
ar
X

iv
:s

ub
m

it/
25

86
53

2 
 [

m
at

h.
A

P]
  2

2 
Fe

b 
20

19

Localization in adiabatic shear flow

via geometric theory of singular perturbations

Min-Gi Lee § Theodoros Katsaounis∗†‡ Athanasios E. Tzavaras∗†¶

Abstract

We study localization occurring during high speed shear deformations of metals leading to the
formation of shear bands. The localization instability results from the competition between Hadamard
instability (caused by softening response) and the stabilizing effects of strain-rate hardening. We
consider a hyperbolic-parabolic system that expresses the above mechanism and construct self-similar
solutions of localizing type that arise as the outcome of the above competition. The existence of self-
similar solutions is turned, via a series of transformations, into a problem of constructing a heteroclinic
orbit for an induced dynamical system. The dynamical system is four dimensional but has a fast-slow
structure with respect to a small parameter capturing the strength of strain-rate hardening. Geometric
singular perturbation theory is applied to construct the heteroclinic orbit as a transversal intersection
of two invariant manifolds in the phase space.

1 Introduction

Shear bands are narrow zones of intensely localized shear that are formed during the high speed plastic

deformations of metals [31, 2, 30]. They often precede rupture and are one of the striking instances of

material instability leading to failure. Considerable attention has been devoted to the problem of shear

band formation in both the mechanics and the applied mathematics literature, and section 2 is devoted

to a presentation of the problem and a quick derivation of the hyperbolic-parabolic system

vt =
(
θ−αγmvnx

)

x
,

γt = vx,

θt = θ−αγm(vx)
n+1.

(1)

The system describes the plastic shearing deformation of a specimen based on conservation of momentum

and energy using a model in thermoviscoplasticity:

σ = θ−αγmun , where u := γt = vx (2)

Equation (2) is viewed as a yield stress or a plastic flow rule, with the parameters α, m and n > 0

describing respectively the degree of thermal softening, strain hardening and strain-rate sensistivity. We

refer to section 2 for a derivation of (1) and a review of earlier work useful in understanding the localization

problem and its relevance to the present study; references [2, 24, 30, 17] can be consulted for further

information on the mechanical aspects of the model.
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The model (1) admits a special class of time-dependent solutions describing uniform shear (see (17))

and the problem of shear band formation is initially posed as a problem of stability for the uniform shearing

solutions. As these are time-dependent, it leads to analysis of non-autonomous problems and presents

challenges even for linearized stability. We refer to section 2 for information on this aspect of the problem.

Here, we focus on the regime of linearized instability and pose the problem of understanding the behavior

in the nonlinear regime. A conjecture on the threshold of instability is offered by the asymptotic analysis

in [17], devising an effective equation that changes type along a threshold from forward to backward

parabolic. It leads one to expect instability when −α + m + n changes sign from positive to negative

value.

It is expedient to reformulate the problem (1), in terms of the variables (u, γ, θ), as a parabolic system

where the diffusion coefficient is controlled by ordinary differential equations

ut =
(
θ−αγmun

)

xx
,

γt = u,

θt = θ−αγmun+1 .

(3)

The systems (1) or (3) are considered for x ∈ R, t > 0. The goal of this work is to construct a class of

self-similar solutions for systems (1) (or (3)) of the form

γ(t, x) = taΓ
(
x tλ

)
, v(t, x) = tbV

(
x tλ

)
, θ(t, x) = tcΘ

(
x tλ

)
,

σ(t, x) = tdΣ
(
x tλ

)
, u(t, x) = ta−1U

(
x tλ

)
,

(4)

where λ > 0 and the parameters (α,m, n) take values in the expected instability regime −α+m+n < 0.

Usually parabolic systems (such as (3)) admit diffusing self similar solutions constant on lines ξ = x
tρ . By

insisting on λ > 0, the solutions (4) will propagate information on lines xtλ = const that focus around

the origin. The existence of such solutions explores the invariance of the system (1) under rescalings and

we look for profiles with U(ξ), Γ(ξ), Θ(ξ) even functions and V (ξ) odd function.

