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Abstract. We propose a class of finite element schemes for systems of hyperbolic conservation
laws that are based on finite element discretizations of appropriate relaxation models. We consider
both semidiscrete and fully discrete finite element schemes and show that the schemes are stable
and, when the compensated compactness theory is applicable, do converge to a weak solution of the
hyperbolic system. The schemes use piecewise polynomials of arbitrary degree and their consistency
error is of high order. We also prove that the rate of convergence of the relaxation system to a
smooth solution of the conservation laws is of order O(ε).
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1. Introduction. The problem of numerical approximation of nonlinear hyper-
bolic systems of conservation laws,

∂tu +

d∑
j=1

∂xj
Fj(u) = 0, x ∈ R

d, u = u(x, t) ∈ R
n, t > 0 ,

u(·, 0) = u0(·),

(1.1)

is a challenging area testing the performance of various numerical methods. Such
methods need to resolve accurately the shock regions and at the same time approxi-
mate with high accuracy the smooth parts of the solution.

It is a widely held belief that to achieve this goal one has to impose extraneous
stabilization mechanisms, such as shock capturing terms or limiters (depending on
the parameters of the problem, on the order of the method, on the particular form of
the system, etc.). This approach seems to hold for those finite element or high-order
finite volume methods previously developed [21, 10, 19, 11]. We refer to [11] for a
comprehensive review of the current state of the art on the high-order finite difference,
finite volume, and finite element methods for hyperbolic conservation laws; see also
[17, 26].
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Our motivation is to consider schemes designed to be used in conjunction with
appropriate mesh refinement. It is conceivable that successful adaptive schemes may
not need to be stabilized by using extra stabilization operators (such as limiters or
shock capturing terms) accounting in turn for stabilization by the natural diffusion or
relaxation mechanisms of the problem plus an appropriate mesh selection. A success-
ful application of this idea requires one to have at hand a stable, robust, and flexible
method. Indeed, toward this goal finite elements are a natural choice, since the devel-
opment of supportive structures (finite element spaces of any order, flexibility in mesh
construction, etc.) in adaptive finite element literature and software implementation
is at a remarkable level.

In this article we propose a class of finite element methods based on relaxation
models and address stability and convergence issues. For these relaxation finite ele-
ment schemes the stabilization mechanisms are the regularization by wave operators
(coming from the relaxation model) and appropriate mesh refinement in the shock
areas. Our adaptive finite element schemes are of the general type introduced in [4]
and further developed in [2, 3]. There, alternative methods and mesh refinement
strategies are extensively tested computationally. Preliminary results indicate that
the adaptive relaxation finite element schemes are a robust and reliable alternative
for shock computations.

1.1. Relaxation finite element approximations. Relaxation models that ap-
proximate (1.1) are the basis of our schemes. In particular, the model suggested in
[20],

∂t u +

d∑
j=1

∂xj
vj = 0,

∂t vi + Ai ∂xi u = −1

ε

(
vi − Fi(u)

)
, i = 1, . . . , d,

(1.2)

corresponds to the regularization of (1.1) by a wave operator of order ε. Here Ai are
symmetric, positive definite matrices with constant coefficients that are selected to
satisfy certain stability conditions, the subcharacteristic conditions; see [20, 43] and
the next sections. This relaxation model induces a regularization mechanism with
finite speed of propagation that results in a partial differential equation with linear
principal part. In return, the number of unknowns is increased. Nevertheless, in
schemes based on the discretization of (1.2) the extra cost is compensated for by the
simplicity and the natural implicit-explicit discretization that this model admits. The
relaxation finite element schemes are based on the direct finite element approximation
of (1.2).

Let Th = {K} be a decomposition of R
d into elements with the usual properties

[7]. We use the notation hK = diam (K), h= supK∈Th
hK < 1, and h= minK∈Th

hK .
The standard conforming finite element space Sk is defined by

Sk = {φ ∈ C0 (Rd)n : φ |K∈ Pk, K ∈ Th, φ |ΩC ≡ 0}.(1.3)

Here we assume that the initial values have compact support and thus, for all t ∈ [0, T ],
our solution will vanish outside some compact set Ω ⊂ R

n. Clearly, Sk ⊂ H1
0 (Ω); see

[7] for the approximation properties of Sk into Sobolev spaces. Further, we introduce
a finite element space consisting of piecewise discontinuous polynomials:

Vk−1 = {ψ ∈ L2(Rd)n : ψ |K ∈ Pk−1, K ∈ Th, ψ |ΩC ≡ 0}.(1.4)

By construction ∂xiφ ∈ Vk−1 for all φ ∈ Sk.
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The schemes under consideration are obtained by a direct discretization (without
adding additional diffusion terms) of (1.2). The approximation of u is sought in the
space Sk and the approximations of the relaxation variables vi in Vk−1; that is, find
(uh, vh,1, . . . , vh,d) : (0, T ] → Sk × (Vk−1)

d such that

(∂t uh, φ) −
d∑

j=1

(vh,j , ∂xj φ) = 0 ∀ φ ∈ Sk,

(∂t vh,i, ψ) + (Ai ∂xi
uh, ψ) = −1

ε

(
vh,i − Fi(uh), ψ

)
∀ ψ ∈ Vk−1, i = 1, . . . , d,

(1.5)

with initial conditions uh(0) = ΠSu0 and vh,i(0) = ΠV Fi(u0), where ΠS and ΠV are
nodal interpolants on Sk and Vk−1, respectively. We note that (1.5) is a semidiscrete
scheme since we have discretized only the spatial variable, in the sense that for any
fixed t ∈ [0, T ], uh(·, t) ∈ Sk. In section 2 we show that if uh solves (1.5), then it
satisfies

(∂t uh, φ) +

d∑
i=1

(
∂xi

Fi(uh), φ
)

+ ε

(
(∂tt uh, φ) +

d∑
i=1

(Ai ∂xi uh, ∂xi φ)

)
= 0 ∀φ ∈ Sk.

(1.6)

In the stability analysis we work with (1.6) but note that (1.5) is better suited to
explicit-implicit one-step discretizations in time. Time discretizations based on (1.6)
are also possible; see section 3.

The method is comparable, in terms of computational performance, with the fully
conforming discretization of the relaxation model considered in [4]: find (uh, vh,1, . . . ,
vh,d) : (0, T ] → (Sk)

d+1 such that

(∂t uh, φ) −
d∑

j=1

(vh,j , ∂xj
φ) = 0 ∀ φ ∈ Sk,

(∂t vh,i, ψ) + (Ai ∂xi
uh, ψ) = −1

ε

(
vh,i − Fi(uh), ψ

)
∀ ψ ∈ Sk, i = 1, . . . , d.

(1.7)

The corresponding one field equation to (1.7) takes the form

(∂t uh, φ) +

d∑
i=1

(
∂xiP Fi(uh), φ

)
,

+ ε

(
(∂tt uh, φ) +

d∑
i=1

(Ai P ∂xi uh, P ∂xi φ)

)
= 0 ∀φ ∈ Sk,

(1.8)

where P is the L2-projection operator onto Sk. Note that, when discretizing (1.7) in
time with an explicit scheme, the computation of uh will require the inversion of d+1
systems with the same mass matrix. The same procedure in (1.5) will require only
the inversion of one mass matrix.

Based on the semidiscrete schemes one can devise various one-step implicit-
explicit Runge–Kutta time discretizations [40, 4, 2, 3]. In the following sections we
analyze the stability properties of semidiscrete as well as fully discrete schemes.



1360 C. ARVANITIS, C. MAKRIDAKIS, AND A. E. TZAVARAS

1.2. Stabilization by mesh refinement. Schemes (1.5) and (1.7) are indeed
simple, but the relaxation mechanism alone does not provide the necessary stabiliza-
tion required in the shock regions. Indeed, this is confirmed by coarse mesh numerical
experiments; see section 6 and [4]. This also becomes evident by further examination
of properties of the schemes. Consider the one-space dimensional (d = 1) system

∂tu + ∂xF (u) = 0, x ∈ R, t > 0, u = u(x, t) ∈ R
n,

(1.9)
u(·, 0) = u0(·)

with u0 of compact support and the associated finite element relaxation scheme.
Following the argument in [4], it is seen that the effective equation of both schemes
(1.5) and (1.7) in the case n = 1, d = 1, q = 1 is

∂tu + F (u)x + ε
[
∂ttu−A∂xxu

]
+ β h2

locF (u)xxx = 0(1.10)

for some positive constant β. As expected, the finite element discretization induces a
dispersion term which is linear in the flux variable. Applying the Chapman–Enskog
expansion to (1.10) we obtain

∂tu + F (u)x − ε∂x
(
(c2 − F ′(u)2) ∂xu

)
+ β h2

locF (u)xxx = 0.

It is evident that to exclude approximations with oscillatory character near shocks or
to avoid computing nonentropic solutions, the diffusion term should be dominant; see
the relevant numerical example in section 6 and the literature on diffusion-dispersion
approximations of conservation laws [28, 29]. This will enforce a condition of the form

hloc < o(ε),(1.11)

where hloc is the local mesh size close to the shock. On the other hand, the theo-
retical analysis in sections 2–4 provides convergence results under the slightly weaker
condition

hloc < γ ε(1.12)

for some constant γ. That is, the convergence results include even certain cases per-
taining to nonclassical shocks. However, in practice typically mesh adaptivity se-
lects the entropic solution, since it applies mesh refinement in a neighborhood of the
shock. The extensive numerical experiments in [4, 2] and section 6 show that appro-
priate mesh refinement indeed stabilizes in a robust way the finite element relaxation
schemes. Since the focus of this paper is the theoretical justification of the above
schemes, we will not insist on the important problem of identifying appropriate mesh
refinement strategies and refer to [4, 2, 3].

1.3. Stability and related properties. In what follows, we investigate the
theoretical properties of the relaxation finite element schemes (1.5). It is shown that
for a wide class of one-dimensional but also of multidimensional systems (1.1), the
schemes are stable in the sense that they satisfy certain strong dissipation estimates;
see Propositions 2.1, 2.3, 2.6, 3.1, 3.3, and 3.5. Similar estimates are satisfied by the
relaxation model (1.2) [43, 18]. The strong dissipation estimates for relaxation approx-
imations introduced in [43] are a basic tool in our analysis. In addition, nonstandard
stability estimates for appropriate finite element projections are used in an essential
way. The stability results are of interest since they justify the dissipative character of
our schemes.
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The stability estimates will also be used in conjunction with the compensated
compactness framework to derive compactness conditions. Recall that a pair of func-
tions η = η(u), q = q(u) are called an entropy-entropy flux pair (or entropy pair for
short) if (η, q) solve the linear hyperbolic system

∇q = ∇η · ∇F.

The existence and properties of entropy pairs have been extensively investigated (e.g.,
[15, 38]), and entropy pairs are used to describe the compactness properties of ap-
proximate solutions for certain one-dimensional systems of two conservation laws
[42, 15, 38, 37].

In fact, we show that for the finite element relaxation scheme (1.5) with d = 1,
the approximations uh satisfy

∂t η(uh) + ∂x q(uh) ⊂ compact set of H−1
loc(O).

This condition suffices to apply the compensated compactness program for certain
one-dimensional equations and systems (see section 4) and to obtain convergence for
semidiscrete or fully discrete finite element schemes. Similar results appear to hold
for the fully conforming methods (1.7), (1.8), but their verification requires additional
technical estimations. This is largely because the presence of the projection P in the
one field equation (1.8) will result in extra error terms in the stability analysis. This
case will not be pursued here.

