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SCHRÖDINGER EQUATIONS UP TO THE CRITICAL EXPONENT

THEODOROS KATSAOUNIS AND IRENE KYZA

Abstract. We provide a posteriori error estimates in the L∞([0, T ];L2(Ω))−norm for relaxation

time discrete and fully discrete schemes for a class of evolution nonlinear Schrödinger equations
up to the critical exponent. In particular for the discretization in time we use the relaxation

Crank-Nicolson-type scheme introduced by Besse in [9]. The space discretization consists of finite

element spaces that are allowed to change between time steps. The estimates are obtained using the
reconstruction technique. Through this technique the problem is converted to a perturbation of the

original partial differential equation and this makes it possible to use nonlinear stability arguments

as in the continuous problem. Our analysis includes as special cases the cubic and quintic nonlinear
Schrödinger equations in one spatial dimension and the cubic nonlinear Schrödinger equation in

two spatial dimensions. Numerical results illustrate that the estimates are indeed of optimal order
of convergence.

1. Introduction

In this paper we provide error control for a class of evolution nonlinear Schrödinger (NLS) equa-
tions, up to the critical exponent through rigorous a posteriori error analysis. To the best of our
knowledge, this is the first time that rigorous a posteriori error estimates are proven for NLS equa-
tions. More specifically, we consider the initial and boundary value problem

(1.1)


∂tu− iα∆u = iλf(u) in Ω × (0, T ],

u = 0 on ∂Ω × (0, T ],

u(·, 0) = u0 in Ω,

where Ω ⊂ Rd, d = 1, 2, is a bounded, convex, polygonal domain for d = 2 and a finite interval
for d = 1, T < ∞, α > 0, λ ∈ R, and where f(u) denotes the nonlinear term. In particular, the
nonlinear term has the form

f(z) := |z|2pz, 1

2
≤ p ≤ p∗ with p∗ :=

2

d
.

The exponent p∗ = 2
d in d dimensions is critical in the following sense: For u0 ∈ H1

0 (Ω) ∩H2(Ω)

and 1
2 ≤ p < p∗ problem (1.1) admits a unique global solution u ∈ C

(
[0, T ];H1

0 (Ω) ∩H2(Ω)
)
∩

C1
(
[0, T ];L2(Ω)

)
, for any T > 0 cf., e.g., [4, 10, 13]. In contrast, for the critical exponent p∗ = 2

d ,
global existence of a solution u of (1.1) is guaranteed only under a smallness condition, elaborated
in equation (1.3). If this smallness condition does not hold, blowup solutions of problem (1.1) exist
[40, 41, 42].

In particular the range of exponents p with 1
2 ≤ p ≤ p∗ includes the cubic and quintic NLS in

one spatial dimension and the cubic NLS in two spatial dimensions. Models of the form (1.1) are
widely used in many areas of applied sciences. For example they appear in nonlinear optics and
lasers [23], water waves [21], quantum hydrodynamics [25] and Bose-Einstein condensates [48]. More
applications are discussed in [49].

There is still a large activity on NLS equations in the area of partial differential equations (PDEs)
and analysis community, cf. e.g., [4, 10, 17, 40, 41, 42, 44, 50] and the references therein. Moreover
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this activity includes qualitative and asymptotic questions, cf. e.g., [8, 16, 37, 53] and the references
therein. A particular example is the semiclassical behavior of NLS equations, i.e. the regime where
0 < α� 1, λ ∼ 1

α .
Those are the main reasons that (1.1) has attracted the interest of the numerical analysis com-

munity as well. Several papers exist in the literature dealing with discretization methods for (1.1)
their stability and convergence properties through a priori error analysis; here we mention a few:
[1, 5, 6, 7, 9, 19, 27, 28, 51, 54, 56]. Popular methods for the discretization in time of (1.1) are
Crank-Nicolson-type and time-splitting-type methods, while for the spatial discretization spectral
or finite element methods are usually used.

However, there is a very limited literature on the a posteriori error control for the evolution
Schrödinger equations. For linear evolution Schrödinger equations a posteriori error estimates for
Crank-Nicolson finite element schemes can be found in [22, 29, 31], whilst for time-splitting spectral
methods can be found in [33]. To the best of our knowledge no a posteriori error bounds exist in the
literature for evolution NLS equations. Nevertheless, developing such estimates is important. Not
only they will provide mathematical guarantees on how accurate the numerical approximation is,
but they will also highlight qualitative characteristics of the exact solution of (1.1) not known before,
via rigorous error control. Additionally, the a posteriori error bounds can lead to the development of
an adaptive algorithm that will significantly reduce the computational cost. That was the case for
example in [29] with the a posteriori estimator of linear evolution Schrödinger equations. Adaptive
algorithms based on heuristic mesh selection criteria exist in the literature for various cases of NLS
equations (1.1), cf. [2, 24, 45, 52, 55]. Usually the criteria used for the construction of adaptive
algorithms in these cases are based on structural properties known for the exact solution.

Our main contribution in this paper is the rigorous proof of optimal order a posteriori error bounds
in the L∞([0, T ];L2(Ω))−norm for the NLS equation (1.1) up to the critical exponent, when it is
discretized by a relaxation Crank-Nicolson finite element scheme. With the term optimal order we
mean that the a posteriori estimator reduces with the same order as the exact error. The relaxation
Crank-Nicolson scheme we use for the discretization in time is a generalization to variable time
steps of the relaxation scheme introduced earlier by Besse in [9] for the time discretization of (1.1)
for constant time steps. The reason we also use the relaxation scheme, rather than the standard
Crank-Nicolson scheme, is because that way the nonlinear term is computed explicitly. Thus we
avoid solving a nonlinear equation, that would have added an error, difficult to handle a posteriori.
Moreover, the relaxation scheme exhibits mass conservation, same as the standard Crank-Nicolson
scheme, thus reflecting the mass conservation of the continuous problem (1.1), cf. (1.4) below.

The a posteriori error estimates will be obtained using the reconstruction technique proposed by
Akrivis, Makridakis & Nochetto, [3, 38]. Through this technique we will be able to obtain an error
equation of a similar form to the NLS equation in (1.1).

The derivation of the estimates is then based on energy techniques and on nonlinear stability
arguments for (1.1). It is interesting to note that the PDE satisfied by the error, poses new math-
ematical challenges when aiming at meaningful error control. For this reason the handling of the
nonlinearity is delicate and technical.

The reconstruction technique has been used successfully in proving a posteriori error bounds for
linear problems, [3, 14, 29]. In this work, using the reconstruction technique, we introduce novel
time-space reconstructions and prove rigorous a posteriori error bounds for (1.1). To the best of our
knowledge this is the first time in the literature where the reconstruction technique has been used
successfully for a highly nonlinear problem such as (1.1).

We next mention some of the main tools used in the subsequent analysis. For this, we need to
introduce some notation. We denote by ‖ · ‖ the L2−norm in Ω, while for 1 ≤ q ≤ ∞, q 6= 2, we
denote by ‖ · ‖Lq the Lq−norm in Ω. We equip H1

0 (Ω) with the norm ‖∇v‖ and we denote by
H−1(Ω) the dual of H1

0 (Ω) under that norm; we denote by ‖ · ‖H−1 the norm in H−1(Ω). By 〈·, ·〉
we indicate both the L2−inner product, or the H−1 −H1

0 duality pairing in Ω, depending on the
context. In what follows, global constants or functionals depending on the initial condition u0 that
are introduced in the paper may also depend on the dimension d, the exponent p and the parameters
α and λ. For simplicity, where there is no confusion, we avoid writing those dependences on the
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definitions, but we mention them precisely each time we define such a quantity (e.g., (1.2) and (1.3)
below).

A key role in the derivation of the a posteriori estimates of the paper will be played by the
Gagliardo-Nirenberg inequality, [12]

(1.2) ‖v‖L2p+2 ≤ β‖∇v‖ζ‖v‖1−ζ , ∀v ∈ H1
0 (Ω),

where ζ :=
pd

2(p+ 1)
and β is an absolute constant depending on Ω, d and p. For the cases of critical

exponent p = p∗(= 2
d ), (1.1) admits a unique global solution u ∈ C

(
[0, T ];H1

0 (Ω) ∩H2(Ω)
)
∩

C1
(
[0, T ];L2(Ω)

)
for every T > 0, if u0 ∈ H1

0 (Ω) ∩H2(Ω) and

(1.3) Γ(u0) :=
β2p+2λ

α(p+ 1)
‖u0‖2p < 1.

For λ ≤ 0, inequality (1.3) is automatically satisfied; problem (1.1) is then known as the defocusing
NLS equation. If λ > 0, problem (1.1) is called the focusing NLS equation. In this case, if (1.3) is
not satisfied, i.e., if Γ(u0) ≥ 1, the solution u of (1.1) may blow up in the H1−norm in some finite
time T ∗ <∞ (cf., e.g., [40, 41, 42] and the references therein). The focusing cases we consider in this
paper are those with Γ(u0) < 1, thus a global solution of (1.1) exists. A posteriori error analysis for
controlling the error close to blowup for focusing cases with Γ(u0) ≥ 1 is a very interesting question
and currently under investigation.

Problem (1.1) satisfies two conservation laws that will be instrumental in the subsequent analysis.
In particular, for t ≥ 0, we have

‖u(t)‖ = ‖u0‖, mass conservation,(1.4)

‖∇u(t)‖2 − λ

α(p+ 1)
‖u(t)‖2p+2

L2p+2 = ‖∇u0‖2 −
λ

α(p+ 1)
‖u0‖2p+2

L2p+2 , energy conservation.(1.5)

Using the Gagliardo-Nirenberg inequality (1.2) and the two conservation laws (1.4) and (1.5) we
prove a novel a posteriori estimate for the gradient of the solution:

‖∇u(t)‖ ≤ G(u0),

where G(u0) is a computable quantity depending only on u0 and known constants, see (3.11), (3.12).
This estimate is an essential ingredient of the proof of the final a posteriori error estimates. Similar
estimates are used in the a priori analysis for establishing existence of solutions for (1.1), cf. [26, 41].

The final estimates include an exponential term of the L2p ([0, T ];L∞(Ω))−norm of the approx-
imation; this is due to Gronwall’s inequality. This is an improvement compared to the existing
results on the a priori error analysis, where the exponential of the L∞ ([0, T ];L∞(Ω))−norm of the
approximation appears. Although any exponential term may seem pessimistic, it actually reflects
the nonlinear nature of the problem. A similar term appears in the a posteriori error analysis for
semilinear parabolic equations with possible blowup in finite time; cf. [15, 32]. In fact, as illustrated
in [15, 34], this term enables the proposition of an efficient time-space adaptive algorithm leading
to blowup detection and accurate numerical approximation of blowup times. In the cases of NLS
equations (1.1) we expect that the exponential term will also be proven beneficial towards the de-
velopment of an efficient time-space adaptive algorithm in the spirit of [15]. This is the subject of
a forthcoming paper. In this paper we investigate the behavior of the exponential term numerically
in the last section of the paper.

The paper is organized as follows. In Sections 2, 3 we consider only time discretization using a
relaxation Crank-Nicolson-type scheme. In particular, in Section 2 we introduce some additional
notation and generalize the relaxation scheme of [9] to variable time steps. We propose a novel
time reconstruction and study its properties. Section 3 is devoted to the proof of optimal order
a posteriori error estimates in the L∞

(
[0, T ];L2(Ω)

)
−norm for the time discrete scheme. The

analysis requires a careful use of the Gagliardo-Nirenberg inequality; the two conservation laws are
then used for the boundedness of the solution in the H1(Ω)−norm. The fully discrete relaxation
Crank-Nicolson finite element scheme is introduced in Section 4. In this case, we use finite element
spaces that are allowed to change from one time step to another. With the help of the elliptic
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reconstruction of [38] and the time reconstruction of Section 2 we define an appropriate time-space
reconstruction and study its properties. In Section 5 we provide a posteriori error estimates for the
fully discrete scheme. To obtain the estimates we use the machinery developed in Section 3 for the
time discrete scheme as well as residual-type estimators to control the terms coming from the use
of the elliptic reconstruction. The analysis is quite technical, but eventually leads to a posteriori
error bounds in the L∞([0, T ];L2(Ω))−norm that are expected to be of optimal order of accuracy.
Finally, in Section 6 we present numerical experiments, using uniform partitions in space and time.
More specifically, we verify that the obtained estimators are indeed of optimal oder of accuracy and
we study the behavior of the exponential term.

