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ABSTRACT

We consider here the problem of imaging using passive in-
coherent recordings due to ambient noise sources. The first
step towards imaging in this configuration is the computa-
tion of the cross-correlations of the recorded signals. These
cross-correlations are computed between pairs of sensors
(receivers) and they contain very important information about
the background medium. Indeed, it was shown both ex-
perimentally [1] and theoretically [2] that the Green’s func-
tion between two sensors can be retrieved from the cross-
correlation of passive incoherent recordings at these sen-
sors. Here, we propose to employ these cross-correlations
for imaging reflectors using a travel time migration method.
The signal to noise ratio analysis of the proposed method is
carried out.

1. INTRODUCTION

It is well known [3, 5, 6, 7] that cross-correlations of sig-
nals recorded at passive sensors generated by ambient noise
sources can be used for the estimation of the Green’s func-
tion in-between the sensors. Although the theory states that
the full Green’s function can be obtained [8, 9], in practice
for imaging applications [3, 5], or for background velocity
estimation [10], extracting the travel time between the two
sensors is enough.

Here the sensors are called passive because wthey are
only used as receivers. The estimation of the travel time
between the passive sensors is possible when the ambient
noise sources are randomly distributed, uncorrelated and ex-
tend over the whole space, while they are statistically sta-
tionary in time [9]. These assumptions, however, are not
always satisfied in applications where the noise source dis-
tribution is usually spatially limited [11]. In that case, and
for a homogeneous background medium, it was shown in
[3] that the estimation of the travel time between the two

sensors is possible when the ray that connects the two sen-
sors goes through the source region. When the background
medium, however, contains random inhomogeneities that
cause multiple scattering, the directional diversity of the
noisy signals is enhanced and estimation of the travel time
is possible for sensor configurations that do not fulfill the
above mentioned geometric condition (cf. [5]).

Our starting point is the analysis of J. Garnier and G. Pa-
panicolaou about passive sensor imaging using cross-correlations
generated by ambient noise sources [3, 5]. We consider here
the imaging problem in a homogeneous background and we
analyze the Signal to Noise Ratio (SNR) of the image. Our
analysis shows that SNR ∼ J

√
BT , with J being the num-

ber of receivers, T the recording time and B the bandwidth.
Our numerical results are consistent the theory.

2. SIMULATION SETUP AND MATHEMATICAL
MODEL

We consider u(x, t) the solution of the acoustic wave equa-
tion

1

c20

∂2u(x, t)

∂t2
−∆u(x, t) = n(x, t), (1)

in two dimensions, x = (x, z), in a medium with homoge-
neous propagation speed c0.

We solve the acoustic wave equation with the software
Montjoie (https://gforge.inria.fr/projects/montjoie) using mixed
spectral finite elements [14] of 7th order in space and a
finite difference discretization of 4th order in time. We
simulate wave propagation in an unbounded environment
by surrounding the computational domain with a perfectly
matched absorbing layer (PML).

In (1), n(x, t) models the noise sources. It is a zero
mean stationary (in time) random process with correlation
function,

E{n(x1, t1)n(x2, t2)} = F(t1 − t2)K(x1)δ(x1 − x2).

http://www.tem.uoc.gr/~asemin/
file:asemin@iacm.forth.gr


The process n is delta-correlated in space and K character-
izes the spatial support of the sources. The time distribution
of the noise sources is characterized by the correlation func-
tion F(t2− t1), which in our numerical simulations is given
by

F(t) =

∫
F (τ)F (t+ τ)dτ, (2)

F (t) = sinc(Bt) cos(2πf0t) exp(−t2/(2C2
t )). (3)

Here Ct is the correlation length in time, B the bandwidth,
and f0 the central frequency of the sources.

