1 (finite barrier & finite wells). The function A is positive on some bounded interval
[x1, x2] in R and has a unique extremum in (x1, x2); particularly, a maximum Amax > 0 at b0 ∈ (x1, x2).
Also A is assumed to be C4 in (x1, x2) and of class C5 in a neighborhood of b0. Additionally, A′(x) > 0
for x ∈ (x1, b0) and A′(x) < 0 for x ∈ (b0, x2). At b0 we have A′(b0) = 0 and A′′(b0) < 0. Furthermore,
if we let A∗ = max{A(x1), A(x2)} and take μ ∈ (A∗, Amax) ⊂ R+, the equation A(x) = μ has two
solutions b−(μ), b+(μ) in (x1, x2). These satisfy b− < b+, A(x) > μ for x ∈ (b−, b+) and A(x) < μ

for x ∈ (x1, b−) ∪ (b+, x2) (the above imply ±A′(b±) < 0). Finally, when μ = Amax the two points b−,
b+ coalesce into one double root at b0.

On the other hand, if the finite barrier is surrounded by one or two infinite wells, we have the following
variants of Assumption 2.1. In these cases, we need to put some additional decay assumptions on A, A′
and A′′ at the infinite ends. Hence we have one of the following.

Assumption 2.2 (finite barrier & left infinite well). The function A is positive on (−∞, x2] in R and
limx↓−∞ A(x) = 0. It has a unique extremum in (−∞, x2); particularly, a maximum Amax > 0 at
b0 ∈ (−∞, x2). Also A is assumed to be C4 in (−∞, x2) and of class C5 in a neighborhood of b0.
Additionally, A′(x) > 0 for x ∈ (−∞, b0) and A′(x) < 0 for x ∈ (b0, x2). At b0 we have A′(b0) = 0
and A′′(b0) < 0. Furthermore, if we take μ ∈ (A(x2), Amax) ⊂ R+, the equation A(x) = μ has two
solutions b−(μ), b+(μ) in (−∞, x2). These satisfy b− < b+, A(x) > μ for x ∈ (b−, b+) and A(x) < μ

for x ∈ (−∞, b−) ∪ (b+, x2) (the above imply ±A′(b±) < 0). When μ = Amax the two points b−, b+
coalesce into one double root at b0. Finally, there exists a number τ > 0 so that

A(x) = O
(

1

|x|1+τ

)
as x ↓ −∞

A′(x) = O
(

1

|x|2+τ

)
as x ↓ −∞

A′′(x) = O
(

1

|x|3+τ

)
as x ↓ −∞

Assumption 2.3 (finite barrier & right infinite well). The function A is positive on some interval
[x1,+∞) in R and limx↑+∞ A(x) = 0. It has a unique extremum in (x1,+∞); particularly, a max-
imum Amax > 0 at b0 ∈ (x1,+∞). Also A is assumed to be C4 in (x1,+∞) and of class C5 in a
neighborhood of b0. Additionally, A′(x) > 0 for x ∈ (x1, b0) and A′(x) < 0 for x ∈ (b0,+∞). At
b0 we have A′(b0) = 0 and A′′(b0) < 0. Furthermore, if we take μ ∈ (A(x1), Amax) ⊂ R+, the equa-
tion A(x) = μ has two solutions b−(μ), b+(μ) in (x1,+∞). These satisfy b− < b+, A(x) > μ for
x ∈ (b−, b+) and A(x) < μ for x ∈ (x1, b−) ∪ (b+,+∞) (the above imply ±A′(b±) < 0). When
μ = Amax the two points b−, b+ coalesce into one double root at b0. Finally, there exists a number τ > 0
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so that

A(x) = O
(

1

x1+τ

)
as x ↑ +∞

A′(x) = O
(

1

x2+τ

)
as x ↑ +∞

A′′(x) = O
(

1

x3+τ

)
as x ↑ +∞

Assumption 2.4 (finite barrier & two infinite wells). The function A is positive on R and
limx→±∞ A(x) = 0. It has a unique extremum in (−∞,+∞); particularly, a maximum Amax > 0
at b0 ∈ (−∞,+∞). Also A is assumed to be C4 in (−∞,+∞) and of class C5 in a neighborhood
of b0. Additionally, A′(x) > 0 for x ∈ (−∞, b0) and A′(x) < 0 for x ∈ (b0,+∞). At b0 we have
A′(b0) = 0 and A′′(b0) < 0. Furthermore, if we take μ ∈ (0, Amax) ⊂ R+, the equation A(x) = μ has
two solutions b−(μ), b+(μ) in (−∞,+∞). These satisfy b− < b+, A(x) > μ for x ∈ (b−, b+) and
A(x) < μ for x ∈ (−∞, b−) ∪ (b+,+∞) (the above imply ±A′(b±) < 0). When μ = Amax the two
points b−, b+ coalesce into one double root at b0. Finally, there exists a number τ > 0 so that

A(x) = O
(

1

|x|1+τ

)
as x → ±∞

A′(x) = O
(

1

|x|2+τ

)
as x → ±∞

A′′(x) = O
(

1

|x|3+τ

)
as x → ±∞

Remark 2.5. The case where A is an even function, satisfying Assumption 2.4 is treated in complete
detail in [9].

2.1. The Liouville transform for a barrier

We begin with the first one of the above assumptions. All the assumptions can be treated similarly.
Assume 2.1 (see Fig. 2),2 with μ = A(b−) = A(b+). We temporarily drop the subscript and set

b+ ≡ b

I− = (x1, b0), I+ = (b0, x2)

and define

G± = (A|clos(I±))
−1. (2.2)

2For Assumtion 2.2, see Figure 3. Similarly, Figure 4 and Figure 5 correspond to Assumption 2.3 and Assumption 2.4
accordingly.
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Fig. 2. An example of a finite potential barrier surrounded by two finite wells.

Fig. 3. An example of a finite potential barrier accompanied by an infinite well on the left and a finite well on the right.

Fig. 4. An example of a finite potential barrier accompanied by an infinite well on the right and a finite well on the left.
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Fig. 5. An example of a finite potential barrier accompanied by two infinite wells.

Take an arbitrary μ1 ∈ (A∗, Amax) and consider the b1 ∈ (b0,G
+(A∗)) so that A(b1) = μ1 (cf. Assump-

tion 2.1 and (2.2)); then μ ∈ [μ1, Amax] implies b ∈ [b0, b1]. For every � > 0, equation (2.1) reads

d2y

dx2
= [�−2f (x, b) + g(x, b)

]
y, (x, b) ∈ (x1, x2) × [b0, b1] (2.3)

in which the functions f and g satisfy

f (x, b) = A2(b) − A2(x) (2.4)

and

g(x, b) = 3

4

[
A′(x)

A(x) + A(b)

]2

− 1

2

A′′(x)
A(x) + A(b)

. (2.5)

We see that our equation (2.3) has two turning points (cf. Definition 1.1) at x = b± when b ∈ (b0, b1]
coalescing into one double at x = b0; then b becomes b0.

Next, we introduce new variables X and ζ according to the Liouville transform

X = ẋ− 1
2 y

where the dot signifies differentiation with respect to ζ . Equation (2.3) becomes

d2X

dζ 2
=
[
�

−2ẋ2f (x, b) + ẋ2g(x, b) + ẋ
1
2
d2

dζ 2

(
ẋ− 1

2
)]
X. (2.6)

Let us treat the noncritical case μ ∈ [μ1, Amax) first; two turning points b± being present. In this case
f (·, b) is negative in (b−, b+) and positive in (x1, b−) ∪ (b+, x2). Hence we prescribe

ẋ2f (x, b) = ζ 2 − α2 (2.7)
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where α > 0 is chosen in such a way that x = b− corresponds to ζ = −α and x = b+ to ζ = α

accordingly.
After integration, (2.7) yields∫ x

b−

[−f (t, b)
] 1

2 dt =
∫ ζ

−α

(
α2 − τ 2

) 1
2 dτ (2.8)

provided that b− � x � b+ (notice that by taking these integration limits, b− corresponds to −α). For
the remaining correspondence we require∫ b+

b−

[−f (t, b)
] 1

2 dt =
∫ α

−α

(
α2 − τ 2

) 1
2 dτ

and hence

α2(μ) = 2

π

∫ b+(μ)

b−(μ)

√
A2(t) − μ2 dt. (2.9)

For every fixed value of �, relation (2.9) defines α as a continuous and decreasing function of μ which
vanishes as μ ↑ Amax. Set

α1 = α(μ1) > 0. (2.10)

Then μ ∈ [μ1, Amax) implies α ∈ (0, α1].
Next, from (2.8) we find∫ x

b−

[−f (t, b)
] 1

2 dt = 1

2
α2 arccos

(
− ζ

α

)
+ 1

2
ζ
(
α2 − ζ 2

) 1
2 for b− � x � b+ (2.11)

with the principal value choice for the inverse cosine taking values in [0, π]. For the remaining x-
intervals, we integrate (2.7) to obtain∫ b−

x

f (t, b)
1
2 dt = −1

2
α2 arcosh

(
− ζ

α

)
− 1

2
ζ
(
ζ 2 − α2

) 1
2 for x1 < x � b− (2.12)

and ∫ x

b+
f (t, b)

1
2 dt = −1

2
α2 arcosh

(
ζ

α

)
+ 1

2
ζ
(
ζ 2 − α2

) 1
2 for b+ � x < x2 (2.13)

with arcosh(x) = ln(x + √
x2 − 1) for x � 1.

Equations (2.11), (2.12) and (2.13) show that ζ is a continuous and increasing function of x which
shows that there is a one-to-one correspondence between these two variables. Thus, if we set

ζj = lim
x→xj

ζ(x) for j = 1, 2 (2.14)



CORRECTED  P
ROOF

N. Hatzizisis and S. Kamvissis / WKB problem for the Dirac operator with a multi-humped potential 11

then (x1, x2) is mapped by ζ to (ζ1, ζ2). Notice that −∞ < ζ1 < 0 < ζ2 < +∞ since both x1, x2 are
finite by Assumption 2.1 (if x1 = −∞ then ζ1 = −∞ and if x2 = +∞ then ζ2 = +∞).

Remark 2.6. In the critical case in which the two (simple) turning points coalesce into one (double)
point, we get a limit of the above transformation with b = b0. In this case, the analogous relations to
(2.11), (2.12), (2.13) are∫ b0

x

f (t, b0)
1
2 dt = 1

2
ζ 2 for x1 < x � b0 (2.15)∫ x

b0

f (t, b0)
1
2 dt = 1

2
ζ 2 for b0 � x < x2 (2.16)

and α = 0.

Finally, having in mind Remark 2.6, we substitute (2.7) in (2.6) and obtain the following proposition.

Proposition 2.7. For every � > 0 equation

d2y

dx2
= [�−2f (x, b) + g(x, b)

]
y, (x, b) ∈ (x1, x2) × [b0, b1]

where f , g as in (2.4), (2.5) respectively, is transformed to the equation

d2X

dζ 2
= [�−2

(
ζ 2 − α2

)+ ψ(ζ, α)
]
X, (ζ, α) ∈ (ζ1, ζ2) × [0, α1] (2.17)

in which ζ is given by the Liouville transform (2.7), α is given by (2.9), ζj , j = 1, 2 are given by (2.14),
α1 as in (2.10) and the function ψ(ζ, α) is given by the formula

ψ(ζ, α) = ẋ2g(x, b) + ẋ
1
2
d2

dζ 2

(
ẋ− 1

2
)
. (2.18)

Since in the following paragraphs we shall be interested in approximate solutions of equation (2.17),
we have the following.

Definition 2.8. The function ψ found in the differential equation (2.17) shall be called the error term
of this equation.

For the error term we have the following proposition.

Proposition 2.9. The error term ψ can be written equivalently as

ψ(ζ, α) = 1

4

3ζ 2 + 2α2

(ζ 2 − α2)2
+ 1

16

ζ 2 − α2

f 3(x, b)

{
4f (x, b)f ′′(x, b) − 5

[
f ′(x, b)

]2}
+ (ζ 2 − α2

) g(x, b)
f (x, b)

(2.19)

where prime denotes differentiation with respect to x. The same formula can be used in the critical case
of one double turning point simply by setting b = b0 and α = 0.
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Proof. Using (2.18), (2.5) and (2.7), simple algebraic manipulations shown that ψ takes the desired
form. �

2.2. Continuity of the error term

In this subsection we prove a lemma concerning the continuity of the function ψ(ζ, α) defined in
(2.18) or (2.19). This fact will be used subsequently in §2.3 to prove the existence of approximate
solutions of equation (2.17). We state it explicitly.

Lemma 2.10. The function ψ(ζ, α) defined in (2.18), is continuous in ζ and α in the region (ζ1, ζ2) ×
[0, α1] of the (ζ, α)-plane.

Proof. For x ∈ (x1, x2), μ ∈ [μ1, Amax] and b ∈ [b0, b1] we introduce an auxiliary function p by setting

f (x, b) = (x − b−)(x − b)p(x, b). (2.20)

Having in mind that A(b−) = A(b) = μ, we see that for μ ∈ [μ1, Amax)

p(b±, b) = ∓ 2μ

b − b−
A′(b±) > 0

while for μ = Amax

p(b0, b0) = −AmaxA
′′(b0) > 0.

Our functions f , g and p defined by (2.4), (2.5) and (2.20) respectively satisfy the following properties

(i) p, ∂p

∂x
, ∂2p

∂x2 and g are continuous functions of x and b (this means in x and b simultaneously and
not separately) in the region (x1, x2) × [b0, b1]

(ii) p is positive throughout the same region
(iii) | ∂3p

∂x3 | is bounded in a neighborhood of the point (x, b) = (b0, b0) in the same region and
(iv) f is a non-increasing function of b ∈ [b0, b1] when x ∈ [b−, b].

Indeed, (i) and (iii) follow from (2.4), (2.5), (2.20) and the fact that A is in C4 and of class C5 in some
neighborhood of b0 (see Assumption 2.1). For (ii), use the definition (2.20) of p and recall the sign of
f using (2.4). Finally (iv) is a consequence of (2.4) and the monotonicity of A in [b0, x2) (again cf.
Assumption 2.1). By Lemma I in Olver’s paper [16], the function ψ defined by (2.18) is continuous in
the corresponding region of the (ζ, α)-plane. �

2.3. Approximate solutions in the barrier case

We return to equation (2.17) and state an existence theorem concerning its approximate solutions. To
this goal, we need to assess the error. We do this by introducing an error-control function H along with
a balancing function �.
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Definition 2.11. Define the balancing function � by

�(x) = 1 + |x| 1
3 . (2.21)

As an error-control function H(ζ, α, �) of equation (2.17) we consider any primitive of the function

ψ(ζ, α)

�(ζ
√

2�−1)
.

Furthermore, we need the notion of the variation of the error-control function H in a given interval.
We have the following.

Definition 2.12. Take (γ, δ) ⊆ (ζ1, ζ2) ⊆ R (cf. (2.14)). The variation Vγ,δ[H ] in the interval (γ, δ) of
the error-control function H of equation (2.17) is defined by

Vγ,δ[H ](α, �) =
∫ δ

γ

|ψ(t, α)|
�(t

√
2�−1)

dt.

Finally, for any c � 0 set

l1(c) = sup
x∈(0,+∞)

{
�(x)

M(x, c)2

�( 1
2 − c)

}
(2.22)

where M is a function defined in terms of Parabolic Cylinder Functions in section (D.1) of the appendix
and � denotes the Gamma function. We note that the above supremum is finite for each value of c. This
fact is a consequence of (2.21) and the first relation in (D.9). Furthermore, because the relations (D.9)
hold uniformly in compact intervals of (−∞, 0], the function l1 is continuous.

We are now ready for the main theorem of this paragraph.

Theorem 2.13. For each value of � > 0 the equation

d2X

dζ 2
= [�−2

(
ζ 2 − α2

)+ ψ(ζ, α)
]
X

has in the region [0, ζ2) × [0, α1] of the (ζ, α)-plane, two solutions Y+ and Z+ satisfying

Y+(ζ, α, �) = U

(
ζ
√

2�−1,−1

2
�

−1α2

)
+ ε1(ζ, α, �) (2.23)

Z+(ζ, α, �) = U

(
ζ
√

2�−1,−1

2
�

−1α2

)
+ ε2(ζ, α, �) (2.24)

where U , U are the PCFs defined in appendix (D.1). These two solutions Y+, Z+ are continuous and
have continuous first and second partial ζ -derivatives. The errors ε1, ε2 in the relations above satisfy
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the estimates3

|ε1(ζ, α, �)|
M(ζ

√
2�−1,− 1

2�
−1α2)

,
| ∂ε1
∂ζ
(ζ, α, �)|√

2�−1N(ζ
√

2�−1,− 1
2�

−1α2)

� 1

E(ζ
√

2�−1,− 1
2�

−1α2)

(
exp

{
1

2
(π�)

1
2 l1

(
−1

2
�

−1α2

)
Vζ,ζ2[H ](α, �)

}
− 1

)
(2.25)

and

|ε2(ζ, α, �)|
M(ζ

√
2�−1,− 1

2�
−1α2)

,
| ∂ε2
∂ζ
(ζ, α, �)|√

2�−1N(ζ
√

2�−1,− 1
2�

−1α2)

� E

(
ζ
√

2�−1,−1

2
�

−1α2

)(
exp

{
1

2
(π�)

1
2 l1

(
−1

2
�

−1α2

)
V0,ζ [H ](α, �)

}
− 1

)
. (2.26)

Proof. In order to prove this theorem, we rely on Theorem I in [16]. There, it is stated that it suffices to
prove two things. First that the function ψ is continuous in the region [0, ζ2) × [0, α1], a fact that has
already been proven in §2.2 and second that the integral

V0,ζ2[H ](α, �) =
∫ ζ2

0

|ψ(t, α)|
�(t

√
2�−1)

dt (2.27)

converges uniformly in α. But this is obvious since ζ2 < +∞. �

Remark 2.14. If we were assuming either Assumption 2.3 or Assumption 2.4 we would have ζ2 = +∞.
In such a case, Theorem 2.13 would still be true. To obtain it, we have to argue as in the proof of
Theorem 6.1 in [9].

