Computation of a Green's kernel in a bounded domain

Adrien Semin

March 14, 2012

1 Computation of the Green kernel

Let Ω be a connex bounded domain in \mathbb{R}^{2}, and we are interested about studying the wave equation

$$
\left\{\begin{align*}
\frac{1}{c_{0}^{2}} \frac{\partial^{2} u}{\partial t^{2}}(t, \mathbf{x})-\Delta u(t, \mathbf{x}) & =n(t, \mathbf{x}), \quad \text { for }(t, \mathbf{x}) \in \mathbb{R}_{+}^{*} \times \Omega \tag{1}\\
\frac{\partial u}{\partial \vec{n}}(t, \mathbf{x}) & =0, \quad \text { for }(t, \mathbf{x}) \in \mathbb{R}_{+}^{*} \times \partial \Omega
\end{align*}\right.
$$

Let us denote G the Green's kernel, solution in sense of distribution of the equation, for a given $\mathbf{y} \in \Omega$:

$$
\left\{\begin{align*}
\frac{1}{c_{0}^{2}} \frac{\partial^{2} G}{\partial t^{2}}(t, \mathbf{x}, \mathbf{y})-\Delta G(t, \mathbf{x}, \mathbf{y}) & =\delta(t) \delta(\mathbf{x}-\mathbf{y}), \tag{2}\\
\frac{\partial G}{\partial \vec{n}}(t, \mathbf{x}, \mathbf{y}) & =0, \quad \text { for }(t, \mathbf{x}) \in \mathbb{R}_{+}^{*} \times \Omega \\
(t, \mathbf{x}) & \in \mathbb{R}_{+}^{*} \times \partial \Omega
\end{align*}\right.
$$

Then, from (2), one can recompose solution of (1) by using the formula

$$
\begin{equation*}
u(t, \mathbf{x})=\int_{\Omega} \int_{0}^{t} G(t-s, \mathbf{x}, \mathbf{y}) n(s, \mathbf{y}) d s d \mathbf{y} \tag{3}
\end{equation*}
$$

Now we focus on computation of Green's kernel. Let us denote \hat{G} the Fourier transform of G with respect to time, defined by

$$
\begin{equation*}
\hat{G}(\omega, \mathbf{x}, \mathbf{y})=\int_{\mathbb{R}} G(t, \mathbf{x}, \mathbf{y}) \exp (-\imath \omega t) d t \tag{4}
\end{equation*}
$$

Equation (2) becomes, in Fourier domain,

$$
\left\{\begin{align*}
&-\frac{\omega^{2}}{c_{0}^{2}} \hat{G}(\omega, \mathbf{x}, \mathbf{y})-\Delta \hat{G}(\omega, \mathbf{x}, \mathbf{y})=\delta(\mathbf{x}-\mathbf{y}), \tag{5}\\
& \frac{\partial \hat{G}}{\partial \vec{n}}(\omega, \mathbf{x}, \mathbf{y})=0, \quad \text { for }(\omega, \mathbf{x}) \in \mathbb{R} \times \Omega \\
&(t, \mathbf{x}) \in \mathbb{R} \times \partial \Omega
\end{align*}\right.
$$

Now, assume that we know the eigenvalues and the eigenfunctions of the Laplacien, $i . e$. that we know the sequence $\left(\lambda_{n}, \Phi_{n}\right)_{n \geq 0}$ with λ_{n} sorted in ascend order such that

$$
\left\{\begin{align*}
-\Delta \Phi_{n}(\mathbf{x}) & =\lambda_{n} \Phi_{n}(\mathbf{x}), \quad \text { for } \mathbf{x} \in \Omega \tag{6}\\
\frac{\partial \Phi_{n}}{\partial \vec{n}} & =0, \quad \text { for } \mathbf{x} \in \partial \Omega
\end{align*}\right.
$$

Moreover, we assume that the functions Φ_{n} are orthogonal in $\mathrm{L}^{2}(\Omega)$. We can decompose then G by using

$$
\begin{equation*}
\hat{G}(\omega, \mathbf{x}, \mathbf{y})=\sum_{n \geq 0} \frac{\left\langle G(\omega, \cdot, \mathbf{y}), \Phi_{n}\right\rangle}{\left\langle\Phi_{n}, \Phi_{n}\right\rangle} \Phi_{n}(\mathbf{x}) \tag{7}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\left\langle\Delta G(\omega, \cdot, \mathbf{y}), \Phi_{n}\right\rangle=\left\langle G(\omega, \cdot, \mathbf{y}), \Delta \Phi_{n}\right\rangle=-\lambda_{n}\left\langle G(\omega, \cdot, \mathbf{y}), \Phi_{n}\right\rangle \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\delta(\cdot-\mathbf{y}), \Phi_{n}\right\rangle=\Phi_{n}(\mathbf{y}) \tag{9}
\end{equation*}
$$