We further demand that these profiles are localizing. We will call a self-similar function

f(t, x) = tbF (xtλ) , with F (−ξ) = F (ξ) and λ > 0 (5)

localizing if it has the asymptotic behavior

F (ξ) = O(ξp) as ξ → ∞ (6)

and satisfies that p < 0 when b > 0 while p > 0 when b < 0. Under this definition, when f(t, 0) grows

then f(t, x) grows at a slower rate when x 6= 0, while when f(t, 0) decays then f(t, x) decays at a slower

rate at x 6= 0. We will call a self-similar function with an odd-profile F (−ξ) = −F (ξ) localizing when its

derivative fx(t, x) has the aforementioned behavior.

Applying the ansatz (4) leads to the system of singular ordinary differential equations

V ′(ξ) = U(ξ),

Σ′(ξ) = bV (ξ) + λξU(ξ),

aΓ(ξ) + λξΓ′(ξ) = U(ξ),

cΘ(ξ) + λξΘ′(ξ) = Σ(ξ)U(ξ),

Σ(ξ) = Θ(ξ)−αΓ(ξ)mU(ξ)n,

Γ(0) = Γ0 > 0, U(0) = U0 > 0, ξ ∈ [0,∞).

(7)

This is viewed as a system of singular ordinary differential equations for (V,Σ,Γ,Θ) with U defined by

inverting (7)5. With the objective to compare these self-similar profiles to the fundamental solution of

2



the heat or porous media equation, we look for solutions so that (Γ,Θ) and U is even; in turn implying

that Σ is even while V is odd (see section 3 for details). We impose

V (0) = U ′(0) = Γ′(0) = Σ′(0) = Θ′(0) = 0 (8)

so that the symmetric extensions are smooth self-similar profiles. The main result of this article is the

construction of profiles solving (7), (8). It turns out that the induced self-similar solutions (4) exhibit

localizing in space behavior as time evolves, see sections 8 and 9.

The idea of constructing self-similar localizing solutions for problems of shear band formation is

introduced in [16] for the system

vt = (e−αθvnx)x

θt = e−αθvn+1
x

(9)

modeling a non-Newtonian fluid with temperature dependent viscosity. Due to special properties of (9),

the construction of self-similar solutions is reduced to finding a heteroclinic orbit for a planar system of

autonomous differential equations, which is achieved through phase space analysis. A second step is taken

in [22] where (1) is studied for parameters α = 0 and m < 0 when the system simplifies to a system of

two conservation laws. The problem is reduced using geometric singular perturbation theory to the flow

of a planar dynamical system in a two-dimensional invariant manifold. The present work addresses the

full model (1) and due to the higher dimensionality of the problem a more elaborate version of geometric

singular perturbation theory is needed.

The self-similar localizing solutions emerge as the combined outcome of Hadamard instability (that

characterizes the system (1) for n = 0 in the regime −α+m < 0) and the regularizing effect of momentum

diffusion when n > 0. This feature can be clearly seen in the linearized analysis of uniform shearing

solutions for the simplified model (9) which indicates that the combined effect of the two mechanisms

amounts to Turing instability, see [16]. Moreover, existing linearized and nonlinear stability analyses that

are available for special instances of (1) and are outlined in section 2 corroborate this point.

The article is organized as follows: Sections 3 and 4 deal with the formulation of the problem leading

to (7), (8). The system (7) is singular (at ξ = 0) and non-autonomous and it does not fit under a general

existence theory. The singularity can be resolved and (7) is desingularized using again the scale-invariance

properties. Furthermore, upon introducing a series of nonlinear transformations, the construction of

profiles for (7), (8) is accomplished by the construction of a heteroclinic orbit for the four-dimensional

dynamical system for (p, q, r, s)

ṗ = p
( 1

λ
(r − a) + 2− λpr − q

)

,

q̇ = q
(

1− λpr − q
)

+ bpr,

nṙ = r
(α−m− n

λ(1 + α)
(r − a) + λpr + q +

α

λ
r
(
s− 1 +m+ n

1 + α

)
+

nα

λ(1 + α)

)

,

ṡ = s
(α−m− n

λ(1 + α)
(r − a) + λpr + q − 1

λ
r
(
s− 1 +m+ n

1 + α

)
− n

λ(1 + α)

)

,

(S)

parametrized by (λ, α,m, n). The initial conditions are transmitted to asymptotic conditions for the

heteroclinic as η(= log ξ) → −∞ while the behavior as η → ∞ will capture the asymptotic behavior of

the profiles.