2.4. Asymptotics of the approximate solutions for the barrier

In order to extract the asymptotic behavior of the solutions Y+(ζ, α, �), Z+(ζ, α, �) when � ↓ 0, we
need to determine the asymptotic form of the error bounds (2.25), (2.26) examining closely l1(− 1

2�
−1α2)

and V0,ζ2[H ](α, �) as � ↓ 0.
Let us deal with the noncritical case α ∈ (0, α1] first. By applying the same analysis found in §8 of

[9] we obtain

l1

(
−1

2
�

−1α2

)
= O(1) as � ↓ 0. (2.28)

Next, we examine V0,ζ2[H ](α, �). Again in §8 of [9] it is shown that

V0,ζ2[H ](α, �) =
∫ ζ2

0

|ψ(t, α)|
1 + (t

√
2�−1)

1
3

dt = O
(
�

1/6
)

as � ↓ 0 (2.29)

when ζ2 = +∞. Clearly the same asymptotics hold in the case when ζ2 < +∞ too.

3The functions E, M and N are related with the PCF theory found in appendix (D.1).
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The last two relations applied to (2.25) and (2.26) supply us with the desired results as � ↓ 0

ε1(ζ, α, �) = M(ζ
√

2�−1,− 1
2�

−1α2)

E(ζ
√

2�−1,− 1
2�

−1α2)
O
(
�

2
3
)

(2.30)

ε2(ζ, α, �) = E

(
ζ
√

2�−1,−1

2
�

−1α2

)
M

(
ζ
√

2�−1,−1

2
�

−1α2

)
O
(
�

2
3
)

∂ε1

∂ζ
(ζ, α, �) = N(ζ

√
2�−1,− 1

2�
−1α2)

E(ζ
√

2�−1,− 1
2�

−1α2)
O
(
�

1
6
)

∂ε2

∂ζ
(ζ, α, �) = E

(
ζ
√

2�−1,−1

2
�

−1α2

)
N

(
ζ
√

2�−1,−1

2
�

−1α2

)
O
(
�

1
6
)

uniformly for ζ ∈ [0, ζ2) and α ∈ (0, α1].
Remark 2.15. In the special case α = 0 (i.e. when equation (2.17) has a double turning point at ζ = 0),
l1(0) is independent of �. Using the definition (2.21) of �, we see that we have a similar estimate to
(2.29); namely V0,ζ2[H ](0, �) = O(�

1
6 ) as � ↓ 0. Hence the error estimates above still hold for the case

α = 0.

2.5. Connection formulae for a barrier

We can determine the asymptotic behavior of Y+, Z+ for small � > 0 and ζ < 0 by establishing
appropriate connection formulae. We can replace ζ by −ζ in Theorem 2.13 to ensure two more solutions
Y−, Z− of equation (2.17) satisfying as � ↓ 0

Y−(ζ, α, �) = U

(
−ζ

√
2�−1,−1

2
�

−1α2

)
+ M(−ζ

√
2�−1,− 1

2�
−1α2)

E(−ζ
√

2�−1,− 1
2�

−1α2)
O
(
�

2
3
)

Z−(ζ, α, �) = U

(
−ζ

√
2�−1,−1

2
�

−1α2

)
+ E

(
−ζ

√
2�−1,−1

2
�

−1α2

)
M

(
−ζ

√
2�−1,−1

2
�

−1α2

)
O
(
�

2
3
)

(2.31)

uniformly for ζ ∈ (ζ1, 0] and α ∈ [0, α1].
Remark 2.16. The two sets {Y+, Z+} and {Y−, Z−} consist of two linearly independent functions. This
can be seen by their Wronskians. For example, using (D.3) we have

W
[
U

(
·,−1

2
�

−1α2

)
, U

(
·,−1

2
�

−1α2

)]
=
√

2

π
�

(
1

2
+ 1

2
�

−1α2

)
Using this and (2.23), (2.24) we see that W[Y+, Z+] �= 0. Similarly, we have W[Y−, Z−] �= 0 as well.
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We express Y+, Z+ in terms of Y−, Z−. So for (ζ, α) ∈ (ζ1, 0] × [0, α1] we may write

Y+(ζ, α, �) = σ11(α, �)Y−(ζ, α, �) + σ12(α, �)Z−(ζ, α, �) (2.32)

Z+(ζ, α, �) = σ21(α, �)Y−(ζ, α, �) + σ22(α, �)Z−(ζ, α, �). (2.33)

The connection will become clear once we find approximations for the coefficients σij , i, j = 1, 2 in the
linear relations (2.32) and (2.33). We evaluate at ζ = 0 equations (2.32), (2.33) and their derivatives.
After algebraic manipulations we obtain

σ11(α, �) = W[Y+(·, α, �), Z−(·, α, �)](0)
W[Y−(·, α, �), Z−(·, α, �)](0)

σ12(α, �) = −W[Y+(·, α, �), Y−(·, α, �)](0)
W[Y−(·, α, �), Z−(·, α, �)](0)

σ21(α, �) = W[Z+(·, α, �), Z−(·, α, �)](0)
W[Y−(·, α, �), Z−(·, α, �)](0)

σ22(α, �) = −W[Z+(·, α, �), Y−(·, α, �)](0)
W[Y−(·, α, �), Z−(·, α, �)](0) .

Now set

ϕ(α, �) = (1 + �
−1α2

)π
4
.

By using the results and properties of Parabolic Cylinder Functions and their auxiliary functions from
Section D.1 in the appendix, we find that as � ↓ 0

Y1(0, α, �) = M(0)
[
sinϕ(α, �) + O

(
�

2
3
)]

Y2(0, α, �) = M(0)
[
cosϕ(α, �) + O

(
�

2
3
)]

Y3(0, α, �) = M(0)
[
sinϕ(α, �) + O

(
�

2
3
)]

Y4(0, α, �) = M(0)
[
cosϕ(α, �) + O

(
�

2
3
)]

Ẏ1(0, α, �) = −
√

2�−1N(0)
[
cosϕ(α, �) + O

(
�

2
3
)]

Ẏ2(0, α, �) =
√

2�−1N(0)
[
sinϕ(α, �) + O

(
�

2
3
)]

Ẏ3(0, α, �) =
√

2�−1N(0)
[
cosϕ(α, �) + O

(
�

2
3
)]

Ẏ4(0, α, �) = −
√

2�−1N(0)
[
sinϕ(α, �) + O

(
�

2
3
)]
.
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Recall that the dot denotes differentiation with respect to ζ . Finally, using these estimates we obtain as
� ↓ 0

σ11(α, �) = sin

(
1

2
π�−1α2

)
+ O

(
�

2
3
)

σ12(α, �) = cos

(
1

2
π�−1α2

)
+ O

(
�

2
3
)

σ21(α, �) = cos

(
1

2
π�−1α2

)
+ O

(
�

2
3
)

σ22(α, �) = − sin

(
1

2
π�−1α2

)
+ O

(
�

2
3
)

(2.34)

uniformly for α ∈ [0, α1].

2.6. Applications in the barrier case

We assume 2.1 (similar arguments hold for the other cases as well). Recalling (2.9), we define the
following integral.

Definition 2.17. The function

�(μ) = π

2
α2(μ) =

∫ b+(μ)

b−(μ)

√
A(x)2 − μ2 dx (2.35)

is called the abbreviated action integral.

It is easily checked that � is of class C1. Differentiating relation (2.35) while using A(b±) = μ, we
obtain

d�(μ)

dμ
= −2μ

∫ b+(μ)

b−(μ)

[
A(x)2 − μ2

]− 1
2 dx < 0. (2.36)

The asymptotic behavior as � ↓ 0 of an arbitrary non-trivial real solution X of equation (2.17) on the
ζ -interval corresponding to the finite x-barrier (b−, b+) of A, can be examined through the functions
Y+, Z+ and Y−, Z−. Since {Y+, Z+} and {Y−, Z−} are two sets of linearly independent functions (cf.
Remark 2.16), for X we can write

X(ζ, α, �) = γ+(α, �)Y+(ζ, α, �) + δ+(α, �)Z+(ζ, α, �)

= γ−(α, �)Y−(ζ, α, �) + δ−(α, �)Z−(ζ, α, �) (2.37)
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for some γ±(α, �), δ±(α, �) ∈ R. We put

v±(α, �) =
√
γ±(α, �)2 + δ±(α, �)2

γ±(α, �) = v±(α, �) cos ξ±(α, �)

δ±(α, �) = v±(α, �) sin ξ±(α, �)

ξ±(α, �) ∈ R/(2πZ)

(2.38)

and define

ξ(μ, �) = ξ+
(
α(μ), �

)+ ξ−
(
α(μ), �

)
. (2.39)

Recall that α is function of μ. Whence we can see that ξ±, ξ depend on μ. Sometimes we shall simply
write ξ±(μ, �) meaning ξ±(α(μ), �).

The ideas that follow are essentially the same as those used in the derivation of the Bohr-Sommerfeld
quantization condition found in §10 of [9]. We start with a theorem.

Theorem 2.18. Under Assumption 2.1, there is a non-negative integer n = n(μ, �) such that the func-
tions � and ξ in (2.35) and (2.39) respectively satisfy the formula

�(μ) =
[
(2n + 1)

π

2
− ξ(μ, �)

]
� + O

(
�

5
3
)

as � ↓ 0. (2.40)

Proof. Using (2.37) and (2.38) we have

0 = W[X,X] = W[γ+Z+ + δ+Y+, γ−Z− + δ−Y−]
= v+v−W[Y−, Z−](−σ12 cos ξ+ cos ξ− + σ11 cos ξ+ sin ξ−

− σ22 sin ξ+ cos ξ− + σ21 sin ξ+ sin ξ−)

(we have suppressed the dependence on α and � for notational simplicity). From (2.38), (2.34) and (2.39)

cos
[
�

−1�(μ) + ξ(μ, �)
] = O

(
�

2
3
)

as � ↓ 0

from which the result follows. �

If ξ(μ, �) = 0 (mod π), then relation (2.40) reduces to the Bohr-Sommerfeld quantization condition.
In particular, this is true if ξ±(μ, �) = 0 (mod π) at both turning points b±(μ). We state this explicitly.

Theorem 2.19. Under Assumption 2.1, suppose that a non-trivial real solution of (2.17) satisfies (2.37)
and (2.38) with ξ±(μ, �) = 0 (mod π). Then function � in (2.35) satisfies the condition

cos
[
�

−1�(μ)
] = O

(
�

2
3
)

as � ↓ 0 (2.41)
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whence

�(μ) = π

(
n + 1

2

)
� + O

(
�

5
3
)

as � ↓ 0 (2.42)

for some non-negative integer n = n(μ, �).

Remark 2.20. It is possible that ξ±(μ, �) = 0 (mod π) only for � in some set 	 ⊂ R+ such that
0 ∈ clos(	). Then conditions (2.41), (2.42) are also satisfied for � ∈ 	.

What follows is a result converse to Theorem 2.19.

Theorem 2.21. Under Assumption 2.1, suppose that for some non-negative integer n, the point π(n +
1
2)� lies in (0, π

2 α
2
1). Then there exists a value μ̃ = μ̃(n, �) such that

�(μ̃) = π

(
n + 1

2

)
� + O

(
�

5
3
)

as � ↓ 0

and

Y+
(
ζ, α(μ̃), �

) = σ11
(
α(μ̃), �

)
Y−
(
ζ, α(μ̃), �

)
where

σ11
(
α(μ̃), �

) = (−1)n + O
(
�

2
3
)

as � ↓ 0.

Proof. Recall the connection coefficients σij , i, j = 1, 2 from §2.5 and define the function

σ(μ, �) = σ12
(
α(μ), �

)
. (2.43)

From (2.32), it is enough to show that σ vanishes for some μ̃ = μ̃(n, �) satisfying∣∣∣∣�(μ̃) − π

(
n + 1

2

)
�

∣∣∣∣ � C�
5
3

where C does not depend neither on n nor on �. Then, the rest follow from the first asymptotic relation
in (2.34).

From (2.36) we know that � maps a neighborhood of μ̃ in a one-to-one way onto a neighborhood of
�(μ̃). Let X = �(μ) and set

χ(X, �) = σ
(
�−1(X), �

)− cos
(
�

−1X
)
.

By definition (2.43) of σ and the second relation in (2.34) we have∣∣χ(X, �)∣∣ � C�
2
3
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for a constant C independent of � and X. With the above definitions, our equation now reads

0 = σ(μ, �)

= χ(X, �) + cos
(
�

−1X
)
.

So this equation has to have a solution X̃ = X̃(n, �) = �(μ̃(n, �)) satisfying the estimate∣∣∣∣̃X − π

(
n + 1

2

)
�

∣∣∣∣ � C�
5
3 .

A change of variables s = �
−1X transforms our problem to the equivalent assertion that equation

χ(�s, �) + cos s = 0 (2.44)

has to have a solution with respect to s, namely s̃ = s̃(n, �) = �
−1X̃, such that∣∣∣∣̃s − π

(
n + 1

2

)∣∣∣∣ � C�
2
3 . (2.45)

But this is true because

χ(�s, �) = O
(
�

2
3
)

as � ↓ 0. �

3. The case of one potential well

In this section we are interested in the solutions of equation

d2y

dx2
=
{
�

−2
[
μ2 − A2(x)

]+ 3

4

[
A′(x)

A(x) + μ

]2

− 1

2

A′′(x)
A(x) + μ

}
y (3.1)

where μ > 0 and the potential function A : R → R+ behaves as a finite well (a well of finite width) in
some bounded interval in R. We assume the following (see Fig. 6).

Assumption 3.1. The function A is positive on some bounded interval [x1, x2] in R and has a unique
extremum in (x1, x2); particularly, a minimum Amin > 0 at w0 ∈ (x1, x2). Also A is assumed to be
C4 in (x1, x2) and of class C5 in a neighborhood of w0. Additionally, A′(x) < 0 for x ∈ (x1, w0) and
A′(x) > 0 for x ∈ (w0, x2). At w0, we have A′(w0) = 0 and A′′(w0) > 0. Furthermore, if we let
A∗∗ = min{A(x1), A(x2)} and take μ ∈ (Amin, A∗∗) ⊂ R+, the equation A(x) = μ has two solutions
w−(μ), w+(μ) in (x1, x2). These satisfy w− < w+, A(x) < μ for x ∈ (w−, w+) and A(x) > μ for
x ∈ (x1, w−) ∪ (w+, x2) (the above imply ±A′(w±) > 0). Finally, when μ = Amin the two points w−,
w+ coalesce into one double root at w0.
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Fig. 6. An example of a potential well between w− and w+.

3.1. The Liouville transform for the case of a well

Let us first fix some notation. We set

w− ≡ w

J− = (x1, w0), J+ = (w0, x2)

and define

G± = (A|clos(J±))
−1. (3.2)

We take an arbitrary μ1 ∈ (Amin, A∗∗) and consider the w−1 ∈ (G−(A∗∗), w0) such that A(w−1) = μ1;
then μ ∈ [Amin, μ1] implies w ∈ [w−1, w0]. For every � > 0 our equation (3.1) reads

d2y

dx2
= [�−2f (x,w) + g(x,w)

]
y, (x,w) ∈ (x1, x2) × [w−1, w0] (3.3)

in which the functions f and g satisfy

f (x,w) = A2(w) − A2(x) (3.4)

and

g(x,w) = 3

4

[
A′(x)

A(x) + A(w)

]2

− 1

2

A′′(x)
A(x) + A(w)

. (3.5)

Observe that our equation possesses two simple turning points at x = w± when w ∈ [w−1, w0) which
combine into one double at x = w0 when w equals w0.