The estimates derived in the following sections are rather complicated. To focus
on the ideas and to present the material in a readable way, we have chosen to work
step by step to distinguish the cases:

• semidiscrete schemes with symmetric flux F ′,
• semidiscrete schemes and the system admits a convex entropy function,
• fully discrete schemes with symmetric flux F ′,
• fully discrete schemes and the system admits a convex entropy function, and
• semidiscrete and fully discrete schemes for multidimensional systems that

admit a convex entropy function.
In summary, the results provide theoretical support to the use of finite element relax-
ation schemes by establishing stability for a wide class of systems and convergence in
various cases.

1.4. Error estimates for smooth solutions. Since the schemes are based on
the discretization of model (1.2), in section 5 we address the problem of error estimates
for relaxation approximations. We consider a system endowed with a convex entropy.
Let u be a smooth solution of (1.1) defined on a maximal interval of existence, and
let Uε be the smooth solution of the relaxation approximation (1.2). We show that

‖Uε(t) − u(t)‖L2 ≤ C(t, u) ε,(1.13)

where the constant C(t, u) depends on a strong norm of u and blows up at the critical
time. The proof is based on a novel application of an idea of Dafermos [14, Thm.
5.2.1] to an error estimation. The difficulty posed by the relaxation approximation is
handled by introducing a modified functional, corresponding to the relative entropy

HR(u, Uε) = η
(
Uε + ε∂t(Uε − u)

)
− η(u) − η′(u)

(
Uε − u + ε∂t(Uε − u)

)
(1.14)

in the place of

H(u,w) = η(w) − η(u) − η′(u)(w − u)(1.15)

used in [14]; see section 5 for details.
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The finite element relaxation schemes are related to the central difference schemes
of [33, 27]. One of their main common properties is that both schemes are Riemann
solvers free and thus they combine high accuracy with simplicity. Finite element meth-
ods for hyperbolic conservation laws were considered in [21, 39, 22, 23, 19, 12, 10].
The theoretical properties of the streamline diffusion method were analyzed exten-
sively (convergence, error estimates) in the scalar case [21, 39, 9]. The case of systems
admitting entropy pairs is considered in [23] and it is shown that, for a streamline
diffusion shock capturing method defined using the entropy variables, the bounded
a.e. converging limits of approximations are weak entropy solutions of the system.

Finite element methods with discontinuous elements were proposed in [19] and
[12]. In [12] stabilization is enforced by applying projection operators based on lim-
iters. The above methods use piecewise polynomials of arbitrary degree and are
formally of high order. Adaptive finite element methods based on a posteriori esti-
mates have been considered in [22] for the ε-viscous approximation of one-dimensional
systems of conservation laws. There exists a large literature on finite difference relax-
ation schemes; see, e.g., [20, 1, 25, 18] and [24] for relaxation schemes on unstructured
grids.

The article is organized as follows. In section 2 we consider semidiscrete schemes
and show stability and compactness of the dissipation measure for (i) case d = 1, F ′

is symmetric; (ii) case d = 1 and the system admits a convex entropy; and (iii) the
multidimensional case. Section 3 is devoted to the analysis of implicit-explicit fully
discrete schemes. The proofs are presented in a compact way, avoiding repetition of
arguments already used in the semidiscrete case. In section 4 we discuss issues related
to the application of compensated compactness to certain specific systems in order to
conclude convergence of the schemes to a weak solution of (1.1). Section 5 is devoted
to the error estimation between a smooth solution of (1.1) and the relaxation model
(1.2). We conclude in section 6 with a discussion of implementation issues and present
indicative examples reflecting the numerical performance of the method in two test
cases.

2. Semidiscrete schemes: Stability estimates. We start by showing that
the scheme (1.5) admits a field equation that is in fact a standard finite element
discretization of the conservation law perturbed by a wave operator.

Lemma 2.1. If uh solves (1.5), then it satisfies (1.6).
Proof. Select ψ = ∂xi

φ, φ ∈ Sk in (1.5). Since ψ ∈ Vk−1 we have on summing
with respect to i, i = 1, . . . , d,

d∑
i=0

(∂t vh,i, ∂xi
φ) +

d∑
i=1

(Ai ∂xi
uh, ∂xi

φ) = −1

ε

d∑
i=0

(vh,i − Fi(uh), ∂xi
φ).

Differentiating the first equation of (1.5) with respect to t we get

(∂tt uh, φ) −
d∑

j=1

(∂tvh,j , ∂xjφ) = 0.

Hence,

ε(∂tt uh, φ) + ε

d∑
i=1

(Ai ∂xi uh, ∂xi φ) +

d∑
i=1

(vh,i, ∂xi φ) −
d∑

i=1

(
Fi(uh), ∂xi φ

)
= 0.
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Then by (1.5) we get the desired relation.
In what follows, we establish stability properties for the finite element scheme

(1.6). The stability estimates are proved consecutively for (i) case d = 1, F ′, sym-
metric; (ii) case d = 1, and the system admits a convex entropy; and (iii) the multi-
dimensional case.

The one-dimensional semidiscrete finite element scheme takes the form

(∂t uh, φ) −
(
F (uh), ∂xφ

)
+ ε

(
(∂tt uh, φ) + (A∂xuh, ∂x φ)

)
= 0 ∀φ ∈ Sk.(2.1)

For (2.1), we also prove compactness of the dissipation measure so as to apply the
compensated compactness program and deduce convergence of the scheme in section 4.
In the proof we use Murat’s lemma [32].

Lemma 2.2 (see Murat [32]). Let O be an open subset of R
m and {φj} a bounded

sequence of W−1,p(O) for some p > 2. In addition let φj = χj + ψj , where {χj}
belongs in a compact set of H−1(O) and {ψj} belongs in a bounded set of the space
of measures M(O). Then {φj} belongs in a compact set of H−1(O).

2.1. The case d = 1 and F ′ is symmetric. Let φ = uh in (2.1) and use(
F (uh), ∂xuh

)
= 0 to get

∂t

[∫
Ω

(
1

2
|uh|2 + ε uh ∂tuh

)
dx

]
+ ε

∫
Ω

[A∂x uh · ∂x uh − (∂tuh)2]dx = 0.(2.2)

To estimate ε
∫
Ω
(∂tuh)2dx let φ = ∂tuh in (2.1). Then,

‖∂t uh‖2
L2 + (F ′(uh) ∂x uh, ∂t uh)

+ ε
1

2
∂t‖∂t uh‖2

L2 + ε
1

2
∂t(A∂x uh, ∂x uh) = 0.

(2.3)

Adding (2.2) with 2ε times (2.3) yields

1

2
∂t ‖uh + ε∂t uh‖2

L2 + ε (A∂x uh, ∂x uh) + 2ε(F ′(uh) ∂x uh, ∂t uh)

+ ε ‖∂t uh‖2
L2 +

1

2
ε2 ∂t

{
‖∂t uh‖2

L2 + 2(A∂x uh, ∂x uh)
}

= 0.

Since F ′ is symmetric, we have

‖∂xF (uh)‖2
L2 =

(
F ′2(uh)∂xuh, ∂xuh

)
,

and we obtain

1

2
∂t

{
‖uh + ε∂t uh‖2

L2 + ε2‖∂tuh‖2
L2 + 2ε2(A∂x uh, ∂x uh)

}
+ ε‖∂t uh + ∂xF (uh)‖2

L2 + ε
(
[A− F ′2(uh)]∂xuh, ∂xuh

)
= 0.

We conclude with the following.
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Proposition 2.1. Assume that F ′(u), A are symmetric and satisfy for some
ν > 0

A− F ′(u)2 ≥ ν I, u ∈ R
n.(2.4)

Then the finite element approximation (2.1) satisfies∫
Ω

(
|uh+ε ∂t uh|2 + ε2|∂t uh|2 + 2ε2A∂x uh · ∂x uh

)

+ 2

∫ t

0

∫
Ω

(
ε|∂tuh + F ′(uh)∂x uh|2 + ε ν|∂x uh|2

)

≤
∫

Ω

|u0
h + ε ∂t uh(0)|2 + ε2|∂t uh(0)|2 + 2ε2A∂x u0

h · ∂x u0
h =: C(u0

h).

In what follows we prove the next proposition.
Proposition 2.2. Let (η, q) be an entropy pair satisfying

‖η‖L∞ , ‖q‖L∞ , ‖η′‖L∞ , ‖η′′‖L∞ ≤ C.

Then, for h ≤ γ ε, there holds

η(uh)t + q(uh)x lies in a compact set of H−1
loc (R × R

+).

Proof. Let (η, q) be an entropy pair and φ ∈ C∞
c (R× [0,∞)) a test function, and

suppφ ⊂ Ω̃ × [0, T̃ ] =: Q. We denote by Π : L2(Ω) → Sk a projection operator
onto the finite element space of uh to be determined later. Using the definition of the
scheme we have(

η(uh)t + q(uh)x, φ
)

=
(
η′(uh)

[
uh,t + F ′(uh)uh,x

]
, φ

)
=

([
uh,t + F ′(uh)uh,x

]
,Π

(
η′(uh)φ

))
+
([

uh,t + F ′(uh)uh,x

]
, η′(uh)φ − Π(η′(uh)φ)

)
= − ε

(
A∂x uh,

[
Π
(
η′(uh)φ

)]
x

)
− ε

(
uh,tt,Π

(
η′(uh)φ

))
+
([

uh,t + F ′(uh)uh,x

]
, η′(uh)φ− Π

(
η′(uh)φ

))
.

(2.5)

We select now Π : L2(Ω) → Sk to be the L2-projection onto Sk. Π satisfies

(Πω, φ) = (ω, φ) ∀φ ∈ Sk, ω ∈ L2(Ω),(2.6)

‖Πω − ω‖L2(Ω) = inf
χ∈Sk

‖ω − χ‖L2(Ω) ≤ C h ‖ωx‖L2(Ω), ω ∈ H1(Ω),(2.7)

as well as the stability estimate [13]

‖(Πω)x‖L2(Ω) ≤ C‖ωx‖L2(Ω), ω ∈ H1(Ω).(2.8)

We are ready to bound the terms in the right-hand side of (2.5). Indeed, (2.8)
implies

(2.9)

ε
∣∣∣(A uh,x,

[
Π
(
η′(uh)φ

)]
x

)∣∣∣ ≤ ε C‖uh,x‖L2(Ω) ‖
(
η′(uh)φ

)
x
‖L2(Ω)

≤C
(
ε

∫
Ω

|uh,x|2
)
‖η′′‖L∞(Ω)‖φ‖C0(Ω) + ε1/2C

(
ε

∫
Ω

|uh,x|2
)1/2

‖η′‖L∞(Ω)‖φx‖L2(Ω).
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Next, since uh,tt ∈ Sk and by (2.6),

− ε

∫ t

0

∫
Ω

uh,tt Π
(
η′(uh)φ

)
dxds = −ε

∫ t

0

∫
Ω

uh,tt η
′(uh)φdxds

= ε

∫ t

0

∫
Ω

uh,t

(
η′(uh)φ

)
t
dxds + ε

∫
Ω

uh,t η
′(uh)φ

∣∣∣
s=0

dx− ε

∫
Ω

uh,t η
′(uh)φ

∣∣∣
s=t

dx.