2. Time discrete schemes

As already mentioned in the Introduction, we first consider time discrete schemes, in an attempt
to present clearly the main ideas of the technical analysis caused by the nonlinear nature of problem
(1.1).

2.1. A relaxation Crank-Nicolson-type method. We consider a partition 0 =: t0 < t1 < · · · <
tN := T of [0, T ] and let kn := tn+1 − tn and In := (tn, tn+1], 0 ≤ n ≤ N − 1, denote the variable
time steps and subintervals of [0, T ], respectively. Let also k := max1≤n≤N kn. We further assume
that there exists an absolute constant c ∈ R+ such that

(2.1) kn ≤ ckn−1, 1 ≤ n ≤ N − 1.

The mild constraint (2.1) between consecutive time steps appears in the analysis of other time-
stepping methods with variable time steps. For example, it appears in [39], in the a posteriori error
analysis for discontinuous Galerkin in time methods.

The relaxation Crank-Nicolson-type scheme for (1.1) is defined as follows: We seek approxima-
tions Un ∈ H1

0 (Ω) to u(tn), 0 ≤ n ≤ N, such that

(2.2)


kn−1

kn + kn−1
Φn+ 1

2 +
kn

kn + kn−1
Φn−

1
2 = |Un|2p, 0 ≤ n ≤ N − 1,

∂̄Un − iα∆Un+ 1
2 = iλΦn+ 1

2Un+ 1
2 , 0 ≤ n ≤ N − 1,

with k−1 := k0, Φ−
1
2 = |u0|2p and U0 = u0. In (2.2) we also used the notation

(2.3) ∂̄Un :=
Un+1 − Un

kn
and Un+ 1

2 :=
Un+1 + Un

2
.

The relaxation scheme (2.2) was introduced for constant time steps by Besse in [9] for the numerical
solution of (1.1). Here we generalize Besse’s method to the case of variable time steps.

We next present briefly how method (2.2) can be obtained to make it clear to the reader that the
generalisation of Besse’s scheme in [9] indeed leads to (2.2) for variable time steps. First we rewrite
the NLS equation in (1.1) equivalently as the system of the following two equations:

(2.4)

{
φ = |u|2p in Ω × (0, T ],

∂tu− iα∆u = iλφu in Ω × (0, T ].

Recall that the Crank-Nicolson method for (1.1) reads as: for 0 ≤ n ≤ N, find Un ∈ H1
0 (Ω) such

that

(2.5) ∂̄Un − iα∆Un+ 1
2 = iλ|Un+ 1

2 |2pUn+ 1
2 , 0 ≤ n ≤ N − 1,

with U0 = u0. Note that using the equivalent system-form (2.4), |Un+ 1
2 |2p is an approximation of

φ(tn+ 1
2
) = |u(tn+ 1

2
)|2p with tn+ 1

2
:=

tn+1 + tn
2

.

The idea now is to replace |Un+ 1
2 |2p in (2.5) by an appropriate approximation of φ(tn+ 1

2
), in an

attempt to avoid the costly numerical treatment of the nonlinearity. This is where the first equation
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of (2.2) is involved. In particular, it is conjectured that if, Φ−
1
2 = |u0|2p and provided regularity on

the exact solution u of (1.1), then

(2.6) |u(tn+ 1
2
)|2p = φ(tn+ 1

2
) = Φn−

1
2 +

kn + kn−1

kn−1

(
|u(tn)|2p − Φn−

1
2

)
+O(k2), 0 ≤ n ≤ N − 1.

Neglecting O(k2) in (2.6) and replacing φ(tn+ 1
2
) by Φn+ 1

2 and u(tn) by Un, we obtain the first

equation in (2.2). We prove conjecture (2.6) formally:

(2.7) φ(tn+ 1
2
) = φ(tn− 1

2
) +

kn + kn−1

2
∂tφ(t)|t=t

n− 1
2

+O
(

1

2
(k2
n + k2

n−1)

)
,

where

(2.8) ∂tφ(t)|t=t
n− 1

2

=
2

kn−1

(
φ(tn)− φ(tn− 1

2
)
)

+O(kn−1).

Invoking (2.8) in (2.7) we deduce

φ(tn+ 1
2
) = φ(tn− 1

2
) +

kn + kn−1

kn−1

(
φ(tn)− φ(tn− 1

2
)
)

+O(k2),

since k = max0≤n≤N−1 kn. An inductive argument and (2.1) lead to (2.6) (recall that φ(tn) =
|u(tn)|2p).

Note that with scheme (2.2), the nonlinear term at each time tn is computed explicitly, avoiding
the solution of a nonlinear equation, as in the case of the Crank-Nicolson method (2.5). At the
same time, the term involving the laplacian (∆u) is discretized in time implicitly, preserving good
stability properties of the numerical scheme (2.2). Actually, the second equation in (2.2) produces
approximations that coincide with the Crank-Nicolson approximations of the linear Schrödinger
equation

(2.9) ∂tũ− iα∆ũ = iλV (x, t)ũ in Ω × (0, T ], V (x, t) := Φn+ 1
2 (x), in Ω × In,

with potential V is a piecewise constant in time function defined through Φn+ 1
2 , 0 ≤ n ≤ N − 1.

From this point of view, the relaxation scheme (2.2) may also be regarded as a linearised Crank-
Nicolson method for the NLS problem (1.1).

Next we show formally that scheme (2.2) is expected to produce second order approximations to
(1.1). To this end, combining (2.2), (2.6) and (2.1), we expect that

(2.10) Φn+ 1
2 = |u(tn+ 1

2
)|2p +O(k2), 0 ≤ n ≤ N − 1,

as |z|2p is a locally Lipschitz continuous function for p ≥ 1
2 . Since Un, 0 ≤ n ≤ N, are the Crank-

Nicolson approximations to (2.9), we expect that ũ(tn)− Un = O(k2), 0 ≤ n ≤ N. Inserting (2.10)
to (2.9) gives

∂tũ− iα∆ũ = iλ
(
|u(tn+ 1

2
)|2p +O(k2)

)
ũ in Ω × In,

for 0 ≤ n ≤ N − 1. Using once more that |z|2p is a locally Lipschitz continuous function for p ≥ 1
2

and (1.1) we obtain, for 0 ≤ n ≤ N − 1,

∂t(u− ũ)− iα∆(u− ũ) = iλ|u(t)|2p(u− ũ) + iλO(k2)ũ in Ω × In.

Therefore from the stability of the NLS (1.1), the continuity of u, ũ in [0, T ], and the fact that ũ is
a bounded function in time and space, we arrive at u(t)− ũ(t) = O(k2), t ∈ [0, T ]. Thus, by writing
u(tn)− Un = (u(tn)− ũ(tn)) + (ũ(tn)− Un), we immediately obtain u(tn)− Un = O(k2), 0 ≤ n ≤
N − 1. For constant time steps, stability and convergence results for scheme (2.2) can be found in
[9].

Moreover, the relaxation scheme (2.2) satisfies ‖Un‖ = ‖U0‖, 0 ≤ n ≤ N, which is the discrete
analogue of the mass conservation (1.4). This can easily be proven by taking the L2−inner product

with Un+ 1
2 in the second equation of (2.2) and then real parts and by noting that Φn+ 1

2 , 0 ≤ n ≤
N − 1, is always real. Also, as it has been proven in [9], for p = 1 and uniform time steps, the
numerical scheme (2.2) also satisfies a discrete analogue of the energy conservation (1.5).
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Our goal is to derive optimal order a posteriori error bounds for (1.1) when it is discretized
in time by (2.2). In order to achieve this, we first define the continuous in time approximation
U(t) to u(t), 0 ≤ t ≤ T , by linearly interpolating between the nodal values Un and Un+1, i.e., let
U : [0, T ]→ H1

0 (Ω) be defined as

(2.11) U(t) := `n0 (t)Un + `n1 (t)Un+1 = Un+ 1
2 + (t− tn+ 1

2
)∂̄Un, t ∈ In,

with `n0 (t) := tn+1−t
kn

and `n1 (t) := t−tn
kn

, 0 ≤ n ≤ N − 1.

It is clear that if u(tn)−Un = O(k2), 0 ≤ n ≤ N , then for t ∈ [0, T ], we have u(t)−U(t) = O(k2),
as well. However, it is well known, cf., e.g., [3, 22, 36], that using U(t) in the a posteriori error
analysis leads to estimates of first instead of second order of accuracy, which is the expected order of
accuracy of method (2.2). For this reason we shall use a reconstruction Û of U , [3]. An alternative
reconstruction for U and the scheme (2.2) can be proposed by following similar arguments as in [36].

2.2. Time-reconstruction and its properties. We introduce now a reconstruction Û of U . To
this end, Û(t), t ∈ [0, T ], is defined to be the piecewise quadratic polynomial in t,

(2.12) Û(t) := Un + iα

∫ t

tn

∆U(s) ds+ iλ

∫ t

tn

Φn+ 1
2U(s) ds, t ∈ In.

As expected Û coincides with the Crank-Nicolson reconstruction of [3] (see also [31]) for the linear

Schrödinger equation (2.9). It is also worth mentioning that Û(t) ∈ H1
0 (Ω), t ∈ [0, T ], provided

compatibility conditions on the initial data, cf., [30, 31]. However, as we will see on Section 4,

where fully discrete schemes are studied, Û(t) ∈ H1
0 (Ω), t ∈ [0, T ], automatically, without further

assumptions on the initial data. Therefore, from now on we assume that Û belongs to H1
0 (Ω).

Proposition 2.1 (properties of Û). The reconstruction Û defined in (2.12) is equivalently written
as

(2.13) Û(t) = Un +
i

2
(t− tn)(α∆+ λΦn+ 1

2 ) (U(t) + Un) , t ∈ In.

Moreover, it satisfies

(2.14) ∂tÛ − iα∆U = iλΦn+ 1
2U in In

and Û(t+n ) = Un, Û(tn+1) = Un+1, 0 ≤ n ≤ N − 1; in particular, Û is a time-continuous function.

Proof. First we note that
∫ t
tn
U(s) ds = 1

2 (t− tn) (U(t) + Un), and therefore, (2.13) is obtained from

(2.12), whilst (2.14) is directly obtained by differentiation in time of (2.12). Finally, U(t+n ) = Un is
obvious once more from (2.12), while (2.13) gives, for t = tn+1,

Û(tn+1) = Un + iαkn∆U
n+ 1

2 + iλknΦn+ 1
2Un+ 1

2 ,

whence Û(tn+1) = Un+1 follows from (2.2). �

The a posteriori quantity r̂, by which Û misses satisfying the NLS equation in (1.1), is the residual
and it is defined as

(2.15) r̂ := ∂tÛ − iα∆Û − iλf(Û) in In.

By virtue of (2.14), we have that r̂ is written as

(2.16) r̂ = −iα∆(Û − U)− iλ
(
f(Û)− f(U)

)
− iλ(|U |2p − Φn+ 1

2 )U in In.

We would like r̂ to decrease as fast as the order of the method, i.e., we would like r̂ to be of second
order of accuracy, provided that u(tn) − Un = O(k2), 0 ≤ n ≤ N. Towards that direction, in the

next proposition we compute the difference Û − U .

