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ABSTRACT. We consider the Riemann problem for the equa-
tions of isentropic gas dynamics in Eulerian coordinates. We
construct solutions of this problem as limits of solutions of a
“viscosity” regularized problem that is rigged so as to preserve
the invariance of the original problem under dilatations of the
independent variables. The solutions thus constructed may
contain vacuum regions. Using the same approach, we also
construct solutions of the Riemann problem in case the data
contain a vacuum state.

1. Introduction. The equations describing one dimensional isentropic mo-
tions of a compressible, inviscid gas, written in spatial (Eulerian) coordinates
and in conservative form, are

(1‘1) pt+(pu)m =0

—o<r<oo,t>0
(1.2) (pu)e + (pu® +p(p)), = 0

Here, p = p(z,t) and u = u(z,t) stand for the density and the velocity of the
gas, respectively, while m := pu describes the momentum flux in the direction of
the flow. The density p is nonnegative; the regions in the physical space where
p = 0 are identified with vacuum regions of the flow. The pressure p is assumed
to be a smooth function of p satisfying

(1.3) p'(p) >0 for p> 0.

Under (1.3), Equations (1.1) and (1.2) form a hyperbolic system of conservation

laws. The characteristic speeds A1 2 = u F /p/(p) are distinct when p > 0, but
may coalesce when p = 0. The problem of solving (1.1)-(1.2) subject to initial
data

(1.4 (p(2,0), u(z0) = { o 250
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is called the Riemann problem for (1.1), (1.2).

The classical approach for the solution of the Riemann problem relies on in-
troducing an appropriate criterion that singles out the admissible shocks. Then
the solution is effected by constructing admissible wave curves and correspond-
ing admissible wave fans. A comprehensive admissibility criterion, motivated by
the study of several concrete systems, such as (1.1)-(1.2), has been proposed
by Liu and the Riemann problem was solved for general classes of strictly hy-
perbolic systems (Liu [13, 14]). At the present time, the issue of admissibility
remains unresolved for more complicated situations including nonstrictly hyper-
bolic systems (cf. Glimm ([8], Keyfitz and Kranzer [10], Schaeffer and Shearer
[17]), systems that change type (cf. Shearer [19], Slemrod [20]), or even strictly
hyperbolic systems when the Riemann data are large (cf. Sever [18]). The reader
is referred to Dafermos [4, 5] for a discussion and comparisons of different ad-
missibility criteria.

Here, we test an alternative approach which is pursued in [1, 3, 9, 11, 20,
22) and bypasses the need for a-priori knowledge of an appropriate admissibility
criterion. Namely, we construct solutions of (1.1)—(1.4) as ¢ \, 0 limits of the
“viscosity” regularized problem

pt+ (pu)s = €tpsa
(1.5) —oo<zr<oo,t>0

(puw)e + (pu® +p(p)),, = et(pt)zs

with initial data (1.4). The artificial regularization employed in (1.5) preserves
the invariance property of (1.1)-(1.2) under dilatation of coordinates (z,t) —
(az,at), a > 0, as well as the entropy structure of the system (1.5) as compared
with usual viscous regularizations. The system (1.5)—(1.4) admits self-similar
solutions of the form (pe(%),uc (%)), functions of the single variable { = 2. The
functions (pe(£),me(€)), with mc(€) = pe(€)ue(€), are generated by solving the
boundary—value problem

e = —£p. +m!
(Pe) Pe = —tpetme —0<E<0

2 ’/
em] = —¢m, + ('Z— +p(pe))
(pe(=00),me(=00)) = (p—,m_),
(pe(+oo),m5(+oo)) = (p+,m4),
where m_ = p_u_, my = pyuy.

In this paper we study the boundary-value problem (P.) with Riemann
data (p—,m-) and (p4,my), p— and p4 positive. Our goal is to first construct
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connecting orbits (pe(£),me(€)) for (Pe) , with pe(€) > 0, and then pass to the
limit € \, 0 to obtain solutions for the Riemann problem (P) consisting of (1.1),
(1.2) and (1.4). Of special interest is to show how entropy pairs and variation es-
timates are relevant in these constructions. In addition, this framework provides
a natural set up to construct solutions that include the vacuum state.

As the system (1.1)-(1.2), together with its companion system of isentropic,
Lagrangian gas dynamics, have been instrumental in the development of the the-
ory of hyperbolic conservation laws, there is a large literature on these equations.
(In fact the two systems are equivalent for weak solutions that are bounded away
from the vacuum state, Wagner [23]). The Riemann problem is solved by con-
structing the shock and rarefaction wave curves (e.g., Smoller and Johnson [21],
Liu [13], Liu and Smoller [15] in the presence of vacuum). DiPerna [7] and Ding,
Chen and Luo [6] construct solutions of the Cauchy problem for (1.1)-(1.2),
when the states at infinity are the same, as limits of viscous regularizations or
finite difference schemes.

The scale invariant regularization employed in (1.5) was proposed by Dafer-
mos [1] and used in Dafermos and DiPerna [3] to construct solutions for broad
classes of 2 x 2 systems that include the equations of isentropic, Lagrangian, gas
dynamics. In a subsequent work, Dafermos [2] studied the structure of solutions
of the Riemann problem constructed by this method and the relationship with
other admissibility criteria. Although the basic assumption on the fluxes in [1,
2, 3] does not cover (1.1)—(1.3), this work owes a sizable amount to the ideas and
techniques developed in these papers.

In Sections 2 and 3 we show that, under the assumption (1.3), for each fixed
€ > 0, the boundary value problem (P.) admits solutions (pe(£),m.(£)) defined
for —0o < € < 0o. The main theorem is stated in Section 2; its proof is based
on a Leray—Schauder type fixed point theorem together with a—priori estimates
which are derived in Section 3. The resulting solution has the property that
pe(€) >0, —00 < € < 00. In addition, the solutions have specific forms, namely,
either the functions p.(£) and u.(£) are both monotone (or constant), or one of
them is monotone and the other bell shaped.