By Proposition 2.1 we have

ε
∣∣∣∫

Ω

uh,t η
′(uh)φ(t)dx

∣∣∣ ≤ ε
(∫

Ω

u2
h,t

)1/2

‖η′‖L∞(Ω) ‖φ‖C0(Ω) m(Ω)1/2 ≤ CΩ‖φ‖C0(Ω),

(2.10)

and as before

ε
∣∣∣∫ t

0

∫
Ω

uh,t

(
η′(uh)φ

)
t
dxdt

∣∣∣ ≤ C
(
ε

∫ t

0

∫
Ω

|uh,t|2
)
‖η′′‖L∞(Q) ‖φ‖C0(Q)

+ ε1/2
(
ε

∫ t

0

∫
Ω

|uh,t|2
)1/2

‖η′‖L∞(Q) ‖φt‖L2(Q).

(2.11)

To estimate the last term in (2.5), note that η′(uh)φ ∈ H1(Ω) and thus

‖η′(uh)φ− Π
(
η′(uh)φ

)
‖L2(Ω) ≤ Ch‖

(
η′(uh)φ

)
x
‖L2(Ω) + Ch‖η′(uh)φx‖L2(Ω)

≤ Ch‖η′′‖L∞(Ω) ‖uh,x‖L2(Ω) ‖φ‖C0(Ω) + Ch‖η′‖L∞(Ω) ‖φx‖L2(Ω).

By (2.4) we have ‖F ′(uh)2‖L∞(Ω) ≤ C; therefore∣∣∣([uh,t + F ′(uh)uh,x

]
, η′(uh)φ− Π

(
η′(uh)φ

))∣∣∣
≤ C

(
h

∫
Ω

(|uh,t|2dx + |∂xuh|2)dx
)
‖φ‖C0(Ω)

+ h
(∫

Ω

(|uh,t|2 + |∂xuh|2) dx
)1/2

‖φx‖L2(Ω).

(2.12)

Combining (2.9)–(2.12) and using Murat’s Lemma 2.2 (in our case, χh → 0 in H−1

and is thus precompact in H−1), we complete the proof.

2.2. The case d = 1, and the system admits a convex entropy. The case
that F ′ is not necessarily symmetric but the system is equipped with a convex entropy
η is examined next. In this case the system is symmetrizable. The finite element
approximations (1.5) enjoy the same a priori bounds with the continuous solution of
the relaxation model considered in [43]. Indeed, the following proposition holds.

Proposition 2.3. Let (1.9) be equipped with a strictly convex entropy η(u)
satisfying for some α > 0

1

α
I ≤ η′′(u) ≤ α I, u ∈ R

n.(2.13)

Assume for some M > 0 we have |F ′(u)| ≤ M for u ∈ R
n and that the positive

definite, symmetric matrix A is selected to satisfy, for α = 2αmax{β, 1}, β as in
(2.22) and some ν > 0,

1

2

(
(η′′(u)A)T + η′′(u)A

)
− αF ′(u)TF ′(u) ≥ ν I for u ∈ R

n.(2.14)
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Then there is γ = γ(α, β,M, ν) > 0 such that, for

h ≤ γ ε(2.15)

and for some positive constants c1, c2, and c3, the finite element approximation (2.1)
satisfies the stability estimate∫

Ω

(
η(uh + ε ∂t uh) + ε2c1

[
|∂t uh|2 + A∂x uh · ∂x uh

])
dx

+ εc2

∫ t

0

∫
Ω

(
|∂tuh + F ′(uh)∂x uh|2 + |∂x uh|2 + |∂tuh|2

)
dxdt

≤
∫

Ω

(
η(u0

h + ε ∂t uh(0)) + ε2c3
[
|∂t uh(0)|2 + A∂x u0

h · ∂x u0
h

])
dx.

(2.16)

Remark 2.1. We are interested here in data and associated finite element approx-
imations uh that are of compact support. It is thus natural to normalize η so that
η(0) = 0 and η′(0) = 0. This can always be achieved, because if (η, q) is an entropy
pair, then

η(u) − η(0) − η′(0)u, q(u) − q(0) − η′(0)(F (u) − F (0))

is also an entropy pair. In view of (2.13), the normalized η is equivalent to the
Euclidean norm, η(u) ∼ |u|2. Thus the stability framework in Proposition 2.3 is that
of L2.

Using the stability estimate, it is easy to see that strong convergence of the finite
element approximations gives a weak solution that satisfies the integral version of the
entropy inequality.

Proposition 2.4. Under the hypotheses of Proposition 2.3, if

uh → u in L2
x,t and a.e.,(2.17)

then u is a weak solution of (1.9) that satisfies∫
Ω

η(u(x, t))dx ≤
∫

Ω

η(u0(x))dx for a.e. t.(2.18)

Proof. We assume with no loss of generality that F (0) = 0 and note that |F (u)| ≤
M |u|. Let u0 ∈ H1

0 and be of compact support, let v0 = F (u0) ∈ H1
0 and be of

compact support, and define the approximations u0
h ∈ Sk and v0

h ∈ Vk−1 defined by
v0
h = ΠVk−1

F (u0
h) with ΠVk−1

the L2-projection. Let uh = uh(x, t), vh = vh(x, t) be
the solution of the semidiscrete scheme. Note that ∂tuh(0) = ΠSk

∂xF (u0
h), where ΠSk

is the L2-projection onto Sk.
For φ(x) ∈ Sk and θ(t) ∈ C∞

c ([0,∞)) we have

−
∫ t

0

∫
Ω

[uhφ∂tθ + F (uh)∂xφθ − εA∂xuh · ∂xφθ + ε∂tuh · φ∂tθ]dxdt(2.19)

−
∫

Ω

(u0
hφθ(0) + ε∂tuh(0)φθ(0))dx = 0.

Note that

uh → u, F (uh) → F (u) in L2
x,t and a.e.,

u0
h → u0, ε∂tuh(0) → 0 in L2

x and (along a subsequence) a.e.,

ε
1
2 ‖∂xuh‖L2

x,t
+ ε

1
2 ‖∂tuh‖L2

x,t
≤ O(1).



FINITE ELEMENT SCHEMES FOR CONSERVATION LAWS 1367

Using that tensor products φ(x) ⊗ θ(t), φ ∈ Sk, θ ∈ C∞
c ([0,∞)) are dense as h → 0

in C2(Ω̄) for Ω bounded, we pass to the limit in (2.19) and obtain that u is a weak
solution of (1.9). Using Fatou’s lemma, we pass to the limit ε, h → 0 in (2.16) to
deduce ∫

Ω

η(u(x, t)) dx ≤ lim inf
h→0, ε→0

∫
Ω

η(uh + ε∂tuh) dx ≤
∫

Ω

η(u0(x)) dx

and conclude.
To show the stability estimate we use the elliptic projection operator onto Sk and

its approximation and stability properties. To this end let P1 : H1
0 → Sk be the Ritz

(elliptic) projection defined by

(A∂x P1v, ∂xφ) = (A∂x v, ∂xφ) ∀φ ∈ Sk, v ∈ H1
0 .(2.20)

It is a standard result that P1 satisfies

‖P1ω − ω‖L2(Ω) ≤ C h ‖ωx‖L2(Ω), ω ∈ H1
0 ,

‖(P1ω)x‖L2(Ω) ≤ C‖ωx‖L2(Ω), ω ∈ H1
0 .

(2.21)

The second bound is a direct consequence of the definition and the first is obtained by
a standard duality argument using once more the second bound (see [7, Thm. 5.4.8]).
The following nonstandard stability property of P1 will be crucial in the proof of
Proposition 2.3. It uses in an essential way the stability analysis of the finite element
method by mesh-dependent norms due to Babuška and Osborn [5].

Lemma 2.3. Let η be a strictly convex entropy and vh ∈ Sk. Under hypothesis
(2.13), there exists a positive constant β such that

(vh, P1 [ η′′(w)(vh) ] ) ≤ β ‖η′′(w)‖L∞(Ω) ‖vh‖2
L2(Ω) ∀w ∈ Sk.(2.22)

Proof. It is known that P1 is not stable with respect to L2(Ω) [5]. Its stability
with respect to the mesh-dependent L2-like norm

‖v‖0,h,Ω =

(
‖v‖2

L2(Ω) +
∑
j

δj |v(xj)|2
)1/2

,(2.23)

where xj are the nodes of the partition and δj = (xj+1 − xj−1)/2 is as shown in [5],
and

‖P1 v‖0,h,Ω ≤ β1‖v‖0,h,Ω,(2.24)

where β1 is a positive constant independent of h. Thus, (2.24) implies

‖P1 [ η′′(w)(vh) ] ‖L2(Ω) ≤ β1‖η′′(w)‖L∞(Ω) ‖vh‖0,h,Ω.(2.25)

But in the finite element space local inverse inequalities imply

‖vh‖0,h,Ω ≤ β2‖vh‖L2(Ω) ∀vh ∈ Sk,(2.26)

with β2 independent of h [7, 5]. Therefore, (2.22) follows with β = β1 β2.
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Proof of Proposition 2.3. The finite element approximation uh satisfies (2.1).
Setting φ = P1 η

′(uh) and using (2.20), we obtain after a rearrangement

(∂t uh, η
′(uh))+

(
∂xF (uh), η′(uh)

)
+ ε(∂ttuh, P1η

′(uh)) + ε(A∂xuh, ∂xη
′(uh))

= (∂t uh, η
′(uh) − P1 η

′(uh))+
(
∂xF (uh), η′(uh) − P1 η

′(uh)
)

=: Z1 + Z2.

(2.27)

The terms in the right-hand side will be estimated in what follows. First we ex-
amine the stability properties of the left-hand side. Since P1 commutes with time
differentiation,

ε(∂tt uh, P1 η
′(uh)) = ε∂t (∂t uh, P1 η

′(uh)) − ε(∂t uh, P1 [ η′′(uh)∂t uh ])

= ε∂t (∂t uh, η
′(uh)) − ε(∂t uh, P1 [ η′′(uh)∂t uh ])

− ε∂t (∂t uh, η
′(uh) − P1η

′(uh)).

(2.28)

We thus have

∂t

∫
Ω

η(uh)+

∫
Ω

∂xq(uh) + ε∂t (∂t uh, η
′(uh))

+ ε(A∂x uh, η
′′(uh)∂x uh) − ε(∂t uh, P1 [ η′′(uh)∂t uh ])

= Z1 + Z2 + Z3,

(2.29)

where the new term Z3 is given by

Z3 = ε∂t (∂t uh, η
′(uh) − P1η

′(uh)) = ε∂tZ1.(2.30)

As in [43] the following identity will be important:∫
Ω

η(uh + ε∂t uh)dx =

∫
Ω

η(uh)dx + ε(η′(uh), ∂t uh)

+ ε2

(
∂t uh,

{∫ 1

0

∫ s

0

η′′(uh + ε τ∂t uh)dτds

}
∂t uh

)
.

(2.31)

It is evident that we need to estimate ε(∂tuh, P1[ η
′′(uh)∂tuh ]). This is done by

Lemma 2.3, which gives

ε|(∂t uh, P1 [ η′′(uh)∂t uh ])| ≤ εβ ‖η′′(uh)‖L∞(Ω) ‖∂t uh‖2
L2(Ω).(2.32)

We proceed to handle ε
∫
Ω
(∂tuh)2dx. Observe that setting φ = ∂tuh in (2.1) gives

(2.33)

‖∂t uh‖2
L2(Ω) + (F ′(uh)∂x uh, ∂t uh) + ε

1

2
∂t‖∂t uh‖2

L2(Ω) + ε
1

2
∂t(A∂x uh, ∂x uh) = 0.