The existence of solutions to (7), (8) is achieved in sections 3 - 7. Their construction is reduced

to obtaining a heteroclinic orbit for (S) with prescribed asymptotic behavior as η → −∞. At the

end of section 3, the reader will find an outline on how the construction of the profiles is reduced to

obtaining a heteroclinic orbit for (S). The existence of a heteroclinic orbit for (S) (with prescribed

asymptotic behavior) is obtained in Theorem 1 using the geometric theory of singular perturbations
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[9, 10, 11, 12, 20, 21], exploiting the smallness of the parameter n. Section 7 contains the main part

of the proof, motivated by the geometric arguments of [25] and adapted to the present system through

somewhat cumbersome computations detailed in sections 7.2 and 7.3. The proof is based on a more

elaborate argument than the simple invariant manifold argument for obtaining the corresponding result

for the simplified model in [22]. In the present case, the finer structure inside the manifold is needed along

with the persistence of the unstable and stable manifolds, see section 7.3.

The constructed self-similar solutions depend on two parameters (U0,Γ0) describing the initial nonuni-

formity; the rate of localization λ is determined from (U0,Γ0) via (48). Due to the construction necessities

the rate has to obey the bound (48). The solutions (4) provide an example of instabilty resulting in lo-

calization. Their localizing behavior is investigated in section 8, see Proposition 8.1 and section 8.2. In

section 9, the heteroclinic orbit is computed numerically using the standardized continuation software

AUTO, [6, 7, 8], what leads to graphs of the profiles and the corresponding localizing solutions for various

examples of material parameters.

To our knowledge, the localizing self-similar solutions are the first instance of depicting localizing

behavior for a sufficiently broad model (1) that embodies the basic shear band formation mechanism

proposed by Zener and Hollomon [31] and Clifton [2], and encompasses all the contributing factors of

thermal softening, strain hardening and strain-rate hardening. They complement [27], where shear bands

are induced by energy supplied via the boundary. Some of the key predictions of stress-collapse are

common, but the present result has the conceptual advantage to capture the emergence of localization as

the combined result of Hadamard instability with small viscosity effects. It would be very interesting to

study the stability of the solutions that are constructed here; this appears a challenging problem.

A preliminary report of these results, concerning the case with no strain hardening (m = 0), has been

presented in the Proceedings article [19].

2 Description of the shear band formation problem

The formation of shear bands [4, 31] is a phenomenon occuring during high strain-rate plastic deformations

of certain steels and other metal alloys. Instead of distributing evenly across the loaded region, the shear

strain concentrates in a narrow band with a concurrent elevation of the temperature in the interior of the

band, [31, 4, 14]. Shear bands are often precursors to rupture and their study has attracted considerable

attention including experimental works [4, 14], mechanical modeling and linearized analysis studies (e.g.

[3, 13, 23, 30] and references therein) and nonlinear analysis investigations [5, 27, 1].

2.1 Modeling shear bands

Shear bands appear and propagate as one dimensional structures (up to interaction times), and many

investigations focus on the study of one-dimensional, simple shear. A specimen located in the xy-plain

undergoes shear motion in the y-direction. The motion is described by the (plastic) shear strain γ(t, x),

the strain rate u(t, x) = γt(t, x), the velocity v(t, x) in the shear direction, the temperature θ(t, x) and

the shear stress σ(t, x) all defined in (t, x) ∈ R
+ × R. It is described by the equations

γt = vx

vt = σx

θt = κθxx + σvx,

(10)

which stand respectively for the kinematic compatibility equation, the balance of momentum and the

balance of energy equation. Here, the elastic effects are neglected and all strain is considered to be

plastic, and a Fourier heat conduction is considered with κ the thermal diffusivity.
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x = 0

x = d
V

shear band

Figure 1: Uniform shear versus shear band
.

