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1. Introduction

We are interested by solving the wave equation in fractal domains such as human
lungs, that can be modeled modulo some approximation as infinite dyadic trees
(as in [4, 6]). As it is not possible to do numerical computations on the whole
geometry, the idea is to truncate resolution of wave generation to a finite number
of generations, and to replace remaining generations by adapted DtN operators,
which is possible if one assumes that the cut subtrees are self-similar.

2. Theoretical aspects

For this part, we consider that we work in R
d (with d = 2 or d = 3).

2.1. Self-similar p-adic tree. We can define a self-similar p-adyc tree by

• a finite closed segment Σ given by Σ = {(t, 0), 0 ≤ t ≤ 1} (in R2) or
Σ = {(t, 0, 0), 0 ≤ t ≤ 1} (in R3),

• p strictly contractant direct similitudes (si)0≤i<p of ratio αi < 1 such that
si(0) = (1) for any i.

where 0 is the origin and 1 = (1, 0) (in R
2) or 1 = (1, 0, 0) (in R

3).

With these datas, we build the tree T by induction: we define T 0 = Σ; given n ∈ N,
we define T n+1 = T n ∪ s0(T

n) ∪ · · · ∪ sp−1(T
n); finally, we define T =

⋃
T n.

Figure 1. On the left: the tree T (whole figure), and subtrees
T0 and T1. On the right: mesh associated to the partial 3D lung.
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We shall denote by E(T ) the set of edges of T and by V(T ) the set of interior
vertexes of T . We also define subtrees Ti of T as Ti = si(T ) (see figure 1 for an
example of configuration with p = 2).

2.2. Variational spaces and Helmholtz equations. On T , given {µi > 0, 0 ≤
i < p}, we define the unique piecewise constant weight function µ̃ : T → R

∗
+ such

that: {
µ̃ = 1 on Σ,

µ̃ ◦ si = µi µ̃

and we denote by µ̃e the value of µ̃ on the edge e ∈ E(T ).

We define then the weighted ”broken” norms, depending of µ as, where u′ on
e ∈ E(T ) is the derivative of u with respect to the curvilinear abscissa along e:

‖u‖
2
L2
µ
(T ) =

∑

e∈E(T )

µ̃e ‖u‖
2
L2(e) |u|

2
H1

µ
(T ) =

∑

e∈E(T )

µ̃e ‖u
′‖

2
L2(e)

and the associated Sobolev spaces

H1
µ(T ) =

{
v continuous such that ‖u‖

2
L2
µ
(T ) + |u|

2
H1

µ
(T ) < ∞

}

H1
µ,0(T ) = closure of

{
v ∈ H1

µ(T ) such that ∃n ∈ N, v = 0 on T \ Tn
}

Moreover we define the following Besov spaces

H1
µ(T ) =

{
v continuous such that |v(0)|2 + |u|2H1

µ
(T ) < ∞

}

H1
µ,0(T ) = closure of

{
v ∈ H1

µ(T ) such that ∃n ∈ N, v = 0 on T \ Tn
}

We also define Helmholtz problem with ”Neumann” or ”Dirichlet” condition at
infinity: find u ∈ H1

µ(T ) (resp. u ∈ H1
µ,0(T )) such that u(0) = 1 and, for any test

function v ∈ H1
µ(T ) (resp. v ∈ H1

µ,0(T )):

(1)

∫

T

µ̃u′v′ − ω2

∫

T

µ̃uv = 0, where ω ∈ C is the wave pulsation

This formulation automatically implies homogeneous wave equation on each
edge e ∈ E(T ), and standard Kirchhoff conditions on each interior vertex v ∈ V(T ).
Standard Kirchhoff conditions are detailed in [5, 3].