We introduce new variables X and ζ according to the Liouville transform

X = ẋ− 1
2 y



CORRECTED  P
ROOF

22 N. Hatzizisis and S. Kamvissis / WKB problem for the Dirac operator with a multi-humped potential

where the dot denotes differentiation with respect to ζ . Equation (3.3) becomes

d2X

dζ 2
=
[
�

−2ẋ2f (x,w) + ẋ2g(x,w) + ẋ
1
2
d2

dζ 2

(
ẋ− 1

2
)]
X. (3.6)

We begin with the noncritical case μ ∈ (Amin, μ1] with two turning points w±. In this case f (·, w) is
positive in (w−, w+) and negative in (x1, w−) ∪ (w+, x2). Hence we prescribe

ẋ2f (x,w) = β2 − ζ 2 (3.7)

where β > 0 is chosen in such a way that x = w− corresponds to ζ = −β and x = w+ to ζ = β

accordingly.
The integration of (3.7) yields∫ x

w

f (t, w)
1
2 dt =

∫ ζ

−β

(
β2 − τ 2

) 1
2 dτ (3.8)

provided that w− � x � w+ (notice that by taking these integration limits, w− corresponds to −β). For
the remaining correspondence we require∫ w+

w−
f (t, w)

1
2 dt =

∫ β

−β

(
β2 − τ 2

) 1
2 dτ

yielding

β2(μ) = 2

π

∫ w+(μ)

w−(μ)

√
μ2 − A2(t) dt. (3.9)

For every fixed value of �, relation (3.9) defines β as a continuous and increasing function of μ which
vanishes as w ↓ Amin. Set

β1 = β(w−1) > 0. (3.10)

Then μ ∈ (Amin, μ1] implies β ∈ (0, β1].
Next, from (3.8) we find∫ x

w−
f (t, w)

1
2 dt = 1

2
α2 arccos

(
− ζ

α

)
+ 1

2
ζ
(
α2 − ζ 2

) 1
2 for w− � x � w+ (3.11)

with the principal value choice for the inverse cosine taking values in [0, π]. For the remaining x-
intervals, we integrate (3.7) to obtain∫ w−

x

[−f (t, w)
] 1

2 dt = −1

2
α2 arcosh

(
− ζ

α

)
− 1

2
ζ
(
ζ 2 − α2

) 1
2 for x1 < x � w− (3.12)
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and ∫ x

w+

[−f (t, w)
] 1

2 dt = −1

2
α2 arcosh

(
ζ

α

)
+ 1

2
ζ
(
ζ 2 − α2

) 1
2 for w+ � x < x2 (3.13)

with arcosh(x) = ln(x + √
x2 − 1) for x � 1.

Equations (3.11), (3.12) and (3.13) show that ζ is a continuous and increasing function of x which
shows that there is a one-to-one correspondence between these two variables. Thus, if we set

ζj = lim
x→xj

ζ(x) for j = 1, 2 (3.14)

then (x1, x2) is mapped by ζ to (ζ1, ζ2). Notice that −∞ < ζ1 < 0 < ζ2 < +∞.

Remark 3.2. In the critical case in which the two (simple) turning points coalesce into one (double)
point, we get a limit of the above transformation with w = w0. In this case, the relevant relations to
(3.11), (3.12), (3.13) are∫ w0

x

[−f (t, w0)
] 1

2 dt = 1

2
ζ 2 for x1 < x � w0 (3.15)∫ x

w0

[−f (t, w0)
] 1

2 dt = 1

2
ζ 2 for w0 � x < x2 (3.16)

and β = 0.

Consequently, noticing Remark 2.6, we substitute (3.7) in (3.6) and obtain the following proposition.

Proposition 3.3. For every � > 0 equation

d2y

dx2
= [�−2f (x,w) + g(x,w)

]
y, (x,w) ∈ (x1, x2) × [w−1, w0]

where f , g as in (3.4), (3.5) respectively, is transformed to the equation

d2X

dζ 2
= [�−2

(
β2 − ζ 2

)+ ψ(ζ, β)
]
X, (ζ, β) ∈ (ζ1, ζ2) × [0, β1] (3.17)

in which ζ is given by the Liouville transform (3.7), β is given by (3.9), ζj , j = 1, 2 are given by (3.14),
β1 as in (3.10) and the function ψ(ζ, β) is given by the formula

ψ(ζ, β) = ẋ2g(x,w) + ẋ
1
2
d2

dζ 2

(
ẋ− 1

2
)
. (3.18)

In the following paragraphs we shall be interested in approximate solutions of equation (3.17), so we
introduce the following terminology.

Definition 3.4. The function ψ found in the differential equation (3.17) shall be called the error term
of this equation.
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For the error term we have the following proposition.

Proposition 3.5. The error term ψ can be written equivalently as

ψ(ζ, β) = 1

4

3ζ 2 + 2β2

(β2 − ζ 2)2
+ 1

16

β2 − ζ 2

f 3(x,w)

{
4f (x,w)f ′′(x,w) − 5

[
f ′(x,w)

]2}
+ (β2 − ζ 2

) g(x,w)
f (x,w)

(3.19)

where prime denotes differentiation with respect to x. The same formula can be used in the critical case
of one double turning point simply by setting w = w0 and β = 0.

Proof. Using (3.18), (3.5) and (3.7), simple algebraic manipulations shown that ψ takes the desired
form. �

3.2. Continuity of the error term in the case of a well

In this subsection we prove that the function ψ(ζ, β) resulting from the Liouville transformation
defined above, is continuous in ζ and β. This will be used subsequently to prove the existence of ap-
proximate solutions of equation (3.17). We have the following.

Lemma 3.6. The function ψ(ζ, β) defined in (3.18), is continuous in ζ and β in the region (ζ1, ζ2) ×
[0, β1] of the (ζ, β)-plane.

Proof. For x ∈ (x1, x2), μ ∈ [Amin, μ1] and w ∈ [w−1, w0] we introduce an auxiliary function q by
setting

f (x,w) = (w − x)(w+ − x)q(x,w). (3.20)

Having in mind that A(w) = A(w+) = μ, we see that for μ ∈ (Amin, μ1]

q(w±, w) = ± 2μ

w − w+
A′(w±) < 0

while for μ = Amin

q(w0, w0) = −AminA
′′(w0) < 0.

Our functions f , g and q defined by (3.4), (3.5) and (3.20) respectively satisfy the following properties

(i) q, ∂q

∂x
, ∂2q

∂x2 and g are continuous functions of x and w in the region (x1, x2) × [w−1, w0]
(ii) q is negative throughout the same region

(iii) | ∂3q

∂x3 | is bounded in a neighborhood of the point (x,w) = (w0, w0) in the same region and
(iv) f is a non-increasing function of w ∈ [w−1, w0] when x ∈ [w,w+].

As in §2.2 these relations follow directly from (3.4), (3.5), (3.20) and Assumption 3.1. By referring
again to Lemma I in [16] (actually a slight variant of it properly defined for case III treated in Olver’s
[16]), the function ψ defined by (3.18) (or (3.19)) is continuous in the corresponding region of the
(ζ, β)-plane. �
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3.3. Approximate solutions in the case of a well

Here we state a theorem concerning approximate solutions of equation (3.17). First we define a bal-
ancing function � as in the barrier case using (2.21). Now we define an error-control function which
will provide us with a way to assess the error.

Definition 3.7. As an error-control function H(ζ, β, �) of equation (3.17) we consider any primitive
of the function

ψ(ζ, β)

�(ζ
√

2�−1)
.

As in §2.3, we define the variation of H in an interval (γ, δ) ⊆ (ζ1, ζ2) ⊂ R (cf. (3.14)).

Definition 3.8. The variation Vγ,δ[H ] in the interval (γ, δ) of the error-control function H of equation
(3.17) is defined by

Vγ,δ[H ](β, �) =
∫ δ

γ

|ψ(t, β)|
�(t

√
2�−1)

dt.

Finally, for any c � 0 set

l2(c) = sup
x∈(0,+∞)

{
�(x)M(x, c)2

}
(3.21)

where M is a function defined in terms of modified Parabolic Cylinder Functions in Section D.2 of the
appendix. We note that the above supremum is finite for each value of c. This fact is a consequence
of (2.21) and the first relation in (D.21). Furthermore, because the relations (D.21) hold uniformly in
compact intervals of the parameter c, the function l2 is continuous.

Now the existence of approximate solutions is guaranted by the following.

Theorem 3.9. For each value of � > 0, equation

d2X

dζ 2
= [�−2

(
β2 − ζ 2

)+ ψ(ζ, β)
]
X

has in the region [0, ζ2) × [0, β1] of the (ζ, β)-plane, two solutions Y+ and Z+. They satisfy

Y+(ζ, β, �) = k

(
1

2
�

−1β2

) 1
2

W

(
−ζ

√
2�−1,

1

2
�

−1β2

)
+ ε1(ζ, β, �) (3.22)

Z+(ζ, β, �) = k

(
1

2
�

−1β2

)− 1
2

W

(
ζ
√

2�−1,
1

2
�

−1β2

)
+ ε2(ζ, β, �) (3.23)
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where k, W are functions found in appendix D.2 about modified PCFs. These Y+, Z+ are continuous
and have continuous first and second partial ζ -derivatives. The errors ε1, ε2 satisfy

|ε1(ζ, β, �)|
M(ζ

√
2�−1, 1

2�
−1β2)

,
| ∂ε1
∂ζ
(ζ, β, �)|√

2�−1 N(ζ
√

2�−1, 1
2�

−1β2)

� E

(
ζ
√

2�−1,
1

2
�

−1β2

)(
exp

{
l2(

1
2�

−1β2)√
2�−1

V0,ζ [H ](β, �)
}

− 1

)
(3.24)

and

|ε2(ζ, β, �)|
M(ζ

√
2�−1, 1

2�
−1β2)

,
| ∂ε2
∂ζ
(ζ, β, �)|√

2�−1 N(ζ
√

2�−1, 1
2�

−1β2)

� 1

E(ζ
√

2�−1, 1
2�

−1β2)

(
exp

{
l2(

1
2�

−1β2)√
2�−1

Vζ,ζ2[H ](β, �)
}

− 1

)
. (3.25)

Proof. The proof is similar to that of Theorem 2.13 in §2.3 so details are omitted. �

3.4. Asymptotics of the approximate solutions for the well

As in the case of the function l1 in §2.4, we find that l2 is continuous in [0,+∞). Using (2.21) and an
analysis similar to that mentioned in §2.4 we find

l2

(
1

2
�

−1β2

)
= O(1) as � ↓ 0. (3.26)

Next, V0,ζ2[H ](β, �) can be examined as in §8 of [9]. We find that

V0,ζ2[H ](β, �) =
∫ ζ2

0

|ψ(t, β)|
1 + (t

√
2�−1)

1
3

dt = O
(
�

1/6
)

as � ↓ 0. (3.27)

The last two relations applied to (3.24) and (3.25) return as � ↓ 0

ε1(ζ, β, �) = E

(
ζ
√

2�−1,
1

2
�

−1β2

)
M

(
ζ
√

2�−1,
1

2
�

−1β2

)
O
(
�

2
3
)

(3.28)

ε2(ζ, β, �) = M(ζ
√

2�−1, 1
2�

−1β2)

E(ζ
√

2�−1, 1
2�

−1β2)
O
(
�

2
3
)

∂ε1

∂ζ
(ζ, β, �) = E

(
ζ
√

2�−1,
1

2
�

−1β2

)
N

(
ζ
√

2�−1,
1

2
�

−1β2

)
O
(
�

1
6
)

∂ε2

∂ζ
(ζ, β, �) = N(ζ

√
2�−1, 1

2�
−1β2)

E(ζ
√

2�−1, 1
2�

−1β2)
O
(
�

1
6
)

uniformly for ζ ∈ [0, ζ2) and β ∈ (0, β1].
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Remark 3.10. In the special case β = 0 (i.e. when equation (3.17) has a double turning point at ζ = 0),
l2(0) is independent of �. Using the definition (2.21) of �, we see that we have a similar estimate to
(2.29); namely V0,ζ2[H ](0, �) = O(�

1
6 ) as � ↓ 0. Hence the results about the errors above hold for the

case β = 0 too.

3.5. Connection formulae for a well

Here, we determine the asymptotic behavior of Y+, Z+ for small � > 0 and ζ < 0 by establishing
appropriate connection formulae. We can replace ζ by −ζ in Theorem 3.9 to ensure two more solutions
Y−, Z− of equation (3.17) satisfying as � ↓ 0

Y−(ζ, α, �) = k

(
1

2
�

−1β2

) 1
2

W

(
ζ
√

2�−1,
1

2
�

−1β2

)
+ E

(
ζ
√

2�−1,
1

2
�

−1β2

)
M

(
ζ
√

2�−1,
1

2
�

−1β2

)
O
(
�

2
3
)

Z−(ζ, α, �) = k

(
1

2
�

−1β2

)− 1
2

W

(
−ζ

√
2�−1,

1

2
�

−1β2

)
+ M(ζ

√
2�−1, 1

2�
−1β2)

E(ζ
√

2�−1, 1
2�

−1β2)
O
(
�

2
3
)

uniformly for ζ ∈ (ζ1, 0] and β ∈ [0, β1].

Remark 3.11. The two sets {Y+, Z+} and {Y−, Z−} consist of two linearly independent functions. This
can be seen by their Wronskians. For example, using (D.14) we have

W
[
W

(
·, 1

2
�

−1β2

)
,W

(
−·, 1

2
�

−1β2

)]
= 1

Using this and (3.22), (3.23) we see that W[Y+, Z+] �= 0. Similarly, we have W[Y−, Z−] �= 0 as well.

We express Y+, Z+ in terms of Y−, Z−. So for (ζ, β) ∈ (ζ1, 0] × [0, β1] we write

Y+(ζ, β, �) = τ11(β, �)Y−(ζ, β, �) + τ12(β, �)Z−(ζ, β, �) (3.29)

Z+(ζ, β, �) = τ21(β, �)Y−(ζ, β, �) + τ22(β, �)Z−(ζ, β, �). (3.30)

As in §2.5, we find approximations for the coefficients τij , i, j = 1, 2 in the linear relations (3.29) and
(3.30). We take equations (3.29), (3.30) along with their derivatives and evaluate them at ζ = 0. We
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obtain

τ11(β, �) = W[Y+(·, β, �), Z−(·, β, �)](0)
W[Y−(·, β, �), Z−(·, β, �)](0)

τ12(β, �) = −W[Y+(·, β, �), Y−(·, β, �)](0)
W[Y−(·, β, �), Z−(·, β, �)](0)

τ21(β, �) = W[Z+(·, β, �), Z−(·, β, �)](0)
W[Y−(·, β, �), Z−(·, β, �)](0)

τ22(β, �) = −W[Z+(·, β, �), Y−(·, β, �)](0)
W[Y−(·, β, �), Z−(·, β, �)](0) .

(3.31)

By using the results and properties of modified Parabolic Cylinder Functions and their auxiliary func-
tions from Section D.2 in the appendix, we find that as � ↓ 0

τ11(β, �) = O
(
�

2
3
)

τ12(β, �) = k

(
1

2
�

−1β2

)[
1 + O

(
�

2
3
)]

τ21(β, �) = k

(
1

2
�

−1β2

)−1[
1 + O

(
�

2
3
)]

τ22(β, �) = O
(
�

2
3
)

(3.32)

uniformly for β ∈ [0, β1].
We close this section with a useful lemma that shall be used in next paragraph’s main theorem.

Lemma 3.12. The matrix τ formed by the connection coefficients in (3.29), (3.30) satisfies

det τ = det

[
τ11 τ12

τ21 τ22

]
= −1 + O

(
�

2
3
)

as � ↓ 0. (3.33)

Proof. Simply use formulae (3.32). �

Remark 3.13. Using (3.31), a straightforward calculation yields

W[Y+, Z+] = W[τ11Y− + τ12Z−, Z+] = (det τ)W[Y−, Z−]

whence

det τ = W[Y+, Z+]
W[Y−, Z−] . (3.34)
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3.6. Applications in the case of a well

The asymptotic behavior as � ↓ 0 of an arbitrary non-trivial real solution X of equation (3.17) on
the ζ -interval corresponding to the finite x-well (w−, w+) of A, can be examined through the functions
Y+, Z+ and Y−, Z−. Since {Y+, Z+} and {Y−, Z−} are two sets of linearly independent functions (cf.
Remark 2.16), for X we can write

X(ζ, β, �) = γ1(β, �)Y+(ζ, β, �) + δ1(β, �)Z+(ζ, β, �)

= γ2(β, �)Y−(ζ, β, �) + δ2(β, �)Z−(ζ, β, �) (3.35)

for some γj (β, �), δj (β, �) ∈ R, j = 1, 2. For j = 1, 2 we put

vj (β, �) =
√
γj (β, �)2 + δj (β, �)2

γj (β, �) = vj (β, �) cos ξj (β, �)

δj (β, �) = vj (β, �) sin ξj (β, �)

ξj (β, �) ∈ R/(2πZ).

(3.36)

We start with a theorem.

Theorem 3.14. Under Assumption 3.1, an arbitrary real solution X of equation (3.17) is given by the
formulae (3.35), where the phases ξj , j = 1, 2 satisfy the estimate

sin ξ1(β, �) sin ξ2(β, �) = O
(
�

4
3
)

as � ↓ 0. (3.37)

Proof. We start with (3.35), i.e.

γ1Y+ + δ1Z+ = γ2Y− + δ2Z−

where we do not mention the dependence on β, � for simplicity and take the Wronskian of both sides
with Y+. Using (3.36), (3.31) and (3.34) we see that

det τ · v1 · sin ξ1 = v2 · (τ11 sin ξ2 − τ12 cos ξ2).