Under shearing most materials deform in a uniform fashion until they break. By contrast, in high

strain-rate deformations of certain steels, it is observed that nonuniformities develop in the plastic strain

and localize in a narrow region, called shear band; see Fig. 1 for a caricature of shear band forming.

Shear bands correspond to material instabilities and are usually observed in the interior of specimens.

Typically, the maximum temperature is measured in the interior of the band [4]. It was recognized

by Zener and Hollomon [31] that the high deformation speed has two effects: First, an increase in the

deformation speed changes the deformation conditions from isothermal to nearly adiabatic. Under such

conditions the combined effect of thermal softening and strain hardening tends to produce net softening

response. (Indeed, experimental observations of shear bands are typically associated with strain softening

response – past a critical strain – of the measured stress-strain curve [3].) Second, strain rate has an effect

per se, and needs to be included in the constitutive modeling.

Both effects are captured by modeling shear band formation via constitutive models within the frame-

work of thermoviscoplasticity:

σ = f(θ, γ, γt) where fp(θ, γ, p) > 0 . (11)

The constitutive relation (11) may be viewed as a yield surface or, upon inverting it, as a plastic flow

rule. This suggests the terminology: the material exhibits thermal softening at state variables (θ, γ, p)

where fθ(θ, γ, p) < 0, strain hardening at state variables where fγ(θ, γ, p) > 0, and strain softening when

fγ(θ, γ, p) < 0. The slopes of f – fθ, fγ or fp – measure respectively the degree of thermal softening,

strain hardening (or softening) and strain-rate sensitivity, respectively. The difficulty of performing high

strain-rate experiments causes uncertainty as to the specific form of the constitutive form of the stress.

Here, we will use two constitutive laws to describe the stress σ:

σ = θ−αγmγnt , power law , (12)

σ = e−αθvnx , exponential law . (13)

The power law (12) characterizes the response of the material. The parameter α > 0 measures the degree

of thermal softening, m > 0 measures the degree of strain hardening (or m < 0 in case of a softening

plastic flow), while n > 0 measures strain-rate hardening and is typically small, n ≪ 1, [3, 2]. It is an

empirical law and the parameters are determined by fitting experimental data.

We summarize the equations describing the model. For the power law the resulting system reads

vt = σx,

θt = κθxx + σγt,

γt = vx,

σ = θ−αγmγnt .

(14)

The system (14) captures the simplest mechanism proposed for shear localization in high-speed deforma-

tions of metals [31, 2], and an (isothermal) variant appears in early studies of necking [15]. Very often

attention is restricted to the adiabatic model κ = 0 which is appropriate for the initial development of

shear bands under very fast deformations.
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The exponential law does not exhibit any strain hardening and thus (10) decouples and leads to the

simplified system
vt = σx,

θt = κθxx + σvx

σ = e−αθvnx .

(15)

The exponential law can be interpreted as a temperature dependent non-Newtonian fluid and is exactly

(9) for adiabatic deformations (κ = 0).

2.2 Uniform shearing solutions

In the study of shear bands, a special problem is often considered where an infinite slab of material is

sheared by prescribed constant velocity V = 1 at the upper plate while the lower plate is held fixed. This

is described by setting the plates at x = 0, 1 and imposing prescribed (normalized) velocities v(t, 0) = 0,

v(t, 1) = 1, respectively. The plates are thermally insulated: θx(t, 0) = 0, θx(t, 1) = 0. For the heat flux

Q one either uses the adiabatic assumption Q = 0 (equivalently κ = 0) or alternatively a Fourier law,

Q = κθx with thermal diffusivity parameter κ. Imposing adiabatic conditions projects the belief that, at

high strain rates, heat diffusion operates at a slower time scale than the time-scale of the development of

a shear band. It appears a plausible assumption for the shear band initiation process, but not necessarily

for the evolution of a developed band, due to the high temperature differences involved.