Next, define

β = β ‖η′′(uh)‖L∞(Ω),

η′′ =

{∫ 1

0

∫ s

0

η′′(uh + ε τ∂t uh)dτds

}
,

α = max{2β, 2α}

(2.34)
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and note that β = βα, α = 2αmax{1, β}. After summing (2.29) with 2ε α times
(2.33), we arrive at

(2.35)

∂t

∫
Ω

(
η(uh + ε∂t uh) + ε2∂tuh ·

{
α I − η′′}∂tuh + ε2αA∂x uh · ∂xuh

)
dx− ε∂tZ1

+ ε (α− β)‖∂t uh‖2
L2(Ω) + εα‖∂t uh‖2

L2(Ω) + 2εα(F ′(uh)∂xuh, ∂tuh )

+ ε(A∂x uh, η
′′(uh)∂x uh) ≤ Z1 + Z2.

But since

‖∂t uh‖2
L2(Ω) + 2(F ′(uh) ∂x uh, ∂t uh )

= ‖∂tuh + F ′(uh)∂xuh‖2
L2(Ω) − (F ′(uh)TF ′(uh)∂xuh, ∂x uh)

(2.36)

and

(A∂x uh, η
′′(uh)∂x uh) =

1

2

((
η′′(uh)A + (η′′(uh)A)T

)
∂x uh, ∂x uh

)
,

we conclude by (2.13) and (2.14) that

(2.37)

∂t

{∫
Ω

η(uh + ε∂tuh)dx + ε2α‖∂tuh‖2
L2(Ω) + ε2α(A∂xuh, ∂xuh) − εZ1

}
+ εβ‖∂t uh‖2

L2(Ω) + ε α ‖∂t uh + F ′(uh) ∂x uh‖2
L2(Ω) + εν ‖∂x uh‖2

L2(Ω)

≤ Z1 + Z2.

At this point α, β, and ν are fixed. We now turn to the estimation of the Zi.
Observe that, by (2.13) and (2.21),

Z1 = (∂t uh, η
′(uh) − P1 η

′(uh))

≤ C h ‖∂t uh‖L2(Ω) ‖∂x η′(uh)‖L2(Ω)

≤ C h ‖∂t uh‖L2(Ω) ‖η′′(uh)‖L∞(Ω) ‖∂x uh‖L2(Ω)

≤ Chα ‖∂t uh‖L2(Ω) ‖∂x uh‖L2(Ω),

(2.38)

while

Z2 =
(
∂xF (uh), η′(uh) − P1 η

′(uh)
)

≤ C h ‖∂x uh‖L2(Ω) ‖F ′(uh)‖L∞(Ω) ‖η′′(uh)‖L∞(Ω) ‖∂x uh‖L2(Ω)

≤ C hαM ‖∂x uh‖2
L2(Ω).

(2.39)

Next, we select h so that (i) the quadratic form in the first term of (2.37) is positive
definite, and (ii) the terms Z1 and Z2 on the right of (2.37) can be absorbed to the
left. This can be done provided h ≤ γε for some γ = γ(α, β,M, ν) positive and small.
This gives (2.16) and concludes the proof.

The compactness of the dissipation measure for the scheme is obtained by an
argument similar to that in the symmetric case.

Proposition 2.5. For entropy pairs (η, q) satisfying

‖η‖L∞ , ‖q‖L∞ , ‖η′‖L∞ , ‖η′′‖L∞ ≤ C(2.40)
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and for h ≤ γ ε,

η(uh)t + q(uh)x lies in a compact set of H−1
loc (R × R

+).(2.41)

Remark 2.2. Proposition 2.5 and the analogous statement for the symmetric case
(Proposition 2.2) state that for entropy pairs satisfying (2.40) the entropy dissipation
measure is controlled. They are used in section 4 to prove compactness of relaxation
finite element approximations for the system (4.1). We note that entropy pairs (η, q)
that satisfy (2.40) are constructed in [38] for the system (4.1) under hypotheses (4.3)–
(4.4).

2.3. The multidimensional case. Next we consider multidimensional systems
(1.1) for which the system is endowed with a uniformly convex entropy η. Let
(q1, . . . , qd) be the associated entropy flux, and

q′i(u) = η′(u)F ′
i (u), i = 1, . . . , d,

η′′(u)F ′
i (u) = F ′

i (u)T η′′(u), i = 1, . . . , d.
(2.42)

Still, in this case the finite element approximations (1.5) satisfy similar a priori bounds
with the one-dimensional case, provided that each Ai is chosen to satisfy certain
subcharacteristic conditions.

Proposition 2.6. Assume that (1.1) is equipped with a strictly convex entropy
η(u) that satisfies for some α > 0

1

α
I ≤ η′′(v) ≤ α I, v ∈ R

n;(2.43)

let α = 2αmax{1, β} with β as in (2.46), and assume that the symmetric, positive
definite matrices Ai satisfy, for some ν > 0,

d∑
j=1

1

2

(
Ajη

′′(v) + (Ajη
′′(v))T

)
ξj · ξj − α

∣∣∣∣∣∣
d∑

j=1

F ′
j(v)ξj

∣∣∣∣∣∣
2

≥ ν

d∑
j=1

|ξj |2

∀ξ1, . . . , ξd ∈ R
n, v ∈ R

n.

(2.44)

If h ≤ γε for some γ > 0, then the finite element approximations (1.5) satisfy, for
some c1, c2 > 0, the stability estimate

∫
Ω

(
η(uh + ε∂tuh) + ε2c1

[
|∂tuh|2 +

d∑
i=1

Ai∂xiuh · ∂xiuh

])

+ εc2

∫ t

0

∫
Ω

(∣∣∣∣∣∂tuh +

d∑
i=1

F ′
i (uh)∂xuh

∣∣∣∣∣
2

+

d∑
i=1

|∂xi
uh|2 + |∂tuh|2

)

≤ C(u0
h, ∂tuh(0) ).

The proof is entirely similar to the one-dimensional case presented before and
therefore it will be omitted. Still, an essential tool in the analysis will be the elliptic
projection P1 : H1 → Sk defined by

d∑
i=1

(Ai∂xi
P1v, ∂xi

φ) =

d∑
i=1

(Ai∂xi
v, ∂xi

φ) ∀φ ∈ Sk.(2.45)
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The multidimensional analogue of Lemma 2.3 still holds:

(vh, P1 [ η′′(uh)(vh) ] ) ≤ β ‖η′′(w)‖L∞(Ω) ‖vh‖2
L2(Ω).(2.46)

Its proof is based on the stability analysis of the finite element method by mesh-
dependent norms [6]; see [16] for related results on stability of the elliptic projection
in L2(Ω). The quasi-uniformity assumption on the mesh in [6] needed to verify (2.24)
can be relaxed along the lines of arguments presented in [16].

3. Fully discrete schemes. There are many alternative ways to perform the
time discretization of (1.5) at the discrete time nodes 0, κ, 2κ, . . . . In this section
we consider a simple implicit-explicit time discretization. Seek (un

h, v
n
h,1, . . . , v

n
h,d) ∈

Sk × V d
k−1, n = 0, 1, . . . ,

(
un+1
h − un

h

κ
, φ

)
−

d∑
i=1

(vnh,i, ∂xiφ) = 0 ∀φ∈Sk,

(
vn+1
h,i − vnh,i

κ
, ψ

)
+ (Ai∂xiu

n+1
h , ψ) = −1

ε

(
vn+1
h,i − Fi(u

n+1
h ), ψ

)
,

∀ψ∈Vk−1, i = 1, . . . , d,

(3.1)

where u0
h = u0, v0

h,i = Fi(u0), and i = 1, . . . , d.
When d = 1, the scheme takes the form(

un+1
h − un

h

κ
, φ

)
− (vnh , ∂xφ) = 0 ∀φ∈Sk,(

vn+1
h − vnh

κ
, ψ

)
+ (A∂xu

n+1
h , ψ) = −1

ε

(
vn+1
h − F (un+1

h ), ψ
)

∀ψ∈Vk−1.

(3.2)

3.1. Properties of the scheme. For any sequence {Y n} ⊂ L2(Ω), define the
operators ∂t, ∂tt:

∂tY
n :=

1

κ
(Y n+1 − Y n), ∂ttY

n := ∂t∂tY
n.

Then the centered difference quotient that corresponds to the second time derivative
at tn is

∂ttY
n−1 =

1

κ2
(Y n+1 − 2Y n + Y n−1).

The following properties will prove useful (L2 stands for L2(Ω)):

(∂tY
n, Y n+1) =

1

2κ

[
‖ Y n+1‖2

L2 − ‖ Y n‖2
L2 + ‖ Y n+1 − Y n‖2

L2

]
=

1

2

[
∂t‖ Y n‖2

L2 + κ‖ ∂tY
n‖2

L2

]
,

(3.3)

(∂tY
n, Y n) =

1

2

[
∂t‖ Y n‖2

L2 − κ‖ ∂tY
n‖2

L2

]
,(3.4)

(∂ttY
n, ∂tY

n+1) = (∂tW
n, Wn+1), Wn := ∂tY

n, n = 0, 1, 2, . . . ,

=
1

2

[
∂t‖ ∂tY

n‖2
L2 + κ‖ ∂ttY

n‖2
L2

]
.

(3.5)
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In addition one can verify that

(∂ttY
n−1, Y n+1) = κ(∂ttY

n−1, ∂tY
n)

+∂t(∂tY
n−1, Y n) − ‖ ∂tY

n‖2
L2 .

(3.6)

Now we have the following lemma.
Lemma 3.1. If un

h solves (3.1), then it satisfies

(∂tu
n
h, φ) −

d∑
i=1

(Fi(u
n
h), ∂xiφ) + ε

(
(∂ttu

n−1
h , φ) +

d∑
i=1

(Ai∂xiu
n
h, ∂xiφ)

)
= 0.(3.7)

Proof. For φ∈Sk, we see that the solution of (3.1) satisfies

d∑
i=1

(∂tv
n−1
h,i , ∂xi

φ) =

d∑
i=1

(
vnh,i − vn−1

h,i

κ
, ∂xi

φ

)

(3.1)
=

(
∂tu

n
h − ∂tu

n−1
h

κ
, φ

)
= (∂ttu

n−1
h , φ).

Next, summing i = 1, . . . , d, (3.1), and using that ∂xiφ∈ Vk−1, we get

0 =

d∑
i=1

(vnh,i, ∂xi
φ) −

d∑
i=1

(Fi(u
n
h), ∂xiφ) + ε

d∑
i=1

(∂tv
n−1
h,i + Ai∂xi

un
h, ∂xiφ)

(3.1)
= (∂tu

n
h, φ) −

d∑
i=1

(Fi(u
n
h), ∂xiφ) + ε

d∑
i=1

(∂tv
n−1
h,i + Ai∂xi

un
h, ∂xi

φ)

(3.8)

and the result follows.
In the case d = 1, we have

(∂tv
n
h , ∂xφ) = (∂ttu

n
h, φ),(3.9)

(∂tu
n
h, φ) − (F (un

h), ∂xφ) + ε
(
(∂ttu

n−1
h , φ) + (A∂xu

n
h, ∂xφ)

)
= 0.(3.10)

3.2. The case d = 1 and F ′ symmetric. Let φ = 2un+1
h +4ε ∂tu

n
h, in (3.10).