Now, taking the scalar product in (5) with respect to Φ_{n} and using both $(8,9)$ leads to

$$
\begin{equation*}
\left(\lambda_{n}-\frac{\omega^{2}}{c_{0}^{2}}\right)\left\langle G(\omega, \cdot, \mathbf{y}), \Phi_{n}\right\rangle=\Phi_{n}(\mathbf{y}) \tag{10}
\end{equation*}
$$

We replace (10) in (7), and we get

$$
\begin{equation*}
\hat{G}(\omega, \mathbf{x}, \mathbf{y})=\sum_{n \geq 0} \frac{1}{\left(\lambda_{n}-\frac{\omega^{2}}{c_{0}^{2}}\right)} \frac{\Phi_{n}(\mathbf{x}) \Phi_{n}(\mathbf{y})}{\left\langle\Phi_{n}, \Phi_{n}\right\rangle} \tag{11}
\end{equation*}
$$

2 Computation of eigenvalues / eigenfunctions

2.1 General case

We consider problem (6) in $\mathrm{H}^{1}(\Omega)$, and we multiply by a function test $V \in$ $H^{1}(\Omega)$. Using Neumann condition, we can write variational formulation of this problem as follow:

$$
\begin{equation*}
\int_{\Omega} \nabla \Phi_{n} \cdot \nabla V=\lambda_{n} \int_{\Omega} \Phi_{n} V \tag{12}
\end{equation*}
$$

We assume that we've build matrices K and M corresponding to rigidity and mass matrix, then we compute N first eigenvalues and eigenvectors as

```
[V,D]=eigs(K,M,N,'SM');
```

D is a $N \times N$ diagonal matrix containing smallest eigenvalues, and V is a $N_{\mathrm{ddl}} \times N$ matrix containing eigenvectors.

$$
K V=M V D
$$

```
mesh = meshcircle(1,0.001);
[~,ddl, ~,lblddl,Diag,Phi,PhiX,PhiY]=mef(mesh,1,2);
Rigidity = PhiX'*Diag*PhiX+PhiY'*Diag*PhiY;
Mass = Phi'*Diag*Phi;
[V,D]=eigs(Rigidity, Mass, 7, 'SM');
```


Figure 1: Computation of six first nonconstant eigenvectors when $\Omega=B(0,1)$

2.2 Rectangular domain

We consider domain $\Omega=\left(0, L_{x}\right) \times\left(0, L_{y}\right)$, and we consider problem (6). Since variables are separable in this domain, one can look at eigenproblem of Laplacian in $(0, L)$ with Neumann condition: function is given by

$$
\begin{equation*}
\phi_{p}(x, L)=\cos \left(\frac{p \pi x}{L}\right), \quad p \geq 0 \tag{13}
\end{equation*}
$$

Then, one define, for a couple of integers (p, q), one defines $\Phi_{p, q}(x, y)$ as

$$
\begin{equation*}
\Phi_{p, q}(x, y)=\phi_{p}\left(x, L_{x}\right) \phi_{q}\left(y, L_{y}\right)=\cos \left(\frac{p \pi x}{L_{x}}\right) \cos \left(\frac{q \pi y}{L_{y}}\right) \tag{14}
\end{equation*}
$$

and computation of Lapacian gives

$$
\begin{equation*}
\Delta \Phi_{p, q}(x, y)=-\left(\left(\frac{p \pi}{L_{x}}\right)^{2}+\left(\frac{q \pi}{L_{y}}\right)^{2}\right) \Phi_{p, q}(x, y) \tag{15}
\end{equation*}
$$

so that we can define eigenvalues $\lambda_{p, q}$ as

$$
\begin{equation*}
\lambda_{p, q}=\left(\frac{p \pi}{L_{x}}\right)^{2}+\left(\frac{q \pi}{L_{y}}\right)^{2} \tag{16}
\end{equation*}
$$