Proposition 2.2 (the difference Û − U). The difference Û − U can be expressed as

(2.17) (Û − U)(t) = − i

2
(t− tn)(tn+1 − t)(α∆+ λΦn+ 1

2 )∂̄Un, t ∈ In.
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Proof. We compute Û−U by subtracting (2.11) from (2.13) and we use (2.2). The expression (2.17)
follows then by basic algebraic manipulations. �

Given that the relaxation scheme (2.2) produces second order approximations to the exact solution

at the nodes tn, 0 ≤ n ≤ N , we conclude that Û − U is expected to be of second order of accuracy.
Using this, (2.10), and the fact that f(z) = |z|2pz is also a locally Lipschitz function for p ≥ 1

2 , and
resorting back to (2.16), we deduce that r̂ is expected to be second order accurate.

2.3. Variational formulation & Error equation. Problem (1.1) is equivalently written, in vari-
ational form, for t ∈ [0, T ], as

(2.18)

{
〈∂tu(t), v〉+ iα〈∇u(t),∇v〉 = iλ〈f (u(t)) , v〉, ∀v ∈ H1

0 (Ω),

u(·, 0) = u0 in Ω.

Similarly, the reconstruction Û defined in (2.12) satisfies, for t ∈ In, the problem

(2.19)

{
〈∂tÛ(t), v〉+ iα〈∇Û(t),∇v〉 = iλ〈f(Û(t)), v〉+ 〈r̂(t), v〉, ∀v ∈ H1

0 (Ω),

Û(·, 0) = u0 in Ω.

We denote by ê := u− Û the error between the exact solution u and the reconstruction Û . Then
subtracting the first equation of (2.19) from the first equation of (2.18) we derive the basic error
equation

(2.20) 〈∂tê(t), v〉+ iα〈∇ê(t),∇v〉 = iλ〈f(u(t))− f(Û(t)), v〉 − 〈r̂(t), v〉, ∀v ∈ H1
0 (Ω), t ∈ In,

with ê(0) = 0. Taking v = ê in the error equation (2.20) and then real parts reveals

(2.21)
1

2

d

dt
‖ê(t)‖2 = λRe i〈f(u)− f(Û), ê〉(t)− Re〈r̂, ê〉(t), t ∈ In.

In Section 3 we analyse how we treat the term Re i〈f(u) − f(Û), ê〉 on the right-hand side of
(2.21) to derive an a posteriori error bound for (1.1).

3. A posteriori error control for time discrete schemes

In view of (2.21) it is evident that we have to handle the term Re i〈f(u)− f(Û), ê〉, which arises
due to the nonlinear nature of the problem. To this direction we will use the Gagliardo-Nirenberg
inequality (1.2), the conservation laws (1.4) and (1.5) and some other ingredients presented in the
next subsection.

3.1. Main Ingredients. First we write

f(u)− f(Û) = |u|2pu− |Û |2pÛ = |u|2p(u− Û) + Û(|u|2p − |Û |2p) = |u|2pê+ Û(|u|2p − |Û |2p).

Thus

(3.1)

Re i〈f(u)− f(Û), ê〉(t) = Re i〈Û
(
|u|2p − |Û |2p

)
, ê〉(t)

=

[
Re i

∫
Ω

Û(|u|2p − |Û |2p)
ê

ê¯̂e dx

]
(t)

=

[∫
Ω

Re i

(
Û(|u|2p − |Û |2p)

ê

)
|e|2 dx

]
(t).

Applying the Mean Value Theorem to the real-valued function y2p we have that, for every (x, t) ∈
Ω × [0, T ], there exists s(x, t) ∈ [0, 1] such that

(3.2)
|u|2p − |Û |2p = 2p

(
s|u|+ (1− s)|Û |

)2p−1

(|u| − |Û |)

= 2p
(
s|Û + ê|+ (1− s)|Û |

)2p−1

(|u| − |Û |).
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Invoking (3.2) to(3.1) we obtain

|Re i〈f(u)− f(Û), ê〉(t)| = 2p

∣∣∣∣∣∣∣
∫

Ω

Re i

 Û
(
s|Û + ê|+ (1− s)|Û |

)2p−1

(|u| − |Û |)

ê

 |e|2 dx
 (t)

∣∣∣∣∣∣∣
≤
[∫

Ω

2p(|Û |+ s|ê|)2p−1|Û ||ê|2 dx
]

(t),

where in the last inequality we used that 2p − 1 ≥ 0 (as p ≥ 1
2 ) and

∣∣∣|u| − |Û |∣∣∣ ≤ |u − Û | = |ê|.
Therefore

|Re i〈f(u)− f(Û), ê〉(t)| ≤ 2p〈(|Û |+ s|ê|)2p−1|Û |ê, ê〉(t),

and since |Û | ≤ |Û |+ s|ê| (recall that s(x, t) ∈ [0, 1] for all (x, t) ∈ Ω × [0, T ]), we conclude that

(3.3) |Re i〈f(u)− f(Û), ê〉(t)| ≤ 2p〈(|Û |+ s|ê|)2pê, ê〉(t).

Next to handle the term (|Û |+ s|ê|)2p in (3.3) we use the standard inequality

(3.4) (a+ b)q ≤ γ(q)(aq + bq) with γ(q) :=

{
2q−1, q ≥ 1

1, 0 ≤ q ≤ 1,

valid for any a, b ≥ 0 and q ≥ 0. Applying (3.4) to (|Û |+s|ê|)2p we get (|Û |+s|ê|)2p ≤ 22p−1(|ê|2p+

|Û |2p); recall that 0 ≤ s ≤ 1 and p ≥ 1
2 . Hence (3.3) becomes

(3.5) |Re i〈f(u)− f(Û), ê〉(t)| ≤ 22pp
(
‖ê(t)‖2p+2

L2p+2 + ‖Û(t)‖2pL∞‖ê(t)‖
2
)
.

To estimate ‖ê(t)‖2p+2
L2p+2 we refer to the Gagliardo-Nirenberg inequality (1.2):

(3.6) ‖ê(t)‖2p+2
L2p+2 ≤ B‖∇ê(t)‖pd‖ê(t)‖p(2−d)+2 = B‖∇ê(t)‖pd‖ê(t)‖p(2−d)‖ê(t)‖2,

with B := β2p+2. Since d ≤ 2 and 1
2 ≤ p ≤

2
d , we have that p(2− d) ≥ 0 and thus by (3.4)

(3.7)
‖ê(t)‖p(2−d) ≤ γ (p(2− d))

(
‖u(t)‖p(2−d) + ‖Û(t)‖p(2−d)

)
= γ (p(2− d))

(
‖u0‖p(2−d) + ‖Û(t)‖p(2−d)

)
,

where the last equality holds because of (1.4). Set A := |λ|22ppmax{1, γ (p(2− d))B}. Then using
(3.6) and (3.7) in (3.5) we deduce, for λ 6= 0 1 and t ∈ [0, T ],

(3.8) |Re i〈f(u)−f(Û), ê〉(t)| ≤ A

|λ|

((
‖u0‖p(2−d) + ‖Û(t)‖p(2−d)

)
‖∇ê(t)‖pd + ‖Û(t)‖2pL∞

)
‖ê(t)‖2,

whereas returning back to the error equation (2.21) we see that it can be written, for t ∈ In, as

(3.9)
d

dt
‖ê(t)‖ ≤ A

((
‖u0‖p(2−d) + ‖Û(t)‖p(2−d)

)
‖∇ê(t)‖pd + ‖Û(t)‖2pL∞

)
‖ê(t)‖+ ‖r̂(t)‖.

From (3.9) it is clear that we can bound the L∞([0, T ];L2(Ω))−norm of ê, using Gronwall’s inequal-
ity, as long as we have an estimation for ‖∇ê(t)‖. We do this in the next subsection.

Remark 3.1 (the 3d case). If d = 3, we have that p(2− d) < 0 and (3.7) fails. This is the reason
why the three dimensional spatial case cannot be included in the analysis of this paper.

1if λ = 0 then A:=0, i.e., the problem is reduced to the linear one.
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3.2. A posteriori error bound in the L∞([0, T ];L2(Ω))−norm. In order to state the main
theorem of this section, we first estimate a posteriori the gradient term in (3.9). Since pd ≥ 1

2 > 0,
(3.4) implies

(3.10) ‖∇ê(t)‖pd ≤ γ(pd)
(
‖∇Û(t)‖pd + ‖∇u(t)‖pd

)
.

In the next lemma we bound a posteriori the term ‖∇u(t)‖.

Lemma 3.1 (a posteriori bound for ‖∇u(t)‖). For t ∈ [0, T ], the following estimate holds true

(3.11) ‖∇u(t)‖ ≤ G(u0),

with
(3.12)

G(u0) :=



(
‖∇u0‖2 −

λ

α(p+ 1)
‖u0‖2p+2

L2p+2

)1/2

, λ ≤ 0 ,(
‖∇u0‖2−pd +

λ

α(p+ 1)

(
β2p+2‖u0‖p(2−d)+2 −

‖u0‖2p+2
L2p+2

‖∇u0‖pd

))1/(2−pd)

,

λ > 0,
1

2
≤ p < 2

d
,

1

(1− Γ(u0))
1/2

(
‖∇u0‖2 −

λ

α(p+ 1)
‖u0‖2p+2

L2p+2

)1/2

, pd = 2, λ > 0, Γ(u0) < 1,

where β denotes the constant in the Gagliardo-Nirenberg inequality (1.2) and Γ(u0) is given in (1.3).

Proof. We divide the proof into three parts. First we assume that λ ≤ 0. Then from the energy
conservation (1.5) we readily obtain

‖∇u(t)‖2 ≤ ‖∇u0‖2 −
λ

α(p+ 1)
‖u0‖2p+2

L2p+2 .

Next we assume that λ > 0 and 1
2 ≤ p < 2

d . Using the conservation laws (1.4)-(1.5) and invoking

the Gagliardo-Nirenberg inequality (1.2) to the term ‖u(t)‖2p+2
L2p+2 leads to

(3.13)

‖∇u(t)‖pd
(
‖∇u(t)‖2−pd − Bλ

α(p+ 1)
‖u0‖p(2−d)+2

)
≤ ‖∇u0‖pd

(
‖∇u0‖2−pd −

λ

α(p+ 1)

‖u0‖2p+2

‖∇u0‖pd

)
.

Hence if ‖∇u(t)‖ > ‖∇u0‖ we must have, from (3.13), that

(3.14) ‖∇u(t)‖ ≤

(
‖∇u0‖2−pd −

λ

α(p+ 1)

‖u0‖2p+2
L2p+2

‖∇u0‖pd
+

Bλ

α(p+ 1)
‖u0‖p(2−d)+2

)1/(2−pd)

,

because 2 − pd > 0. Note now that (1.2) implies
‖u0‖2p+2

L2p+2

‖∇u0‖pd
≤ B‖u0‖p(2−d)+2. This observation in

combination with (3.14) give (3.11) for λ > 0 and 1
2 ≤ p <

2
d .

Finally we consider the case λ > 0, Γ(u0) < 1 and pd = 2, i.e., the critical exponent. Using the
same argumentation as for the derivation of (3.13) we obtain

(1− Γ(u0)) ‖∇u(t)‖2 ≤ ‖∇u0‖2 −
λ

α(p+ 1)
‖u0‖2p+2

L2p+2 ,

which implies (3.11) for this case as well, and the proof is complete. �

Remark 3.2 (the critical exponent). In view of (3.12) it is obvious that G(u0) blows up when
Γ(u0)→ 1. This is reasonable as estimate (3.11) is proven uniformly for all t, and for Γ(u0) ≥ 1 the
H1−norm of u may blow up in finite time.
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Remark 3.3 (computational cost of G(u0)). Although G(u0) in (3.12) seems complicated, it is a
global quantity and it is computed only once numerically.