Then

0 = 2(∂tu
n
h, u

n+1
h ) + 2(∂xF (un

h), un+1
h )

+ 2ε(∂ttu
n−1
h , un+1

h ) + 2ε(A ∂xu
n
h, ∂xu

n+1
h )

+ 4ε(∂tu
n
h, ∂tu

n
h) + 4ε(∂xF (un

h), ∂tu
n
h)

+ 4ε2(∂ttu
n−1
h , ∂tu

n
h) + 4ε2(A ∂xu

n
h, ∂x∂tu

n
h).

(3.11)

Using the properties of the discrete time operators listed above, the terms of (3.11)
are handled as follows. First note

2(∂tu
n
h, u

n+1
h ) =∂t‖ un

h‖2
L2 + κ‖ ∂tu

n
h‖2

L2 .

Also,

2(∂xF (un
h), un+1

h ) = 2 κ(F ′(un
h) ∂xu

n
h, ∂tu

n
h).
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The next term is estimated as

2ε(∂ttu
n−1
h , un+1

h )
(3.6)
= 2ε∂t(∂tu

n−1
h , un

h) − 2ε‖∂tu
n
h‖2

L2 + 2εκ(∂ttu
n−1
h , ∂tu

n
h)

≥ 2ε∂t(∂tu
n−1
h , un

h)−2ε‖∂tu
n
h‖2

L2−2ε2κ‖ ∂ttu
n−1
h ‖2

L2−
κ

2
‖∂tu

n
h‖2

L2 .

In addition,

2ε(A ∂xu
n
h, ∂xu

n+1
h ) = 2ε(A ∂xu

n
h, ∂xu

n
h) + 2ε κ(A ∂xu

n
h, ∂x∂tu

n
h).

For the terms with coefficient 4ε we first note

4ε2(∂ttu
n−1
h , ∂tu

n
h)

(3.5)
= 2ε2 ∂t‖ ∂tu

n−1
h ‖2

L2 +2ε2 κ‖ ∂ttu
n−1
h ‖2

L2

and

4ε2(A ∂xu
n
h, ∂x∂tu

n
h) = 4ε2(Wn, ∂tW

n), Wn := A1/2∂xu
n
h, n = 0, 1, 2, . . . ,

(3.4)
= 2ε2 ∂t‖ Wn‖2

L2 −2ε2 κ‖ ∂tW
n‖2

L2

= 2ε2 ∂t(A ∂xu
n
h, ∂xu

n
h) − 2ε2 κ(A ∂x∂tu

n
h, ∂x∂tu

n
h).

Summarizing, the terms with discrete time derivative that will appear in (3.11) are

∂t

[
‖ un

h‖2
L2 + 2ε(∂tu

n−1
h , un

h) + 2ε2‖ ∂tu
n−1
h ‖2

L2 + 2ε2(A ∂xu
n
h, ∂xu

n
h)
]

= ∂t

[
‖ un

h + ε ∂tu
n−1
h ‖2

L2 + ε2‖ ∂tu
n−1
h ‖2

L2 + 2ε2(A ∂xu
n
h, ∂xu

n
h)
]
.

In addition, the following calculation is useful:

2ε‖∂tu
n
h‖2

L2 + 4ε(∂xF (un
h), ∂tu

n
h)

= ε‖∂tu
n
h‖2

L2 + 2ε‖ 1√
2
∂tu

n
h +

√
2 F ′(un

h) ∂xu
n
h‖2

L2

− 4ε((F ′(un
h))2 ∂xu

n
h, ∂xu

n
h).

We conclude, therefore, that

∂t

[
‖ un

h + ε ∂tu
n−1
h ‖2

L2 + ε2‖ ∂tu
n−1
h ‖2

L2 + 2ε2(A ∂xu
n
h, ∂xu

n
h)
]

+ ε‖∂tu
n
h‖2

L2 +
κ

2
‖∂tu

n
h‖2

L2 + 2ε((A− 2(F ′(un
h))2) ∂xu

n
h, ∂xu

n
h)

≤ |2κ(∂xF (un
h), ∂tu

n
h)| + |2ε κ(A ∂xu

n
h, ∂x∂tu

n
h)|

+ 2ε2 κ(A ∂x∂tu
n
h, ∂x∂tu

n
h).

(3.12)

Next,

|2κ(∂xF (un
h), ∂tu

n
h)| ≤ 4κ((F ′(un

h))2 ∂xu
n
h, ∂xu

n
h) +

κ

4
‖∂tu

n
h‖2

L2 .

We will use the inverse inequality in Sk [7],

‖∂xϕ‖L2 ≤ CIh
−1‖ϕ‖L2 ∀ϕ ∈ Sk,(3.13)
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to obtain

|2ε κ(A ∂xu
n
h, ∂x∂tu

n
h)| ≤ ε CI ‖A‖ κ

h
‖∂xun

h‖2
L2 + ε CI ‖A‖ κ

h
‖∂tu

n
h‖2

L2 ,

2ε2 κ(A ∂x∂tu
n
h, ∂x∂tu

n
h) ≤ ε

ε

h

(
C2

I ‖A‖ κ

h

)
‖∂tu

n
h‖2

L2 .

Multiplying (3.12) by κ, and summing we finally conclude with the following propo-
sition.

Proposition 3.1. We assume that F ′(u) is symmetric and that for given β̃ there
holds

κ ≤ β̃ε.(3.14)

Assume further that we can choose A symmetric so that for some ν,

A− ( 2 + 4β̃ )F ′(u)2 ≥ ν I for u ∈ R
n.(3.15)

Let γCFL = C2
I ‖A‖κ

h and assume that γCFL is sufficiently small and that

ε ≤ 1

2 γCFL
h.

Then the approximations of the fully discrete schemes satisfy the stability estimate

‖ un
h + ε ∂tu

n−1
h ‖2

L2 + ε2‖ ∂tu
n−1
h ‖2

L2 + 2ε2(A ∂xu
n
h, ∂xu

n
h)

+

n−1∑
j=1

ε κ‖∂tu
j
h‖2

L2 +

n−1∑
j=1

κ2‖∂tu
j
h‖2

L2 +

n−1∑
j=1

ε κ ‖∂xuj
h‖2

L2 ≤ C(u0
h).

In what follows we study the compactness properties of the dissipation measure
associated to the scheme. To this end we use the notation

uh denotes the piecewise linear in time

function such that uh(tn) = un
h,

uh denotes the piecewise constant in time

function such that uh(tn) = un
h, In = (tn, tn+1].

(3.16)

Proposition 3.2. Under the assumptions of Proposition 3.1, for entropy pairs
(η, q) such that

‖η‖L∞ , ‖q‖L∞ , ‖η′‖L∞ , ‖η′′‖L∞ ≤ C

and for h ≤ C ε there holds

η(uh)t + q(uh)x lies in a compact set of H−1
loc (R × R

+),(3.17)

where uh is defined by (3.16).
Proof. Let (η, q) be an entropy pair and φ ∈ C∞

c (R × [0,∞)) a test function,
and suppφ ⊂ Ω̃ × [0, T̃ ] =: Q. Without loss of generality assume that T̃ = tm+1. Let
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Π : H1 → Sk be the L2-projection onto the finite element space defined in (2.6).
Then using the definition of the scheme we obtain

(3.18)∫ T̃

0

(
∂tη(uh) + ∂xq(uh), φ

)
dt =

∫ T̃

0

(
η′(uh)

[
∂tuh + ∂xF

′(uh)uh

]
, φ

)
dt

= −ε

j=m∑
j=0

∫
Ij

{(
A∂x uj

h, ∂x
[
Π
(
η′(uh)φ

)])
+
(
∂ttu

j−1
h ,Π

(
η′(uh)φ

))}
dt

+

j=m∑
j=0

∫
Ij

{([
∂tu

j
h + ∂xF

′(uh)
]
, η′(uh)φ− Π

(
η′(uh)φ

))

+
(
η′(uh)∂x

[
F (uh) − F (uh)

]
, φ

)}
dt.

Note here that for notational simplicity when we use ∂tu
j
h, u

j
h, ∂ttu

j−1
h we mean the

piecewise constant (with respect to t) functions that have these values in Ij . To proceed
with the estimates, note that using (2.8) one obtains

ε

j=m∑
j=0

∫
Ij

∣∣∣ (A∂x uj
h, ∂x

[
Π
(
η′(uh)φ

)]) ∣∣∣ dt

≤ ε C

(
κ

m∑
j=0

‖∂x uj
h‖2

L2(Ω)

)1/2

‖∂x
(
η′(uh)φ

)
‖L2(Q)

≤ C

(
ε κ

m∑
j=0

‖∂x uj
h‖2(Ω)

)
· ‖η′′‖L∞ ‖φ‖C0(Q)

+ ε1/2 C

(
ε κ

m∑
j=0

‖∂x uj
h‖2(Ω)

)1/2

‖η‖L∞ ‖∂xφ‖L2(Q).

(3.19)

In addition, using the notation

vj = κ−1

∫
Ij

v dt,

we have by (2.6),

− ε
m∑
j=0

∫
Ij

∫
Ω

∂ttu
j−1
h Π

(
η′(uh)φ

)
= −ε

m∑
j=0

∫
Ij

∂ttu
j−1
h

∫
Ω

η′(uh)φ

= −ε

∫
Ω

m∑
j=0

(∂tu
j
h − ∂tu

j−1
h ) (η′(uh)φ)j

= ε

∫
Ω

m−1∑
j=0

∂tu
j
h ( (η′(uh)φ)j+1 − (η′(uh)φ)j ) − ε

∫
Ω

∂tu
m
h

∫
Ω

(η′(uh)φ)m.

(3.20)



1376 C. ARVANITIS, C. MAKRIDAKIS, AND A. E. TZAVARAS

The stability in Proposition 3.1 implies, since |vj | ≤ ‖ v ‖∞,

ε
∣∣∣∫

Ω

∂tu
m
h (η′(uh)φ)m

∣∣∣ ≤ ε ‖∂tu
m
h ‖L2(Ω) ‖η′‖L∞ ‖φ‖C0(Ω) m(Ω)1/2

≤ CΩ‖φ‖C0(Q).

(3.21)

Observing that |vj+1 − vj | = 1
κ

∣∣∫
Ij

∫ t+κ

t
vt ds dt

∣∣ ≤ ∫ tj+2

tj
| vt | dt, we conclude

ε

∣∣∣∣∣
∫

Ω

m−1∑
j=0

∂tu
j
h ((η′(uh)φ)j+1 − (η′(uh)φ)j)

∣∣∣∣∣
≤ C

(
ε κ

m∑
j=0

‖∂t u
j
h‖2

L2(Ω)

)
‖η′′‖L∞ ‖φ‖C0(Q)

+ ε1/2

(
ε κ

m∑
j=0

‖∂t u
j
h‖2

L2(Ω)

)1/2

‖η′‖L∞ ‖∂tφ‖L2(Q).

(3.22)

Next,

‖η′(uh)φ− Π
(
η′(uh)φ

)
‖L2(Ω)

≤ Ch‖η′′‖L∞ ‖∂xuh‖L2(Ω) ‖φ‖C0(Ω) + Ch‖η′‖L∞ ‖∂xφ‖L2(Ω)

and ‖F ′(u)2‖L∞ ≤ C (see (2.4)); therefore,

m∑
j=0

∫
Ij

∣∣∣([ ∂tu
j
h + F ′(uh)∂xuh

]
, η′(uh)φ− Π

(
η′(uh)φ

))∣∣∣
≤ C

(
h κ

m∑
j=0

‖∂t u
j
h‖2

L2(Ω) + ‖∂x uj
h‖2

L2(Ω)

)
‖φ‖C0(Q)

+ h

(
κ

m∑
j=0

‖∂t u
j
h‖2

L2(Ω) + ‖∂x uj
h‖2

L2(Ω)

)1/2

‖∂xφ‖L2(Q).

