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Talk Abstract
We consider here the problem of imaging using passive

incoherent recordings due to ambient noise sources. The
first step towards imaging in this configuration is the com-
putation of the cross-correlations of the recorded signals.
These cross-correlations are computed between pairs of
sensors (receivers) and contain very important informa-
tion about the background medium. They can be used,
for example, to compute the travel time between sensors
or even the Green’s function from one sensor to the other.
Our aim is to use these cross-correlations in order to im-
age reflectors embedded in clutter. To do so we will use
coherent imaging methods, such as travel time migration
and coherent interferometry (CINT) [9], [10].

1 Introduction
It is well known [1], [2], [3], [4] that cross-correlations

of signals recorded at passive sensors generated by am-
bient noise sources can be used for the estimation of the
Green’s function in-between the sensors. Although the
theory states that the full Green’s function can be obtained
[5], [6], in practice for imaging applications [1], [2], or for
background velocity estimation [7], extracting the travel
time between the two sensors is enough.

Here the sensors are called passive because we assume
that they can only play the role of receivers. The estima-
tion of the travel time between the passive sensors is pos-
sible when the ambient noise sources are randomly dis-
tributed, uncorrelated and extend overall the whole space,
while they are statistically stationary in time [6]. These
assumptions, however, are not always satisfied in appli-
cations where the noise source distribution is usually spa-
tially limited [8]. In that case, and for a homogeneous
background medium, it was shown in [1] that the estima-
tion of the travel time between the two sensors is possible
when the ray that connects the two sensors goes through
the source region. When the background medium, how-
ever, contains random inhomogeneities that cause multi-
ple scattering, the directional diversity of the noisy signals
is enhanced and estimation of the travel time is possible
for sensor configurations that do not fulfill the above men-
tioned geometric condition (cf. [2]).

Our starting point is the analysis of J. Garnier and G.
Papanicolaou about passive sensor imaging using cross-

correlations generated by ambient noise sources [1], [2].
When there is no clutter, or the clutter is weak, migration
is expected to work well, as for the active array imaging
problem [9]. When the clutter is significant, migration is
expected to produce heavily speckled and unreliable im-
ages. In that case, we propose the use of CINT [9], [10], a
statistically stable imaging method that produces images
with negligible fluctuations induced by scattering in clut-
ter. We consider in this paper the case of homogeneous
and weak cluttered media. Stronger cluttered media will
be considered in the future.

2 Simulation setup and mathematical model
We consideru(x, t) the solution of the acoustic wave

equation
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Herec0(x) is the smooth and known speed of sound in
the background medium. The normalized fluctuations are
modeled byµ(x), which is a statistically homogeneous
random process with mean zero and rapidly decaying cor-
relation. The fluctuations vary on the characteristic length
scales(ℓx, ℓz), the correlation lengths in the(x, z) direc-
tions, which can be considered to be the typical size of the
inhomogeneities. The parameterσ controls the strength
of the fluctuations.

We solve the acoustic wave equation with the software
Montjoie (https://gforge.inria.fr/projects/montjoie) using
mixed spectral finite elements [11] of4th order in space
and a finite difference discretization of4th order in time.
We simulate wave propagation in an unbounded environ-
ment by surrounding the computational domain with a
perfectly matched absorbing layer (PML).

In (1), n(x, t) models the noise sources. It is a zero
mean stationary (in time) random process with correlation
function,

E{n(x1, t1)n(x2, t2)} = F(t1 − t2)K(x1)δ(x1 − x2).



The processn is delta-correlated in space andK charac-
terizes the spatial support of the sources. The time distri-
bution of the noise sources is characterized by the corre-
lation functionF(t2 − t1), which in our numerical simu-
lations is given by

F(t) =

∫

F (τ)F (t+ τ)dτ, (3)

F (t) = sinc(Bt) cos(2πf0t) exp(−t2/(2C2
t )). (4)

HereCt is the correlation length in time,B the band-
width, andf0 the central frequency of the sources.

3 Discrete wave cross-correlation
Let (u(x1)n)0≤n<N and (u(x2)n)0≤n<N denote the

time-dependant wave fields recorded by two sensors at
x1 andx2 and at discrete timetn = nδt, for 0 ≤ n < N .
Their cross-correlation function over the time interval
[−T, T ], with T = Nδt, and with time lagτ = νδt is
given by

CT (τ,x1,x2) =
1

N

N−1−ν
∑

n=0

u(x1)nu(x2)n+ν . (5)

Implementing directly (5) in a numerical code is quite
easy, but execution time is inO(N2). Since this for-
mula is close to a discrete convolution formula, we wish
to use the Discrete Fourier Transform (DFT) as defined
in the GNU Scientific Library [12]. In this case, we ex-
tend the wave fields(u(x)n)0≤n<N , for x = {x1,x2}, to
(ũ(x)n)0≤n<2N defined as

ũ(x)n =

{

un−N , n ≥ N,

0, otherwise.
(6)

We can rewrite the cross-correlation function (5)
as, (for the second index we take the remaining in
{0, . . . , 2N − 1} modulo 2N ),

CT (x1,x2)N+ν =
1

N

2N−1
∑

n=0

ũ(x1)n ũ(x2)n+ν , (7)

for −N ≤ ν < N .
We recall here the DFT,

F (u)k =
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∑

n=0

un exp
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)

. (8)

Proposition 3.1. The following relation holds,

F (CT (x1,x2))k =
(−1)k

N
F (ũ(x1))−k F (ũ(x2))k .