If we define
(3.15)

H(Û , u0; t) := A
(
γ(pd)

(
‖u0‖p(2−d) + ‖Û(t)‖p(2−d)

)(
G(u0)pd + ‖∇Û(t)‖pd

)
+ ‖Û(t)‖2pL∞

)
,

we derive in light of (3.9), (3.10) and (3.11)

(3.16)
d

dt
‖ê(t)‖ ≤ H(Û , u0; t)‖ê(t)‖+ ‖r̂(t)‖, t ∈ In.

Thus, using Gronwall’s inequality and keeping in mind that ê = u− Û is a time-continuous function
with ê(0) = 0, we arrive at the main theorem of the section.

Theorem 3.1 (a posteriori error estimate in L∞(0, T ;L2(Ω))). The following local and global a
posteriori error estimates in the L∞([0, T ];L2(Ω))−norm are valid:
(3.17)

sup
t∈In
‖(u− Û)(t)‖ ≤ exp

(∫
In

H(Û , u0; t) dt

)(
‖(u− Û)(tn)‖+

∫
In

‖r̂(t)‖ dt
)
, 0 ≤ n ≤ N − 1,

and

(3.18) ‖(u− Û)(t)‖ ≤ exp

(∫ t

0

H(Û , u0; s) ds

)∫ t

0

‖r̂(s)‖ ds, t ∈ [0, T ],

where H(Û , u0; t) is given in (3.15), u is the solution of (1.1), Û is the reconstruction (2.13) for the
relaxation Crank-Nicolson-type scheme (2.2) and r̂ is the residual given in (2.16). �

Remark 3.4 (focusing NLS). Estimates (3.17) and (3.18) blow up exponentially when Γ(u0)→ 1,

because G(u0) (and thus H(Û , u0; t)) blows up in this case (cf., (3.12)). Thus the methodology of
this section cannot be generalised to the focusing NLS equation with the aim to control the error
close to the blowup time. In contrast to the corresponding parabolic equation with blowup, cf., [15],
energy methods are not appropriate for the focusing NLS with blowup and other techniques should
be applied for the a posteriori error analysis of these equations.

Remark 3.5 (local estimate (3.17)). Estimate (3.17) may be used for the proposition of an efficient
adaptive algorithm as in [15, 34]. This estimate is more appropriate for adaptivity due its local

nature. Note that ‖(u−Û)(tn)‖ comes from the previous time step, so if we have max
t∈In−1

‖(u−Û)(t)‖ ≤

TOL, where TOL is a given tolerance, then TOL can replace ‖(u− Û)(tn)‖ in (3.17).

3.3. An improved estimate for the one-dimensional case. In this subsection we consider the
one spatial dimension, d = 1. Let η(t) denote the right-hand side in (3.18) to the power p. Then in
view of (3.18), (3.6) takes the form

‖ê(t)‖2p+2
L2p+2 ≤ B‖∇ê(t)‖pη(t)‖ê(t)‖2.

Plugging the above estimate in (3.5) and using (3.10) and (3.11) we deduce

|Re i〈f(u)− f(Û), ê〉(t)| ≤ A

|λ|

(
η(t)

(
G(u0)p + ‖∇Û(t)‖p

)
+ ‖Û(t)‖2pL∞

)
‖ê(t)‖+ ‖r̂(t)‖, t ∈ In.

Hence the error equation (2.21) takes now the form

d

dt
‖ê(t)‖ ≤ K(Û , u0; t)‖ê(t)‖+ ‖r̂(t)‖, t ∈ In,

with

(3.19) K(Û , u0; t) := A
(
η(t)

(
G(u0)p + ‖∇Û(t)‖p

)
+ ‖Û(t)‖2pL∞

)
.

Thus Gronwall’s inequality leads to:
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Theorem 3.2 (improved a posteriori error estimate in L∞(0, T ;L2(Ω)) for d = 1). In the case
d = 1, the following estimates hold:
(3.20)

sup
t∈In
‖(u− Û)(t)‖ ≤ exp

(∫
In

K(Û , u0; t) dt

)(
‖(u− Û)(tn)‖+

∫
In

‖r̂(t)‖ dt
)
, 0 ≤ n ≤ N − 1,

(3.21) ‖(u− Û)(t)‖ ≤ exp

(∫ t

0

K(Û , u0; s) ds

)∫ t

0

‖r̂(s)‖ ds,

where u is the solution of (1.1), Û is the reconstruction (2.13) for the relaxation Crank-Nicolson-type

scheme (2.2), r̂ denotes the residual (2.16) and K(Û , u0; s) is given by (3.19). �

Remark 3.6 (why is (3.21) an improved estimate?). Note that since η(t) = O(k2p), t ∈ [0, T ], we
have that

(3.22)

∫ t

0

K(Û , u0; s) ds = O(k2p) +A

∫ t

0

‖Û(s)‖2pL∞ ds.

From this point of view, (3.21) is an improved estimate compared to (3.18).

Remark 3.7 (the triangle inequality (3.10)). Note that for the derivation of the a posteriori error
estimates in Theorems 3.1 and 3.2 we use the triangle inequality (3.10) and then we control ‖∇u(t)‖
from the data of the NLS problem (1.1). Since

∫ T
0
‖∇ê(s)‖pd ds will appear in the exponential term

in the estimates, using (3.10) to estimate this term could make the estimates unpractical if ‖∇u(t)‖
or
∫ T

0
‖∇Û(s)‖pd ds (or both) are large.

This issue is substantially improved in the one-dimensional case, by using the improved estimates
(3.20), (3.21) of Theorem 3.2. In that case, the terms that are coming from the approximation of∫ T

0
‖∇ê(s)‖pd ds are multiplied by η(t) = O(k2p). In particular, in view of (3.22) (sse Remark 3.6

above) the dominant term in the exponential is
∫ T

0
‖Û(s)‖2pL∞ ds. This term appears due to the

nonlinear nature of the problem (cf. (3.3) and (3.5)). If this term is large, again the estimates
will be unpractical for uniform partitions. However, as in the case of [15, 34], the proposition of
an efficient time-space adaptive algorithm (using the local estimate (3.20)) could provide a way to
control the error.

For the two-dimensional case, where the improved estimates of Theorem 3.2 do not hold, the issue

of unpractical estimates for uniform partitions may be raised when ‖∇u(t)‖ or
∫ T

0
‖∇Û(s)‖pd ds or∫ T

0
‖Û(s)‖2p ds (or all of them) are large. Again, the idea there is to use the local estimate (3.17)

and propose an efficient time-space adaptive algorithm in order to control the error. This issue will
be further investigated in a forthcoming paper.

4. Fully discrete schemes

In this section we study fully discrete schemes. A Galerkin-type finite element method is used for
the spatial discretization while for the discretization in time we use the relaxation Crank-Nicolson-
type method (2.2). We begin the section with some notation and the introduction of the fully
discrete scheme.

4.1. Notation & The method. We keep the same notation as in time discretization section for
the partition of [0, T ], i.e., we denote by kn and In, 0 ≤ n ≤ N − 1, the variable time steps and
subintervals, respectively. For the spatial discretization, we follow the same notation as in [29].
More precisely, we consider a family of conforming, shape regular triangulations {Tn}Nn=0 of Ω (for
d = 1, the elements of Tn are just finite intervals). We additionally assume that each triangulation
Tn, 1 ≤ n ≤ N, is a refinement of a macro-triangulation of Ω and that every two consecutive
triangulations Tn and Tn+1, 0 ≤ n ≤ N − 1, are compatible. We refer to [20, 35] for precise
definitions on these properties.
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For an element K ∈ Tn, we denote its boundary by ∂K and by hK its diameter. Let also
hn := minK∈Tn hK . By hn we denote the local mesh-size function on Tn, defined as

hn(x) := hK for K ∈ Tn and x ∈ K.
Let Σn(K) be the set of internal sides of K ∈ Tn (points for d = 1, edges for d = 2) and define

Σn :=
⋃
K∈Tn Σn(K). To any side e ∈ Σn, we associate a unit vector ne on e and for x ∈ e and a

function v, we define

J [∇v](x) := lim
δ→0

[
∇v(x+ δne)−∇v(x− δne)

]
· ne.

To each triangulation Tn, we associate the finite element space Vn,

Vn := {Vn ∈ H1
0 (Ω) : ∀K ∈ Tn, Vn|K ∈ Pr},

where Pr denotes the space of polynomials in d variables of degree at most r.

With T̂n+1 := Tn+1∧Tn we denote the finest common coarsening triangulation of Tn+1 and Tn, by

ĥn+1 its local mesh-size function and by V̂n+1 := Vn+1
⋂

Vn its corresponding finite element space.

Finally, let Σ̌n+1 := Σn+1

⋃
Σn, and for K ∈ T̂n+1, let Σ̌n+1

K := Σ̌n+1

⋂
K, where the element

K ∈ T̂n+1 is taken to be closed.
To introduce a fully discrete method, we will also need the definitions of the L2−projection and

of the discrete laplacian onto Vn. To this end, the L2−projection Pn : L2 → Vn is defined as

〈Pnv, Vn〉 = 〈v, Vn〉, ∀Vn ∈ Vn,
and every v ∈ L2(Ω). Moreover, the discrete laplacian −∆n : H1

0 (Ω)→ Vn is defined as

(4.1) 〈−∆nv, Vn〉 = 〈∇v,∇Vn〉, ∀Vn ∈ Vn,
and every v ∈ H1

0 (Ω).
With the notation and definitions so far, we can now define the modified relaxation Crank-

Nicolson-Galerkin-type fully discrete scheme. For 0 ≤ n ≤ N, we seek approximations Un ∈ Vn to
u(tn) such that, for 0 ≤ n ≤ N − 1,

(4.2)


kn−1

kn + kn−1
Φn+ 1

2 +
kn

kn + kn−1
Pn+1Φn−

1
2 = Pn+1

(
|Un|2p

)
,

Un+1 − Pn+1Un

kn
− iα

∆n+1Un+1 + Pn+1∆nUn

2
= iλPn+1

(
Φn+ 1

2Un+ 1
2

)
,

with Φ−
1
2 = P0

(
|u0|2p

)
, U0 = P0u0. Scheme (4.2) is not the standard finite element scheme for

(2.2). The above modified scheme was introduced by Bänsch, Karakatsani & Makridakis in [14] for
the a posteriori analysis of the heat equation with mesh change. Its main advantage is that it avoids
the existence of the term ‖(∆n+1−∆n)Un‖ in the a posteriori error analysis, which oscillates when
there is mesh change. This schemes was also used recently in [29] for linear Schrödinger equations.

4.2. Space reconstruction. The main tool leading to a posteriori error estimates of optimal order
in space in the L∞([0, T ];L2(Ω))−norm via energy techniques is the elliptic reconstruction. It was
originally introduced by Makridakis & Nochetto in [38] for finite element semidiscrete schemes for
the heat equation.

For Vn ∈ Vn, the elliptic reconstruction RnVn ∈ H1
0 (Ω) of Vn is defined to be the unique solution

of the elliptic equation

(4.3) 〈∇RnVn,∇v〉 = 〈−∆nVn, v〉, ∀v ∈ H1
0 (Ω).