In Section 4, we take advantage of the restrictions on the shapes of solutions
to show that the family {(pe(-),uc(+)); 0 < € < 1} is of uniformly bounded
variation and thus precompact in the topology of pointwise convergence. The
limit points generate bounded solutions (p(%),u(2)) of the Riemann problem
(P), with p(§) = 0 for —oo < £ < 00. An additional hypothesis is now required,

stating that the stored enthalpy [ ’@ ds diverges as p — oo. The final result
is stated in Theorem 4.5. We emphasize that this existence theorem does not
require any size assumptions on the Riemann data and, therefore, the resulting
solution is expected to attain the vacuum state for some data.

An alternative approach requiring genuine nonlinearity, but in turn, yielding
explicit uniform bounds is outlined at the end of Section 4. As a byproduct of this
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analysis, we prove in Section 5 an existence theorem for the Riemann problem
(P), when the Riemann data include the vacuum state.

2. Existence of Connecting Orbits for (P.). This Section deals with the
construction of connecting orbits for the boundary-value problem (P.), when
€ > 0 is fixed. The construction is performed in two steps. First, we consider
the two parameter boundary-value problem

(2.1) ep’ = pm' —¢&p',
—L<&¢<L
m2 !
(22) eut’ = (" +p(0)) — o
(2.3) p(=L) = p* +u(p-—p*)  p(L) =p* +plp+ —p*)
(2.4) m(=L) = pp_u_=pm_  m(L) = ppyus = pmy

with parameters 0 < p < 1, L > 1. Here p* = min{p_,p+}, p— and p; > 0,
m(€) = p(&)u(€), m— = p_u_ and my = piuy. With the help of a Leray-
Schauder type fixed point theorem and a—priori estimates for solutions of (2.1)-
(2.4) (which are established in Section 3) we show that, for each fixed 0 < p <1
and L > 1, the boundary-value problem (2.1)-(2.4) has solutions (p(¢),m(£))
with p(¢) > 0. Then, the solutions of (P¢) are constructed as L — oo limits of
solutions of (2.1)-(2.4) for p = 1.
More precisely, we prove:

Theorem 2.1.  Assume there are positive constants M and 6 depending
onu_, uy, p—, p+, p(p) and €, but independent of u and L, such that every
solution (p(€),m(€)) of (2.1)-(2.4) with p(£) > 0, corresponding to any 0 < p <
1, L > 1, satisfies

sup (Im()| +p(€)) < M,
—L<¢<L

(2.5)

—LlélefSLp(o 28

Then there exists a solution of (P.), denoted again by (p(£),m(£)), such that
p(&) > 0 for —oo < € < 00.

Proof. Set

m(§)
— p(€) — 2
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Then (2.1)-(2.4) is rewritten

ey"(€) = nf(y(€) — &y (€),
(2.6) -L<¢<L,

y(=L) = py-+ A —py*, y(L)=py++(1-p)y",

_( r- _( P+ o (P,
=) w=(,2) v=(%)

The problem of solving (2.6) is transformed into a fixed point problem as follows:
Let X = C°([—L,L]; R?) equipped with the sup-norm and define £ by

where

a={(pOme) e X _int_ o0)>3 >0

sup (Im(&)|+p(6)) < M+1} :

~L<E<L

Q is a bounded, open subset of X and the constant function (p*,0) belongs to
Q.

Given a smooth function z(£), the solution z(¢) of the boundary—value
problem

(2.7) e2"(€) = f(2(€)) —€2'(€), 2(-L) =y, 2(L) = y4

is computed, using the variation of parameters formula, by

&, ¢
@8 A= [ 0asz [ fE)

-L
& r¢
_Ela/L/o Tf(w(T))e(Tz"Cz)/(ze)dTd(+y_,

where zg is calculated by

L

L
@0 [ = -y -1 [ flale) &

L ¢
+-1—2/ / Tf(:L‘(T))e(Tz_C2)/(2€) dr d¢.
e J-rJo
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Relations (2.8) and (2.9) define a map T : Q@ — X carrying z(£) to 2(£).
The range of T is contained in C*([—L,L]; R?) and

3
(210) /() = 20e™¢"/ ) + L (a(e)) - / rf (o(r))el™ ~€/@) gr.
3 e“Jo

Hence, T maps bounded subsets of Q into equicontinuous subsets of X. In
addition T is continuous and thus T : @ — X is a compact map.

By means of the map T, solutions of (2.6) are identified with fixed points
of the map pT(-)+ (1 — p)y*. Since we look for solutions with p(§) > O and in
view of the a-priori estimate (2.5), these fixed points are sought for (p(-),m(+))
in Q. We recall the following fixed point theorem (J. Mawhin [16], Thm IV.1).

Proposition 2.2. Let X be a real normed vector space and Q a bounded
open subset of X. Let F =TI —T with T : @ — X compact and F : Q x [0,1] —
X be of the form

Fy,n) =y+Gy,p),

where G : @ x [0,1] — X is compact and F(-,1) = F. If the following conditions
are satisfied:

(i) Fly,n) #0 forye o, 0< p<l,
(ii) F(y,0) =0 for some y € Q,
then

Fy=0

has at least one solution in .

Let X, © and T be as defined above and set Fy = y—Ty, G(y,p) =
—uTy— (1= p)y* and F(y,u) = y—pTy—(1—p)y*. Since T : @ — X is
compact, G : Q x [0,1] — X is compact. Moreover, the hypotheses (2.5) imply
that (i) is satisfied, while, since y* € Q is a solution of F(y,0) = 0, condition (ii)
is also satisfied. Therefore, Proposition 2.2 yields existence of solutions of (2.6)
in Q, forany e >0 fixed, 0 < py<land 1< L < 0.

To conclude the proof we extend the solutions y(&;L) of (2.6) with p =1
onto the entire real line by setting y(&; L) = y— for £ < —L and y(§; L) = y4+ for
& > L. Following Dafermos [1, p. 4] and using (2.5) we establish the estimate

(2.11) [y (6L)] < Celalki=€D/C2e), ~L<E<,
where the constants C' and « depend on M, § and € only. On account of (2.5)
and (2.11) the set {y(-;L) : L > 1} is precompact in C°((—o0,00); R?). Thus,
there exists a sequence {L,} tending to infinity as n — oo and a function y(§),
such that y(§;L,) — y(£) uniformly on (—oo0,00). It is a matter of routine
analysis to show that y(£) = (p(€),m(€)) is a solution of (P,) and the details are
omitted. Moreover, by virtue of (2.5)2, p(§) > 0 for —o0 < £ < 0.
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3. The a-priori estimates. The scope of this section is twofold: to derive
the a—priori estimates required to apply Theorem 2.1, and to prepare the ground
for studying the £ N\, 0 limit in the following section. Regarding the first goal,
we show:

Theorem 3.1.  Let (p(£),m(£)) be a solution of (2.1)-(2.4), with p(€) >
0, corresponding to some 0 < p < 1, L > 1. If p(p) satisfies (1.3), then
(p(&),m(€)) satisfies the a—priori estimates (2.5).