3. DISCRETE WAVE CROSS-CORRELATION

Let (u(x1)n)0≤n<N and (u(x2)n)0≤n<N denote the time-
dependant wave fields recorded by two sensors at x1 and x2

and at discrete time tn = nδt, for 0 ≤ n < N . Their
cross-correlation function over the time interval [−T, T ],
with T = Nδt, and with time lag τ = νδt is given by

CT (τ,x1,x2) =
1

N

N−1−ν∑
n=0

u(x1)nu(x2)n+ν . (4)

Implementing directly (4) in a numerical code is quite
easy, but execution time is in O(N2). Since this formula is
close to a discrete convolution formula, we wish to use the
Discrete Fourier Transform (DFT) as defined in the GNU
Scientific Library [15]. In this case, we extend the wave
fields (u(x)n)0≤n<N , for x = {x1,x2}, to (ũ(x)n)0≤n<2N

defined as

ũ(x)n =

{
un−N , n ≥ N,
0, otherwise.

(5)

We can rewrite the cross-correlation function (4) as, (for
the second index we take the remaining in {0, . . . , 2N − 1}
modulo 2N ),

CT (x1,x2)N+ν =
1

N

2N−1∑
n=0

ũ(x1)n ũ(x2)n+ν , (6)

for −N ≤ ν < N .
We recall here the DFT,

F (u)k =

2N−1∑
n=0

un exp

(
−2ıπ

kn

2N

)
. (7)

Proposition 3.1. The following relation holds,

F (CT (x1,x2))k =
(−1)k

N
F (ũ(x1))−k F (ũ(x2))k .

(8)

Relation (8) allows us to compute CT (x1,x2) in O(N)
steps. Moreover, since the recorded wave fields are real val-
ued, we can rewrite this relation as

F (CT (x1,x2))k =
(−1)k

N
F (ũ(x1))kF (ũ(x2))k . (9)

Computing relation (9) is also in O(N), and has its own
interest from a computational point of view.

4. MIGRATION IMAGING

We shall assume that the noise sources are spatially local-
ized and the sensors (xj)1≤j≤J are located between the
sources and the reflectors. More precisely, rays going through
reflectors and sensors reach into the source region, and the
sensors are between the reflectors and the sources along
these rays. We call this the daylight configuration. We use
terminology from analogous situations in photography but it
should be kept in mind that imaging is coherent here, which
means that the recorded signals are time-resolved ampli-
tudes and not just intensities.

Stationary phase analysis (cf. [3]) shows that the cross-
correlation between two sensors xi and xj is expected to
have two peaks: one at the travel time between the two sen-
sors and another one at the sum of the travel times between
the sensors and the scatterer. To keep only the interesting
peak that concerns the scatterer, the image at a search point
z is computed using the following daylight imaging func-
tional (cf. [3]),

ID(z) = 2

J∑
j,l=1

Csym
T,coda(τ(z,xl) + τ(z,xj),xj ,xl), (10)

where τ(z,xl) is the travel time between xl and z:

τ(z,xl) =
|z− xl|
c0

, (11)

and

Csym
T,coda(τ,xj ,xl) =

(
CT (τ,xj ,xl)

+ CT (−τ,xj ,xl)
)
1[τ(xj ,xl),+∞].

(12)

If we consider that the scatterer is far enough from the
receivers, then we can simplify formula (10). The precise
statement is the following:

Proposition 4.1. The migration imaging functional with day-
light illumination is given by

ID(z) = 2

J∑
j,l=1

CT (τ(z,xl) + τ(z,xj),xj ,xl) (13)



5. NUMERICAL SIMULATIONS

We study the acoustic wave propagation on the rectangle
[0, 50λ]×[−15λ, 15λ], with a reflector located in [44λ, 46λ]×
[−λ, λ]. The random distribution of sources has support on
the rectangle [0, 4λ] × [−15λ, 15λ] (gray region on Figure
1), and we record the solution u of the wave equation at
J = 61 sensors located at xj = (5λ, (j − 31)λ/2), for
1 ≤ j ≤ 61. Length is scaled by the reference wavelength
λ = 10 km. The reflector is modeled as a soft acoustic scat-
terer, i.e., u = 0 on the boundary of the reflector.

Figure 1: Geometry of the passive sensor imaging problem
for a daylight illumination.