Using the elliptic reconstruction, we define the space reconstruction ω : [0, T ] ∈ H1
0 (Ω) of the

piecewise linear interpolated U (see (2.11)) as

(4.4) ω(t) := `n0 (t)RnUn + `n1 (t)Rn+1Un+1, t ∈ In.
The space reconstruction (4.4) will allow us to handle efficiently a posteriori the spatial error using
the elliptic theory. More precisely, using ω in the analysis below, terms of the form ‖(Rn − I)Vn‖,
‖(Rn − I)Vn‖L∞ and ‖(Rn+1 − I)Vn+1 − (Rn − I)Vn‖ will appear. To estimate these terms, we will
use residual-type elliptic error estimators.
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To this end, for a given Vn ∈ Vn, 0 ≤ n ≤ N , we define the following L2− and L∞−residual-type
estimators:

η2,Vn(Vn) :=

{ ∑
K∈Tn

(
‖h2

K(∆−∆n)Vn‖2L2(K) + ‖h
3
2

KJ [∇Vn]‖2L2(∂K)

)} 1
2

,(4.5)

η∞,Vn(Vn) := max
K∈Tn

{
‖h2

K(∆−∆n)Vn‖L∞(K) + ‖hKJ [∇Vn]‖L∞(∂K)

}
,(4.6)

where, for p = 1,∞, ‖ · ‖Lp(K) and ‖ · ‖Lp(∂K) denote the Lp−norm in K and on ∂K, respectively.
In the one-dimensional case, d = 1, the term with the discontinuities in (4.5) and (4.6) vanishes.
For Vn+1 ∈ Vn+1 and Vn ∈ Vn, 0 ≤ n ≤ N , we also define

(4.7)
η2,V̂n+1(Vn+1, Vn) :=

{ ∑
K∈T̂n

(
‖h2

K

[
(∆−∆n+1)Vn+1 − (∆−∆n)Vn

]
‖2L2(K)

+ ‖h
3
2

KJ [∇Vn+1 −∇Vn]‖2
L2(Σ̌n+1

K )

)} 1
2

.

In view of the definitions (4.5) and (4.7), the next lemma is standard. For its proof we refer, for
example, in [38, 35] (for the case d = 1, see [30]).

Lemma 4.1. For all Vn ∈ Vn, 0 ≤ n ≤ N, we have

(4.8) ‖(Rn − I)Vn‖ ≤ C2η2,Vn(Vn),

where C2 depends only on Ω and the shape regularity of the family of triangulations {Tn}Nn=0.
Furthermore, for all Vn+1 ∈ Vn+1 and Vn ∈ Vn, 0 ≤ n ≤ N − 1, it holds

(4.9) ‖(Rn+1 − I)Vn+1 − (Rn − I)Vn‖ ≤ Ĉ2η2,V̂n+1(Vn+1, Vn),

where Ĉ2 depends only on Ω, the shape regularity of the triangulations, and the number of refinement
steps necessary to pass from Tn to Tn+1. �

A similar estimate to (4.8) holds for ‖(Rn− I)Vn‖L∞ ; for its proof we refer to [43] (for d = 1, see
[30]).

Lemma 4.2. For every Vn ∈ Vn, 0 ≤ n ≤ N, the following estimate is valid:

(4.10) ‖(Rn − I)Vn‖L∞ ≤ C∞ (lnhn)
2
η∞,Vn(Vn),

where C∞ depends only on Ω and the shape regularity of the family of triangulations. �

4.3. Time-space reconstruction and its properties. As already discussed in Section 2 to handle
efficiently the time-error due to the discretization with the relaxation Crank-Nicolson scheme, we
need a reconstruction in time. Similarly, for the fully discrete scheme (4.2) we will use a time

reconstruction of ω. Thus, we end up with a time-space reconstruction Û : [0, T ]→ H1
0 (Ω) which is

defined as follows:

(4.11)

Û(t) := RnUn +
t− tn
kn

(Rn+1Pn+1Un −RnUn) + iα

∫ t

tn

Rn+1Θ(s) ds

+ iλ

∫ t

tn

Rn+1Pn+1
(

Φn+ 1
2U(s)

)
ds, t ∈ In,

(4.12) Θ(t) := `n0 (t)Pn+1∆nUn + `n1 (t)∆n+1Un+1, t ∈ In;

compare with (2.12). We choose to use the same notation Û for the time-space reconstruction as for
the time-reconstruction in time discrete schemes (cf., Sections 2, 3). This is done in an attempt to
simplify the notation as well as for a direct comparison with the time discrete schemes. Note that
Û in (4.11) coincides with the time-space reconstruction of [29] for the linear Schrödinger equation
(2.9). Denoting by

(4.13) W (t) := iαΘ(t) + iλPn+1
(

Φn+ 1
2U(t)

)
, t ∈ In,
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we have that Û is equivalently written as

(4.14) Û(t) = RnUn +
t− tn
kn

(Rn+1Pn+1Un −RnUn) +

∫ t

tn

Rn+1W (s) ds, t ∈ In,

whilst the second equation in method (4.2) is written as

(4.15)
Un+1 − Pn+1Un

kn
−W (tn+ 1

2
) = 0, 0 ≤ n ≤ N − 1.

For 0 ≤ n ≤ N − 1, t ∈ In, we further define

(4.16) ∂̃Θn+1 := ∂tΘ(t) =
∆n+1Un+1 − Pn+1∆nUn

kn

and similarly,

(4.17) ∂̃Wn+1 := ∂tW (t) = iα∂̃Θn + iλPn+1
(

Φn+ 1
2 ∂̄Un

)
.

Using (4.14), (4.15) and notations (4.13), (4.16), (4.17) we can prove the next propositions. We
state them here without any proofs and we refer to [29] (Proposition 2.1 and Lemma 2.5) for further
details (compare also with Propositions 2.1 and 2.2 of this paper).

Proposition 4.1 (properties of Û). The reconstruction Û in (4.11) satisfies Û(t+n ) = RnUn and

Û(tn+1) = Rn+1Un+1, 0 ≤ n ≤ N−1. In particular, Û is continuous in time on [0, T ]. Furthermore
it satisfies

(4.18) ∂tÛ − iαRn+1Θ = iλRn+1Pn+1
(

Φn+ 1
2U
)

+
Rn+1Pn+1Un −RnUn

kn
in In. �

Proposition 4.2 (the difference Û − ω). The difference Û − ω can be expressed as

(4.19)
(Û − ω)(t) = −1

2
(tn+1 − t)(t− tn)Rn+1∂̃Wn+1

= − i

2
(tn+1 − t)(t− tn)Rn+1

(
α∂̃Θn+1 + λPn+1

(
Φn+ 1

2 ∂̄Un
))

t ∈ In. �

5. A posteriori error control for fully discrete schemes

We are now ready to prove the main a posteriori error bound for the fully discrete scheme (4.2).
We split the error e := u− U as

e = u− U := ρ̂+ σ + ε with ρ̂ := u− Û , σ := Û − ω and ε := ω − U,

and we refer to ρ̂ as the main error, to σ as the time-reconstruction error, and to ε as the elliptic
error.

5.1. Estimation of σ & ε. In this subsection we give two simple propositions for the a posteriori
estimation of the time-reconstruction and elliptic errors.

Proposition 5.1 (estimation of σ). For 0 ≤ n ≤ N − 1, the following estimates hold:

(5.1) max
tn≤t≤tn+1

‖σ(t)‖ ≤ εT,0
n+1 with εT,0

n+1 :=
k2
n

8

[
‖∂̃Wn+1‖+ C2η2,Vn+1(∂̃Wn+1)

]
and

(5.2)

max
tn≤t≤tn+1

‖σ(t)‖L∞ ≤ εT,∞
n+1 with εT,∞

n+1 :=
k2
n

8

[
‖∂̃Wn+1‖L∞ + C∞

(
lnhn+1

)2
η∞,Vn+1(∂̃Wn+1)

]
.

In particular, for 1 ≤ m ≤ N, we have that

(5.3) max
0≤t≤tm

‖σ(t)‖ ≤ ET,0
m with ET,0

m := max
1≤n≤m

εT,0
n and

(5.4) max
0≤t≤tm

‖σ(t)‖L∞ ≤ ET,∞
m with ET,∞

m := max
1≤n≤m

εT,∞
n .
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Proof. We write Rn+1∂̃Wn+1 = ∂̃Wn+1 + (Rn+1− I)∂̃Wn+1 and the estimates follow directly from
(4.19) and the elliptic properties (4.5), (4.6). �

Proposition 5.2 (estimation of ε). The next local estimates are valid, for 0 ≤ n ≤ N − 1,

(5.5) max
tn≤t≤tn+1

‖ε(t)‖ ≤ C2ε
S,0
n+1 with εS,0

n+1 := max
{
η2,Vn+1(Un+1), η2,Vn(Un)

}
and

(5.6)

max
tn≤t≤tn+1

‖ε(t)‖L∞ ≤ C∞εS,∞
n+1 with εS,∞

n+1 := max
{(

lnhn+1

)2
η∞,Vn+1(Un+1), (lnhn)

2
η∞,Vn(Un)

}
.

In particular, for 1 ≤ m ≤ N , the following global estimates hold true:

max
0≤t≤tm

‖ε(t)‖ ≤ C2ES,0
m with ES,0

m := max
0≤n≤m

η2,Vn(Un),(5.7)

max
0≤t≤tm

‖ε(t)‖L∞ ≤ C∞ES,∞
m with ES,∞

m := max
0≤n≤m

(lnhn)
2
η∞,Vn(Un).(5.8)

Proof. For t ∈ In, we write ε(t) = `n0 (t)(Rn − I)Un + `n+1
1 (Rn+1 − I)Un+1 and the estimates follow

from (4.5) and (4.6). �

5.2. Estimation of ρ̂. In this subsection we estimate a posteriori the main error ρ̂ using energy
techniques. The estimation of ρ̂ is based on the analysis of Section 3. We first have from (4.18) that

Û satisfies, in In, 0 ≤ n ≤ N − 1, the equation

(5.9) 〈∂tÛ , v〉+ iα〈∇Û ,∇v〉 = iλ〈f(Û), v〉+ 〈R, v〉, ∀v ∈ H1
0 (Ω)

with

R(t) := Rn+1W (t) +
Rn+1Pn+1Un −RnUn

kn
− iλf

(
Û(t)

)
− iα∆(ω + σ)(t), t ∈ In.

Furthermore, the definition of the elliptic reconstruction (4.3) and (4.4) lead to

〈∆ω, v〉 = `n0 (t)〈∆nUn, v〉+ `n1 (t)〈∆n+1Un+1, v〉, ∀v ∈ H1
0 (Ω)

and by (4.19)

〈∆σ, v〉 = −1

2
(tn+1 − t)(t− tn)〈∆n+1∂̃Wn+1, v〉, ∀v ∈ H1

0 (Ω).

Therefore, subtracting (5.9) from the first equation of (2.18) and using the above, leads to the next
proposition:

Proposition 5.3 (error equation for ρ̂). The main error ρ̂ satisfies the following equation in In,
0 ≤ n ≤ N − 1,

(5.10) 〈∂tρ̂, v〉+ iα〈∇ρ̂,∇v〉 = iλ〈f(u)− f(Û), v〉+

3∑
j=1

〈Rj , v〉, ∀v ∈ H1
0 (Ω),

where the residuals Rj, 1 ≤ j ≤ 3, are given by

(5.11) R1(t) := (I−Rn+1)W (t)− R
n+1Pn+1Un −RnUn

kn
+ iα`n0 (t)(I− Pn+1)∆nUn,

(5.12) R2(t) := − iα

2
(tn+1 − t)(t− tn)∆n+1∂̃Wn+1,

(5.13) R3(t) := iλ
(
f(Û)− Pn+1

(
Φn+ 1

2U
))

(t). �

The next lemma is taken from [29] (Lemma 3.1) and we refer there for its proof.
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Lemma 5.1 (the residual R1). For t ∈ In, the residual R1 can be rewritten equivalently as

(5.14)

R1(t) = (t− tn+ 1
2
)(I−Rn+1)∂̃Wn+1 − (Rn+1 − I)Un+1 − (Rn − I)Un

kn

+ (I− Pn+1)

(
iα`n0 (t)∆nUn +

Un

kn

)
. �

Equation (5.10) is of the same form as (2.20). Therefore, to estimate a posteriori ρ̂ in the
L∞([0, T ];L2(Ω))−norm we will follow similar arguments as for the time discrete schemes. However

note that in the case of fully discrete schemes the reconstruction Û (as well as ω) are no longer
computable quantities. Thus before proceeding as in the time discrete case we need two auxiliary
lemmata that will allow us to handle this issue.