(9)

Relation (9) allows us to computeCT (x1,x2) in O(N)
steps. Moreover, since the recorded wave fields are real
valued, we can rewrite this relation as

F (CT (x1,x2))k =
(−1)k

N
F (ũ(x1))kF (ũ(x2))k .

(10)
Computing relation (10) is also inO(N), and has its own
interest from a computational point of view.

4 Migration Imaging
For this section and the next one, we shall assume that

the noise sources are spatially localized and the sensors
(xj)1≤j≤J are located between the sources and the reflec-
tors. More precisely, rays going through reflectors and
sensors reach into the source region, and the sensors are
between the reflectors and the sources along these rays.
We call this the daylight configuration.

Stationary phase analysis done by J. Garnier and G. Pa-
panicolaou [1] shows that the cross-correlation between
two sensorsxi andxj is expected to have two peaks: one
at the travel time between the two sensors and another one
at the sum of the travel times between the sensors and the
scatterer. To keep only the interesting peak that concerns
the scatterer, the image at a search pointz is computed
using the following daylight imaging functional (cf. [1]),

ID(z) = 2
J
∑

j,l=1

C
sym
T,coda(τ(z,xl) + τ(z,xj),xj ,xl),

(11)
whereτ(z,xl) is the travel time betweenxl andz:

τ(z,xl) =
|z− xl|

c0
, (12)

and

C
sym
T,coda(τ,xj ,xl) =

(

CT (τ,xj ,xl)

+ CT (−τ,xj ,xl)
)

1[τ(xj ,xl),+∞].
(13)

If we consider that the scatterer is far enough from the
receivers, then we can simplify formula (11). The precise
statement is the following:

Proposition 4.1. The migration imaging functional with
daylight illumination is given by

ID(z) = 2
J
∑

j,l=1

CT (τ(z,xl) + τ(z,xj),xj ,xl) (14)



5 Numerical simulations
We study the acoustic wave propagation on the rect-

angle[0, 50λ] × [−15λ, 15λ], with a reflector located in
[44λ, 46λ]× [−λ, λ]. The random distribution of sources
has support on the rectangle[0, 4λ] × [−15λ, 15λ] (gray
region on Figure 1), and we record the solutionu of
the wave equation atJ = 61 sensors located atxj =
(5λ, (j − 31)λ/2), for 1 ≤ j ≤ 61. Length is scaled
by the reference wavelengthλ = 500m. The reflector is
modeled as a soft acoustic scatterer,i.e., u = 0 on the
boundary of the reflector.

Figure 1: Geometry of the passive sensor imaging
problem for a daylight illumination.

In our simulations we consider for simplicity that
the wave speed in (2) fluctuates about a constant value
c0(x) = 1.5Km/s. We shall show results for two cases,
a homogeneous background medium (µ = 0), and a lay-
ered random medium, for which the fluctuation processµ
varies only in thex direction (µ = µ(x)) and its correla-
tion function is

E{µ(x1)µ(x2)} =

(

1 +
|x1 − x2|

ℓx

)

e−
|x1−x2|

ℓx .

In the numerics we usedℓx = 25m andσ = 0.02. The
corresponding velocity profile is shown on Figure 2.

To model the noise sources we use (4) withf0 = 3Hz,
Ct = 0.25s andB = 3Hz.

Using the daylight imaging functional (14) we compute
the image near the scatterer. We show the results for the
homogeneous background medium on figure 3 and for the
layered medium on Figure 4. In both cases observe that
we can recover the location of the scatterer. Moreover,
the signal to noise ratio of the image is very good,i.e.,
we only have one maximum at the correct scatterer loca-
tion and the noise level is low. The question that naturally
arises is “Under what conditions do we obtain such a good
image?” or in other words “What are the parameters that
control the quality of the image, and how?” A partial an-
swer to this question is that the signal to noise ratio (SNR)
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Figure 2: Wave speedc(x) in the random layered
medium. Length is measured in wavelengthsλ and the

wave speed in Km/s.

of the image increases with the number of the receivers,
the number of the sources, and the recording time. We are
currently working on a theoretical and numerical study of
the SNR of the image.

Figure 3: Daylight imaging functional (14) for the
homogeneous background medium. Length is in Km.

Figure 4: Daylight imaging functional (14) for the
layered medium shown on Figure 2. Length is in Km.
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