(3.23)

Finally, using the fact that |uh−uh| ≤ Cκ|∂tuh| = Cκ|∂t u
n
h|, we have by using (3.14)

and (3.15),

m∑
j=0

∫
Ij

(
η′(uh)∂x

[
F (uh) − F (uh)

]
, φ

)
= −

m∑
j=0

∫
Ij

([
F (uh) − F (uh)

]
, ∂x(η′(uh) φ)

)

≤ C

(
ε κ

m∑
j=0

‖∂t u
j
h‖2

L2(Ω) + ‖∂x uj
h‖2

L2(Ω)

)
‖φ‖C0(Q)

+ ε

(
κ

m∑
j=0

‖∂t u
j
h‖2

L2(Ω) + ‖∂x uj
h‖2

L2(Ω)

)1/2

‖∂xφ‖L2(Q).

(3.24)

Combining (3.19)–(3.24), we obtain the desired result in view of Lemma 2.2.
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3.3. The case d = 1, and the system admits a convex entropy. The case
that F ′ is not necessarily symmetric but the system is equipped with a convex entropy
η will be briefly examined here. The analysis in this case mainly uses a combination
of arguments from the corresponding semidiscrete case and the analysis of the fully
discrete scheme in the symmetric case. For this reason we will present briefly the
basic steps of the proof, explaining only the new estimates. The following proposition
holds.

Proposition 3.3. Assume that (1.9) admits a convex entropy η(u) satisfying
(2.13), and the symmetric, positive definite matrix A satisfies (2.14) for some ν > 0
where the constant α depends on α, β, and β̃; see (2.13), (2.22), and (3.14). Under
similar conditions on κ, ε, h as in Proposition 3.1 (with possibly different constants),
and if h ≤ γ ε for some γ > 0, the fully discrete finite element approximations satisfy

‖ un
h + ε ∂tu

n−1
h ‖2

L2 + ε2‖ ∂tu
n−1
h ‖2

L2 + 2ε2(A ∂xu
n
h, ∂xu

n
h)

+

n−1∑
j=1

ε κ‖∂tu
j
h‖2

L2 +

n−1∑
j=1

κ2‖∂tu
j
h‖2

L2 +

n−1∑
j=1

ε κ ‖∂xuj
h‖2

L2 ≤ C(u0
h).

(3.25)

Proof. The fully discrete finite element approximation un
h satisfies

(∂tu
n
h, φ) − (F (un

h), ∂xφ) + ε
(
(∂ttu

n−1
h , φ) + (A∂xu

n
h, ∂xφ)

)
= 0.(3.26)

Let φ = P1 η
′(un+1

h ) in (3.26), where P1 : H1 → Sk is the elliptic projection defined
in (2.20). Then

(∂tu
n
h, η

′(un+1
h )) +

(
∂xF (un

h), η′(un+1
h )

)
+ ε(∂ttu

n−1
h , P1, η

′(un+1
h )) + ε(A∂x un

h, ∂xη
′(un+1

h ))

= (∂tu
n
h, η

′(un+1
h ) − P1 η

′(un+1
h ))

+
(
∂xF (un

h), η′(un+1
h ) − P1 η

′(un+1
h )

)
=: Z1 + Z2.

(3.27)

The terms in the right-hand side will be estimated as in the semidiscrete case. We
start by examining the stability that is inherited in the left-hand side. In a way similar
to (3.6) one can show

(∂ttY
n−1, Wn+1) = κ(∂ttY

n−1, ∂tW
n)

+ ∂t(∂tY
n−1, Wn) − (∂tY

n, ∂tW
n).

(3.28)

Therefore,

ε(∂ttu
n−1
h , P1 η

′(un+1
h ))

= εκ(∂ttu
n−1
h , ∂tP1 η

′(un
h)) + ε∂t(∂tu

n−1
h , P1 η

′(un
h)) − ε(∂tu

n
h, ∂tP1 η

′(un
h))

= ε∂t(∂tu
n−1
h , η′(un

h)) + εκ(∂ttu
n−1
h , ∂tP1 η

′(un
h))

− ε(∂tu
n
h, ∂tP1 η

′(un
h)) + ε∂t(∂tu

n−1
h , P1 η

′(un
h) − η′(un

h)).

(3.29)

Taylor’s formula implies∫
Ω

η(un
h)dx =

∫
Ω

η(un+1
h )dx− κ(η′(un+1

h ), ∂tu
n
h)

+ κ2

(
∂tu

n
h,

{∫ 1

0

∫ s

0

η′′(un+1
h − κ τ∂tu

n
h)dτds

}
∂tu

n
h

)
,

(3.30)
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i.e.,

(∂tu
n
h,η

′(un+1
h )) = ∂t

∫
Ω

η(un
h)dx

+ κ

(
∂tu

n
h,

{∫ 1

0

∫ s

0

η′′(un+1
h − κ τ∂tu

n
h)dτds

}
∂tu

n
h

)
.

(3.31)

Further, since (η, q) is an entropy pair,

(F ′(un
h) ∂xu

n
h, η

′(un+1
h )) = (F ′(un

h) ∂xu
n
h, η

′(un
h))

+ (F ′(un
h) ∂xu

n
h, η

′(un+1
h ) − η′(un

h))

= κ(F ′(un
h) ∂xu

n
h, ∂tη

′(un
h)).

Hence

∂t

∫
Ω

η(un
h)dx + ε∂t(∂tu

n−1
h , η′(un

h))

+ ε(A∂x un
h, η

′′(uh)∂x u
n
h) − ε(∂t uhn , P1 ∂tη

′(un
h))

+κ

(
∂tu

n
h,

{∫ 1

0

∫ s

0

η′′(un+1
h − κ τ∂tu

n
h)dτds

}
∂tu

n
h

)
=Z1 + Z2 + Z3,

(3.32)

where the new term Z3 is given by

Z3 = − εκ(∂ttu
n−1
h , ∂tP1 η

′(un
h))

− ε∂t(∂tu
n−1
h , P1 η

′(un
h) − η′(un

h)) − κ(F ′(un
h) ∂xu

n
h, ∂tη

′(un
h)).

(3.33)

Using once more Taylor’s formula we obtain,∫
Ω

η(un
h + ε∂tu

n−1
h )dx =

∫
Ω

η(un
h)dx + ε∂t(∂tu

n−1
h , η′(un

h))

+ ε2

(
∂tu

n−1
h ,

{∫ 1

0

∫ s

0

η′′(un
h + ε τ∂tu

n−1
h )dτds

}
∂tu

n−1
h

)
.

(3.34)

By a slight modification of the proof of Lemma 2.3 we have

ε|(∂t u
n
h, P1 ∂tη

′(un
h))| ≤ β ‖η′′‖L∞ ‖∂t u

n
h‖2

L2(Ω).(3.35)

Essentially what remains now is an estimate of ‖∂t un
h‖L2(Ω). As in the symmetric

case we use the test function φ = ∂t un
h and we conclude the proof by combining

arguments from the semidiscrete case (see (2.33)–(2.37)), and the fully discrete case
with symmetric F ′ (cf. the terms with coefficient 4ε2), and by estimating of course
the terms Zi. It is to be noted, finally, the essential role of the estimate

κ

(
∂tu

n
h,

{∫ 1

0

∫ s

0

η′′(un+1
h − κ τ∂tu

n
h)dτds

}
∂tu

n
h

)
≥ µκ‖∂tu

n
h‖2

L2 , µ > 0,

(3.36)

in the stability analysis.
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Remark 3.1 (mesh conditions). Proposition 3.3 holds under the assumptions for
the mesh stated in Proposition 3.1, assuming in addition that h ≤ γε. Combining these
conditions we conclude that we need to have a CFL condition with small constant
γCFL and in addition h ≤ γ

2γCFL
h. This last relation is a quasi-uniformity condition

on the mesh, the constant of which depends on how strong the CFL condition is. It
seems that it is a weakness of our proof to assume h ≤ γε rather than hloc ≤ γε, where
hloc is the local mesh size close to the shock; see section 1.2. If this were the case this
would not be a restriction since hloc is naturally of the order of h. Nevertheless, the
above conditions provide enough room for computations compatible with the principle
to have finer mesh in the shock areas and coarser mesh in the smooth parts of the
solution. See also the related discussion in section 6.

We conclude with the following proposition.
Proposition 3.4. For entropy pairs (η, q) such that

‖η‖L∞ , ‖q‖L∞ , ‖η′‖L∞ , ‖η′′‖L∞ ≤ C

and under the hypotheses of Proposition 3.3, we have

η(uh)t + q(uh)x ⊂ lies in a compact set of H−1
loc (R × R

+),

where uh and un
h are related by (3.16).

3.4. Estimates in the multidimensional case. Let (1.1) be endowed with a
uniformly convex entropy η; the fluxes qi are given by (2.42) [14, sec. IV.4.3]. The
finite element approximations defined by (3.1) satisfy similar a priori bounds with the
one-dimensional case. The matrices Ai should now satisfy the analogue of (2.44). We
state the stability estimate; its proof is a modification of the proof of Proposition 3.3
and is omitted.

Proposition 3.5. Assume that (1.1) is equipped with a convex entropy η(u) sat-
isfying (2.6). If the symmetric, positive definite matrices Ai satisfy (2.44), then, under
similar conditions on κ, ε, h as in Proposition 3.1 (with possibly different constants),
and for h ≤ γε for some γ > 0, the fully discrete finite element approximations (3.1)
satisfy

‖ un
h + ε ∂tu

n−1
h ‖2

L2 + ε2‖ ∂tu
n−1
h ‖2

L2 + 2ε2
d∑

i=1

(Ai ∂xiu
n
h, ∂xiu

n
h)

+

n−1∑
j=1

ε κ‖∂tu
j
h‖2

L2 +

n−1∑
j=1

κ2‖∂tu
j
h‖2

L2 +

n−1∑
j=1

ε κ

d∑
i=1

‖∂xiu
j
h‖2

L2 ≤ C(u0
h).

4. Convergence of finite element schemes for one-dimensional systems.
The compactness of the dissipation measure (2.41) or (3.17) is central in establishing
compactness of approximate solutions for systems of conservation laws via the pro-
gram of compensated compactness. Such results are available (in a one-dimensional
context) for the scalar conservation law, the equations of elastodynamics, the equa-
tions of isentropic gas dynamics, and the class of rich systems (see [42, 15] and the
references in [14, Chap. XV]). One difficulty in applying the compensated compact-
ness framework is that, while several of the existing compactness theorems are valid
in the presence of uniform L∞-estimates, the available estimates in applications are
often just in the energy norm. In particular, this is the case for the approximations
arising via semidiscrete (2.1) or fully discrete (3.2) finite element schemes. Note that
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under the additional hypothesis of uniform L∞ bounds for the approximations, one
would conclude directly convergence toward a weak solution for all the aforementioned
systems.

Our results can be applied to systems where the compensated compactness pro-
gram has been carried out in the energy-norm framework. Such results are available
for the scalar conservation law in the Lp framework (e.g., [35], [34, Thm. 2.3]) and for
the equations of one-dimensional elasticity,

u1,t − u2,x = 0,

u2,t − σ(u1)x = 0,
(4.1)

in the energy norm [31, 38, 37]. In both cases one can deduce compactness of semidis-
crete or fully discrete finite element schemes and conclude with a convergence result.