The first one gives a corresponding to (3.10) estimate for ‖ρ̂(t)‖pd. In the proof of this lemma we
use, for d = 2, the Clément interpolant ([11, 18, 47]) or, for d = 1, the piecewise linear interpolant

În+1z ∈ V̂n+1 := Vn+1
⋂
Vn of z ∈ H1

0 (Ω). We summarise next some of the properties of În+1z
[11, 18, 47, 30]. The following estimates hold:

(5.15) ‖∇(z − În+1z)‖ ≤ D2,0‖∇z‖ and

(5.16)
∑
K∈T̂n

‖h−1
K (z − În+1z)‖2L2(K) ≤ D

2
2,1‖∇z‖2,

where D2,0, D2,1 are absolute constants depending only on the shape regularity of the family of
triangulations and on the number of bisections necessary to pass from Tn to Tn+1.

Lemma 5.2 (estimation of ‖∇ρ̂(t)‖pd). For t ∈ In, we define

(5.17) M(t) := ∆nUn +
t− tn
kn

(
∆n+1Pn+1Un −∆nUn

)
+
t− tn

2
∆n+1 (W (t) +W (tn)) and

(5.18) Z(t) := Un +
t− tn
kn

(
Pn+1Un − Un

)
+
t− tn

2
(W (t) +W (tn)) .

Then the following estimate holds for t ∈ In, 0 ≤ n ≤ N − 1,

(5.19) ‖∇ρ̂(t)‖ ≤ ‖∇u(t)‖+ max{D2,0, D2,1}
(
‖∇Z(t)‖+ ‖ĥn+1M(t)‖

)
.

In particular, due to (3.4) we have that

(5.20) ‖∇ρ̂(t)‖pd ≤ γ(pd)

(
‖∇u(t)‖pd +

[
max{D2,0, D2,1}

(
‖∇Z(t)‖+ ‖ĥn+1M(t)‖

)]pd)
.

Proof. Since ∇ρ̂ = ∇u−∇Û , we write

(5.21) ‖∇ρ̂(t)‖2 = 〈∇(u− Û ,∇ρ̂〉(t) = 〈∇u,∇ρ̂〉(t)− 〈∇Û ,∇ρ̂〉(t).
Further, since ρ̂(·, t) ∈ H1

0 (Ω) for all t ∈ [0, T ], from the definition of the elliptic reconstruction
(4.3) we obtain

−〈∇RnUn,∇ρ̂(t)〉 = 〈∆nUn, ρ̂(t)〉, −〈Rn+1Pn+1Un−RnUn,∇ρ̂(t)〉 = 〈∆n+1Pn+1Un−∆nUn, ρ̂(t)〉,
and

−〈
∫ t

tn

∇Rn+1W (s) ds,∇ρ̂(t)〉 = 〈
∫ t

tn

∆n+1W (s) ds, ρ̂(t)〉 =
t− tn

2
〈∆n+1 (W (t) +W (tn)) , ρ̂(t)〉;

cf. (4.13) for the last equality. Using the relations above and the definition (4.14) of Û , we deduce

−〈∇Û ,∇ρ̂〉(t) = 〈M, ρ̂〉(t) ≤ ‖M(t)‖H−1‖∇ρ̂(t)‖.
Therefore, (5.21) takes the form

(5.22) ‖∇ρ̂(t)‖2 ≤ (‖∇u(t)‖+ ‖M(t)‖H−1) ‖∇ρ̂(t)‖, or ‖∇ρ̂(t)‖ ≤ ‖∇u(t)‖+ ‖M(t)‖H−1 .



A POSTERIORI ERROR ANALYSIS FOR EVOLUTION NLS 17

For the estimation of ‖M(t)‖H−1 we use the definition of the discrete laplacian (4.1) to obtain

(5.23)

‖M(t)‖H−1 = sup
z∈H1

0 (Ω)
z 6=0

〈M(t), z〉
‖∇z‖

= sup
z∈H1

0 (Ω)
z 6=0

{
〈M(t), În+1z〉
‖∇z‖

+
〈M(t), z − În+1z〉

‖∇z‖

}
,

= sup
z∈H1

0 (Ω)
z 6=0

{
〈∇Z(t),∇În+1z〉

‖∇z‖
+
〈ĥn+1M(t), ĥ−1

n+1(z − În+1z)〉
‖∇z‖

}

where, recall that În+1z ∈ V̂n+1 denotes, for d = 2, the Clément interpolant and, for d = 1, the
piecewise linear interpolant of z ∈ H1

0 (Ω). The desired result (5.19) is then obtained by applying
(5.15), (5.16) in the last equality of (5.23) and inserting the result back to (5.22). �

Next we would like to deduce an estimate for R3. For this we write R3 := iλ(R31 + R32 + R33)
with

(5.24) R31 := f(Û)− f(ω), R32 := f(ω)− f(U), and R33 := f(U)− Pn+1
(

Φn+ 1
2U
)
.

The term R33 is already an a posteriori quantity, while we estimate R31 and R32 in the next lemma.

Lemma 5.3 (estimation of R31 and R32). For t ∈ In, 0 ≤ n ≤ N − 1, we have that

(5.25) ‖R31(t)‖ ≤ L n+1
31 (tn+1 − t)(t− tn) with

(5.26)

L n+1
31 := (p+

1

2
)
(
εT,∞
n+1 + εS,∞

n+1 + max
{
‖Un‖L∞ , ‖Un+1‖L∞

})2p (
‖∂̃Wn+1‖+ C2η2,Vn+1(∂̃Wn+1)

)
and

(5.27) ‖R32(t)‖ ≤ C2L
n+1
32 max

{
η2,Vn+1(Un+1), η2,Vn(Un)

}
with

(5.28) L n+1
32 := (2p+ 1)

(
C∞ε

S,∞
n+1 + max

{
‖Un‖L∞ , ‖Un+1‖L∞

})2p

,

where C2, C∞ are the constants in (4.8) and (4.10), respectively, and εT,∞
n+1 , εS,∞

n+1 are the estimators
in (5.2) and (5.6), respectively.

Proof. Using (??) with z1 = Û and z2 = ω and v = σ we estimate

|R31| ≤ (2p+ 1)|sÛ + (1− s)ω|2p|σ| = (2p+ 1)|sσ + ε+ U |2p|σ|,

where recall that s = s(t) ∈ [0, 1]. Furthermore, since 2p ≥ 1, we have that

‖R31(t)‖ ≤ (2p+ 1) (‖σ(t)‖L∞ + ‖ε‖L∞ + ‖U(t)‖L∞)
2p ‖σ(t)‖, t ∈ In.

Hence, estimate (5.25) is then obtained using (5.2), (5.6), the definition of U and (4.19). Similarly
we deduce estimate (5.27), but now instead of using (5.2) and (4.19), we use (5.5). �

We are now ready to state and prove the main theorem of the subsection.

Theorem 5.1 (estimation of ρ̂). For t ∈ In, let

M(U, u0; t) := A

(
γ(pd)

(
‖u0‖p(2−d) +

(
εT,0
n+1 + C2ε

S,0
n+1 + ‖U(t)‖

)p(2−d)
)

×
(
G(u0)pd +

[
max{D2,0, D2,1}

(
‖∇Z(t)‖+ ‖ĥn+1M(t)‖

)]pd)
+
(
εT,∞
n+1 + C∞ε

S,∞
n+1 + ‖U(t)‖L∞

)2p
)
,

where A is the constant in (3.8), γ(pd) is as in (3.4), C2, C∞ are the constants in (4.8), (4.9),

D2,0, D2,1 are the constants in (5.15), (5.16), εT,0
n+1, ε

T,∞
n+1 , ε

S,0
n+1, ε

S,∞
n+1 are as in (5.1), (5.2), (5.5),

(5.6), respectively. M(t), Z(t) are given by (5.17), (5.18), G(u0) is given by (3.12).
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Then, for 0 ≤ n ≤ N − 1, the following local estimate holds true for the main error ρ̂ := u− Û :

(5.29)
sup
t∈In
‖ρ̂(t)‖ ≤ exp

(∫
In

M(U, u0; t) dt

)
×
(
‖ρ̂(tn)‖+ εT,1

n+1 + εT,2
n+1 + C2(εS,1

n+1 + εS,2
n+1) + Ĉ2ε

S,3
n+1 + εC

n+1 + εD
n+1

)
with

εT,1
n+1 :=

αk3
n

12
‖∆n+1∂̃Wn+1‖ and εT,2

n+1 :=
k3
n

6
L n+1

31 ,

εS,1
n+1 :=

k2
n

4
η2,Vn+1(∂̃Wn+1), εS,2

n+1 := L n+1
32 max

{
η2,Vn+1(Un+1), η2,Vn(Un)

}
,

and εS,3
n+1 := knη2,V̂n+1(

Un+1

kn
,
Un
kn

),

εC
n+1 :=

∫
In

‖(I− Pn+1)

(
Un

kn
+ iα`n0 (t)∆nUn

)
‖ dt,

and εD
n+1 :=

∫
In

‖
(
f(U)− Pn+1

(
Φn+ 1

2U
))

(t)‖ dt,

with Ĉ2 the constant in (4.10), L n+1
31 and L n+1

32 as in (5.26) and (5.28), respectively, and where
‖ρ̂(0)‖ is estimated as ‖ρ̂(0)‖ ≤ ‖u0−U0‖+C2η2,V0(U0). In particular, for 1 ≤ m ≤ N, the following
global estimate is valid for ρ̂:

(5.30)
max

0≤t≤tm
‖ρ̂(t)‖ ≤ exp

(
m−1∑
n=0

∫
In

M(U, u0; t) dt

)
×
(
‖u0 − U0‖+ C2η2,V0(U0)

+ ET,1
m + ET,2

m + C2(ES,1
m + ES,2

m ) + Ĉ2ES,3
m + EC

m + ED
m

)
,

with ET,j
m :=

∑m
n=1 ε

T,j
n , j = 1, 2, ES,j

m :=
∑m
n=1 ε

S,j
n , j = 1, 2, 3, EC

m :=
∑m
n=1 ε

C
n , and ED

m :=∑m
n=1 ε

D
n .

Proof. Equation (5.10) is of the same form as (2.20). Therefore, using (5.20) instead of (3.10) and
proceeding similarly to the proof of Theorem 3.1 leads to

(5.31) sup
t∈In
‖ρ̂(t)‖ ≤ exp

(∫
In

H(Û , u0; t) dt

)
×

‖ρ̂(tn)‖+

3∑
j=1

∫
In

‖Rj(t)‖ dt

 , 0 ≤ n ≤ N − 1,

where H(Û , u0; t) is given, in this case, by

H(Û , u0; t) :=A
(
γ(pd)

(
‖u0‖p(2−d) + ‖Û(t)‖p(2−d)

)
×(

G(u0)pd +
[
max{D2,0, D2,1}‖∇Z(t)‖+ ĥn+1M(t)‖

]pd )
+ ‖Û(t)‖2pL∞

)
;

compare with (3.15). Moreover, from (5.1) and (5.5) we get

‖Û(t)‖ ≤ ‖σ(t)‖+ ‖ε(t)‖+ ‖U(t)‖ ≤ εT,0
n+1 + C2ε

S,0
n+1 + ‖U(t)‖,

while similarly, from (5.2) and (5.6) we deduce

‖Û(t)‖ ≤ εT,∞
n+1 + C∞ε

S,∞
n+1 + ‖U(t)‖.