Finally, relying on (3.33), (3.32) and (D.15) we obtain

v1(β, �) sin ξ1(β, �) = v2(β, �)O
(
�

2
3
)

as � ↓ 0.

Similarly, one has

v2(β, �) sin ξ2(β, �) = v1(β, �)O
(
�

2
3
)

as � ↓ 0.

Multiplying the last two equations and neglecting the common factor v1(β, �)v2(β, �) we arrive at the
desired result. �
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The theorem above gives rise to the next corollary, the proof of which is staightforward.

Corollary 3.15. For every � > 0, at least one of the phases ξj , j = 1, 2 satisfies the condition

sin ξj (β, �) = O
(
�

2
3
)

as � ↓ 0. (3.38)

The results above can be reformulated in the following theorem

Theorem 3.16. Under Assumption 3.1, an arbitrary real solution X of equation (3.17) admits

X(ζ, β, �) = γ2(β, �)Y−(ζ, β, �) + δ2(β, �)Z−(ζ, β, �) for ζ ∈ (ζ1, ζ(w−)
)

(3.39)

and

X(ζ, β, �) = γ1(β, �)Y+(ζ, β, �) + δ1(β, �)Z+(ζ, β, �) for ζ ∈ (ζ(w+), ζ2
)

(3.40)

where for the phases in (3.36) we have

sin ξj (β, �) = O
(
�

2/3
)
, as � ↓ 0 (3.41)

at least for one j = 1, 2. We call (3.41) a fixing condition.

4. Using the Liouville transform for our problem

In this section we show how our initial problem for the Dirac operator can be mapped to an equivalent
problem for a Schrödinger operator and then apply the Liouville transform (as in Olver’s theory). After
some preparatory notational comments, we state the problem explicitly and transform it to the problem
studied in §§2, 3. The main assumption that shall be used for the potential of our Dirac operator is the
following.

Assumption 4.1. The function A : R → R is positive, of class C4(R) and such that limx→±∞ A(x) = 0.
It has finitely many local extrema and a maximum denoted by Amax. Furthermore, in some neighbor-
hoods of these extrema it is of class C5. Additionally, at these extreme points A′ vanishes, while A′′ is
either positive (leading to local minima) or negative (for local maxima and maximum). Also, for μ > 0,
equation A(x) = μ has only finitely many solutions. Finally, there exists a number τ > 0 such that as
|x| → +∞ we have

A(x) = O
(

1

|x|1+τ

)
A′(x) = O

(
1

|x|2+τ

)
A′′(x) = O

(
1

|x|3+τ

)
.



CORRECTED  P
ROOF

N. Hatzizisis and S. Kamvissis / WKB problem for the Dirac operator with a multi-humped potential 31

Fig. 7. An example of a multi-humped potential.

4.1. Notation

We begin by fixing some notation. The zeros of equation A(x) = μ for μ > 0 can either be simple or
double (when they hit an extreme point). Let us first deal with the (non-critical) case where all the zeros
of this equation are simple. In such a case, there is a number L ∈ N so that we can set x±

� = x±
� (μ),

� = 1, . . . , L, for these solutions. We enumerate them as follows (see Fig. 7)

x−
1 < x+

1 < x−
2 < x+

2 < · · · < x−
L < x+

L .

Obviously, the number L counts the number of finite barriers that are present. Hence, this yields L

barriers B�(μ) = (x−
� (μ), x

+
� (μ)), � = 1, . . . , L of finite width (finite barriers) separated by L−1 wells

W�(μ) = (x+
� (μ), x

−
�+1(μ)), � = 1, . . . , L − 1 of finite width (finite wells). We also have two infinite

wells (i.e. wells of infinite width) W0(μ) = (−∞, x−
1 (μ)) and WL(μ) = (x+

L (μ),+∞). Observe that
±A′(x±

� (μ)) < 0 for all � = 1, . . . , L. Also, let b0
�(μ) ∈ B�(μ), � = 1, . . . , L and w0

�(μ) ∈ W�(μ),
� = 1, . . . , L − 1 denote the points where A has its extremes.

Using this notation, we define for � = 1, . . . , L the intervals

I−
� = (x−

� (μ), b
0
�(μ)

)
and I+

� = (b0
�(μ), x

+
� (μ)

)
and for � = 1, . . . , L − 1 the intervals

J−
� = (x+

� (μ),w
0
�(μ)

)
and J+

� = (w0
�(μ), x

−
�+1(μ)

)
Having done this, we define for � = 1, . . . , L the functions

F±
� = (A|clos(I±

� ))
−1
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and for � = 1, . . . , L − 1 the functions

G±
� = (A|clos(J±

� ))
−1.

Lastly, for each such barrier, we introduce the function

��(μ) =
∫ x+

� (μ)

x−
� (μ)

√
A(t)2 − μ2 dt. (4.1)

It is easy to check that �� is C1. Moreover, differentiating (4.1) and using the relations A(x±
� ) = μ, we

obtain

d��

dμ
(μ) = −2μ

∫ x+
� (μ)

x−
� (μ)

[
A(t)2 − μ2

]−1/2
dt < 0. (4.2)

Thus, �� is a one-to-one mapping.
Let us now pass to the case of double zeros. In such a case, we hit local minima and/or local maxima.

Without any loss of generality and for clarity and simplicity of notation, we shall deal with the case
of a potential function with two humps presented in Fig. 8. In this situation we have a potential A that
attains a single local minimum m1 and two local maxima M1 < M2, the largest of which is the total
maximum. Let us examine in detail the two (critical) situations of hitting either a local minimum or a
local maximum.

• Hitting a local minimum
When 0 < μ < m1 (cf. Fig. 8a) we have only one finite barrier (x−

1 (μ), x
+
1 (μ)). When μ grows

to reach m1, equation A(x) = m1 has now three zeros; two simple at x±
1 (m1) and one double at

x0
1(m1) (see Fig. 8b). Observe that in such a case, there emerges a new point x0

1 between x−
1 < x+

1
that previously (i.e. when μ < m1) defined the barrier. This new point will give rise to a new well
and the barrier will split into two barriers.

• Hitting a local maximum
When M1 < μ < M2 (cf. Fig. 8e) we see that we again have only one finite barrier (x−

1 (μ), x
+
1 (μ)).

When μ grows to reach M2, equation A(x) = M2 has now only one zero; a double one at x1. (see
Fig. 8f). Observe that in such a case, the two points that previously (i.e. when M1 < μ < M2)
defined a barrier coalesce to a single point x1. The same behavior is observed in Figs 8c and 8d
when μ = M1. In this latter case we are left with a double zero x1(M1) and a finite barrier having
as endpoints the simple zeros x−

2 (M1) and x+
2 (M1).

The general case follows exactly by arguing along the same lines of the observations just made. In
short, when we hit a local minimum, a new well is being created inside a barrier, while when we hit a
local maximum, a barrier is reduced to a point.

4.2. Statement of the problem

We study the problem

D�[u] = λu (4.3)
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Fig. 8. The case of a potential function A with two humps. In each subfigure, the “energy” (spectral parameter) μ takes on
different values in RA.

where D� is the following Dirac (or Zakharov–Shabat) operator

D� =
[
i�∂x −iA

−iA −i�∂x

]
(4.4)

with � a positive parameter, A a function satisfying Assumption 4.1 and u = [u1u2]T a function from R

to C
2. As usual, λ ∈ C plays the role of the spectral parameter.
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Definition 4.2. For a fixed � > 0, we say that λ ∈ C is an eigenvalue (EV) of the densely defind
operator D� (4.4) on L2(R;C2), if equation (4.3) -with this value of λ- has a non-trivial solution u =
[u1u2]T ∈ L2(R;C2); that is

0 <

∫ +∞

−∞

[∣∣u1(x)
∣∣2 + ∣∣u2(x)

∣∣2] dx < +∞.

In general, a non-self-adjoint operator like D� has complex EVs. For such an operator (with a potential
A satisfying Assumption 4.1), we know the following about its spectrum (see article [13] by Klaus and
Shaw and [10] by Hirota and Wittsten).

• If D� has EVs, then there is a purely imaginary EV whose imaginary part is strictly larger than the
imaginary part of any other EV.

• The EV formation threshold is

�
−1‖A‖L1(R) >

π

2

and is hence always achieved for sufficiently small �.
• Let N be the largest nonnegative integer such that

�
−1‖A‖L1(R) > (2N − 1)

π

2
.

Then there are at least N purely imaginary EVs.
• The spectrum of D� is symmetric with respect to reflection in R.
• The continuous (essential) spectrum consists of the entire real line R, i.e.

σess(D�) = R.

The following assumption will make our analysis easier. We assume that for sufficiently small � > 0,
D� has only purely imaginary EVs.

Assumption 4.3. For the point spectrum of D� we suppose that

∃�0 > 0 such that ∀� ∈ (0, �0) we have σp(D�) ⊂ i[−Amax, Amax].
We will show later that this assumption is not strictly necessary (and in fact it is shown a posteriori

to be true for all smooth potentials A satisfying Assumption 4.1; see appendix A). But for the moment
we simply take it for granted since it makes the straightforward application of Olver’s theory possible.
Hence, from now on we always assume that 0 < � < �0.

4.3. Trasforming spectral parameter & changing variables

From now on we assume that the Assumption 4.3 is satisfied. Recall also that the spectrum of D� is
symmetric with respect to reflection in R. Hence, we consider the spectral parameter λ ∈ i(0, Amax] and
change it to a real μ ∈ R+ by setting

λ = iμ. (4.5)
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Hence, (4.3) is written as

�

[
u′

1(x, μ, �)

u′
2(x, μ, �)

]
=
[

μ A(x)

−A(x) −μ

] [
u1(x, μ, �)

u2(x, μ, �)

]
, x ∈ R. (4.6)

Under the change of variables (cf. equation (4) in [14])

y± = u2 ± u1√
A ∓ μ

(4.7)

system (4.6) is equivalent to the following two independent eigenvalue equations

y ′′
±(x, μ, �) =

{
�

−2
[
μ2 − A2(x)

]+ 3

4

[
A′(x)

A(x) ∓ μ

]2

− 1

2

A′′(x)
A(x) ∓ μ

}
y±(x, μ, �), x ∈ R. (4.8)

Since A(x) ∈ R+, x ∈ R, we will only consider the “minus” case for the lower index in (4.8) and thus
work with the equation

d2y

dx2
=
{
�

−2
[
μ2 − A2(x)

]+ 3

4

[
A′(x)

A(x) + μ

]2

− 1

2

A′′(x)
A(x) + μ

}
y, x ∈ R. (4.9)

Observe that the change of variables (4.7) does not alter the discrete spectrum. So we have arrived at
the following proposition.

Proposition 4.4. Under Assumptions 4.1 and 4.3, finding the discrete spectrum of D� in (4.4), is equiv-
alent to finding the values μ ∈ (0, Amax] for which (4.9) has an L2(R;C) solution.

4.4. Reformulating the equation

In a neighborhood of a finite (noncritical) barrier B� = (x−
� , x

+
� ), � = 1, . . . , L, equation (4.9) can be

written as

d2y

dx2
= [�−2f

(
x, x+

�

)+ g
(
x, x+

�

)]
y

where f and g satisfy

f
(
x, x+

�

) = A2
(
x+
�

)− A2(x)

and

g
(
x, x+

�

) = 3

4

[
A′(x)

A(x) + A(x+
� )

]2

− 1

2

A′′(x)
A(x) + A(x+

� )
.

This means that in a neighborhood of a barrier we can use the results obtained in §2.
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Similarly, in a neighborhood of a finite (noncritical) well W� = (x+
� , x

−
�+1), � = 1, . . . , L−1, equation

(4.9) can be put in the form

d2y

dx2
= [�−2f

(
x, x+

�

)+ g
(
x, x+

�

)]
y

where f and g satisfy

f
(
x, x+

�

) = A2
(
x+
�

)− A2(x)

and

g
(
x, x+

�

) = 3

4

[
A′(x)

A(x) + A(x+
� )

]2

− 1

2

A′′(x)
A(x) + A(x+

� )
.

This guarantees that in a neighborhood of a well we can use the results of §3.
From paragraphs §2 and §3 we know that after applying the Liouville transform, the above differential

equations are transformed correspondingly to the form

d2X

dζ 2
= [±�

−2
(
ζ 2 − γ 2

)+ ϕ(ζ, γ )
]
X (4.10)

where for the “+” sign, γ = α and ϕ = ψ (cf. §2.1) while for the “−” case, γ = β and ϕ = ψ (see
§3.1). Keeping in mind Proposition 4.4 we are led to the following.

Proposition 4.5. Under Assumptions 4.1 and 4.3, finding the discrete spectrum of D� in (4.4) is equiv-
alent to finding the values α � 0 for which equation (4.10), for the “+” sign with γ = α, ϕ = ψ , has
an L2(R;C) solution.

5. Semiclassical spectral results for multiple barriers

In this section, we use the results from paragraphs §2 and §3 to study the EVs and their corresponding
norming constants of a Dirac operator with potential A. Here, we let this potential have multiple humps
(see Fig. 7). To be precise, we assume the following.

5.1. Quantization conditions for the EVs

In this subsection, using Assumptions 4.1, 4.3 and what we have gathered so far, we present the results
for the EVs of the Dirac operator D�.

Theorem 5.1. Consider a potential A of the Dirac operator D� in (4.4) that satisfies Assumption 4.1.
Also assume Assumption 4.3 and take 0 < μ1 < μ2 � Amax. Suppose that λ = iμ ∈ i[μ1, μ2]
(where λ = λ(�) and μ = μ(�)) is an EV of D�. Then using the notation from §4.1, at least for one
� = �(�) ∈ {1, 2, . . . , L}, there is a non-negative integer n = n(μ, �, �) such that

��(μ) = π

(
n + 1

2

)
� + O

(
�

5
3
)

as � ↓ 0. (5.1)
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Proof. From Theorem 3.16 we see that each well W�(μ), � = 1, . . . , L − 1 yields at least one fixing
condition (cf. (3.41)). Moreover, the asymptotic form of Y+(ζ, α(μ), �) as ζ → +∞ and the asymptotics
for Y−(ζ, α(μ), �) and Z−(ζ, α(μ), �) as ζ → −∞ (see (2.23), (2.30) and (2.31)) show that in the
presense of an EV, the coefficient σ12 in equation (2.32) has to be zero. But this is translated to the fact
that the fixing conditions are fulfilled at the right point x−

1 (μ) of the well W0(μ) and at the left point
x+
L (μ) of the well WL(μ). Thus for every 0 < � < �0, we have at least L + 1 fixing conditions for L

barriers. Hence, there exists a barrier B�(μ, �) (depending on � as well) for which a fixing condition is
satisfied on each of its two ends. Finally, we refer to Theorem 2.19 which gives us the desired results. �

Formula (4.2) implies �� is a one-to-one mapping, so there exists an inverse �−1
� and we can write

(5.1) equivalently as

μ(�) = �−1
�

[
π

(
n + 1

2

)
�

]
+ O

(
�

5
3
)

as � ↓ 0. (5.2)

This formula (5.2) leads to the following definition of WKB EVs.

Definition 5.2. We call the numbers

λWKB
�,n (�) = iμWKB

�,n (�) = i�−1
�

[
π

(
n + 1

2

)
�

]
(5.3)

WKB eigenvalues.

If λ(�) = iμ(�) is an EV of D�, then from Theorem 5.1 there exists at least one � ∈ {1, 2, . . . , L} so
that λWKB

�,n (�) is close to λ(�) for some n ∈ N.
Consider now the intervals

��,n(�) = (μWKB
�,n (�) − c�

5
3 , μWKB

�,n (�) + C�
5
3
)

(5.4)

for some arbitrary �-independent constants c, C > 0. The lengths of these intervals are of order O(�
5
3 )

while for different m, n ∈ N the distances between the points μWKB
�,m (�) and μWKB

�,n (�) are of order O(�).
This says that for sufficiently small �

��,m(�) ∩ ��,n(�) = ∅ for m �= n.

However if we consider different k, � ∈ {1, 2, . . . , L}, it may occur that

�k,n(�) ∩ ��,n(�) �= ∅ for k �= �.

Theorem (5.1) says that each EV of D� belongs to one of the intervals i��,n(�). Hence for sufficiently
small �, equivalently stated this can be written as

σp(D�) ∩ i(μ1, μ2) ⊂
L⋃

�=1

⋃
n

i��,n(�)
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or

dist

{
σp(D�) ∩ i(μ1, μ2),

L⋃
�=1

⋃
n∈N

{
λWKB
�,n (�)|n ∈ N

}} = O
(
�

5
3
)

as � ↓ 0.

Conversely for the existence of an actual EV for our operator in (4.4), we have the following theorem.

Theorem 5.3. Let Assumption 4.1 be satisfied by A and assume Assumption 4.3 for D�. Then for every
� ∈ {1, 2, . . . , L} and every non-negative integer n such that

�−1
�

[
π

(
n + 1

2

)
�

]
∈ (μ1, Amax) (5.5)

there exists an EV of D�, namely λ = iμ (where λ = λ(�, n, �) and μ = μ(�, n, �)), that satisfies

λ = λWKB
�,n (�) + O

(
�

5
3
)

as � ↓ 0.

Furthermore the associated norming constants have asymptotics (−1)n + O(�
2
3 ).