Theorem 3.1 will be established in a series of lemmas. In preparation, we
note that if (p(€),m(¢)) is a solution of (2.1)-(2.4) with p(¢) > 0, then p(¢) and
u(€) = m(€)/p(€) satisfy the differential equations

(3.1) ep” = plup' +pu') = &p',
~L<é<L

(3.2) e(pu” +2p'u’) = p(pur +p'(p)p') — Epu,
with boundary conditions

p(—=L) = p* + p(p- — p*),

p(L) = p" +plps —p"),

(3.3)
__m(-L) _ p—tu_
T BT TR Dk
U(L) m(L) —- P+ U+

T D) T ues o)

The first lemma provides a classification of the possible shapes of (p,u)
satisfying (3.1)-(3.2). The lemma remains valid in case L = oo, in particular
for (p,m) solutions of (P.). This result should be contrasted to Theorem 4.1 of
Dafermos [1] and is in correspondence to the form of the shock and wave curves
for the equations of isentropic gas dynamics in Eulerian coordinates (1.1)—(1.4),
(e.g. Liu and Smoller [15]).

Lemma 3.2.  Let (p(€),u(€)) with p(€) > 0 satisfy (3.1)~(3.2) in (—L,L)
for some 0 < u <1 and1 <L < oco. If p(p) satisfies (1.3), then one of the
following holds:

(i) p and u are constant functions,
(ii) p and u are monotone functions,
(iii) p is monotone increasing (decreasing); u has precisely one critical point
which is a minimum (mazimum),
(iv) u is monotone increasing (decreasing); p has precisely one critical point
which is a minimum (mazimum,).
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Proof. We begin with the following elementary observations:

(a) If p'(r) = v/(v) = 0 for some 7 € (—L,L), then p and u are constant
functions.

(b) The only solutions with degenerate critical points are the constant func-
tions.

(c) If 7 is a point of minimum (maximum) of p, then p'(7) =0, p/'(1) >
0(p"(1) < 0) and u'(7) > 0, (v'(r) < 0); if 7 is a point of minimum
(maximum) of u, then /(1) =0, v”’(7) > 0 (v”(7) < 0) and p'(7) > 0
(' (1) <0).

Statement (a) follows from the standard uniqueness theorem for ordinary
differential equations applied to (3.1), (3.2). Statement (b) is a consequence of
(a) upon noting that, if p'(1) = p”(7) = 0, then (3.1) implies «'(7) = 0, while, if
u'(7) = u’(1) = 0, then (3.2) implies p’(7) = 0. Finally, statement (c) provides
the local behavior of p and u at critical points; it follows from (3.1) and (3.2),
respectively, upon using (b) and (1.3).

Next, suppose that p and u are nonconstant functions and that u attains a
minimum at some 7, —L < 7 < L. Then, one of the following happens:

(1) either (iii) is true, or

(2) u has two consecutive critical points with a minimum at 7 and a max-
imum at o, or

(3) u has precisely one critical point which is a minimum at 7, while p has
at least one critical point in (—L,L).

Assume that (2) holds and, for concreteness, let 7 < o. Then u/(£) > 0 for
T < ¢ <o and, by (¢c), p/(t) > 0 and p'(¢6) < 0. Thus, p attains a maximum
at some point ¥, 7 < ¥ < o. Using (c), v/(¥) < 0 which is a contradiction.
Therefore, case (2) is impossible.

If (3) holds, u'(¢) < 0 for £ € [-L,7), while «/(¢§) > 0 for £ € (r,L].
Moreover, p'(7) > 0 and either p attains a minimum at some 9 € (—L,7), or p
attains a maximum at some o € (7,L). On account of (c), in the former case
u'(9) > 0, while, in the latter case, u'(0) < 0. Thus, (3) is also impossible.

We conclude that if u has a minimum at some 7 € (—L,L), then p and u
have the shapes dictated in (iii). The rest of the proof follows a similar pattern
and it is omitted. m]

In the sequel, we follow Dafermos and DiPerna [3] and use the concept
of entropy-entropy flux pairs (Lax [12]) to obtain (e-independent) bounds for
solutions of (2.1)—(2.4). A function n(p,u) is called entropy for (1.1)—(1.2) with
corresponding entropy flux q(p,u) if

/
p'(p)
q =Uu + —_— s
(3.4) b= Mo p e

Qu = PNp + UMy .
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Such pairs are generated by first solving

/
p
(3‘5) Npp = %nuu

for n(p,u) and then integrating (3.4) to obtain q(p,u). A comprehensive analysis
of solutions of (3.5) is conducted by DiPerna [7].

Let (n(p,m),q(p,m)) be an entropy—entropy flux pair, expressed in terms
of the variables p and m. Using (3.4) we deduce that solutions of (2.1)—(2.2)
satisfy the identity

(3.6) —&n' +pg’ =en" —e(p',m').V2n(p',m)T

where n = n(p(¢),m(€)), ¢ = q¢(p(€),m(€)). In exploiting (3.6), it is helpful
to use entropy functions 7(p,m) that are convex (or linear) with respect to the
variables p and m. Classical examples of such pairs correspond to entropies
associated with the mass, momentum and mechanical energy, namely

£ (p,pu), *(pu,pu’ +p(p)),

(3.7) 1, 1,
(Epu +pe(p), 5pu +pe(p)U+p(p)U),
where e(p) = [*p(s)/s? ds.