Hence (5.31) becomes

(5.32) sup
t∈In
‖ρ̂(t)‖ ≤ exp

(∫
In

M(U, u0; t) dt

)
×

‖ρ̂(tn)‖+

3∑
j=1

∫
In

‖Rj(t)‖ dt

 , 0 ≤ n ≤ N −1.

On the other hand, due to (5.14), (4.8) and (4.10), it is easily seen that

(5.33)

∫
In

‖R1(t)‖ dt ≤ C2ε
S,1
n+1 + Ĉ2ε

S,3
n+1 + εC

n+1.
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Additionally, from (5.12), (5.13), (5.24), (5.25), and (5.27), we deduce

(5.34)

∫
In

‖R2(t)‖ dt ≤ εT,1
n+1 and

∫
In

‖R3(t)‖ dt ≤ εT,2
n+1 + C2ε

S,2
n+1 + εD

n+1.

Plugging (5.33) and (5.34) into (5.32) we readily obtain (5.29). Estimate (5.30) follows from (5.29)
by summing over n. �

Similarly to Theorem 3.2, we can also derive an improved estimate for ‖ρ̂(t)‖ in the one-
dimensional case.

Theorem 5.2 (improved estimate for ρ̂ in d = 1). With the notation of Theorem 5.1 we further
denote by η(t) the right-hand side in (5.30) to the power p. Let

(5.35)

N (U, u0; t) := A

(
η(t)

(
G(u0)p +

[
max{D2,0, D2,1}

(
‖∇Z(t)‖+ ‖ĥn+1M(t)‖

)]p)
+
(
εT,∞
n+1 + C∞ε

S,∞
n+1 + ‖U(t)‖L∞

)2p
)
.

Then, if d = 1, the following local and global estimates are valid:

(5.36)
sup
t∈In
‖ρ̂(t)‖ ≤ exp

(∫
In

N (U, u0; t) dt

)
×
(
‖ρ̂(tn)‖+ εT,1

n+1 + εT,2
n+1

+ C2(εS,1
n+1 + εS,2

n+1) + Ĉ2ε
S,3
n+1 + εC

n+1 + εD
n+1

)
, 0 ≤ n ≤ N − 1,

(5.37)
max

0≤t≤tm
‖ρ̂(t)‖ ≤ exp

(
m−1∑
n=0

∫
In

N (U, u0; t) dt

)
×
(
‖u0 − U0‖+ C2η2,V0(U0)

+ ET,1
m + ET,2

m + C2(ES,1
m + ES,2

m ) + Ĉ2ES,3
m + EC

m + ED
m

)
, 1 ≤ m ≤ N. �

5.3. A posteriori error bounds in the L∞([0, T ];L2(Ω))−norm for fully discrete schemes.
We conclude the section by presenting the theorems with the a posteriori error estimates in the
L∞([0, T ];L2(Ω))−norm for the error e = u− U .

Theorem 5.3 (a posteriori error estimate in the L∞(0, T ;L2(Ω))). With the notation of Theo-
rem 5.1 we further define

εLOC
n+1 := exp

(∫
In

M(U, u0; t) dt

)
×
(
εLOC
n + εT,1

n+1 + εT,2
n+1 + C2(εS,1

n+1 + εS,2
n+1) + Ĉ2ε

S,3
n+1

+ εC
n+1 + εD

n+1

)
, 0 ≤ n ≤ N − 1,

with εLOC
0 := ‖u0 − U0‖ + C2η2,V0(U0). Let also EGLOB

m , 1 ≤ m ≤ N , be the right-hand side in
(5.30). Then the following estimates are valid:

(5.38) sup
t∈In
‖(u− U)(t)‖ ≤ C2ε

S,0
n+1 + εT,0

n+1 + εLOC
n+1 , 0 ≤ n ≤ N − 1,

(5.39) max
0≤t≤tm

‖(u− U)(t)‖ ≤ C2ES,0
m + ET,0

m + EGLOB
m , 1 ≤ m ≤ N,

where u is the exact solution of (1.1), U denotes the continuous, linear, piecewise interpolant U(t) =
`n0 (t)Un + `n1 (t)Un+1, t ∈ In, and {Un}Nn=0 are the modified relaxation Crank-Nicolson-Galerkin
approximations, obtained by (4.2).

Proof. We just note that

‖(u− U)(t)‖ = ‖e(t)‖ ≤ ‖ε(t)‖+ ‖σ(t)‖+ ‖ρ̂(t)‖
and we apply (5.7), (5.1), and (5.29) to obtain (5.38), while for (5.39) we use (5.7), (5.3) and
(5.30). �
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The last theorem of the section is the improved a posteriori error estimate for u − U in the
L∞([0, T ];L2(Ω))−norm for the one-dimensional case.

Theorem 5.4 (improved a posteriori error estimate in the L∞(0, T ;L2(Ω)) for d = 1). With the

notation of Theorems 3.2 and 5.3 we further define ε̃LOC
n , 0 ≤ n ≤ N , and ẼGLOB

m , 1 ≤ m ≤ N , as
in Theorem 5.3, but with M replaced by N . Then, for d = 1, the following local and global estimates
hold:

sup
t∈In
‖(u− U)(t)‖ ≤ C2ε

S,0
n+1 + εT,0

n+1 + ε̃LOC
n+1 , 0 ≤ n ≤ N − 1,

(5.40) max
0≤t≤tm

‖(u− U)(t)‖ ≤ C2ES,0
m + ET,0

m + ẼGLOB
m , 1 ≤ m ≤ N. �

6. Numerical Experiments

In this section we report a series of numerical experiments which verify the theoretical results
obtained in the previous sections. The modified relaxation Crank-Nicolson-Galerkin scheme (4.2)
and the corresponding a posteriori space and time estimators with homogeneous Dirichlet boundary
conditions were implemented in a double precision C-code using B-splines of degree r, r ∈ N, as a
basis for the finite element space Vn, 0 ≤ n ≤ N . The numerical results are for the one-dimensional
case d = 1; in this case Ω = [a, b]. For the implementations we use uniform partitions in space and

time and we set equal to one the absolute constants A, β,C2, Ĉ2, C∞, D2,0, D2,1 appearing in the
final a posteriori error estimators.

Our goals in this section are : (a) to asses the magnitude of the constants L n
31, L n

32,M(U, u0; t)
and N (U, u0; t) involved in the estimators, (b) to verify the correct order of convergence for the
space and time estimators, and (c) to verify the accuracy of the Crank-Nicolson relaxation scheme
and of its a posteriori time estimator for variable time steps.

To facilitate the process we choose to work with a soliton type exact solution of (1.1). In particular
we choose, [9]

(6.1) u(x, t) = i sech(x− x0 − 4ωt) ei(2ωx+(1−4ω2)t),

which is an exact solution of (1.1) with p = 1, α = 1, λ = 2 and u0 = u(·, 0). The function u
represents a solitary wave, initially located around x = x0, which travels to the right with speed 4ω.
All computations in Subsections 6.1 and 6.2 are performed in [a, b]× [0, T ] = [−30, 30]× [0, 1] with
x0 = 0 and ω = 0.3.

Remark 6.1. The development of a time-space adaptive algorithm based on the a posteriori error
estimators of the paper and its numerical validation in terms of accuracy, effectiveness and robustness
for the approximation of the solution u of (1.1) will be the subject of a forthcoming paper. The
discussion of Subsection 6.3 is a first indication that time adaptivity is possible. In this forthcoming
work we will also study further cases including for example nonlinearities to the critical exponent
p∗ = 2

d , as well as particular examples for (1.1) in the semiclassical regime, cf. [53].

In the next subsections we consider a series of different runs for the NLS problem (1.1) with exact
solution (6.1). Let ` ∈ N counts the different realizations (runs), h(`) the corresponding meshsize
and M(`) = 1 +

[
b−a
h(`)

]
∈ N where [·] denotes the integral part of a real number. When there is no

danger of confusion we drop the dependence on ` and we write just h and M . Since we discretize
in space by B-splines of degree r, the expected order of convergence for the modified relaxation
Crank-Nicolson finite element scheme is r + 1 in space, whilst in time is 2. This motivates the
relation between the mesh size h and the time step k. More specifically in all the computations of
the next two subsections we choose

(6.2) k ∼ h
r+1
2 .
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6.1. Behavior of L n
31, L n

32 and M,N . First, we quantify the quantities L n
31, L n

32 defined in

(5.26), (5.28), respectively. For 0 ≤ n ≤ N − 1, L n
31 appears in the local time estimator εT,2

n+1, cf.

(5.29), and thus in the global time estimator ET,2
N , cf. (5.30). Similarly, for 0 ≤ n ≤ N − 1, L n

32 is

in the local space estimator εS,2
n+1, cf. (5.29), and thus in the global space estimator ES,2

N , cf. (5.30).

Estimators ET,2
N and ES,2

N are expected to be of optimal order of accuracy as long as the following
global quantities

L31 := max
0≤n≤N−1

L n
31 and L32 := max

0≤n≤N−1
L n

32,

tend to a constant value for different realizations. In Table 1 we compute the values of L31,L32

for linear (r = 1), quadratic (r = 2) and cubic (r = 3) B-splines and a series of different space
discretizations h; the time step is chosen according to (6.2).

We are also interested in studying the magnitude of the quantity EMN :=

N−1∑
n=0

∫
In

M(U, u0; t) dt,

which appears in the exponential of (5.30) and thus on the final global a posteriori error estimator
(5.39). Our findings are reported again in Table 1. Since the considered example is in the one spatial
dimension, the improved a posteriori error estimate (5.40) holds (see also (5.37)). The difference

of this estimate compared to (5.39) is the existence of ENN :=

N−1∑
n=0

∫
In

N (U, u0; t) dt instead of

EMN =

N−1∑
n=0

∫
In

M(U, u0; t) dt in the exponential term. In Table 1 we confirm that indeed ENN is

smaller than EMN . More precisely, in view of (5.35), we expect that, as the temporal and spatial

mesh sizes tend to zero, ENN will tend to

∫ T

0

‖u(t)‖2pL∞ dt, which is equal to 1 for this particular

example. This is verified in Table 1 for quadratic and cubic B-splines. For linear B-splines, we need
to consider smaller mesh sizes; however, it is clear that ENN reduces as h reduces in this case as well.
Although at first glance the improvement on ENN compared to EMN seems minor, we should keep in
mind that these quantities appear in the exponential, therefore even minor improvements have a
significant impact on the size of the total a posteriori error estimator.

r = 1 r = 2 r = 3

M L31 L32 EMN ENN L31 L32 EMN ENN L31 L32 EMN ENN
2400 6.639 3.070 7.847 17.423 6.359 3.001 7.820 2.233 6.321 3.000 7.820 1.164

3600 6.520 3.038 7.831 9.757 6.338 3.000 7.817 1.613 6.317 3.000 7.817 1.071

4800 6.464 3.025 7.825 6.737 6.329 3.000 7.816 1.382 6.315 3.000 7.816 1.040

6000 6.432 3.017 7.821 5.187 6.325 3.000 7.815 1.267 6.315 3.000 7.815 1.025

7200 6.411 3.013 7.820 4.263 6.322 3.000 7.814 1.201 6.314 3.000 7.815 1.018

8400 6.397 3.010 7.818 3.658 6.320 3.000 7.813 1.158 6.314 3.000 7.815 1.013

9600 6.386 3.008 7.818 3.234 6.319 3.000 7.813 1.128 6.314 3.000 7.815 1.010

Table 1. The computed quantities L31, L32, EMN and ENN .

6.2. EOC of the estimators. Our purpose in this subsection is to compute the experimental order
of convergence (EOC) of the space and time estimators at the final time T = 1 for the NLS problem
(1.1) with exact solution (6.1). For this, we choose quadratic B-splines (r = 2). Hence the expected
order of convergent of the modified relaxation Crank-Nicolson finite element scheme is in this case
3 in space and 2 in time; thus we take k ∼ h3/2, cf. (6.2).