Proof. Fix some � ∈ {1, 2, . . . , L} and some non-negative integer n so that (5.5) is true. By Theo-
rem 2.21, there exists μ = μ(�, n, �) such that

μ = �−1
�

[
π

(
n + 1

2

)
�

]
+ O

(
�

5
3
)

as � ↓ 0 (5.6)

and such that

Y−
(
ζ, α�(μ), �

) = σ
(
α�(μ), �

)
Y+
(
ζ, α�(μ), �

)
where

α�(μ) =
√

2

π
��(μ) and σ

(
α�(μ), �

) = (−1)n + O
(
�

2
3
)

as � ↓ 0. (5.7)

Fixing this value of μ, let a cut-off function χ� ∈ C∞
0 (R) be such that χ�(ζ ) = 1 in some neighborhood

of the interval ζ(B�(μ)) (recall that ζ is a continuous and increasing function of x) and χ�(ζ ) = 0
outside of some larger neighborhood of that interval. In particularly, we have χ�(ζ ) = 0 on all other
intervals ζ(Bk(μ)) with k �= �. We set

f�,n(ζ, �) = Y−
(
ζ, α�(μ), �

)
χ�(ζ ).

Observe that f�,n(·, �) ∈ C2
0(R). Since the function Y−(ζ, α�(μ), �) satisfies

d2Y−
dζ 2

= [�−2
(
ζ 2 − α2

� (μ)
)+ ψ

(
ζ, α�(μ)

)]
Y−
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Fig. 9. Barriers and wells in x-space and Liouville space.

for f�,n we have

d2f�,n

dζ 2
− [�−2

(
ζ 2 − α2

� (μ̃)
)+ ψ

(
ζ, α�(μ)

)]
f�,n

= 2
dY−
dζ

dχ�

dζ
+ Y−

d2χ�

dζ 2

= σ
(
α�(μ), �

)(
2
dY+
dζ

dχ�

dζ
+ Y+

d2χ�

dζ 2

)
.

Due to the derivatives of χ�, the expression above differs from zero only on compact subsets of the
intervals ζ(W�−1(μ)) and ζ(W�(μ)) (see Fig. 9). But the definitions of Y± and σ along with (D.2)
show that this expression tends to zero as � ↓ 0 on both ζ(W�−1(μ)) and ζ(W�(μ)). This shows (cf.
Proposition 4.5) that λ = iμ is the desired EV. Finally, using the definition (5.3) and (5.6) we find
that λ satisfies the specified asymptotics as � ↓ 0. The asymptotics for the norming constants follow
from (5.7). �

Remark 5.4. We cannot exclude the possibility that EVs coming from different barriers (i.e. different
values of �) get too close (at a distance of order o(�5/3)) or even coincide. So we could even have double
EVs. But this does not affect the applications to NLS. For the semiclassical analysis of the inverse
scattering, the important fact is that we have different sets of EVs from different barriers, each set with
a different density (see Appendix B below).

5.2. Eigenvalues near zero and their corresponding norming constants

For the applications to the semiclassical theory of the focusing NLS equation, it is important to un-
derstand the behavior of the EVs near 0. The problem is essentially the same as the one we considered
in [9]. We can actually improve our result somewhat and we present the details here.

We begin with a potential function A that satisfies Assumption 4.1. Such a function has finitely many
local minima, say N ∈ N0, accounting for the case of a function having none (N = 0); if there are
N ∈ N local minima, we denote them by mj , j = 1, . . . , N . We set m̃ to be

m̃ =
{
Amax, if N = 0

minj∈{1,...,N} mj, if N ∈ N.
(5.8)
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Fig. 10. The potential barrier in a case of near zero EVs.

In this section we investigate the (semiclassical) behavior of EVs of D� (with potential A) that lie in
i(0, m̃), so that μ(�) ∈ (0, m̃) and also μ(�) ↓ 0 as � ↓ 0. We emphasize that we are in the presence of
only one (finite) barrier (see Fig. 10). So l = 1. In this setting, using (2.4), (2.5), (2.20) and having in
mind that A(b±) = μ (for the notation, consult §2.1), we define

f̄ (x, �) = f
(
x, b+

(
μ(�)

)) = μ(�)2 − A2(x) (5.9)

ḡ(x, �) = g
(
x, b+

(
μ(�)

)) = 3

4

[
A′(x)

A(x) + μ(�)

]2

− 1

2

A′′(x)
A(x) + μ(�)

(5.10)

and

f̄ (x, �) = (x − b−
(
μ(�)

))(
x − b+

(
μ(�)

))
p̄(x, �).

where

p̄(x, �) = p
(
x, b+

(
μ(�)

))
.

We apply the Liouville transform once again (as in §2.1), and arrive at the following proposition (cf.
Proposition 2.7).

Proposition 5.5. For every � > 0, equation

d2y

dx2
= [�−2f̄ (x, �) + ḡ(x, �)

]
y, x ∈ R

is transformed to equation

d2X

dζ 2
= [�−2

(
ζ 2 − α

(
μ(�)

)2)+ ψ
(
ζ, α

(
μ(�)

))]
X, ζ ∈ R
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in which ζ is given by the Liouville transform (2.7), α is given by (2.9) and the function ψ(ζ, α(μ(�)))

is given by the formula

ψ
(
ζ, α

(
μ(�)

))= 1

4

3ζ 2 + 2α(μ(�))2

[ζ 2 − α(μ(�))2]2
+ 1

16

ζ 2 − α(μ(�))2

f̄ (x, �)3

· [4f̄ (x, �)f̄ ′′(x, �) − 5f̄ ′(x, �)2
]+ [ζ 2 − α

(
μ(�)

)2] ḡ(x, �)
f̄ (x, �)

where prime denotes differentiation with respect to x.

Remark 5.6. By recalling the definition of α in (2.9), and the fact that b±(μ(�)) → ±∞, as � ↓ 0, we
obtain

α
(
μ(�)

) ↑
√

2

π
‖A‖L1(R) as � ↓ 0. (5.11)

It is easy to see that for each value of �, the functions f̄ , ḡ and p̄ satisfy properties (i) through (iv) in
the proof of Lemma 2.10 in §2.2. This in turn implies -again with the help of Lemma I in [16]- that for
each � the function

ψ
(
ζ, α

(
μ(�)

))= 1

4

3ζ 2 + 2α(μ(�))2

[ζ 2 − α(μ(�))2]2
+ 1

16

ζ 2 − α(μ(�))2

f̄ (x, �)3

· [4f̄ (x, �)f̄ ′′(x, �) − 5f̄ ′(x, �)2
]+ [ζ 2 − α

(
μ(�)

)2] ḡ(x, �)
f̄ (x, �)

(5.12)

is continuous in the corresponding region of the (ζ, α)-plane.
So in order to have a conclusion such as Theorem 2.13 and eventually results like Theorem 2.19 and

Theorem 2.21, we need to investigate the convergence of the integral in (2.27) (cf. proof of Theorem 2.13
or proof of Theorem 6.3 in §6 of [9]), i.e.∫ +∞

0

|ψ(t, α(μ(�)))|
�(t

√
2�−1)

dt. (5.13)

Here we need to place an additional assumption on the behavior of the potential A at ±∞.

Assumption 5.7. Suppose there are real positive numbers 1 < r+ � s+, so that

C+
1 (x)

|x|s+ � A(x) � C+
2 (x)

|x|r+ for x > 0

whereC+
1 ,C+

2 are bounded functions and 2r+−s+ > 1
3 ; and there are real positive numbers 1 < r− � s−,

so that

C−
1 (x)

|x|s− � A(x) � C−
2 (x)

|x|r− for x < 0
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where C−
1 , C−

2 are bounded functions and 2r− − s− > 1
3 . Alternatively, suppose there are real positive

numbers 0 < r � s so that

C1(x)e
−|x|s � A(x) � C2(x)e

−|x|r , x ∈ R

where C1, C2 are bounded functions.

Finally, recall (2.13) where now x2 = +∞. It shows that x ↑ +∞ as ζ ↑ +∞. The lemma below
deals with the asymptotic behavior of x as ζ ↑ +∞. It shall be used to allow us understand the nature
of ψ for large ζ .

Lemma 5.8. Considering x as a function of ζ we see that

x = ζ 2

2μ

[
1 + O

(
log ζ

ζ 2

)]
as ζ ↑ +∞ (5.14)

uniformly with respect to μ = A(b±) ∈ (0, m̃).

Proof. See Lemma 5.2 in §5 of [9]. �

It is now straightforward to check that Olver’s theory is uniformly applicable all the way to μ = 0.
For example, consider first the case where A is rational:

A(x) = 1

|x|r for |x| � 1 (5.15)

where r > 1 (clearly satisfying Assumption 2.4 and Assumption 5.7). In this case, using (5.14) we get

x = ζ 2

2μ(�)

[
1 + O

(
log ζ

ζ 2

)]
as ζ ↑ +∞ (5.16)

while using (5.9), (5.10), (5.12), (5.15) and (5.16) we arrive at

ψ
(
ζ, α

(
μ(�)

)) = ψ1
(
ζ, α

(
μ(�)

))[
1 + O

(
log ζ

ζ 2

)]
as ζ ↑ +∞ (5.17)

uniformly in α and consequently in �, where

ψ1
(
ζ, α

(
μ(�)

)) = 1

4

3ζ 2 + 2α(μ(�))2

[ζ 2 − α(μ(�))2]2

− r(2r + 1)22r+1μ(�)2r−2ζ 4r−4
[
ζ 2 − α

(
μ(�)

)2]
· ζ

4r + r−2
2r+1 22r−1μ(�)2r−2

[ζ 4r − 22rμ(�)2r−2]3

− r(r + 1)2r+1μ(�)r−1ζ 4r−4
[
ζ 2 − α

(
μ(�)

)2]
· ζ 2r − r−2

r+1 2r−1μ(�)r−1

[ζ 2r − 2rμ(�)r−1][ζ 2r + 2rμ(�)r−1]3
.
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Consider now the case where A is exponentially decreasing:

A(x) = e−|x|r for |x| � 1 (5.18)

where r > 0; it clearly satisfies Assumption 2.4 and Assumption 5.7). Using (5.9), (5.10), (5.12), (5.14),
(5.15) and (5.16) we arrive at

ψ
(
ζ, α

(
μ(�)

)) = ψ2
(
ζ, α

(
μ(�)

))[
1 + O

(
log ζ

ζ 2

)]
as ζ ↑ +∞ (5.19)

uniformly in α and consequently in �, where

ψ2
(
ζ, α

(
μ(�)

)) = 1

4

3ζ 2 + 2α(μ(�))2

[ζ 2 − α(μ(�))2]2

+ r

2r
ζ 2 − α(μ(�))2

μ(�)r−2

ζ 2r−4 exp{− ζ 2r

2r−1μ(�)r
}

[exp{− ζ 2r

2r−1μ(�)r
} − μ(�)2]3

·
[
r

2r
ζ 2r

μ(�)r
exp

{
− ζ 2r

2r−1μ(�)r

}
+ 2(r − 1) exp

{
− ζ 2r

2r−1μ(�)r

}
+ r

2r−2

ζ 2r

μ(�)r−2
− 2(r − 1)μ(�)2

]

− r

2r−1

ζ 2 − α(μ(�))2

μ(�)r−2

ζ 2r−4 exp{− ζ 2r

2rμ(�)r }
[exp{− ζ 2r

2rμ(�)r } − μ(�)][exp{− ζ 2r

2rμ(�)r } + μ(�)]3

·
[

r

2r+1

ζ 2r

μ(�)r
exp

{
− ζ 2r

2rμ(�)r

}
+ (r − 1) exp

{
− ζ 2r

2rμ(�)r

}
− r

2r
ζ 2r

μ(�)r−1
+ (r − 1)μ(�)

]
.

These asymptotics imply that for each � > 0, the integral in (5.13) converges; furthermore, this
convergence is uniform in α. Now similar computations can be easily performed for any A satisfying
Assumption 2.4 and Assumption 5.7. One uses the upper bound of Assumption 5.7 for the numerator
and the lower bound for the denominator. The result remains the same. The integral in (5.13) converges
uniformly in α. A variation of Theorem 2.13 can be applied to guarantee the existence of approximate
solutions in these cases too. Hence, we arrive at the following theorem.

Theorem 5.9. For every � > 0, equation

d2Y

dζ 2
= [�−2

(
ζ 2 − α

(
μ(�)

)2)+ ψ
(
ζ, α

(
μ(�)

))]
Y (5.20)
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has in the region [0,+∞)×[0, α(μ(�))] of the (ζ, α)-plane solutions Y+ and Z+ which are continuous,
have continuous first and second partial ζ -derivatives, and are given by

Y+
(
ζ, α

(
μ(�)

)
, �
) = U

(
ζ
√

2�−1,−1

2
�

−1α
(
μ(�)

)2)+ ε
(
ζ, α

(
μ(�)

)
, �
)

Z+
(
ζ, α

(
μ(�)

)
, �
) = U

(
ζ
√

2�−1,−1

2
�

−1α
(
μ(�)

)2)+ ε
(
ζ, α

(
μ(�)

)
, �
)

(cf. (2.23), (2.24)) where for the remainders we have the relations

|ε(ζ, α(μ(�)), �)|
M(ζ

√
2�−1,− 1

2�
−1α(μ(�))2)

,
| ∂ε
∂ζ
(ζ, α(μ(�)), �)|√

2�−1N(ζ
√

2�−1,− 1
2�

−1α(μ(�))2)

� 1

E(ζ
√

2�−1,− 1
2�

−1α(μ(�))2)

×
(

exp

{
1

2
(π�)

1
2 l1

(
−1

2
�

−1α
(
μ(�)

)2)Vζ,+∞[H ](α(μ(�)), �)}− 1

)
and

|ε(ζ, α(μ(�)), �)|
M(ζ

√
2�−1,− 1

2�
−1α(μ(�))2)

,
| ∂ε
∂ζ
(ζ, α(μ(�)), �)|√

2�−1N(ζ
√

2�−1,− 1
2�

−1α(μ(�))2)

� E

(
ζ
√

2�−1,−1

2
�

−1α
(
μ(�)

)2)
×
(

exp

{
1

2
(π�)

1
2 l1

(
−1

2
�

−1α
(
μ(�)

)2)V0,ζ [H ](α(μ(�)), �)}− 1

)
(analogous to (2.25), (2.26)).

Proof. The proof follows exactly the lines of that for Theorem 2.13. One has only to observe that
Theorem E.2 comes into play and ensures that everything remains unchanged. �

Additionally, l1 and V0,+∞[H ] satisfy the same asymptotics as before (cf. (2.28), (2.29)) and conse-
quently one obtains the same asymptotic behavior of solutions as in §2.4; namely

ε
(
ζ, α

(
μ(�)

)
, �
) = M(ζ

√
2�−1,− 1

2�
−1α(μ(�))2)

E(ζ
√

2�−1,− 1
2�

−1α(μ(�))2)
O
(
�

2
3
)

ε
(
ζ, α

(
μ(�)

)
, �
) = E

(
ζ
√

2�−1,−1

2
�

−1α
(
μ(�)

)2)
M

(
ζ
√

2�−1,−1

2
�

−1α
(
μ(�)

)2)O(� 2
3
)

∂ε

∂ζ

(
ζ, α

(
μ(�)

)
, �
) = N(ζ

√
2�−1,− 1

2�
−1α(μ(�))2)

E(ζ
√

2�−1,− 1
2�

−1α(μ(�))2)
O
(
�

1
6
)
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∂ε

∂ζ

(
ζ, α

(
μ(�)

)
, �
) = E

(
ζ
√

2�−1,−1

2
�

−1α
(
μ(�)

)2)
N

(
ζ
√

2�−1,−1

2
�

−1α
(
μ(�)

)2)O(� 1
6
)

as � ↓ 0 uniformly for ζ � 0 and α.
Arguing as in §2.5, we obtain two more solutions of (5.20), namely Y− and Z−, satisfying

Y−
(
ζ, α

(
μ(�)

)
, �
) = U

(
−ζ

√
2�−1,−1

2
�

−1α
(
μ(�)

)2)+ M(−ζ
√

2�−1,− 1
2�

−1α(μ(�))2)

E(−ζ
√

2�−1,− 1
2�

−1α(μ(�))2)
O
(
�

2
3
)

Z−
(
ζ, α

(
μ(�)

)
, �
) = U

(
−ζ

√
2�−1,−1

2
�

−1α
(
μ(�)

)2)
+ E

(
−ζ

√
2�−1,−1

2
�

−1α
(
μ(�)

)2)
M

(
−ζ

√
2�−1,−1

2
�

−1α
(
μ(�)

)2)O(� 2
3
)

as � ↓ 0 uniformly for ζ � 0 and α.
Consequently we have the same connection formulae (all the results of §2.5 are not altered at all).