The model (14) admits a special class of solutions describing uniform shearing: They emanate from

spatially uniform initial data γ0 and θ0, and are obtained by the ansatz γs(t) = t+ γ0 and vs(x) = x for

the strain and velocity respectively. They are obtained upon solving the ordinary differential equation

dθs
dt

= σs = θ−α
s (t+ γ0)

m , θs(0) = θ0 , (16)

and read

vs(x) = x , γs(t) = t+ γ0,

θs(t) =
(

1+α
1+m

) 1
1+α

(t+ γ0)
1+m
1+α

(

1 + 1+m
1+α

(
θ1+α
0 − 1+α

1+mγ
1+m
0

)
1

(t+γ0)m+1

) 1
1+α

σs(t) =
(

1+α
1+m

)− α
1+α

(t+ γ0)
−α+m
1+α

(

1 + 1+m
1+α

(
θ1+α
0 − 1+α

1+mγ
1+m
0

)
1

(t+γ0)m+1

) −α
1+α

.

(17)

Equation (17)3 describes the stress-strain curve σs versus γs for uniform shear. The stress-strain curve is

increasing when α < m but it is decreasing for large times when α > m. Here, we are interested in the

regime α > m where thermal softening dominates strain hardening and produces net softening.

2.3 On the stability of the uniform shearing solution

The system (1) for n = 0 is a first-order system. When α > m, the initial value problem has two purely

imaginary eigenvalues in a regime of strain beyond the maximum of the stress-strain curve (see Appendix

A). Accordingly, the linearized system (for n = 0) around the uniform shearing solution (17) exhibits

Hadamard instability, see Appendix A.

The stability of the uniform shear solution for n > 0 has been the objective of many investigations.

Since (17) is time dependent this leads to investigations of non-autonomous systems. A natural way to

define stability is to consider

γ∗s (t) = t+ γ0, θ∗s(t) =
(

1+α
1+m

) 1
1+α

(t+ γ0)
1+m
1+α , (18)
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the functions capturing the growth of the uniform shearing solution, and to study the relative perturba-

tions

u(t, x) = vx(t, x) , Γ̂(t, x) =
γ(t, x)

γ∗s (t)
, Θ̂(t, x) =

θ(t, x)

θ∗s(t)
. (19)

• The uniform shear solution is asymptotically stable when the solution emanating from small pertur-

bations of (17) satisfies that (u, Γ̂, Θ̂) → (1, 1, 1) as time goes to infinity.

• The uniform shear solution is unstable if for small perturbations of (17) the relative perturbations

(u, Γ̂, Θ̂) drift away from (1, 1, 1) as time increases.

This notion of stability is used in nonlinear stability studies of shear bands [5, 26] as well as in

linearized stability analyses by Molinari and Clifton [23, 13] who coined the name stability analysis of

relative perturbations. The problem of stability is presently resolved only for the special cases m = 0 or

α = 0 for (1); these are cases that the system decouples and reduces to simpler models:

(i) Case m = 0: The uniform shear is linearly stable when −α + n > 0 and linearly unstable when

−α+ n < 0 [23, 13]; it is nonlinearly stable in the region −α+ n > 0, [26].

(ii) Case α = 0, m > −1: The uniform shear is linearly stable when m + n > 0 and linearly unstable

when m+ n < 0, [13, 29]; it is nonlinearly stable in the region m+ n > 0, [28].

Understanding of the nature of the instability is offered in [16] for the model (9), which has the

special property that both the nonlinear and the linearized analysis of relative perturbations is reduced

to studying autonomous systems. In particular, linearized stability (or instability) can be accessed via

analyzing Fourier modes; see [16]. For n = 0, the linearized stability analysis predicts exponential growth

of the high frequency modes, leading to what is usually termed as Hadamard instability. By contrast,

when n > 0 the linear modes are still unstable and their growth rates are increasing with frequency but

they are uniformly bounded by a bound independent of the frequency. The behavior of the linearized

system around the uniform shearing solution for the full system (1) is at present open; the conjecture is

that it has the same structure as described above for relative perturbations of (9) when n > 0 is small,

and it is stable past a certain threshold. This is corroborated by linearized analysis for the special case

(1) with α = 0, m = −1, n < 1, which again leads to the study of autonomous systems for relative

perturbations, [18].