In our simulations we consider that the wave speed is
c0 = 3 km s−1. To model the noise sources we use (3) with
f0 = 0.3 Hz, Ct = 2.5s and B = 0.3 Hz.

Using the daylight imaging functional (13) we compute
the image near the scatterer. We show the results on figure
2 Observe that we can recover the location of the scatterer.
Moreover, the signal to noise ratio of the image is very good,
i.e., we only have one maximum at the correct scatterer lo-
cation and the noise level is low. The question that naturally
arises is “Under what conditions do we obtain such a good
image?” or in other words “What are the parameters that
control the quality of the image, and how?” The answer to
this question can be given by the resolution and the SNR
analysis of the imaging functional.

6. RESOLUTION AND SNR ANALYSIS

The resolution analysis of the daylight imaging functional
is carried out in [4] when there is a point reflector at zr. The
cross range resolution for a linear sensor array with aperture
a is given by λ0Lr/a. Here Lr is the distance between the
sensor array and the reflector and λ0 is the wavelength cor-
responding to the central frequency. The range resolution
for broadband noise sources is equal to c0/B where B is
the bandwidth of the noise sources. The peak of the imag-
ing functional is obtained at z = zr. It is independent of
T and the peak amplitude is proportional to J2 in terms of
the number of receivers J and proportional to

∫
F̂(ω)dω in

terms of the power spectral density. Moreover, we have the
following results (cf. [3], [16]):

1. The expectation of the empirical cross correlationCT
(with respect to the distribution of the sources) is indepen-
dent of T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2),

where the statistical cross correlation C(1) is given by

C(1)(τ,x1,x2) =
1

2π

∫
D̂(ω,x1,x2)F̂(ω)e−iωτdω,

D̂(ω,x1,x2) =

∫
Ĝ(ω,x1,y)Ĝ(ω,x2,y)K(y)dy,

and Ĝ(ω,x,y) is the time-harmonic Green’s function (i.e.
the Fourier transform of G(t,x,y)).

2. The empirical cross correlationCT is a self-averaging
quantity:

CT (τ,x1,x2)
T→∞−→ C(1)(τ,x1,x2),

in probability with respect to the distribution of the sources.
3. The covariance of the empirical cross correlation is:

Cov
(
CT (τ,x1,x2), CT (τ ′,x3,x4)

)
=

1

2πT(∫
D̂(ω,x1,x3)D̂(ω,x2,x4)F̂(ω)2e−iω(τ

′−τ)dω

+

∫
D̂(ω,x1,x4)D̂(ω,x2,x3)F̂(ω)2e−iω(τ

′+τ)dω

)
,

whenBT � 1 (hereB is the bandwidth of the noise sources,
i.e. of the correlation function F).

In [16] we consider the behavior of the variance of the
imaging functionals ID. This means that we study the fluc-
tuations of the imaging functionals when the integration time
T is not long enough to ensure the validity of the self-averaging
relation CT = C(1). In this case, we show that the signal to
noise ratio of the daylight imaging functional

SNRD =

〈
ID(zr)

〉
Var
(
ID(z)

)1/2 (14)

is proportional to

SNRD ∼ J
√
BT (15)

From the numerical point of view we compute the SNR
of the image as follows. Let ID(z) be the averaged absolute
value of the image over a square of size 2λ× 2λ centered at
z. The SNR is computed as

SNR =
ID(z∗)

maxz 6=z∗ ID(z)
(16)



where z∗ is the middle point of left edge of scatter, and z 6=
z∗ means that squares of size 2λ×2λ centered at z and z∗ do
not intersect. We plot the SNR versus number of receivers
on figure 3, versus bandwidth on figure 4) and versus time
on figure 5. We observe that the numerical results are in
very good agreement with the theory.

Figure 2: Daylight imaging functional (13) for the homoge-
neous background medium. Length is in wavelength λ.
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Figure 3: Plot of SNR versus number of receivers
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Figure 4: Plot of SNR versus B/f0
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Figure 5: Plot of SNR versus number of time
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