Indeed, expressing Y+, Z+ in terms of Y−, Z− and writing

Y+
(
ζ, α

(
μ(�)

)
, �
) = σ11

(
α
(
μ(�)

)
, �
)
Y−
(
ζ, α

(
μ(�)

)
, �
)+ σ12

(
α
(
μ(�)

)
, �
)
Z−
(
ζ, α

(
μ(�)

)
, �
)

Z+
(
ζ, α

(
μ(�)

)
, �
) = σ21

(
α
(
μ(�)

)
, �
)
Y−
(
ζ, α

(
μ(�)

)
, �
)+ σ22

(
α
(
μ(�)

)
, �
)
Z−
(
ζ, α

(
μ(�)

)
, �
)

(confer (2.32), (2.33)) in the same way we find that

σ11
(
α
(
μ(�)

)
, �
) = sin

(
1

2
π�−1α

(
μ(�)

)2)+ O
(
�

2
3
)

σ12
(
α
(
μ(�)

)
, �
) = cos

(
1

2
π�−1α

(
μ(�)

)2)+ O
(
�

2
3
)

σ21
(
α
(
μ(�)

)
, �
) = cos

(
1

2
π�−1α

(
μ(�)

)2)+ O
(
�

2
3
)

σ22
(
α
(
μ(�)

)
, �
) = − sin

(
1

2
π�−1α

(
μ(�)

)2)+ O
(
�

2
3
)

(like (2.34)) as � ↓ 0 uniformly for α.
Eventually, this means that the results of §2.6 for the EVs remain the same. But before we state this

result, let us remind the reader of the function � in (2.35), namely

�(μ) = π

2
α(μ)2 =

∫ b+(μ)

b−(μ)

√
A(x)2 − μ2 dx (5.21)

where A(b±) = μ. We have seen that � is a C1 one-to-one mapping satisfying

d�

dμ
(μ) = −2μ

∫ b+(μ)

b−(μ)

[
A(x)2 − μ2

]−1/2
dx < 0.



CORRECTED  P
ROOF

46 N. Hatzizisis and S. Kamvissis / WKB problem for the Dirac operator with a multi-humped potential

Now we are ready to state the main result of this section. Combining Theorem 2.19 and Theorem 2.21,
we arrive at the following.

Theorem 5.10. Let the potential function A satisfy Assumptions 4.1, 4.3 and 5.7 and set m̃ as in (5.8).
Suppose that λ(�) = iμ(�) ∈ i(0, m̃) is an EV of the operator D� (see (4.4)). Then there exists a
non-negative integer n for which

�
(
μ(�)

) = π

(
n + 1

2

)
� + O

(
�

5
3
)

as � ↓ 0. (5.22)

Conversely, for every non-negative integer n such that π(n + 1
2)� ∈ (�(m̃), ‖A‖L1(R)) (recall (5.11),

(5.21)) there exists a unique EV of D�, namely λn(�) = iμn(�), so that∣∣∣∣�(μn(�)
)− π

(
n + 1

2

)
�

∣∣∣∣ � C�
5
3

with a constant C depending neither on n nor on �.

Proof. The proof of this theorem is essentially the same as the proof of Theorem 10.1 in §10 of [9]. �

In view of 5.2, we have the following definition. Note again that near zero l = 1.

Definition 5.11. We call the number

λWKB
n (�) = iμWKB

n (�) = i�−1

[
π

(
n + 1

2

)
�

]
(5.23)

a WKB eigenvalue related to the actual EV λ(�) = iμ(�).

If λ(�) = iμ(�) is an EV of D�, then from Theorem 5.10 there exists some n ∈ N so that formula
(5.22) is true.

So we arrive at the following corollary which describes the behavior of the EVs of D� that lie near
zero. We also note that the estimates for the norming constants still hold near zero.

Corollary 5.12. Consider a function A satisfying Assumptions 4.1, 4.3 and 5.7. Also, set m̃ as in (5.8).
Then for every non-negative integer n such that π(n+ 1

2)� ∈ (0,�(m̃)), there exists a unique EV of D�,
namely λn(�), satisfying∣∣λn(�) − λWKB

n (�)
∣∣ = O

(
�

5
3
)

as � ↓ 0

uniformly. Also the asymptotics for the corresponding norming constants are

(−1)n + O
(
�

2/3
)

as � ↓ 0

uniformly.
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6. Reflection coefficient

In this paragraph we consider the behavior of the reflection coefficient for our Dirac operator (4.4).
This completes the investigation of the set of (semiclassical) scattering data. The results in this section
were actually obtained rigorously in [9]. For the sake of completeness we briefly present them here as
well, without proof. We remind the reader that the continuous spectrum of such a Dirac operator with a
potential A satisfying the asymptotics of Assumption 4.1 at ±∞, is the whole real line.

6.1. Reflection away from zero

Let us begin in this subsection by considering a λ ∈ R that is idependent of �. Under the change of
variables

y± = u2 ± u1√
A ± iλ

equation (4.3) -with the help of (4.4)- is transformed to the following two independent equations

y ′′
±(x, λ, �) =

{
�

−2
[−A2(x) − λ2

]+ 3

4

[
A′(x)

A(x) ± iλ

]2

− 1

2

A′′(x)
A(x) ± iλ

}
y±(x, λ, �).

Again we only consider the lower index and work with the equation

d2y

dx2
= [−�

−2f̃ (x, λ) + g̃(x, λ)
]
y (6.1)

where f̃ and g̃ satisfy

f̃ (x, λ) = A2(x) + λ2

and

g̃(x, λ) = 3

4

[
A′(x)

A(x) − iλ

]2

− 1

2

A′′(x)
A(x) − iλ

.

Next we define the Jost solutions. Equation (6.1) can be put in the form

−�
2 d

2y

dx2
+ [−A2(x) + �

2g̃(x, λ)
]
y = λ2y.

This is the Schrödinger equation with a complex potential. The Jost solutions are defined as the com-
ponents of the bases {J l−, J l+} and {J r−, J r+} of the two-dimensional linear space of solutions of equation
(6.1), which satisfy the asymptotic conditions

J l
±(x, λ) ∼ exp

{
±i

λ

�
x

}
as x → −∞

J r
±(x, λ) ∼ exp

{
±i

λ

�
x

}
as x → +∞.
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From scattering theory, we know that the reflection coefficient R(λ, �) for the waves incident on the
potential from the right, can be expressed in terms of Wronskians of the Jost solutions. More presicely,
we have

R(λ, �) = W[J l−, J r−]
W[J r+, J l−] . (6.2)

The estimation of the asymptotic behavior of R(λ, �) can be achieved using the same method as in
§12 of [9]. More precisely, for λ ∈ R with |λ| � δ > 0, we have the following theorem.

Theorem 6.1. Let A satisfy Assumption 4.1. The reflection coefficient of equation (6.1) as defined by
(6.2), satisfies

R(λ, �) = O(�) as � ↓ 0

uniformly for |λ| � δ > 0.

6.2. Reflection close to zero

Now we turn to the case where λ ∈ R depends on � (λ = λ(�)) and particularly we let λ approach 0
like �b for an �-independent positive constant b. Arguing along the same lines as before, we arrive at the
following theorem (again, for the proof see §12 in [9]).

Theorem 6.2. Let A satisfy Assumption 4.1. Consider b, s > 0 (independent of �). Then the reflection
coefficient of equation (6.1) as defined by (6.2), satisfies

R
(
λ(�), �

) = O
(
�

1−sb
)

as � ↓ 0

uniformly for λ(�) in any closed interval of [�b,+∞).

Remark 6.3. We can ensure that b is as large as we want by letting s very small if we are happy with a
weak error estimate O(�ε) for small positive ε, as � ↓ 0. We can at best guarantee asymptotics of order
O(�1−ε) for small positive ε, if we are allowed to accept a small b.
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Appendix A. The assumption that the eigenvalues are imaginary is not a priori necessary

If the initial data function A of the IVP (1.1) is C∞ (and thus the potential of the Dirac operator (1.3)
is smooth), the main results of this paper (namely Theorem 5.3, Corollary 5.12 and Theorems 6.1, 6.2)
are still true without Assumption 4.3. Indeed, Assumption 4.3 can be shown to be true a posteriori. In
this paragraph of the appendix we present a somewhat sketchy argument, but the details can be easily
filled by the attentive reader.

By Proposition 2.1 of [8] (which is based on [4]), any eigenvalue of D� has to lie in a �-small neigh-
borhood of the “numerical range” i[−Amax, Amax] ∪R (the result of [8] is applied to a periodic problem,
but the proof is the same for our L2-problem). This is a standard fact for any pseudo-differential operator
with a smooth symbol.4

On the other hand, because of the estimate we have for the reflection coefficient in Theorem 6.2, the
real line is actually excluded. First, it is a fact that the transmission coefficient T has to be infinite on the
eigenvalues. Also, recall that the transmission coefficient is a priori defined on the real line but it can be
meromorphically extended to the upper half-plane. In our case, knowing that the reflection coefficient
is small (at least away from 0) on the real line and using the well-known formula |T |2 − |R|2 = 1
(which holds on the real line), we get that the transmission coefficient has to be bounded near the real
line (uniformly up to infinity), at least away from zero. So, any eigenvalue λ has to lie in a �-small
neighborhood of the interval i[−Amax, Amax]. Writing λ = iμ, we see that μ ∈ C must have an �-small
imaginary part.

Now, a careful examination of the details of our method (see Sections C, D and E of the appendix)
will reveal that all the ingredients (Airy functions, PCFs) live in the complex plane rather than just on
the real line. There is nothing that forces variable μ, defined in paragraph §4, to be exactly real.

Of course, we do not wander too far from the real line, because some of the asymptotic formulae for
the special functions involved in the analysis (Airy, PCFs) can change. But there is absolutely no need
for that. As long as μ has a small imaginary part, the analysis goes through.

Some special attention is perhaps required to the definition of the function ρ defined in Appendix D.
If b is real (in fact negative), ρ(b) is defined to be the largest real root of the equation

U(x, b) = U(x, b).

Now, if b has a small imaginary part, ρ(b) can simply be defined to be a root of the same equation which
is an analytic continuation of the (simple) real root in the case where b is real and negative.

The functions E, M , N , θ , ω are defined as in Appendix D, where of course x is now complex and
x = ρ(b) is an analytic arc rather than just a point. The asymptotic formulae provided in this section for
E, M , N are the same. The important bound l1 [see (2.22)] is still valid. The situation is similar for the
so-called modified PCFs in the second part of Appendix D. The important bound l2 [see (3.21)] is also
still valid.

Finally, in a similar way, in the discussion of Airy functions in Appendix C, one can allow t to have
an �-small imaginary part. We then allow the root c∗ of Ai − Bi to vary analytically as t wanders off the
real line and define E, M , N , θ accordingly.

On the other hand, the discussion of turning points will also be altered. We do not wish to allow for
complex turning points. Since the imaginary part of the spectral variable is �-small, we will simply

4In fact, as our differential operator is pretty simple the extension of the theory to non-smooth symbols is also possible. The
regularity assumptions of Section 2 are certainly sufficient ([5]).
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define them as solutions of A(x) = �μ. The discussion of sections §§2–5 is still applicable since the
errors incurred do not alter the proofs.

Once we arrive at the Bohr-Sommerfeld conditions, one can see a posteriori that the EVs have to be
imaginary. Indeed, because of the symmetries of the NLS equation, the EVs have to come in quadruplets
(λ, λ∗,−λ,−λ∗). So, if one eigenvalue λ is not exactly imaginary, then its WKB-approximant λWKB

must also approximate the different eigenvalue −λ∗. But there is a 1-1 relation between EVs and their
WKB-approximations; we thus arrive at a contradiction. We conclude that for small enough �, EVs are
indeed imaginary.

Appendix B. Inverse scattering and semiclassical NLS

According to the so-called finite gap ansatz (or more properly hypothesis) the solution ψ(x, t) of (1.1)
is asymptotically (as � ↓ 0) described (locally) as a slowly modulated G + 1 phase wavetrain. Setting
x = x0 +�x̂ and t = t0 +�t̂ , so that x0, t0 are “slow” variables while x̂, t̂ are “fast” variables, there exist
parameters

• a

• U = (U0, U1, . . . , UG)
T

• k = (k0, k1, . . . , kG)
T

• w = (w0, w1, . . . , wG)
T

• Y = (Y0, Y1, . . . , YG)
T

• Z = (Z0, Z1, . . . , ZG)
T

depending on the slow variables x0 and t0 (but not on x̂, t̂) such that generically ψ(x, t) = ψ(x =
x0 + �x̂, t = t0 + �t̂ ) has the following leading order asymptotics as � ↓ 0:

ψ(x, t) ∼ a(x0, t0)e
iU0(x0,t0)

� ei(k0(x0,t0)x̂−w0(x0,t0)t̂)

· �(Y(x0, t0) + i U(x0,t0)

�
+ i(k(x0, t0)x̂ − w(x0, t0)t̂))

�(Z(x0, t0) + i U(x0,t0)

�
+ i(k(x0, t0)x̂ − w(x0, t0)t̂))

. (B.1)

All parameters can be defined in terms of an underlying Riemann surface X which depends solely
on x0, t0. The moduli of X vary slowly with x, t , i.e. they depend on x0, t0 but not on �, x̂, t̂ . � is the
G-dimensional Jacobi theta function associated with X. The genus of X can vary with x0, t0. In fact,
the x, t-plane is divided into open regions in each of which G is constant. On the boundaries of such
regions (sometimes called “caustics”; they are unions of analytic arcs), some degeneracies appear in the
mathematical analysis (we may have “pinching” of the surfaces X for example) and interesting physical
phenomena can appear (like the famous Peregrine rogue wave [2]). The above formulae give asymptotics
which are uniform in compact (x, t)-sets not containing points on the caustics.

For the exact formulae for the parameters as well as the definition of the theta functions we refer
to [11] or [12]. Near the caustics the correct interpretation of (1.4) requires some more work. For an
analysis of the somewhat more delicate behaviour (especially for higher order terms in �) near the first
caustic see [2].

In [11] we have been able to prove the finite gap hypothesis under some technical assumptions that
enabled us to proceed with the semiclassical asymptotic analysis of the inverse scattering transform
(more precisely the equivalent Riemann–Hilbert formulation). Such technical assumptions were justified
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in [12]. In both works we assumed the possibility of an analytic extension of a function ρ a priori defined
on an imaginary interval, that gives the density of eigenvalues of the Dirac operator (accumulating
on a compact interval on the imaginary axis). Eventually (see [7]) it was realized that the analyticity
assumption could be discarded by use of a simple auxiliary scalar Riemann–Hilbert problem.

However, the above proofs have assumed that the reflection coefficient for the related Dirac operator
is identically zero and that one can safely replace the actual eigenvalues by their WKB-approximants,
what we call the “WKB eigenvalues” in §5. Strictly speaking, this assumption is not true. But the results
in the previous sections enable us to show that the resulting error is only o(1)-small as � ↓ 0.

In §5 we have established a 1-1 correspondence between WKB eigenvalues (coming from different
wells and barriers) and actual eigenvalues. Furthermore the WKB eigenvalues are uniformly O(�5/3)-
close to the actual eigenvalues. This is an analogous result to our “single-lobe” result in [9], although
we should underline the fact that while in the single-lobe case it is known that eigenvalues are purely
imaginary, here we state this as a hypothesis, at least for small � (see Remark 1.2 and the discussion in
paragraph A of the appendix).

The crucial quantities considered in the analysis [11] are the Blaschke products

N−1∏
n=0

λ − λ∗
n

λ − λn

where λn runs over either the actual eigenvalues in the upper half-plane, or respectively the WKB eigen-
values λWKB

n . Here λ lies on a union of contours encircling [−iAmax, iAmax] and only touching it at the
point 0, transversally. It follows easily that if |λn(�) − λWKB

n (�)| = O(�5/3) then

λ − λWKB∗
n

λ − λWKB
n

= λ − λ∗
n

λ − λn

(
1 + O

(
�

5/3

|λ|
))

and hence the two corresponding Blaschke products are 1 + O(�2/3/|λ|)-close [since from §5 the total
number of EVs N is of order O(�−1)], which is good enough if λ is not too close to zero. For the
somewhat intricate details concerning what happens near zero, we refer to [11].

In section §6, we have also shown that the reflection coefficient can be ignored as long as we are at a
distance �

b from 0, with any b > 1. On the other hand, it is worth recalling that the Jost functions and
hence the reflection coefficient are defined via asymptotics of the form exp{i(λx+λ2t)/�} as x → ±∞.
This shows that the Jost functions are bounded uniformly in � in the region λ

�
< 1. Apart from possible

poles at 0 (to be discussed later), the same thing holds for the reflection coefficient.
It easily follows from the so-called Schwarz reflection symmetry conditions (Appendix A in [11])

that the relevant “parametrix” Riemann–Hilbert problem coming from the non-triviality of the reflection
coefficient is solvable and in fact its solution is o(1) as � ↓ 0.

More precisely, for the existence of the solution of the Riemann–Hilbert factorization problem that
involves only the reflection coefficient R near 0 and ignores the eigenvalues we have the following
result.

Theorem B.1. Let b > 1. Define a Riemann–Hilbert factorization problem as follows. Find a 2 × 2
matrix m so that

• its entries are analytic in C \ [−�b, �b]



CORRECTED  P
ROOF

52 N. Hatzizisis and S. Kamvissis / WKB problem for the Dirac operator with a multi-humped potential

• m+(λ) = m−(λ)v(λ) for λ ∈ [−�
b, �b] where v is the matrix

v(λ) =
[

1 R(λ) exp{− 2iλ
�
(x + λt)}

R∗(λ) exp{ 2iλ
�
(x + λt)} 1 + |R(λ)|2

]

and m± denote the limiting values of m from above (+) and below (−)
• m → I as z → ∞.