We consider here as a paradigm the system (4.1). For σ′(u1) > 0, it is strictly
hyperbolic with wave speeds λ1,2 = ±

√
σ′(u1). It admits an infinite number of

entropy pairs, of which the special pair

η =
1

2
u2

2 +

∫ u1

0

σ(τ)dτ, q = −u2σ(u1)(4.2)

is associated with the mechanical energy and the work of contact forces, and η is
strictly convex. We assume that σ satisfies the subcharacteristic condition

0 < s ≤ σ′(u) ≤ S, u ∈ R,(4.3)

with s, S positive constants. One easily checks that the matrix A can be selected so
that all conditions in Propositions 2.3 and 3.3 hold.

We need a second hypothesis on σ that allows us to apply the results of [38, 37].
We assume either that (4.1) is genuinely nonlinear with

σ′′(u) �= 0 and σ′′, σ′′′ ∈ L2 ∩ L∞(R)(4.4)

or that σ has precisely one inflection point at u0 with

(u− u0)σ
′′(u) �= 0 for u �= u0

and σ′′, σ′′′ ∈ L2 ∩ L∞(R).
(4.5)

We then have the following theorem.
Theorem 4.1. Let σ ∈ C3 satisfy hypotheses (4.3), (4.4) (or (4.3), (4.5)). Let

(uε,h
1 , uε,h

2 ) be a family of solutions of (2.1), and let A be a symmetric, positive definite
matrix satisfying (2.14). Then, for h ≤ γε (with γ as in Proposition 2.3) and along
a subsequence,

u1,h → u1 , u2,h → u2 , a.e. (x, t) and in Lp
loc(R × (0, T )) for p < 2,

and (u1, u2) is a weak solution of (4.1).
Proof. The proof uses the theory of compensated compactness and proceeds by

controlling the dissipation measure

∂tη(u
ε,h
1 , uε,h

2 ) + ∂xq(u
ε,h
1 , uε,h

2 ) lies in a compact of H−1
loc ,(4.6)

for entropy pairs (η(u, v) , q(u, v)) for the equations of elasticity. In the presence of
uniform L∞-bounds, the theorem of DiPerna [15] would guarantee compactness of
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approximate solutions and imply that, along a subsequence, uε,h
1 → u1 and uε,h

2 → u2

a.e. (x, t).
In the current case, uniform L∞-estimates are not available and the natural sta-

bility framework is in the energy norm (see Proposition 2.3). Nevertheless, under
hypothesis (4.3) and by Proposition 2.5, the dissipation measure is controlled for a
class of entropy-flux pairs (η(u, v) , q(u, v)) satisfying the growth restrictions

η, q, ηu, ηv, ηuu, ηuv, ηvv ∈ L∞(R2).(4.7)

This class of entropy pairs contains sufficient test pairs in order to achieve the reduc-
tion of the generalized Young measure to a point mass and to show strong conver-
gence in Lp

loc for p < 2. The hypotheses (4.3)–(4.4) allow us to apply the result of
Shearer [38], where the reduction is performed for the genuine nonlinear case, while
the hypotheses (4.3)–(4.5) allow us to apply the corresponding reduction in Serre and
Shearer [37] applicable to the case of elasticity with one inflection point.

In a similar manner we can prove convergence of fully discrete finite element
approximations (3.2) for the equations (4.1).

Theorem 4.2. Let σ be as in Theorem 4.1 and let A satisfy the hypotheses of
Proposition 3.3. Let (u1,h, u2,h) be the fully discrete finite element approximations
defined in (3.16). If the parameters κ, h, and ε are restricted by (3.14) and h ≤ γε
for some γ > 0, then along a subsequence

u1,h → u1, u2,h → u2, a.e. (x, t) and in Lp
loc(R × (0, T )) for p < 2,

and (u, v) is a weak solution of (4.1).

5. Error estimates for smooth solutions. In this section we consider the
system of conservation laws

∂tu + ∂xF (u) = 0(5.1)

and assume that (5.1) is endowed with a convex entropy η(u). We let u be a classical
solution of (5.1) defined on a maximal interval of existence and let Uε be the smooth
solution of the relaxation approximation

∂tUε + ∂xF (Uε) = εA∂xxUε − ε∂ttUε .(5.2)

We show

‖Uε(t) − u(t)‖L2 ≤ C(t, u) ε ,(5.3)

where the constant C(t, u) depends on a strong norm of u and blows up at the critical
time.

5.1. Motivation. It was established in Theorem 5.2.1 of [14] that the classical
solution of (1.1) is unique among the class of admissible weak solutions in the case
where the system admits a convex entropy. The result follows by showing a stability
estimate in L2:

‖u(t) − w(t)‖L2 ≤ C(t, u) ‖u(0) − w(0)‖L2 .(5.4)

Here u is the classical and w an admissible weak solution of (1.1). The main idea of
the proof is to control the spatial integral of the quadratic in the u− w function

H(u,w) = η(w) − η(u) − η′(u)(w − u).(5.5)
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This is made possible by the observation that certain quantities arising in the proof
vanish when u is a classical solution and thus satisfies the entropy inequality as equal-
ity. Our idea is to use a similar approach to show the error estimate (5.3). A difficulty
arises (except for handling the error terms in an appropriate way) that it is no longer
possible to work with the same function H as in (5.5). On the other hand, the esti-
mates in [43] and in section 2 suggest that when the system admits a convex entropy,
we are able to control the quantity∫

η(Uε + ε∂t Uε)dx.

Motivated by these considerations, we introduce the functions

HR(u, Uε) = η
(
Uε + ε∂t(Uε − u)

)
− η(u) − η′(u)

(
Uε − u + ε∂t(Uε − u)

)
,(5.6)

Q (u, Uε) = q(Uε) − q(u) − η′(u) (F (Uε) − F (u)).(5.7)

The function HR is the relaxational correction of (5.5) and is of quadratic order in
the quantity

(
Uε − u+ ε∂t(Uε − u)

)
. Control of ‖u(t)−Uε(t)‖2

L2 is achieved through
the additional control of ε2‖∂t (Uε − u)‖2

L2 that is obtained from a separate estimate
natural for approximations by wave equation (5.2).

5.2. The decay functional. The first objective is to establish that HR is a
Lyapunov functional. We begin with the derivation of the main decay identity.

Let η be the convex entropy with q the corresponding flux. The classical solution
u satisfies

∂tη(u) + ∂xq(u) = 0.

The approximate solution of (5.2) will henceforth be denoted by U ≡ Uε. It satisfies
the identities

∂t(U − u) + ∂x(F (U) − F (u)) = εAUxx − εUtt,

∂tη
′(u)(U − u) + ∂xη

′(u)(F (U) − F (u))

= η′′(u)ux · [F (U) − F (u) − F ′(u)(U − u)] + εη′(u) ·AUxx − εη′(u) · Utt,

where we use (5.1) and the fact that η is an entropy if and only if (η′′F ′)T = η′′F ′;
see (2.42). Combining the above, we deduce

∂t[η(U) − η(u) − η′(u)(U − u)] + ∂x[q(U) − q(u) − η′(u)(F (U) − F (u))]

= −η′′(u)ux · [F (U) − F (u) − F ′(u)(U − u)]

+ ε
(
η′(U) − η′(u)

)
·AUxx − ε

(
η′(U) − η′(u)

)
· Utt.

(5.8)

We now use (5.8) in conjunction with the identities

(η′(U) − η′(u)) · Utt = ∂t[(η
′(U) − η′(u)) · (Ut − ut)] − η′′(U)(Ut − ut) · (Ut − ut)

− (η′′(U) − η′′(u))ut · (Ut − ut) + (η′(U) − η′(u)) · utt,

(η′(U) − η′(u)) ·AUxx = ∂x[(η′(U) − η′(u)) ·A(U − u)x]

− η′′(U)(U − u)x ·A(U − u)x

− (η′′(U) − η′′(u))ux ·A(U − u)x + (η′(U) − η′(u)) ·Auxx
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and

η
(
U + ε∂t(U − u)

)
= η(U) + η′(U)ε∂t(U − u) + ε2∂t(U − u) · η′′∂t(U − u)

with η′′ =

∫ 1

0

∫ s

0

η′′(U + ε τ∂t (U − u))dτds

to conclude

(5.9)

∂t{η(U + ε∂t(U − u)) − η(u) − η′(u)[U − u + ε∂t(U − u)]

− ε2∂t(U − u) · η′′∂t(U − u)}
+ ∂x{q(U) − q(u) − η′(u)(F (U) − F (u))}
+ ε{η′′(U)(U − u)x ·A(U − u)x − η′′(U)(U − u)t · (U − u)t}

= ∂x{ε(η′(U) − η′(u)) ·A(U − u)x} − η′′(u)ux · [F (U) − F (u) − F ′(u)(U − u)]

+ a1t + a2t + b1x + b2x.

The error terms a1t, a2t, b1x, and b2x are defined by

a1t = ε
(
η′′(U) − η′′(u)

)
ut · (Ut − ut),

a2t = −ε
(
η′(U) − η′(u)

)
· utt,

(5.10)
b1x = −ε

(
η′′(U) − η′′(u)

)
ux ·A(U − u)x,

b2x = ε
(
η′(U) − η′(u)

)
·Auxx

and will be estimated in what follows.
Identity (5.9) is supplemented by a correction accounting for the fact that the

third term is indefinite. The correcting identity is obtained by multiplying the equa-
tion

(U−u)t+F ′(U)(U−u)x = εA(U−u)xx−ε(U−u)tt+ε(Auxx−utt)−(F ′(U)−F ′(u))ux

by (U − u)t and integrating by parts to deduce

∂t

{1

2
ε|Ut − ut|2 +

1

2
ε(U − u)x ·A(U − u)x

}
+ |(U − u)t|2

+ F ′(U)(U − u)x · (U − u)t = ∂x

{
εA(U − u)x · (U − u)t

}
+ c1t + c2t,

(5.11)

where c1t, c2t are given by

c1t = ε(Auxx − utt) · (U − u)t,

c2t = −(F ′(U) − F ′(u))ux · (U − u)t.
(5.12)

Next, we multiply (5.11) by 2αε, add the resulting identity to (5.9), and use (5.6)
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and (5.7) to arrive at

∂tG(u, U) + ∂xQ(u, U) + αε
∣∣∣(U − u)t + F ′(U)(U − u)x

∣∣∣2
+ ε

{
η′′(U)(U − u)x ·A(U − u)x − αF ′(U)(U − u)x · F ′(U)(U − u)x

}
+ ε

{(
αI − η′′(U)

)
(U − u)t · (U − u)t

}
= ∂x

{
ε(η′(U) − η′(u)

)
·A(U − u)x + 2αε2A(U − u)x · (U − u)t

}
− η′′(u)ux ·

[
F (U) − F (u) − F ′(u)(U − u)

]
+ a1t + a2t + b1x + b2x + 2αε(c1t + c2t),

(5.13)

where

G(u, U) = HR(u, U)

+ ε2
[
αI − η′′

]
(U − u)t · (U − u)t + ε2αA(U − u)x · (U − u)x.

(5.14)

5.3. The error estimate. Equation (5.13) is the basic decay identity. We see
below that, under certain conditions on the entropy η, the quantity G(u, U) becomes
a Lyapunov functional and leads to an error estimate.