We now present a lemma indicating how to use (3.6) to bound the total
entropy production. It is expedient to state the lemma for subclasses F of
solutions (p(-),m(+)) of (2.1)-(2.4), 0 < p < 1,1 < L < o0, € > 05 in appli-
cations of the lemma, F incorporates the monotonicity properties of solutions
dictated by Lemma 3.2. Given any constant entropy level 77, consider the level
set Cz = {(p,m) € R* x R : n(p,m) =7}, as well as the set of values in Cz that
are attained along solutions of the class F

(3~8) C}','ﬁ = Cﬁﬂ{(p(ﬁ),m(ﬁ)), -L <L L}(p(-),m(-))ef'
If Cr 5 is nonempty, let

(39) Q = sup |¢I(P1,m1) - Q(Pz’m2)|
(p1,m1),(p2,m2)€ECE 7

be the oscillation of g(p,m) on the set Cx 7. We prove:
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Lemma 3.3. Let F be a class of solutions (p(-),m()) of (2.1)-(2.4)
with p(+) > 0 and assume that n(p,m) is a convez entropy for (1.1)—(1.2) with
corresponding entropy flur q(p,m). If 77 is any constant such that

(3.10) 7> maX{Oglgécln(p(—L),m(—L)), ax n(p(L),m(L)}

then for any (p(+),m(-)) € F and (a,3) C (—L,L)

B8
(3.11) / (n(p(€),m(€)) —7) dé < N,

where N =0 in case Cr 5 is empty and N = Q in case Cr 5 is nonempty.

Proof. Let (p(+),m(-)) € F and fix 7 so that (3.10) holds. If n(p(¢),m(¢)) <
7 for —L < £ < L, then (3 11) is trivially true with N = 0. So, assume that
the set {¢ € [-L,L] : n(p(¢),m(£)) > 7} is nonempty and let ag, Bo be any two
points in [~ L, L] such that ag < Bo, n(p(ao), m(xo)) = n(p(Bo), m(Bo)) =7
with 7' (p(ao),m(ao)) > 0 and 7' (p(Bo),m(Bo)) < 0. Integrating (3.6) over
[0, 0] and using the convexity of n(p,m), we obtain

Bo
(312) - / £(1(p(€), m(e)) — 7 d

(e 7))

1la(p(Bo),m(Bo)) — a(p(co),m(cx))] <0,

which, on account of (3.9), yields

Bo
(3.13) / (n(p(€),m(&)) —7) de < Q.

o

Given any a, 3 in (—L,L) with a < 8 we choose ag, Gy as follows: If
n(p(a),m(@)) > 7, then ao = sup{é € [~L,a) : n(p(€),m()) < 7}, while
if n(p(@),m(a)) < 7, then ap = inf{¢ € (a,L] : n(p(€),m(€)) > 7}. If
n(p(B),m(B)) > 7, then By = inf{¢ € (B,L] : n(p(£),m(£)) < 7}, while if
n(p(8),m(B)) < 7 then By = sup{é € [-L,0) : n(p (E), (€)) > 7}. Either
n(p(¢) m(f) <7for a < ¢ < B and (3.11) is true with N = 0, or ag, Gy are
well defined, ap < By and

B Bo
(3.14) / (n(p(E),m(€)) —7) de < / (n(p()m©)-MdE<Q O

In general the quantity @ (and thus also N in (3.11)) depends on 7, n(p,m),
g(p,m) and the class F and may be infinite. However, it often turns out that
Q is finite and independent of u, L and €. For instance, @ is finite if the level
set Cy or its restriction Cr 7 is contained in a compact subset of R* x R. As an
application of Lemma 3.3 we obtain the following:
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Corollary 3.4.
(a) If u is monotone increasing and p has a minimum at 7 € (~L,L),

(3.15) p(€) > min{p_,py} — lﬁ—ﬁ’—l ¢ € [~L,I\{r}.

(b) If u is monotone decreasing and p has a marimum at T € (—L,L),

(3.16) p(€) < max{p_,ps} + Izi-\-%l ¢ € [-L,L\{r}.

(c) If p is monotone increasing and u has a minimum at 7 € (—L,L), then
for any o, B in (—L,L) with a < 8,

B
(3.17) [ @ -mde>-n,
where m = min{0,m_,m.}, and

(3.18) w2 N

et €€ -L,L\{r}.

(d) If p is monotone decreasing and u has a mazimum at v € (—L,L), then
for any o, B € (~L,L) with a < 8,

B
(3.19) / (m(€) —m) dé < N,

where M = max{0,m_,m,}, and

m N
(3.20) u(é) < oy + K—_T—I, §e[-L,LI\{r}.

The constants N in (3.15)—(3.20) are all independent of p, L and €.
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Proof. We prove (a) and (d). The proofs of (b) and (c) are similar.

To show (a) we consider the class F consisting of solutions of (2.1)—(2.4)
with u monotone increasing and p having exactly one minimum and apply
Lemma 3.3 for the entropy-entropy flux pair (—p,—m) and the entropy level

N = —p = —min{p_,p;}. In this case Q < maxos”sl{g(u(L)—u(——L))} is
bounded independently of 1, L and €. Thus, (3.11) implies that

B8
(3.21) JRCGEDUEE

for any (a,8) C (—L,L). The choice a = £, 8 = 7 together with the monotonic-
ity properties of p(¢) gives

(3.22) N< /ﬁ "(0(0) = ) dC < (p(€) = p)(r—©),

whence (3.15) follows for £ € [-L,7). Similarly, the choice @ = 7, 8 = £ yields
(3.15) for & € (7, L].

Next we establish (d). Let F be the class of solutions with p monotone
decreasing and u having exactly one maximum. We apply Lemma, 3.3 for the pair

(m,—'l’pi +p(p)) with 7 = m = max{0,m_,my}. In this case Cr5 is contained
in [p4,p-] x {M} and thus @ is bounded independently of y, L and ¢. As a

consequence (3.11) implies (3.19). Finally, (3.20) follows from (3.19) by using as
argument similar to the one leading to (3.15). ]

Next, we establish the a—priori bounds (2.5) for p(£).

Lemma 3.5. Let (p(€),m(£)) be as in Theorem 2.1. There are positive
constants M and 6, independent of y and L, such that

(3.23) 0<8<p(6) <M, ~L<¢<L.

Proof. We only need to analyze solutions with p(¢) admitting a critical
point. We show (3.23) in the representative case that p(£) has a positive mini-
mum at 7 € (—L,L) and u(€) is monotone increasing. It suffices to show that
p(7) is bounded from below by a constant independent of p and L.