Then this Riemann–Hilbert factorization problem has a unique solution. The same holds if the disconti-
nuity contour is taken to be the whole real line.

Proof. Follows directly from the Schwarz reflection symmetry of the contour and the jump matrix as
well as the fact that �(v + v∗) is positive definite; see (A.6) and Theorem A.1.2 of [11]. Uniqueness
follows easily from the fact that the determinant of v is 1. �

The fact that the contribution from the above Riemann–Hilbert problem (with jump contour [−�
b, �b])

is o(1) as � ↓ 0 comes from the uniform boundedness of the resolvent of the related singular integral
operator (because of the uniform boundedness of the Jost functions and the reflection coefficient) and
the �-small size of the contour. This is standard Riemann–Hilbert asymptotic theory, for example see
Theorem 7.103 and Corollary 7.108 in [3]. Similarly, we can now extend our result to the Riemann–
Hilbert factorization problem defined on the whole real line and with the same jump as above. The
crucial fact is that the jump matrix in R \ [−�

b, �b] is o(1)-close to the identity in the uniform sense;
again see the proof of Corollary 7.108 in [3].

Finally, it is easy to combine the contributions of the above Riemann–Hilbert problem on the whole
line and the “pure soliton” Riemann–Hilbert problem (determined by setting R = 0 but not disallowing
the poles at the eigenvalues) by, say, taking the product of the two separate Riemann–Hilbert problem
solutions. The fact that the solution of that with jump on the real line is o(1)-small implies that the
solution of the full problem (EVs + real spectrum) is o(1)-close to the “soliton ensembles” Riemann–
Hilbert problem.

It can happen (non-generically, for isolated values of �) that the reflection coefficient actually has
a pole singularity at 0. In other words there may be a spectral singularity at 0. In such a case one
can amend the analysis by considering a small circle around 0 say of radius O(�) and removing the
singularity exactly in the same way we have removed the poles due to the eigenvalues in [11]. The
reflection coefficient of course is not analytically extensible in general but one can simply extract the
singular part of the reflection coefficient which is of course rational. The main result is not affected.

Having estimated the error of the WKB approximation at the level of the scattering data, this error can
be built into the Riemann–Hilbert analysis of [11] and [12] as another layer of approximation and it does
not affect the final finite-gap asymptotics. The only remaining change in the inverse scattering analysis
for a multi-humped potential A is that the density function ρ gets to be somewhat more complicated.

Theorem B.2. Consider Amax = maxx∈RA(x). Given λ ∈ [0, iAmax] let

x−
1 (λ) � x+

1 (λ) � x−
2 (λ) � x+

2 (λ) � · · · � x−
L (λ) � x+

L (λ), L ∈ N

(for the notation, cf. §4.1) be the real solutions of the equation A(x)2 + λ2 = 0 (allowing for the non-
generic limiting cases x−

l (λ) = x+
l (λ) and x+

l (λ) = x−
l+1(λ) for some l ∈ {1, . . . , L}). Also, let � be the



CORRECTED  P
ROOF

N. Hatzizisis and S. Kamvissis / WKB problem for the Dirac operator with a multi-humped potential 53

set

� = { λ ∈ (0, iAmax]|λ is an EV of D�

}
and consider the signed measure

dμ� = �

∑
λ∈�

(δλ∗ − δλ)

where δx denotes the Dirac measure centered at x. Then, as � ↓ 0, dμ� converges to a continuous
measure in the weak-∗ sense. More precisely

dμ� weak-∗−→
�↓0

ρ(λ)χ[0,iAmax] dλ + ρ
(
λ∗)∗χ[−iAmax,0] dλ

where the density ρ(λ) satisfies

ρ(λ) = λ

π

L∑
l=1

∫ x+
l (λ)

x−
l (λ)

dx

(A(x)2 + λ2)1/2
(B.2)

Proof. The proof of the theorem follows directly from the results in section §5. �

It is thus clear that ρ is a continous function on [−iAmax, iAmax] (our discussion in [11] shows that it
is even piecewise analytic). Analyticity of ρ was crucial in the proofs of [11] and [12]. But as we have
shown in [7] continuity will suffice; indeed the proofs of [11] actually become more “natural” by solving
an auxiliary scalar Riemann–Hilbert problem with jump across [−iAmax, iAmax], so continuity is more
than enough.

We can finally conclude that, at least under Assumptions 4.1, 4.3 and 5.7, the finite gap property is
generically valid in the sense described above.

Appendix C. Airy functions

In this section, some basic properties of Airy functions are presented. For further reading one may
consult [17].

Consider the Airy equation

−d2w

dt2
+ tw = 0, t ∈ R

We denote by Ai and Bi (see Figure 11) its two linearly independent solutions having the asymptotics

Ai(t) = 1

2
√
π
t−

1
4 exp

{
−2

3
t

3
2

}[
1 + O

(
t−

3
2
)]

as t → +∞ (C.1)
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Fig. 11. The Airy functions Ai, Bi on the real line.

and

Bi(t) = − 1√
π

|t |− 1
4 sin

(
2

3
|t | 3

2 − π

4

)
+ O

(|t |− 7
4
)

as t → −∞ (C.2)

Their behavior on the opposite side of the real line is known to be

Ai(t) = 1√
π

|t |− 1
4 sin

(
2

3
|t | 3

2 + π

4

)
+ O

(|t |− 7
4
)

as t → −∞ (C.3)

and

Bi(t) � C(1 + t)−
1
4 exp

{
2

3
t

3
2

}
, t � 0

where C is a positive constant. Observe that as t → −∞, Ai and Bi only differ by a phase shift.
Also Ai(t),Bi(t) > 0 for all t � 0. Note that all asymptotic relations (C.1), (C.2) and (C.3) can be
differentiated in t ; for example

Ai′(t) = − 1√
π

|t | 1
4 cos

(
2

3
|t | 3

2 + π

4

)
+ O

(|t |− 5
4
)

as t → −∞

and

Ai′(t) = − 1

2
√
π
t

1
4 exp

{
−2

3
t

3
2

}[
1 + O

(
t−

3
2
)]

as t → +∞.
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Another property says that∣∣Ai(t)
∣∣ � C

(
1 + |t |)− 1

4 , t ∈ R

where C is a positive constant. The wronskian of Ai, Bi satisfies

W[Ai,Bi](t) = Ai(t)Bi′(t) − Ai′(t)Bi(t) = 1

π
, t ∈ R.

In order to have a convenient way of assessing the magnitudes of Ai and Bi we introduce a modulus
function M , a phase function ϑ and a weight function E related by

E(x)Ai(x) = M(x) sinϑ(x),
1

E(x)
Bi(x) = M(x) cosϑ(x), x ∈ R.

Actually, we choose E as follows. Denote by c∗ the biggest negative root of the equation Ai(x) = Bi(x)
(numerical calculations show that c∗ = −0.36605 correct up to five decimal places); then define

E(x) =
{

1, x � c∗√
Bi(x)
Ai(x) , x > c∗

With this choice in mind, M , θ become

M(x) =
{√

Ai2(x) + Bi2(x), x � c∗√
2 Ai(x)Bi(x), x > c∗

and ϑ(x) =
{

arctan[Ai(x)
Bi(x) ], x � c∗

π
4 , x > c∗

where the branch of the inverse tangent is continuous and equal to π
4 at x = c∗. For these functions the

asymptotics for large |x| read

E(x) ∼
{

1, x → −∞√
2 exp{ 2

3 t
3
2 }, x → +∞

M(x) ∼ 1√
π

|x|− 1
4 , |x| → +∞

ϑ(x) =
{

2
3 |x| 3

2 + π
4 + O( 3

2 |x|− 3
2 ), x → −∞

π
4 , x → +∞

Appendix D. Parabolic cylinder functions & modified parabolic cylinder functions

The results of the main theorems about existence of approximate solutions of the differential equations
treated in the main text involve PCFs and modified PCFs (cf. [1]). So in this section we state a few
properties which will be in heavy use, especially about their asymptotic character, wronskians and zeros.
We prove none of them. For a rigorous exposition on PCFs and mPCFs one may consult §5 of [16] or
§12 of [18] and the references therein.
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D.1. PCFs

Consider Weber’s equation

d2w

dx2
=
(

1

4
x2 + b

)
w. (D.1)

The behavior of the solutions depends on the sign of b. When b is negative then there exist two turning
points ±2

√−b. The solutions are of oscillatory type in the interval between these points but not in the
exterior intervals. When b > 0 there are no real turning points and there are no oscillations at all. Since
only the case b � 0 will be of interest to us, from now on we seldom mention properties having to do
with the other case.

Standard solutions of (D.1) are U(±x, b) and U(±x, b) defined by

U(±x, b) = π
1
2 2− 1

4 (2b+1)

�( 3
4 + 1

2b)
e− 1

4 x
2

1F1

(
1

4
+ 1

2
b; 1

2
; 1

2
x2

)

∓ π
1
2 2− 1

4 (2b−1)

�( 1
4 + 1

2b)
xe− 1

4 x
2

1F1

(
3

4
+ 1

2
b; 3

2
; 1

2
x2

)
U(±x, b) = π− 1

2 2− 1
4 (2b+1)�

(
1

4
− 1

2
b

)
sin

(
3

4
π − 1

2
bπ

)
e− 1

4 x
2

1F1

(
1

4
+ 1

2
b; 1

2
; 1

2
x2

)
∓ π− 1

2 2− 1
4 (2b−1)�

(
3

4
− 1

2
b

)
sin

(
5

4
π − 1

2
bπ

)
xe− 1

4 x
2

1F1

(
3

4
+ 1

2
b; 3

2
; 1

2
x2

)

where 1F1 denotes the confluent hypergeometric function (again cf. [1]). The functions U(x, b), U(x, b)

are continuous in x and b for x � 0 and b � 0.
For b ∈ R, their values at x = 0 obey

U(0, b) = π− 1
2 2− 1

4 (2b+1)�

(
1

4
− 1

2
b

)
sin

(
π

4
− 1

2
bπ

)
U ′(0, b) = −π− 1

2 2− 1
4 (2b−1)�

(
3

4
− 1

2
b

)
sin

(
3π

4
− 1

2
bπ

)
U(0, b) = π− 1

2 2− 1
4 (2b+1)�

(
1

4
− 1

2
b

)
sin

(
3π

4
− 1

2
bπ

)
U

′
(0, b) = −π− 1

2 2− 1
4 (2b−1)�

(
3

4
− 1

2
b

)
sin

(
5π

4
− 1

2
bπ

)
.

Those values of b that make the Gamma functions in the definitions of U and U infinite (the Gamma
function has simple poles at the non-positive integers), are called exceptional values. For a fixed b ∈ R
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other than an exceptional value, the behaviors of U and U as x → +∞ satisfy

U(x, b) ∼ x−b− 1
2 e− 1

4 x
2

U ′(x, b) ∼ −1

2
x−b+ 1

2 e− 1
4 x

2

U(x, b) ∼
√

2

π
�

(
1

2
− b

)
xb−

1
2 e

1
4 x

2

U
′
(x, b) ∼ (2π)−

1
2�

(
1

2
− b

)
xb+

1
2 e

1
4 x

2
.

(D.2)

These estimates are uniform in b when b takes values over a fixed compact interval not containing
exceptional values.

For the wronskian of U(·, b), U(·, b) we have

W
[
U(·, b), U(·, b)](x) = 2

1
2π− 1

2�

(
1

2
− b

)
, x ∈ R. (D.3)

When b = 0 the standard solutions of equation (D.1) are related to the modified Bessel functions K 1
4

and I 1
4

in the following way. For x � 0 we have

U(x, 0) = (2π)−
1
2 x

1
2K 1

4

(
1

4
x2

)
U(x, 0) = (πx)

1
2 I 1

4

(
1

4
x2

)
+ (2πx)−

1
2 x

1
2K 1

4

(
1

4
x2

)
.

In order to express the character of these standard solutions for large negative b, we need some prepa-
rations first. Take ν � 1 to be a large positive number and set b = − 1

2ν
2 and x = νy

√
2 where y � 0.

If we consider the fuction η to be

η(y) =
{

−[ 3
2

∫ 1
y
(1 − s2)

1
2 ds] 2

3 , 0 � y � 1

[ 3
2

∫ y

1 (s
2 − 1)

1
2 ds] 2

3 , y � 1
(D.4)

then as ν → +∞ we have

U

(
νy

√
2,−1

2
ν2

)
= 2

1
2π

1
4�( 1

2 + 1
2ν

2)
1
2

ν
1
6

(
η

y2 − 1

) 1
4
[

Ai
(
ν

4
3η
)+ M(ν

4
3η)

E(ν
4
3η)

O
(
ν−2
)]

(D.5)

U

(
νy

√
2,−1

2
ν2

)
= 2

1
2π

1
4�( 1

2 + 1
2ν

2)
1
2η

1
4

ν
1
6 (y2 − 1)

1
4

[
Bi
(
ν

4
3η
)+ M

(
ν

4
3η
)
E
(
ν

4
3η
)
O
(
ν−2
)]

(D.6)

where Ai, Bi, E and M are the standard Airy functions’ terminology (cf. Section C in the appendix).
For b � 0, the number of zeros of U(·, b) in the interval [0,+∞) is � 1

4 − 1
2b� while U(·, b) has

� 3
4 − 1

2b� zeros in [0,+∞). Actually, the zeros of U(·, b) and U(·, b) do not cross each other. They
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interlace, with the largest one belonging to U(·, b). For sufficiently large |b|, all the real zeros of these
two functions lie to the left of 2

√−b, the positive turning point of Weber’s equation.5

To express the errors for the approximations of our problem, we need to define some auxiliary func-
tions having to do with the nature of U(·, b) and U(·, b) for negative b. In this case the character of
each is partly oscillatory and partly exponential, so we introduce one weight function E, two modulus
functions M and N, and finally two phase functions θ and ω.

We denote by ρ(b) the largest real root of the equation

U(x, b) = U(x, b).

We know (cf. §13 of [18] and the references therein) that ρ(0) = 0 and ρ(b) > 0 for b < 0. Also, ρ is
continuous when b ∈ (−∞, 0]. An asymptotic estimate for large negative b is

ρ(b) = 2(−b)
1
2 + c∗(−b)−

1
6 + O

(
b− 5

6
)

as b → −∞ (D.7)

where c∗ (≈ −0.36605) is the smallest in absolute value root of the equation Ai(x) = Bi(x).
For b � 0 we define

E(x, b) =
{

1, 0 � x � ρ(b)

[U(x,b)

U(x,b)
]1/2, x > ρ(b).

It is seen that E is continuous in the region [0,+∞) × (−∞, 0] of the (x, b)-plane and for b � 0 fixed,
E(·, b) is non-decreasing in the interval [0,+∞). Again for b � 0 and x � 0 we set

U(x, b) = 1

E(x, b)
M(x, b) sin θ(x, b), U(x, b) = E(x, b)M(x, b) cos θ(x, b)

and

U ′(x, b) = 1

E(x, b)
N(x, b) sinω(x, b), U

′
(x, b) = E(x, b)N(x, b) cosω(x, b).

Thus

M(x, b) =
{

[U(x, b)2 + U(x, b)2]1/2, 0 � x � ρ(b)

[2U(x, b)U(x, b)]1/2, x > ρ(b)
(D.8)

and

θ(x, b) =
{

arctan[U(x,b)

U(x,b)
], 0 � x � ρ(b)

π
4 , x > ρ(b)

where the branch of the inverse tangent is continuous and equal to π
4 at x = ρ(b).

5For U(·, b), this result holds for all b � 0.
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Similarly

N(x, b) =
⎧⎨⎩[U ′(x, b)2 + U

′
(x, b)2]1/2, 0 � x � ρ(b)

[U ′(x,b)2U(x,b)2+U
′
(x,b)2U(x,b)2

U(x,b)U(x,b)
]1/2, x > ρ(b)

and

ω(x, b) =
⎧⎨⎩arctan[U ′(x,b)

U
′
(x,b)

], 0 � x � ρ(b)

arctan[U ′(x,b)U(x,b)

U
′
(x,b)U(x,b)

], x > ρ(b)

where the branches of the inverse tangents are chosen to be continuous and fixed by ω(x, b) → −π
4 as

x → +∞.
For large x we have

E(x, b) ∼
(

2

π

) 1
4

�

(
1

2
− b

) 1
2

xbe
1
4 x

2

and

M(x, b) ∼
(

8

π

) 1
4 �( 1

2 − b)
1
2

x
1
2

, N(x, b) ∼ �( 1
2 − b)

1
2

(2π)
1
4

x
1
2 . (D.9)

Both of these hold for fixed b and are also uniform for b ranging over any compact interval in (−∞, 0].
D.2. mPCFs

Consider the equation

d2w

dx2
=
(
b − 1

4
x2

)
w. (D.10)

When b > 0 there exist two turning points ±2
√
b. The solutions are monotonic in the interval between

these points and oscillate in the two exterior intervals. When b � 0 there are no real turning points and
the entire real axis is an interval of oscillation. Only the case b � 0 will be of interest to us.