Proposition 5.1. Assume that (5.1) is equipped with a strictly convex entropy
η that satisfies, for some α > 0,

1

α
I ≤ η′′(u) ≤ α I, u ∈ R

n,(5.15)

and the positive definite, symmetric matrix A can be selected so that for some ν > 0
we have

1

2

(
(η′′(u)A)T + η′′(u)A

)
− αF ′T (u)F ′(u) ≥ νI, u ∈ R

n.(5.16)

Let u be a smooth solution of (5.1), let Uε be a smooth solution of (5.2), and suppose
that both u, Uε decay sufficiently fast at infinity.

(i) Then G(u, U) is positive definite and

d

dt

∫
R

G(u, Uε)dx +
1

c
ε

∫
R

|(Uε − u)x|2 + |(Uε − u)t|2dx

≤
∫

R

{
|η′′(u)ux

(
F (Uε) − F (u) − F ′(u)(Uε − u)

)
|(5.17)

+ |a1t + a2t + b1x + b2x + 2αε(c1t + c2t)|
}
dx

for some constant c independent of ε.
(ii) If in addition for some M > 0

|F ′′(u)| ≤ M, |η′′′(u)| ≤ M, u ∈ R
n,(5.18)

then

‖(Uε − u)(t)‖L2 + ε‖(∂xUε − ∂xu)(t)‖L2 + ε‖(∂tUε − ∂tu)(t)‖L2

(5.19)

≤ C(t, u)(‖(Uε − u)(0)‖L2 + ε‖(∂xUε − ∂xu)(0)‖L2 + ε‖(∂tUε − ∂tu)(0)‖L2 + ε),
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where C(t, u) is a constant depending on t and norms of the smooth solution u.
Proof. Integrating (5.13) over R and using the hypotheses (5.15) and (5.16), we

obtain (5.17). By (5.15),

αI − η′′ = αI −
∫ 1

0

∫ s

0

η′′(U + ε τ∂t (U − u))dτds ≥ 1

2
αI.

Moreover, the function HR(u, U) defined in (5.6) is strictly convex and thus G(u, U)
in (5.14) is positive definite.

Under (5.15), (5.18) and for

ϕ(t) =

∫
R

|U − u|2 + ε2|Ut − ut|2 + ε2|Ux − ux|2dx,

we have

1

C
ϕ(t) ≤

∫
R

G(u, U)dx ≤ Cϕ(t) .

The error terms in (5.10) are estimated by

‖a1t‖L1 ≤ εC‖ut‖L∞‖U − u‖L2‖Ut − ut‖L2 , ‖a2t‖L1 ≤ εC‖utt‖L2‖U − u‖L2 ,

‖b1x‖L1 ≤ εC‖ux‖L∞‖U − u‖L2‖Ux − ux‖L2 , ‖b2x‖L1 ≤ εC‖uxx‖L2‖U − u‖L2 ,

while the ones in (5.12) are estimated by

‖εc1t‖L1 ≤ ε2C
(
‖utt‖L2 + ‖uxx‖L2

)
‖Ut − ut‖L2 ,

‖εc2t‖L1 ≤ εC‖ux‖L∞‖U − u‖L2‖Ut − ut‖L2 ,

where C is a generic constant depending on α, M , and norms of u.
From (5.17) we obtain

(5.20)

d

dt

∫
R

G(u, Uε)dx +
1

C
ε
(
‖Ut − ut‖2

L2 + ‖Ux − ux‖2
L2

)
≤ C(‖U − u‖2

L2 + ε‖U − u‖L2(1 + ‖Ut − ut‖L2 + ‖Ux − ux‖L2) + ε2‖Ut − ut‖L2)

≤ C(‖U − u‖2
L2 + ε2‖Ut − ut‖2

L2 + ε2‖Ux − ux‖2
L2 + ε2).

This in turn gives

ϕ(t) ≤ ϕ(0) + ε2Ct + C

∫ t

0

ϕ(s)ds

and we conclude from Gronwall’s inequality that

ϕ(t) ≤ C(t, u)
(
ϕ(0) + ε2

)
.(5.21)

Then (5.19) follows.
Remark 5.1. As an example where Proposition 5.1 applies, consider the equations

of elastodynamics (4.1). This system admits the entropy pair (4.2). One checks that
if

0 < s ≤ σ′(u) ≤ S, |σ′′(u)| ≤ M,

for some constants s, S, and M > 0, then (5.15), (5.16), and (5.18) are fulfilled and
we obtain the relevant stability estimate.

Remark 5.2. Proposition 5.1 can be extended for multidimensional hyperbolic
systems. In this case, condition (5.16) should be replaced by the analogue of (2.44).
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6. Implementation issues. We include here a short discussion on the imple-
mentation of the schemes and we present indicative numerical examples that relate
to our results.

Adaptivity and mesh reconstruction. The basic principles of our mesh reconstruc-
tion policy are

(a) locate the regions of space where increased accuracy is demanded, through a
positive functional g;

(b) find a partition of space with predefined constant cardinality and density that
follows the estimator function g; and

(c) reconstruct the solution on the finite element space which corresponds to that
partition and advance to the next time step by applying the finite element scheme.

These steps are studied, introducing appropriate estimator functions for finite el-
ement methods of systems of hyperbolic conservation laws. Among others, estimator
functions g are proposed which are based on a posteriori estimates or on the cur-
vature of the approximate solution [4, 2, 3]. This approach yields a dynamic mesh
construction which is combined with finite element schemes in what follows, but the
mesh selection according to the basic properties of the solution is independent of the
particular method used.

Mesh conditions. The mesh conditions needed in the stability analysis in sec-
tion 3 are somewhat restrictive regarding the flexibility in the selection of the mesh,
especially for small values of ε. The main reason is that the time step κ should be
chosen very small if ε is very small. (The restrictions on the spatial mesh discussed in
Remark 3.1 are not present in the numerical experiments.) In fact, the computational
examples show that certain mesh conditions that relate the mesh size and ε are indeed
needed and thus for fixed number of spatial mesh points and fixed κ we cannot take
ε close to zero; see the following examples and [2, 3].

An alternative that completely bypasses this problem is provided by a modifi-
cation of the finite element relaxation schemes developed in [2, 3]. The alternative
is a class of finite element schemes based on the finite element discretization of a
modified model with switched relaxation. These are schemes in which the appli-
cation of a Runge–Kutta scheme uses the relaxation finite element model (1.5) for
the calculation of the intermediate stages and of un+1

h and then vn+1
h,i is calculated as

vn+1
h,i = ΠFi(u

n+1
h ). This enforces the projection to the equilibrium manifold v = F (u)

in each time step. The resulting schemes (switched relaxation finite element schemes)
show remarkable stability even for extremely small values of ε. This is illustrated in
the examples presented below.

CFL conditions. A common problem in explicit schemes with mesh refinement
is to require strong CFL conditions, reflecting the relation of the time step κ to the
minimum spatial mesh size h. This problem appears in the computational examples
of [4, 2, 3] but it is not very essential. A computationally more attractive idea would
be to use time steps variable with x, or space-time elements, but this will remain for
a future work.

Two-phase flow scalar problem. As a scalar example we chose the Buckley–
Leverett equation [30] as a model of a two-phase flow in a porous medium. Here
the flux F is not convex and is given by

F (u) =
u2

u2 + 0.5(1 − u)2
.(6.1)

We compute the (periodic) Riemann problem in [0, 1] with u0 = 1 on [0, 0.1]∪ [0.5, 1]



FINITE ELEMENT SCHEMES FOR CONSERVATION LAWS 1387

-1.79e-02

 1.01e+00

 0.00e+00  1.00e+00

 8.53e-02

 1.88e-01

 2.91e-01

 3.94e-01

 4.97e-01

 6.00e-01

 7.03e-01

 8.06e-01

 9.09e-01

(a) ε = 5e−4 uniform mesh
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(d) ε = 5e−6 refined mesh

Fig. 1. Buckley–Leverett two-phase flow problem: 200 nodes on [0, 1]. The effect of the rela-
tionship of h and ε and of the stabilization by mesh refinement. Dotted line: exact solution; gray
line: approximation. The distribution of the nodes in the refined mesh is displayed at top in (b) and
(d).

and u0 = 0 on (0.1, 0.5). In Figure 1 we display the results of application of our
schemes in this problem for 200 nodes in [0, 1] with and without mesh refinement.
For ε = 5e − 4 the uniform mesh approximation has oscillations, while the corre-
sponding approximation with mesh refinement provides an acceptable solution free of
oscillations. Next for ε = 5e − 6 the uniform mesh finite element solution seems to
approximate a nonclassical weak solution. Thus the restrictions in our stability re-
sults on the relationship of h and ε are necessary. In this case the corresponding finite
element approximation with mesh refinement not only eliminates the oscillations but
resumes into the approximation of the entropy solution.
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It is interesting to note that the method with uniform mesh, although oscillatory,
seems to converge (weakly) as h → 0. Moreover, this is also true in the example
above where a nonclassical shock for (6.1) is captured. This is an indication that
relaxation finite element schemes may conceivably be used to compute nonclassical
shocks; compare to [29]. This interesting issue will be examined in a forthcoming
work.

For 200 points we cannot take ε smaller unless we use the modified method based
on the switched relaxation parameter. In Figure 2 we display the switched relaxation
finite element schemes mentioned above. (Here the parameter ε = ε(t) is a function
of time that vanishes only on discrete time steps and elsewhere has a constant value
ε.) Now we can have acceptable approximations for extremely small values of ε. This
is a further indication of the strong regularization inherited by the adaptive mesh
refinement.

System of elastodynamics. The one-dimensional system of elastodynamics is a
particular case where all the results of this paper apply. We consider

u1,t − u2,x = 0,

u2,t − σ(u1)x = 0

with σ(v) = v + v3. We compute the relaxation finite element approximations with
Riemann data u1(0) = 2 on [0, 1/4]∪[3/4, 1] and u1(0) = 1 on [1/4, 3/4] and u2(0) = 2
on [0, 1] extended periodically. Figure 3 displays the approximations for 200 nodes in
[0, 1] with mesh refinement for ε = 5e−5. As before we use the modified method with
switched relaxation parameter to compute the approximations still with 200 nodes but
taking much smaller ε; Figure 4 displays the corresponding results. Figure 5 shows
the improvement of the approximations if we use 400 points. In Figure 6 we see
the dramatic difference of the approximations with uniform mesh and adaptive mesh
refinement still with 400 nodes in [0, 1]. For further numerical results and detailed
discussion on the adaptive mesh refinement strategies and on implementation issues
for the schemes, see [4, 2, 3].
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Science Foundation.
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Fig. 2. Buckley–Leverett two-phase flow problem: switched relaxation finite elements with stabi-
lization by mesh refinement. Dotted line: exact solution; gray line: approximation. The distribution
of the nodes in the refined mesh is displayed at top.
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Fig. 3. System of elastodynamics: q = 1, 200 nodes in [0, 1] with adaptive mesh refinement.
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(a) u1 : ε = 5e−9, t = 0.058 with refinement
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(d) u2 : ε = 5e−9, t = 0.35 with refinement

Fig. 4. System of elastodynamics: q = 1, 200 nodes in [0, 1] with adaptive mesh refinement.
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Fig. 5. System of elastodynamics: q = 1, 400 nodes in [0, 1] with adaptive mesh refinement.
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Fig. 6. System of elastodynamics: q = 1, 400 nodes in [0, 1] with uniform mesh (solid lines)
and adaptive mesh refinement (dotted lines).
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