Set p = min{p(—L),p(L)} and let ag, By be such that —L < ag < 7 < By <
L and p(ap) = p(Bo) = p- Given any & € [ap,T), let £ be such that p(¢') = p(€).
Then &' € (7,50] and p'(¢') > 0. Integrating (2.1) over [£,£'], we arrive at

¢
(324)  ep(€) —ep(€) = (&) (u(€') — u()) - /5 P Q) dc.
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Using the monotonicity properties of u together with

13 13
(3.25) - /ﬁ PO dc = /g (p(Q) - p(€)) dC < 0

and (3.24), we conclude that p satisfies the differential inequality

(3.26) 0 <ep' (&) + Ap(€), ap<ELT

with A = maxo<u<1(u(L) — u(—L)) positive and independent of y, L and €.
Integrating (3.26), we obtain

(3.27) p(r) > p(Q)e™ (A=<, ag <<

In addition (3.15) reads
N
T — C ’ -_

Relations (3.27) and (3.28) together imply that p(7) is bounded from below as
follows:

(a) fr—ap < 2—,,1!, (8.27) gives for ¢ = ap

(3.29) oQ)2 o

plr) 2 pe AN/

(b) r—ay > —2;{1, let {* =7— 2—[)"! and use (3.27) and (3.28) for ( = ¢*

to deduce

p(1) > p((*)e‘("‘/e)‘T‘C‘) 2> %Ee—&AN/(s_p_). O

The last goal is to show the bound (2.5) for m(£). A difficulty arises in this
case from the lack of a—priori control on the oscillations of the function m(§). We
overcome this difficulty using the L!-type estimates (3.17), (3.19) in conjunction
with the special structure of the differential equation (2.2).

Lemma 3.6. Let (p(£),m(£)) be as in Theorem 2.1. There is a positive
constant M , independent of u and L, such that

(3.29) Im(§)| < M, -L<{<L.

Proof. The bound (3.29) is obviously true for cases (i), (ii) and, by virtue
of (3.23), case (iv) of Lemma 3.2. We now consider case (iii).
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Suppose first that p is monotone decreasing and u has precisely one maxi-
mum at 7, —L < 7 < L. Clearly m(§) > p(¢) min{u(—L),u(L)} and thus m(§)
is bounded from below. It remains to show that m(§) is bounded from above
independently of 4 and L.

Set m := max{0,m_,m4} > max{m(—L),m(L)} and consider any point
& € [-L,L] such that m(§) > m and m/(£) > 0. Let & = inf{¢ € (§,L] : m(¢) <
m(&€)}. Since m(€§) > m > m(L), £ is well defined, & > ¢, m(¢') = m(£), and
m/(€¢') < 0. Moreover, m(¢) > m(&) for £ < ¢ < ¢'. Integrating (2.2) over [¢,¢'],
we obtain

(3.30) em/ (&) —em/(€)
2 1 1 /
= um?(e) [Ra_) - -@] T ulp(p(€) = p(p(€)]

{I
- /€ ¢m!(€) dC.

Since p is decreasing and

¢’ 3
(3.31) - /6 ¢m'(C) de = /§ (m(¢) —m(€)) d¢ > 0,

(3.30) together with (1.3) yield
(3.32) em'(€) < A,

where A = maxo<u<1{p(p(—L)) —p(p(L))} is positive. Note that the bound
(3.32) holds for any ¢ € [—L, L] such that m(§) > m.

To conclude the proof observe that the set {£ € [-L,L] : m(§) > m} can be
decomposed into a countable union of disjoint subintervals (ag,8k), k = 1,2,...,
such that m(ax) = m(Bx) = ™ and m(¢) > for ay < £ < Bk. Fix a k and let
My = MaXq, <¢<g, M(§) and 7% be such that m(rx) = my. If 7x —ap < 1, then,
using (3.32),

(3.33) my =m(m,) <M+

On the other hand, if 7, — ax > 1, we use the identity

(3.34)  (ri—0)(m(r) =) = [9 " (m(¢) —m) d¢ + [9 " /C " (6 de de
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for ap < ¥ < 7 < B, together with (3.19) and (3.32), to obtain
— 14 2
(3.35) (e =) (m(r) —m) < N+ 5?(7% —9)°.

For ¥ = 7, — 1, (3.35) gives

(3.36) e = m(re) 5m+N+%i:—.
Finally, on account of (3.33) and (3.36)
— A A
(3.37) m(€) < M+ max 2—£—+N,; , —L<¢(< L.

A similar argument provides (3.29) in case p is increasing and u attains a
minimum at 7. O

4. Existence of solutions of the Riemann problem. The intent of this Section
is to construct solutions of the Riemann problem (P) as € \, 0 limits of solutions
of (P.). We recall that for fixed ¢ > 0 and under the hypothesis p(p) > 0 for
p > 0, the boundary-value problem (P):

(4.1) ep” = (pu) = ¢&p',
—0<é<x
(4.2) e(pu)" = (pu* +p(p)) —&(pu)
p(—oo) = P-, p(+OO) =P+
(4.3)
u(—o0) = u_, u(4+00) = uy,

admits classical solutions (pe(€),uc(€)) with pe(§) > 0. Note that in (4.3), p_,

p+ > 0, also me(€) = pe(&)ue(€)-
The analysis in this Section is centered around justifying the hypotheses of
the following existence theorem for the Riemann problem (P).

Theorem 4.1. Let (pe(£),uc(€)) denote a solution of (P.) with pe(€) >
0. Suppose the functions {pe(-),uc(:) ; 0 < € < 1} are uniformly bounded
and of uniformly bounded variation. Then, there exists a pair of functions of
bounded variation (p(€),u(€)), defined for —oo < € < oo with p(€) > 0, such

that (p(%),u(2)) is a weak solution of the Riemann problem (P).
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Proof. By Helly's theorem there is a sequence {€,}, e, \, 0 as n — oo and
functions p(€), u(€) of bounded variation, with p(¢) > 0, such that p.,(§) —

p€), ue,(€) — u(f) for ae. € € (—00,00). Accordingly, pe, () — £($),
ue, (2) — u(2) for ae. (z,t) € (—00,00) x (0,00). The functions (pc, (%),
ue, (£)) satisfy (1.5) with ¢ = ¢,. Passing to the limit &, \, 0 in (1.5), we

conclude that (p(%), u(2)) is a weak solution of (1.1)-(1.2).