Remark. The particular choice µi = αd−1
i (the associated tree is called a d-

geometric tree) is obtained by considering T as the limit of T ε when ε tends to 0,
where T ε is built as T - the only difference is that Σε is a d-dimensional domain
which tends to Σ when ε tends to 0. Then (1) appears as the limit model for the
solution of the d-dimensional homogeneous Helmholtz equation on T ǫ.
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2.3. Results. When ℑ(ω) 6= 0, problem (1) admits a unique solution un ∈ H1
µ(T )

(resp. ud ∈ H1
µ,0(T )). Moreover, one has

(2) un 6= ud ⇐⇒ H1
µ(T ) 6= H1

µ,0(T ) ⇐⇒
∑ µi

αi

> 1

In the following, we assume that (2) is satisfied (this is the interesting case). By
denoting Λn(ω) the value of u

′
n
(0) (resp. Λd(ω) the value of u

′
d
(0)), we can replace

the Helmoltz equation on T by a transparent DtN condition

(3) u′(0) = Λn(ω)u(0) (resp. u′(0) = Λd(ω)u(0))

Proposition 2.1. Λn and Λd, as functions of ω, satisfy the following quadratic
relation (obtained by looking at the problem satisfied on each subtree Ti, this ap-
proach is similar to the approach done in [1])

(4) Λ(ω) cos(ω)− ω sin(ω) =

p−1∑

i=0

µi

αi

(
cos(ω) +

Λ(ω)

ω
sin(ω)

)
Λ(αiω)

For ω = 0, (4) becomes

(5) Λ(0) = Λ(0)
(
1 + Λ(0)

) p−1∑

i=0

µi

αi

whose solutions are Λn(0) = 0 and Λd(0) = (1 −
∑

µi/αi)/(
∑

µi/αi).

Conjecture 2.1. There exists at most two homeomorphic functions Λ satisfying
(4), and the unicity is given knowning Λ(0).

If the length of Σ is ℓ instead of 1, one has the following scaling formulas for
the traces Λn(ℓ, ω) and Λd(ℓ, ω) of ”Neumann” and ”Dirichlet” solutions of (1):

Proposition 2.2. One has

Λn(ℓ, ω) =
1

ℓ
Λn(ℓ ω) and Λd(ℓ, ω) =

1

ℓ
Λd(ℓ ω)

So if we want to solve problem (1) on T n instead on T , one has to replace
Helmholtz equation on each subtree by the DtN condition (3) written considering
length of Σ equal to ℓn. Since ℓn ∼ αn, with α = max(αi), for large n it is sufficient
to get a good approximation of Λ(ω) for small ω which can be done with Taylor
expansions.

Proposition 2.3. For ω small, one has

Λn(ω) =
1

1−
∑

µiαi

ω2 +O(ω4)

Λd(ω) =
1−

∑
µi/αi∑

µi/αi

+
1 +

∑
µi/αi + (

∑
µi/αi)

2

3
(
(
∑

µi/αi)
2
−
∑

µiαi

) ω2 +O(ω4)
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2.4. Back to the time-domain wave equation. Neglecting the O(ω4) term in
formulas of proposition 2.3 allows us to write Λn(ω) (resp. Λd(ω)) under the form

(6) Λn(ω) = λ0
n
+ λ2

n
ω2

(
resp. Λd(ω) = λ0

d
+ λ2

d
ω2

)

Injecting (6) in (3) and going back to time-domain leads to the following DtN
operator

(7) u′(t,0) = λ0 u(t,0)− λ2 ∂2u

∂t2
(t,0)

If we want to ensure stability for the time-domain wave equation with this condi-
tion, one has to check λ0 ≤ 0 and λ2 ≥ 0:

• for Λd, under hypothesis (2), one always has λ0
d
≤ 0 and λ2

d
≥ 0,

• for Λn, one has λ
0
n
= 0, and one has λ0

n
≥ 0 if and only if one has

∑
µiαi <

1, i.e. if and only if the constant function 1 belongs to L2
µ(T ).

3. Numerical results

To validate results of previous section, we solve time-domain wave equation on
Tn for various values of n with outgoing condition at 0 and different conditions at
outer boundary of n (with coefficients computed thanks to proposition 2.2):

• Dirichlet condition,
• First order impedance condition u′(t, ·) = λ0u(t, ·),
• Second order impedance condition given by (7).

Numerical tests validate writing of condition (7) and show accuracy of this con-
dition with respect to number of generations we consider. These results are in
progress for general case.
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