Standard solutions of (D.10) are W(±x, b) defined by

W(±x, b) = 2− 3
4

∣∣∣∣�( 1
4 + 1

2 ib)

�( 3
4 + 1

2 ib)

∣∣∣∣ 1
2

e
1
4 ix

2

1F1

(
1

4
+ 1

2
ib; 1

2
;−1

2
ix2

)

∓ 2− 1
4

∣∣∣∣�( 3
4 + 1

2 ib)

�( 1
4 + 1

2 ib)

∣∣∣∣ 1
2

xe
1
4 ix

2

1F1

(
3

4
+ 1

2
ib; 3

2
;−1

2
ix2

)
where as in §D.1, 1F1 denotes the confluent hypergeometric function (cf. [1]). A numerically satisfactory
set of solutions is obtained by taking appropriate multiples of W(±x, b). Both of them are real and
continuous for all real values of x and b.
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Before presenting their basic properties that are useful to us, we fix some notation first. We set

k(b) = (1 + e2πb
) 1

2 − eπb (D.11)

and

φ(b) = π

4
+ 1

2
ph

{
�

(
1

2
+ ib

)}
(D.12)

where it is being understood that the phase of �( 1
2 + ib) in (D.12) is continuous and vanishes for b = 0.

Also we know that as b increases from −∞ to +∞, k(b) decreases monotonically from 1 to 0.
For b ∈ R and x = 0 we have

W(0, b) = 2− 3
4

∣∣∣∣�( 1
4 + 1

2 ib)

�( 3
4 + 1

2 ib)

∣∣∣∣ 1
2

W ′(0, b) = −2− 1
4

∣∣∣∣�( 3
4 + 1

2 ib)

�( 1
4 + 1

2 ib)

∣∣∣∣ 1
2

.

For a fixed b ∈ R the behavior of W(±·, b) and W ′(±·, b) as x → +∞ satisfy

W(x, b) =
√

2k(b)

x
cos

[
1

4
x2 − b ln x + φ(b)

]
+ O

(
x− 5

2
)

(D.13)

W ′(x, b) = −
√
k(b)x

2
sin

[
1

4
x2 − b ln x + φ(b)

]
+ O

(
x− 3

2
)

W(−x, b) =
√

2

k(b)x
sin

[
1

4
x2 − b ln x + φ(b)

]
+ O

(
x− 5

2
)

W ′(−x, b) = −
√

x

2k(b)
cos

[
1

4
x2 − b ln x + φ(b)

]
+ O

(
x− 3

2
)
.

These estimates are uniform in b lying in any fixed compact interval.
For the wronskian of W(·, b), W(−·, b) we have

W
[
W(·, b),W(−·, b)](x) = 1, x ∈ R. (D.14)

When b = 0 the standard solutions of equation (D.10) are related to the Bessel functions J± 1
4

and J± 3
4

in the following way. Since k(0) = √
2 − 1 by (D.11) and φ(0) = π

4 by (D.12), for x � 0 we have

W(±x, 0) = 2− 5
4 (πx)

1
2

[
J− 1

4

(
1

4
x2

)
∓ J 1

4

(
1

4
x2

)]
W ′(±x, 0) = 2− 9

4π
1
2 x

3
2

[
∓J 3

4

(
1

4
x2

)
− J− 3

4

(
1

4
x2

)]
.
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The behavior of these standard solutions for large positive b can be seen by setting b = 1
2ν

2 and
x = νy

√
2 where ν � 1 is a large positive number and y � 0. Then as ν ↑ +∞ we have

k

(
1

2
ν2

)
= 1

2
e− 1

2πν
2 + O

(
e− 3

2πν
2)

(D.15)

φ

(
1

2
ν2

)
= 1

4
ν2 ln

(
1

2
ν2

)
− 1

4
ν2 + π

4
+ O

(
ν−2
)

(D.16)

k

(
1

2
ν2

)− 1
2

W

(
νy

√
2,

1

2
ν2

)

= 2
1
4π

1
2

ν
1
6

(
η

y2 − 1

) 1
4 [

Bi
(−ν

4
3η
)+ M

(−ν
4
3η
)
E
(−ν

4
3η
)
O
(
ν−2
)]

(D.17)

k

(
1

2
ν2

) 1
2

W

(
−νy

√
2,

1

2
ν2

)
= 2

1
4π

1
2

ν
1
6

(
η

y2 − 1

) 1
4
[

Ai
(−ν

4
3η
)+ M(−ν

4
3η)

E(−ν
4
3η)

O
(
ν−2
)]

(D.18)

where Ai, Bi, E and M are the standard Airy functions’ terminology (cf. Section C in the appendix) and
η is as in (D.4). In the last two relations, the O-terms are uniformly valid in any y-interval that includes
[0,+∞).

To express the errors for the approximations in Theorem 3.9, we need to define some auxiliary func-
tions having to do with the nature of k(b)−

1
2W(·, b) and k(b)

1
2W(−·, b) for positive b. As in the case of

the PCFs in §D.1, we introduce one weight function E, two modulus functions M and N, and finally two
phase functions θ and ω.

Take b � 0 and denote by ρ(b) the smallest real root in x ∈ [0,+∞) of the equation

k(b)−
1
2W(x, b) = k(b)

1
2W(−x, b).

We know (cf. §13 of [18] and the references therein) that

k(b)−
1
2W(x, b) > k(b)

1
2W(−x, b) > 0, 0 � x < ρ(b).

Also, ρ is continuous when b ∈ [0,+∞). An asymptotic estimate for large positive b is

ρ(b) = 2b
1
2 − c∗b− 1

6 + O
(
b− 5

6
)

as b → +∞ (D.19)

where as in §D.1, c∗ (≈ −0.36605) is the smallest in absolute value root of the equation Ai(x) = Bi(x).
So for b � 0 we define

E(x, b) =

⎧⎪⎨⎪⎩
E(−x, b), x < 0

[ k(b)W(−x,b)

W(x,b)
]1/2, 0 � x � ρ(b)

1, x > ρ(b).
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It is seen that E is continuous in the region (−∞,+∞) × [0,+∞) of the (x, b)-plane and for b � 0
fixed, E(·, b) is non-decreasing in the interval [0,+∞). Again for b � 0 and x � 0 we have

k(b)
1
2 � E(x, b) � 1

For b � 0 and x � 0, modulus and phase functions are defined by

k(b)−
1
2W(x, b) = M(x, b)

E(x, b)
sin θ(x, b), k(b)

1
2W(−x, b) = M(x, b)E(x, b) cos θ(x, b)

and

k(b)−
1
2W ′(x, b) = N(x, b)

E(x, b)
sinω(x, b), k(b)

1
2W ′(−x, b) = −N(x, b)E(x, b) cosω(x, b).

Thus

M(x, b) =
{

[2W(x, b)W(−x, b)]1/2, 0 � x � ρ(b)

[k(b)−1W(x, b)2 + k(b)W(−x, b)2]1/2, x > ρ(b)
(D.20)

and

θ(x, b) =
{

π
4 , 0 � x � ρ(b)

arctan[k(b)−1 W(x,b)

W(−x,b)
], x > ρ(b)

where the branch of the inverse tangent is continuous and equal to π
4 at x = ρ(b). Similarly

N(x, b) =
{

[W ′(x,b)2W(−x,b)2+W ′(−x,b)2W(x,b)2

W(x,b)W(−x,b)
]1/2, 0 � x � ρ(b)

[k(b)−1W ′(x, b)2 + k(b)W ′(−x, b)2]1/2, x > ρ(b)

and

ω(x, b) =
{

− arctan[W ′(x,b)W(−x,b)

W ′(−x,b)W(x,b)
], 0 � x � ρ(b)

− arctan[k(b)−1 W ′(x,b)
W ′(−x,b)

], x > ρ(b)

where the branches of the inverse tangents are chosen to be continuous and fixed by ω(x, b) → −π
4 as

x → +∞.
For large |x| we have

M(x, b) ∼
∣∣∣∣2x
∣∣∣∣ 1

2

, N(x, b) ∼
∣∣∣∣x2
∣∣∣∣ 1

2

. (D.21)

Both of these hold for fixed b and are also uniform for b ranging over any compact interval in [0,+∞).
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Appendix E. A theorem on integral equations

The proofs of theorems about WKB approximation when there is an absence of turning points (like
Theorems 2.1 and 2.2 in chapter 6 of [17]), may be adapted to other types of approximate solutions of
linear differential equations where turning points may be present. For second-order equations the basic
steps consist of

(i) construction of a Volterra integral equation for the error term -say h- of the solution, by the
method of variation of parameters

(ii) construction of the Liouville-Neumann expansion (a uniformly convergent series) for the solution
h of the integral equation in (i) by Picard’s method of successive approximations

(iii) confirmation that h is twice differentiable by construction of similar series for h′ and h′′
(iv) production of bounds for h and h′ by majoring the Liouville-Neumann expansion.

It would be tedious to carry out all these steps in every case. But we have the following general
theorem which automatically provides (ii), (iii) and (iv) in problems relevant to us.

Theorem E.1. 6 Consider the equation

h(ζ ) =
∫ ζ

β

K(ζ, t)φ(t)
{
J (t) + h(t)

}
dt (E.1)

for the function h accompanied by the following assumptions

• the “path” of integration consists of a segment [β, ζ ] of the real axis, finite or infinite where β �
t � ζ � γ

• the real functions J and φ are continuous in (β, γ ) except for a finite number of discontinuities and
infinities

• the real kernel K and its first two partial derivatives with respect to ζ are continuous functions of
both variables when ζ, t ∈ (β, γ )

• K(ζ, ζ ) = 0, ζ ∈ (β, γ )

• when ζ ∈ (β, γ ) and t ∈ (β, ζ ] we have

∣∣K(ζ, t)∣∣ � P0(ζ )Q(t),

∣∣∣∣∂K(ζ, t)

∂ζ

∣∣∣∣ � P1(ζ )Q(t),

∣∣∣∣∂2K(ζ, t)

∂ζ 2

∣∣∣∣ � P2(ζ )Q(t)

where the Pj , j = 0, 1, 2 and Q are continuous real functions, the Pj , j = 0, 1, 2 being positive.
• when ζ ∈ (β, γ ), the integral

�(ζ) =
∫ ζ

β

∣∣φ(t)∣∣ dt
converges and the following suprema

κ = sup
ζ∈(β,γ )

{
Q(ζ)

∣∣J (ζ )∣∣}, κ0 = sup
ζ∈(β,γ )

{
P0(ζ )Q(ζ )

}
are finite.

6This is Theorem 10.2 found in chapter 6 of [17]. It is a variant of Theorem 10.1 from the same reference.
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Under these assumptions, equation (E.1) has a unique solution h which is continuously differentiable in
(β, γ ) and satisfies

h(ζ )

P0(ζ )
→ 0

h′(ζ )
P1(ζ )

→ 0 as ζ ↓ β.

Furthermore,

|h(ζ )|
P0(ζ )

,
|h′(ζ )|
P1(ζ )

� κ

κ0

[
exp
{
κ0�(ζ)

}− 1
]

and h′′ is continuous except at the discontinuities -if any- of φ, J .

Proof. The proof is a slight variation of that for Theorem 10.1 of chapter 6 in [17]. �

We are going to use this theorem to prove the existence and behavior of approximate solutions of the
equation

d2Y
dζ 2

= [�−2
(
ζ 2 − α2

)+ ψ(ζ, �, α)
]
Y. (E.2)

We have the following

Theorem E.2. For each value of �, assume that the function ψ(ζ, �, α) is continuous in the region
[0, Z) × [0, δ] of the (ζ, α)-plane,7 take � as in (2.21) and consider that

V0,Z[H ](α, �) =
∫ Z

0

|ψ(t, α)|
�(t

√
2�−1)

dt

converges uniformly with respect to α. Then in this region, equation (E.2) has solutions Y1 and Y2 which
are continuous, have continuous first and second partial ζ -derivatives and are given by

Y1(ζ, α, �) = U

(
ζ
√

2�−1,−1

2
�

−1α2

)
+ ε1(ζ, α, �)

Y2(ζ, α, �) = U

(
ζ
√

2�−1,−1

2
�

−1α2

)
+ ε2(ζ, α, �)

where

|ε1(ζ, α, �)|
M(ζ

√
2�−1,− 1

2�
−1α2)

,
| ∂ε1
∂ζ
(ζ, α, �)|√

2�−1N(ζ
√

2�−1,− 1
2�

−1α2)

� 1

E(ζ
√

2�−1,− 1
2�

−1α2)

(
exp

{
1

2
(π�)

1
2 l

(
−1

2
�

−1α2

)
Vζ,Z[H ](α, �)

}
− 1

)
(E.3)

7Here Z is always positive and may depend continuously on α, or be infinite. Also, δ is a positive finite constant.



CORRECTED  P
ROOF

N. Hatzizisis and S. Kamvissis / WKB problem for the Dirac operator with a multi-humped potential 65

and

|ε2(ζ, α, �)|
M(ζ

√
2�−1,− 1

2�
−1α2)

,
| ∂ε2
∂ζ
(ζ, α, �)|√

2�−1N(ζ
√

2�−1,− 1
2�

−1α2)

� E

(
ζ
√

2�−1,−1

2
�

−1α2

)(
exp

{
1

2
(π�)

1
2 l

(
−1

2
�

−1α2

)
V0,ζ [H ](α, �)

}
− 1

)
. (E.4)

Proof. We will prove the theorem only for the first solution since the proof for the second follows
mutatis mutandis. Observe that the approximating function U(ζ

√
2�−1,− 1

2�
−1α2) satisfies d2U

dζ 2 =
�

−2(ζ 2 − α2)U . If we subtract this from (E.2) we obtain the following differential equation for the
error term

d2ε1

dζ 2
− �

−2
(
ζ 2 − α2

)
ε1 = ψ(ζ, α, �)

[
ε1 + U

(
ζ
√

2�−1,−1

2
�

−1α2

)]
.

By use of the method of variation of parameters and also (D.3) one arrives at the integral equation

ε1(ζ, α, �) = 1

2

(π�)
1
2

�( 1
2 + 1

2�
−1α2)

∫ Z

ζ

K(ζ, t)ψ(t, α, �)

[
ε1(t, α, �) + U

(
t
√

2�−1,−1

2
�

−1α2

)]
dt

in which

K(ζ, t) = U

(
ζ
√

2�−1,−1

2
�

−1α2

)
U

(
t
√

2�−1,−1

2
�

−1α2

)
− U

(
t
√

2�−1,−1

2
�

−1α2

)
U

(
ζ
√

2�−1,−1

2
�

−1α2

)
.

Bounds for the kernel K and its first two partial derivatives (with respect to ζ ) are expressible in terms
of the auxiliary functions E, M and N. We have

∣∣K(ζ, t)∣∣ � E(t
√

2�−1,− 1
2�

−1α2)

E(ζ
√

2�−1,− 1
2�

−1α2)
M

(
ζ
√

2�−1,−1

2
�

−1α2

)
M

(
t
√

2�−1,−1

2
�

−1α2

)
∣∣∣∣∂K∂ζ (ζ, t)

∣∣∣∣ � √
2�−1

E(t
√

2�−1,− 1
2�

−1α2)

E(ζ
√

2�−1,− 1
2�

−1α2)
N

(
ζ
√

2�−1,−1

2
�

−1α2

)
M

(
t
√

2�−1,−1

2
�

−1α2

)
and similarly

∂2K
∂ζ 2

(ζ, t) = (2�−1
) 3

2 ζK(ζ, t).

All these estimates allow us to solve the equation (E.2) by applying Theorem (E.1). Using the notation
of that theorem we have

φ(t) = ψ(ζ, α, �)

�(ζ
√

2�−1)
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ψ1(t) = 0

J (t) = U

(
t
√

2�−1,−1

2
�

−1α2

)

K(ζ, t) = −1

2

(π�)
1
2

�( 1
2 + 1

2�
−1α2)

�
(
t
√

2�−1
)
K(ζ, t)

Q(t) = 1

2

(π�)
1
2

�( 1
2 + 1

2�
−1α2)

�
(
t
√

2�−1
)
E

(
t
√

2�−1,−1

2
�

−1α2

)
M

(
t
√

2�−1,−1

2
�

−1α2

)

P0(ζ ) = M(ζ
√

2�−1,− 1
2�

−1α2)

E(ζ
√

2�−1,− 1
2�

−1α2)

P1(ζ ) =
√

2�−1
N(ζ

√
2�−1,− 1

2�
−1α2)

E(ζ
√

2�−1,− 1
2�

−1α2)

�(ζ ) = V0,ζ [H ](α, �)

κ0 �
1

2
(π�)

1
2 l

(
−1

2
�

−1α2

)
where the role of β is played here by Z and κ is replaced for simplicity by the upper bound κ0. Then the
bounds (E.3) and (E.4) follow from Theorem (E.1).

Finally, observe that all the integrals which occur in the analysis above, converge uniformly when
α ∈ [0, δ] and ζ lies in any compact interval of [0, Z); allowing us to state that ε1 and its first two partial
ζ -derivatives are continuous in α and ζ . Consequently, the same stands for Y1 which signifies the end of
the proof. �
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