It remains to verify the initial conditions (1.4). Set

e(€) = ( ,f;(é))) ;26 = (Z%) ’
1) = (56 oloe(6))

By virtue of (4.1), (4.2), y.(£) satisfies the equation
d e/ = 1 ! (£)6£2/(2€)
(44) 'd_é[ye(g)e ] = EA(ZE(é‘))ye(g)e 3

where the matrix A(ze(ﬁ)) is given by

_ 0 1
Az()) = (—uf:f<£>+p' G m(&))'
Relation (4.4) yields the bound
(4.5) lyL(€)] < |yl (0)]e(elél=€D/ o) —00 < € < 00,

with a any constant such that a > sup_,,cecoo [A(2e(€)]- In view of (4.5),

|yL(€)| decays rapidly to zero as |£| — oo for € > 0 fixed. Moreover, since z.(£)
is uniformly bounded, the constant a can be chosen to be independent of ¢.
Integrating (4.1), (4.2), we obtain

1 1
(4.6) y.(0) / €/ dg = (1) — yo(-1) - - /_ 1f(ze(€))d£

-1 3

1
+ %f(ze(ﬂ)) / €6/ g¢

-1

1 e (¢?—€%)/(2¢)
+3 /_1/0 ¢f(ze(Q))e d¢ de .
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Since pe(€) and u.(£) are uniformly bounded, taking into account the way each
term of (4.6) depends on ¢, we deduce from (4.5)

(4.7) WLE)] < —apetPalel=iel)/zo), —o0<£< o,
)

where K and «a are independent of €.

Recall that pe, (§) = p(£), ue, (€) — u(§) and thus m, (§) = pe, (§)ue, (§)
— m(&) = p(&)u(é) for a.e. £ € (—00,00). On account of (4.7), p(§) = p— and
m(€) = m_ = p_u_ for £ < —2a, while p(¢) = p; and m(§) = my = pyuy for
& > 2a. Moreover, since p_ and p; are positive, u(¢) = u_ for £ < —2a and

u(€) = uy for £ > 2. In particular (p(%),u(%)) satisfies (1.4). O

For the remainder of the section, we let (p:(£), uc(£)) be a solution of (Pe)
with p.(§) > 0, —oo < € < 00, and proceed to provide sufficient conditions
on p(p) that guarantee the uniform (in ¢) variation bounds required to apply
Theorem 4.1. In this effort we are helped by the special form of (pe(£), ue(€))-
For, as noted in Lemma 3.2, either

(i) pe and ue are constant functions, or
(ii) pe and u. are strictly monetone, or
(iii) pe and u. belong to one of the following four disjoint subclasses Fy — Fy:

F; : p. has precisely one critical point which is a minimum at 7., u. is
strictly increasing;

Fy : p. is strictly decreasing, u. has precisely one critical point which is a
maximum at 7. ;

F3: pe has precisely one critical point which is a maximum at 7., u. is
strictly decreasing;

Fy: p. is strictly increasing, u. has precisely one critical point which is a
minimum at 7..

Due to the restrictions on the shapes of pe and u., it is sufficient to show
that u(£) is uniformly bounded for solutions of class F» or Fy and that p.(£) is
uniformly bounded for solutions of class F3. Note that, since p(¢) > 0, solutions
of class F} are trivially uniformly bounded.

In the following lemma we record the analogs of (3.15), (3.16), (3.18) and
(3.20). The proofs are similar and are omitted.

Lemma 4.2. If (pe(€),uc(€)) is of class Fy,

N

(48) pe(&) Z/_)— |§_7_€|7

§ € (—00,00)\{7e};

if (pe(€),uc(€)) is of class Fa,
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(4.9) wl®) ST+ ﬂer £ € (~o0,00\{re};
if (pe(€),uc(€)) is of class Fy,
(4.10) plO) P4 Ee(-emal\(n;
if (pe(€), ue(€) s of class Fy,
(411) WO2u-m Ee (- c\n).

The constants N are independent of ¢, while p = min{p_,p+}, p = max{p_,p+},

1 1

u=;-min{0,m_,m;} and T = ;-max{0,m_,m.}.

Estimates (4.8)-(4.11) fail to bound the peaks of pe(§) and u.(§) and do not
permit application of Theorem 4.1. Nevertheless, they serve as a starting point
to establish the desired uniform bounds in Lemmas 4.3 and 4.4.

Lemma 4.3. If (pe(g’),ue(f)) s of class F3 or Fy, then

(4.12) sup  |ue(§)| < N,
—00<€<00

where N is a positive constant independent of ¢ .

Proof. We consider the case that (p(€),ue(€)) is of class Fy. It suffices to

bound from above the peak u.(7.), which, with no loss of generality, is assumed
positive.
Choose points { € [r. —2,7. — 1] and & € [7e + 1,7 +2] such that

(p+—p-) < pe(¢) <0 and

(p+—p-) < p(&) <O.
Integrating (4.1) over [7¢,&.], we arrive at

(4.13) e0.(&) —ep(1e) = pe(€e)uc(ée) — pe(Te)ue(Te) +7e (PE(TS) - 95(56))

gs
+ / (pe(C) - pe(ge)) dg.
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Since pL(¢) < 0, using (4.9), we deduce from (4.13)

(4.14)  pe(Te)ue(re) < (2+€)(p- — p+) +p-(T+N) + |Te|(pe(7'e) - pe(&e)) .

If |7¢| were uniformly bounded, then (4.14) would yield (4.12). However,
in general, this is not the case. To overcome this difficulty integrate (4.1) over
[¢e,&e] to arrive at

(4.15) epe(€e) = €p(Ce) = pe(€e)uc(€e) — pe(Ce)ue(Ce) +Ce (ps(Ce) - pe(fe))

&e
+ [pe(C) _pe(ée)] dg.