The EOC for each space estimator ES,jN , 0 ≤ j ≤ 3, is computed as follows

(6.3) EOCS,j :=
log(ES,j

N (`)/ES,j
N (`+ 1))

log(M(`+ 1)/M(`))
,
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where ES,j
N (`) and ES,j

N (`+ 1) denote the value of the estimators in two consecutive implementations

with mesh sizes h(`) and h(` + 1) respectively. Similarly for the time estimators ET,j
N , 0 ≤ j ≤ 2,

the EOC is computed as

(6.4) EOCT,j :=
log(ET,j

N (`)/ET,j
N (`+ 1))

log(k(`+ 1)/k(`))
,

where k(`), k(`+ 1) are the time steps of consecutive realizations.

In Table 2 the values of the space estimators ES,j
N along with the corresponding EOCS,j , 0 ≤ j ≤ 3,

are presented. Note that the estimator ES,1
N is expected to be of optimal third order in space and of

first order in time (cf. Theorem 5.1), i.e., it is a superconvergent term. Due to the choice k ∼ h3/2

we have k × h3 = h3/2 × h3 = h9/2, and the EOC we expect to observe is 4.5. This EOC is indeed

observed in Table 2 for ES,1
N , while, as it is shown in the same table, the other three space estimators

exhibit the correct order. Similarly, in Table 3 the values of the time estimators ET,j
N along with

the EOCT,j , 0 ≤ j ≤ 2, are presented. We note that all time estimators exhibit the correct second
order. We are also interested in computing the effectivity index which is the ratio between an a

M ES,0
N EOCS,0 ES,1

N EOCS,1 ES,2
N EOCS,2 ES,3

N EOCS,3

2400 1.3817E−05 – 2.64149E−07 – 4.1466E−05 – 2.5055E−05 –

3600 4.0936E−06 3.0001 4.25720E−08 4.5018 1.2283E−05 3.0007 7.4230E−06 3.0003

4800 1.7270E−06 3.0000 1.16949E−08 4.4912 5.1813E−06 3.0003 3.1315E−06 3.0001

6000 8.8421E−07 3.0000 4.28570E−09 4.4988 2.6527E−06 3.0002 1.6033E−06 3.0001

7200 5.1169E−07 3.0000 1.88822E−09 4.4956 1.5351E−06 3.0001 9.2783E−07 3.0000

8400 3.2223E−07 3.0000 9.44191E−10 4.4960 9.6671E−07 3.0001 5.8429E−07 3.0000

9600 2.1587E−07 3.0000 5.20390E−10 4.4615 6.4762E−07 3.0000 3.9142E−07 3.0000

Table 2. Space a posteriori estimators ES,j
N and corresponding EOCS,j , 0 ≤ j ≤ 3.

k−1 ET,0
N EOCT,0 ET,1

N EOCT,1 ET,2
N EOCT,2

252 8.2786E−06 – 3.1156E−04 – 1.6442E−05 –

464 2.4426E−06 2.0055 9.2190E−05 2.0007 4.8667E−06 2.0002

715 1.0288E−06 2.0032 3.8879E−05 2.0003 2.0526E−06 2.0001

1000 5.2600E−07 2.0021 1.9891E−05 2.0000 1.0501E−06 2.0000

1314 3.0466E−07 2.0016 1.1528E−05 1.9993 6.0850E−07 2.0000

1656 1.9182E−07 2.0012 7.2678E−06 1.9957 3.8324E−07 2.0000

2023 1.2854E−07 2.0010 4.8767E−06 1.9943 2.5686E−07 2.0000

Table 3. Time a posteriori estimators ET,j
N and corresponding EOCT,j , 0 ≤ j ≤ 2.

posteriori error estimator and the exact error. The effectivity index is a tool providing information
on the quality of the estimator. To that end, we denote by Eexact := max

0≤n≤N
‖u(tn)−Un‖ the exact

error, by EN the sum of all time and space estimators and we compute the effectivity index ei as
ei := EN/Eexact. The exact error Eexact, the estimator EN and the effectivity index ei are presented
in Table 4. We observe that the computed effectivity index ei stabilizes to a fixed value, indicating
in this case that the sum of all time and space estimators EN is about 26 times larger than the actual

error. Note that the exponential term eE
M
N , or eE

N
N for the case of the improved estimate (5.40), is

not included in the definition of EN . In order to get an indication of how bigger is the actual total
a posteriori error estimator with respect to the actual error we should multiply the third column

with the effectivity index in Table 4 by eE
M
N , or eE

N
N for the case of the improved estimate (5.40); cf.
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Table 1 for the corresponding values of EMN and ENN . At this point, the importance of the improved
estimate (5.40) for the one-dimensional case becomes apparent. Finally we would like to note that

EN Eexact ei

4.1688E−04 1.6587E−05 25.13

1.2334E−04 4.9118E−06 25.11

5.2012E−05 2.0186E−06 25.77

2.6612E−05 1.0202E−06 26.09

1.5418E−05 5.8838E−07 26.20

9.7171E−06 3.7056E−07 26.22

6.5176E−06 2.4818E−07 26.26

Table 4. A posteriori estimator EN , exact error Eexact and effectivity index ei.

the data estimator ED
N is, for this example, much smaller than the time and space estimators, whilst

the coarsening estimator EC
N is zero in the case of uniform partitions. This is the reason we don’t

include these estimators in EN .

6.3. Accuracy and variable time steps. We investigate briefly the accuracy of the time dis-
cretization in the case of variable time steps. The expected second order accuracy is illustrated
through a numerical experiment. We consider again (6.1) as the exact solution of (1.1) and we
compute its approximation by the numerical method. The parameters x0, ω and [a, b] are as
in the previous experiments, while the final time is T = 5 for this experiment. To isolate the
temporal error, we take a sufficiently fine spatial mesh consisting of M = 3000 points and quin-
tic B-splines, thus the spatial discretization error is almost negligible. We split the time interval
[0, T ] = ∪4

j=0[Tj , Tj+1] with Tj = j, 0 ≤ j ≤ 4. In each subinterval [Tj , Tj+1], we use a different time

step kj = 0.05/25−j , 1 ≤ j ≤ 5 and we compute the exact error Ejexact := ‖u(Tj)−UTj‖ at the end-
point Tj , 1 ≤ j ≤ 5, where UTj , denotes the corresponding approximation at Tj . We also compute

the total a posteriori time estimator ET
Tj

:= ET,0
Tj

+ ET,1
Tj

+ ET,2
Tj

in the interval [0, Tj ], 1 ≤ j ≤ 5. Our

finding are reported in Table 6.3.

j kj Ej
exact EOCE ET

Tj
EOCT

1 3.125E-03 1.1601E-05 2.0110E-05
2 6.250E-03 4.6623E-05 2.0068 9.8040E-05 2.2854
3 1.250E-02 1.8770E-04 2.0093 4.1007E-04 2.0644
4 2.500E-02 7.5547E-04 2.0090 1.6622E-03 2.0191
5 5.000E-02 3.0345E-03 2.0060 6.7331E-03 2.0182

Table 5. Exact error En
exact and total time estimator ET

n with their corresponding EOC.
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[26] A. Jüngel, R-M. Weishäupl, Blow-up in two component nonlinear Schrödinger systems with an external driven

field, Math. Models Methods Appl. Sci. 23 (2013) 1699–1727.
[27] O. Karakashian, Ch. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation:

the discontinuous Galerkin method, Math. Comp. 67 (1998) 479–499.

[28] O. Karakashian, Ch. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation:

the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999) 1779–1807.
[29] Th. Katsaounis, I. Kyza, A posteriori error control and adaptivity for Crank-Nicolson finite element approxi-

mations for the linear Schrödinger equation, Numer. Math. 129 (2015) 55–90.
[30] I. Kyza, A posteriori error estimates for approximations of semilinear parabolic and Schrödinger-type equations,

PhD Thesis, University of Crete, 2009.

[31] I. Kyza, A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations, ESAIM
Math. Model. Numer. Anal. 45 (2011) 761–778.

[32] I. Kyza, Ch. Makridakis, Analysis for time discrete approximations of blow-up solutions of semilinear parabolic

equations, SIAM J. Numer. Anal. 49 (2011) 405–426.



A POSTERIORI ERROR ANALYSIS FOR EVOLUTION NLS 25

[33] I. Kyza, Ch. Makridakis, M. Plexousakis, Error control for time-splitting spectral approximations of the semi-

classical Schrödinger equation, IMA J. Numer. Anal. 31 (2011) 416–441.

[34] I. Kyza, S. Metcalfe, T.P. Wihler, hp-Adaptive Galerkin time stepping methods for nonlinear initial value prob-
lems, J. Sci. Comput. (2017), DOI: 10.1007/s10915-017-0565-x.

[35] O. Lakkis, Ch. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear
parabolic problems, Math. Comp. 75 (2006) 1627–1658.

[36] A. Lozinski, M. Picasso, V. Prachittham, An anisotropic error estimator for the Crank-Nicolson method: Ap-

plication to a parabolic problem, SIAM J. Sci. Comput. 31 (2009) 2757–2783.
[37] G. Lyng, P.D. Miller, The N-soliton of the focusing nonlinear Schrödinger equation for N large, Comm. Pure

Appl. Math. 60 (2007) 951–1026.

[38] Ch. Makridakis, R.H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems,
SIAM J. Numer. Anal. 41 (2003) 1585–1594.

[39] Ch. Makridakis, R.H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution

problems, Numer. Math. 104 (2006) 489–514.
[40] F. Merle, P. Raphael, On a sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation,

J. Amer. Math. Soc. 19 (2006) 37–90.

[41] F. Merle, P. Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear
Schrödinger equation, Ann. of Math. 161 (2005) 157–222.

[42] F. Merle, P. Raphael, On universality of blow up profile for L2 critical nonlinear Schrödinger equation, Invent.
Math. 156 (2004) 565–672.

[43] R.H. Nochetto, A. Schmidt, K.G. Siebert, A. Veeser, Pointwise a posteriori error estimates for monotone

semilinear problems, Numer. Math. 104 (2006) 515–538.
[44] T. Ozawa, Y. Tsutsumi, The nonlinear Schrödinger limit and the initial layer of the Zakharov equations, Dif-

ferential Integral Equations, 5 (1992) 721–745.

[45] M. Plexousakis, An adaptive nonconforming finite element method for the nonlinear Schrödinger equation, PhD
Thesis, University of Tennessee, 1996.

[46] W. Rudin, Real & Complex Analysis, 2nd edition, Tata McGraw-Hill, New York, 1974.

[47] L.R. Scott, S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions, Math.
Comp. 54 (1990) 483–493.

[48] K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Formation and propagation of matter-wave soliton

trains, Nature 417 (2002) 150–153.
[49] C. Sulem, P.-L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse, Springer Science

& Business Media, 1999.

[50] T. Tao, Nonlinear dispersive equations: local and global analysis, American Mathematical Society, Providence,
RI, 2006.

[51] M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear
Schrödinger equations, SIAM J. Numer. Anal. 50 (2012) 3231–3258.

[52] M. Thalhammer, J. Abhau, A numerical study of adaptive space and time discretizations for Gross-Pitaevskii

equations, J. Comput. Phys. 231 (2012) 6665–6681.
[53] A. Tovbis, S. Venakides, X. Zhou, On semiclassical (zero dispersion limit) solutions of the focusing nonlinear

Schrödinger equation, Comm. Pure Appl. Math., 57 (2004) 877–985.

[54] H. Wang, Numerical studies on the split-step finite difference method for nonlinear Schrödingerequations, Appl.
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