€

Combining (4.15) with (4.9), we deduce
(4.16) 0< |7'al (Pa (Ce) - pe(ge))
< (6+2¢)(p- —p+) +2p-(T+N),

which, together with (4.14), implies (4.12) for solutions of class Fy. The proof
for solutions of class Fy is analogous. m]

Lemma 4.4. Let {p:(£),uc(£)) be a solution of class Fs. If

oo ./
(4.17) / g)(—s)ds =00,
1 s
then
(4.18) sup p(§) <N,
—00<E€ <00

where N is a positive constant independent of ¢ .

Proof. Let (pe(€),uc(€)) be a solution of class F3; 7. denotes the point where

pe(€) achieves its maximum. It suffices to show that the peak p.(7) is uniformly
bounded.
Choose &, € [7e + 1,7 + 2] such that

Ugp — U < Ue(Te +2) —ue(Te +1)
(4.19)
=ul(&) <O0.

Using (4.1) and (4.2), we obtain

! /
eu” + 25% =& + (u__) + 2—5}—[))-/)'
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which, once integrated over [r.,&.], yields

(4.20) eug(€e) —eug(re) +2¢ / AGUAG) (5)(“5(0 dc

1 ¢ pe(€e) /(s
=5 (u2 (&) —ud(7e)) —/ Cul(¢) dC+/ ps)
Te pe(Te) S
Since u. () < 0 and (pLul)/(pe) > 0 on (7¢,00), we obtain from (4.20)

pe(Te) ot
(4.21) / LACPR
. s

+

< - €u;(§s) + % (ug(&) - U?(Te)) + Te (Ue(Te) - ue(&e))

€e
+ / (Ue(o—ue(fe» dg.

Finally, using (4.19) together with the monotonicity properties of uc, (4.21)
yields the bound

pe(Te) P'(s) 1
@) [T s (2+§(lu-|+lu+l)+e) (- = uy) Irel(ue — ).
P+
If 7. were uniformly bounded, say || < 70, then (4.22) together with (4.17)
would provide (4.18). In what follows we complement (4.22) with corresponding
bounds for || large.

Suppose first that 7. > 79 > 0, with 79 a large positive threshold to be
determined later. Integration of (4.1) over [7.,00) gives

(423) 0= prus = pulreue(re) +7elpe(re) = o) + | " (0e(0) = pa) dC.

Since pc(¢) > p4 for ¢ € [1,00), (4.23) leads to
(424) petr) (1-2020) < p, (1-25).

Te 3

Moreover, since u4 < ue(7e) < u—, we can choose 1o such that 1 — (ue(7e))/7e >
3 for 7. > 79 > 0. An appropriate choice is 7o := 2max{|u_|,|u4|}. Then (4.24)
implies (4.18) for 7. > 79 > 0.

In case 7. < —79 < 0, a similar argument gives

(4.25) petr) (1-282) < (1),

which, in turn, yields (4.18) for 7. < —719 < 0. This completes the proof of the
lemma. O
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We summarize the results of Lemmas 4.3 and 4.4 together with Theorem
4.1 into the following existence theorem for the Riemann problem (P):

Theorem 4.5.  Assume that p'(p) > 0 for p > 0 and ffoﬂsflds = 00
Given any p—, p+ > 0, there exists a pair of functions of bounded variation
(p(8),u(§)), defined on (—o0,00), with p(§) > 0, such that (p(2),u(%)) is a
weak solution of the Riemann problem (P).

Note that in Theorem 4.5 no genuine nonlinearily assumption is required.
In case the characteristic fields of (1.1) , (1.2) are genuinely nonlinear, we employ
a different approach to obtain uniform bounds. This approach is motivated by
the geometry of the shock and wave curves and parallels Lemma 4.1 in Dafermos
and DiPerna [3].

Lemma 4.6. Let (p:(£),uc(€)) denote a solution of (Pe) with pe(£) >0
If, in addition,

(4.26) dip(pzp’(p)) >0 for p> 0,

then the following hold:
(i) If (pe(€)uc(€)) is of class Fy,

(4.27) Ue(Te) < u_ +/,,_ P(8) g
p

. s

(ii) If (pe(€),ue(€)) is of class F3,

(428) /Pe(‘rs) A /
Py

) ds < +(ue(r.) - wy).

(i) If (pe(€),ue(€)) is of class Fu,

(4.29) Ue(Te) > uy — / a ”;(3) ds.
p—

Proof. We prove (i) and (ii). The proof of (iii) is similar to the proof of (i)
and is omitted.
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Let £.(p) denote the inverse of the function pe(£). For solutions of class F» or
Fy, pe(€) is monotone and the inverse is well defined. By contrast, for solutions
of class F3, p:(£) has a critical point at 7. and the inverse is well defined only in
the semi-infinite intervals (—oo,7¢] or [7¢,00).In what follows we work in either
(—00,7e] or [Te,00) and & (p) will stand for the appropriate component of the
inverse. By means of p.(£) and £.(p) one can change independent variables from
£ to p and vice versa. Thus, u. may be visualized as uc() or uc(p). Accordingly,
m, is visualized as m¢(§) = pe(€)ue(€) or me(p) = puc(p), respectively. With no
danger of confusion we keep the same notation for both parametrizations. Using
(4.1) and (4.2), a straightforward computation yields

(4.30) de( <(€)) = ';((ﬁg))'
(4.31) edif (dme( 6(5))) WAGIAG (f) {GLAG
=p'(pe(8)) - (dd—?(pe(é)) - 1:%2)
and
2
o ()

2
=[ (o) + 2 (B et - 228 ]p;@)
dm, me(§)
20 355) % (%

me(§) _
PG

With the remarks above in order, we proceed to establish (4.27). Here, p.(§)
is decreasing, while u(¢) attains a maximum at 7.. Let

= ( e(e)))

Also, observe that

dme due (

(4.33)

( <(6)) — Pe(€) == (pe(£))-

2
&= inf{c € (—o0,7e] : p' (p(€)) — (pe(ﬁ)due (Pe(ﬁ))) >0

for(<§§7'€}.
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Clearly, &; is well defined and —oo < & < 7. If & > —o0, then, by (4.31)
and (4.33), it follows that %((dme/dp)(ps(g))) = 0 at &, while (d2/d¢?) x
((dme/dp) (pe(€))) > 0 at & . But (4.32) implies that

d (dme )‘ 1" 2 / /
434) e— (== - b2
( ) d£2 dp (Pe(f)) e, (p (Pe(&l)) Pe({l)p (pe(él)))pe(gl)
<0,
where in (4.34) we used the monotonicity properties of p. together with (4.26).
Hence, we conclude that §&; = —oo and that
P'(pe(§) _ due
4.35 - e <0 for—c0<€< 7.

By virtue of (4.35),

(4.36)  we(r) =u_+ / " du

|y (pe(©)pl(§) de < u +/"‘ W@,

pe(Te) S

which leads to (4.27).
We now take up the case that (pe(€),uc(€)) is of class Fi, ie., uc(f) is
decreasing, while p.(£) has a maximum at 7.. Set

due

& = inf{( € (—00,7e] 2PI(P5(f)) - (Pe(ﬁ)ip—(pe(g))) <0

for(<§§r€}

and

& = sup{c € [7e,00) : p' (pe(£)) — (Mé)%(m(ﬁ))) <0

forre_<_§<C}.

Since p.(7e) = 0, the sets above are nonempty and —oco < &; < 7, 7e < §2 < 00.
An argument similar to the one leading to the proof of (4.35) shows that {; = —oco
and £3 = co. Thus, taking account of the monotonicity properties of u(§) and
pe(€), we conclude

ul(€) _ due /P (ee(8)
o - 4 O < <0

for —o0 < € < 7,

(4.37)



1070 M. SLEMROD & A. E. TZAVARAS

while
(4.38) ul(€) dus ( ©) > p’(pe(é)) 0
' o)~ dp G
for 7. < € < 0.
Finally, using (4.37),
(4.39) Ue(7e) —u_ = /_ T () de
/ V pe
PE(f e
3 —/pe(n) \/mds
==/ = ds;
similarly, using (4.38),
(4.40) e —uelre) = [ wite)de

/°° VP ps(ﬁ (6 d

pe(Te) /
_ _/ () 4.
P+ 8

and the proof of the lemma is complete. mi

Relations (4.27)—(4.29) give rise to e-independent bounds for solutions of
(P:). Since p—, p+ > 0, (4.27) and (4.29) imply that u.(7) is uniformly bounded
for solutions of class F; and F,. In addition, (4.28) yields

ds <u_ —uy.
s

(4-41) /Pe("'e) P (3 /ps(fe) \/—
p

- +
Provided
oo / —
(4.42) / P(8) g s Yol
min{p_,p+} S 2



Isentropic Gas Dynamics 1071

(4.41) implies that pc(7) is uniformly bounded for solutions of class F3. This
last hypothesis can be viewed as a restriction on the Riemann data; it is certainly
satisfied for all data if

(4.43) /loo ———"IT;(S)ds = 00.

The remarks above lead to an alternative existence theorem for the Riemann
problem (P); the simplest set of sufficient hypotheses being (1.3), (4.26) and
(4.43).

The hypotheses on p(p) may be reformulated in terms of dependence on

the specific volume v = %. For if we set p(v) = p(1), the hypotheses (1.3),

(4.26), (4.17) and (4.43) readily translate into p'(v) < 0 for v < 0, p"(v) > 0
for v >0, -—fol vp'(v) dv = +00 and fol V=P (v)dv = +00, respectively. Finally,
note that (1.3), (4.26), (4.17) and (4.43) are satisfied by the equation of state
p(p) = kp”,y > 1.

5. Riemann Data Containing a Vacuum State. In their study of the vacuum
problem for the equations of isentropic gas dynamics, Liu and Smoller [15] use
the shock and wave curves for (1.1)—(1.2) to solve the Riemann problem when
one of the states in the Riemann data is a vacuum state. We consider this
problem from the viewpoint of the method we are studying here.

For concreteness, let p_ > 0, p+ = 0 and consider the problem (P) with
Riemann data (p—,u-) and (0,u4). Our goal is to construct solutions of (P)
as € \, 0 limits of (pc(%),uc(%)), where (pe(€),ue(€)) solve (4.1)-(4.2) with
boundary conditions

p(—o0) =p-  p(+00) = p4(¢)
(5.1)
u(—o0) = u— u(+00) = uy

with p;(e) > 0 for ¢ > 0 and lime\gp4+(e) = 0. Under (1.3), the boundary
value problem (4.1), (4.2) and (5.1) admits, for each fixed ¢ > 0, a solution
(Pe(£),ue(€)) defined for —oo < £ < oo, with the property pe(£) > 0 for —oo <
£ < o0.

In the sequel, we seek conditions on p(p) that guarantee that the family
of functions {pe(:),ue(+); 0 < € < 1} is uniformly bounded and of uniformly
bounded variation. Then, Theorem 4.1 asserts that there is a subsequence of
functions (pe, (£),ue, (€)), n = 1,2,..., and a pair of functions of bounded vari-

ation (p(€),u(§)), with p(€) > 0, such that (pe, (2),ue, (2) — (p(2),u(2)
for a.e. (z,t) € (—00,00) X (0,00) and (p(2),u(%)) is a weak solution of (1.1)-
(1.2). Moreover, there is a constant a, such that p(¢) = p—, m(§) = m—,
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w(€) =m_/p- =u_ for £ < —2a and p(£) =0, m(€) =0 for £ > 2a. However,
the value of u(§) for £ large is not determined by this argument. In particular,

. T p—, <0, . T p-u—, =<0,
lmmﬁ0={0, x>0, hmm@)z{m z >0,

and limp ou(%) = u— for £ < 0, but is not determined for z > 0.
We claim that if p(p) satisfies (1.3), (4.26), (4.43) and

(5.2) ml%ﬂ

0

ds < 400,

then (pe(ﬁ),ue(ﬁ)) are uniformly bounded and of uniformly bounded variation
for ¢ small. Indeed, as long as p;(¢) < p—, either (i) p. is strictly decreasing
and u, is strictly monotone, or (ii) p. and u. belong to one of the classes F;, Fy
or F3. By Lemma 4.6, if (pe(€),uc(€)) is of class Fy, then

P~ \p'(s) ds
0 S ’

(5.3) Ue(Te) < u +

while, if (pe(€),uc(€)) is of class F3,

—U4.

(5.4) /Mml%ﬁ@+/Mml%ﬁ@<m

- 0
In view of (4.43) and (5.2) the desired bounds are true in all cases.
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