2.4 The nonlinear regime

In the unstable parameter regime, at the initial stage unstable modes start to grow and this process

can be captured by the linearized problem. The second stage of localization lies within the realm of

nonlinear analysis. The question arises how the high frequency oscillations resulting from Hadamard

instability interact with the nonlinearity and the viscosity to form a coherent structure. An asymptotic

criterion accounting for the nonlinear aspects of localization is derived in [17]. Based on ideas from the

theory of relaxation system and the Chapman Enskog expansion, an effective equation is derived for the

nonlinear dynamics (1). It predicts stability in the regime −α+m+ n > 0 and instability in the regime

−α+m+ n < 0, see [17].

Insight on how coherent structures form can be offered by investigating self-similar solutions (4).

It is customary in studies of parabolic systems (like (3)) to investigate diffusing self-similar solutions

corresponding to the parameter selection λ < 0. By contrast, self-similar solutions with λ > 0 tend to

propagate information along the lines tλx = const. and thus to localize around the point x = 0. Self-

similar localizing solutions were established in [16] for the model (9) using a phase-plane analysis for the

resulting two-dimensional system. They will be pursued also here for the power law (1).
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3 Self-similar solutions

We consider the system (1) (or the system (3)) in the domain x ∈ R, t > 0 and note that both systems

are invariant under a family of scaling transformations: if (γ, u, v, θ, σ) satisfy (1), with u, σ connected

via (2), then for any λ ∈ R and ρ > 0 the rescaled functions (γρ, uρ, vρ, θρ, σρ) defined by

γρ(t, x) = ρaγ(ρ−1t, ρλx), vρ(t, x) = ρbv(ρ−1t, ρλx),

θρ(t, x) = ρcθ(ρ−1t, ρλx), σρ(t, x) = ρdσ(ρ−1t, ρλx),

uρ(t, x) = ρb+λγ(ρ−1t, ρλx)

(20)

also satisfies (1), provided

a := a0 + a1λ =
2 + 2α− n

D
+

2(1 + α)

D
λ, b := b0 + b1λ =

1 +m

D
+

1 +m+ n

D
λ,

c := c0 + c1λ =
2(1 +m)

D
+

2(1 +m+ n)

D
λ, d := d0 + d1λ =

−2α+ 2m+ n

D
+

2(−α+m+ n)

D
λ,

(21)

and

D = 1 + 2α−m− n . (22)

The same scaling trasformation leaves invariant solutions of (3). We note there are two independent

scaling parameters in (20), ρ and λ, while the remaining parameters are determined by the relations (21),

(22). Throughout this work, the material parameters (α,m, n) will be restricted to the range

α > 0 (thermal softening),

m > −1 (strain softening/hardening),

n > 0 (strain rate sensitivity),

−α+m+ n < 0 (unstable regime).

(23)

Observe that (23)4 implies that −α +m < 0 and thus we are in the regime of net softening, where the

associated hyperbolic system with n = 0 loses hyperbolicity, see Appendix A. Moreover, D > 1 + α > 1

while 1 + α− n > 1 +m > 0.

Solutions of (1) or (3) that are self-similar with respect to the scaling transformation (20), (21), (22)

have the form
γ(t, x) = taΓ(tλx), v(t, x) = tbV (tλx), θ(t, x) = tcΘ(tλx),

σ(t, x) = tdΣ(tλx), u(t, x) = tb+λU(tλx) ,
(24)

and depend on one parameter, λ. In the sequel, we are interested in constructing solutions (24) defined

in the domain x ∈ R, t > 0 for values of the parameter λ > 0.

To motivate the role of self-similar solutions with λ > 0 and some forthcoming selections, recall that

the fundamental solution of the heat equation ut = uxx is of self-similar form

u(t, x) =
1√
t
U(

x√
t
) .

Moreover, power nonlinear parabolic diffusion equations (such as the porous media) admit self-similar

solutions which correspond to values λ < 0 and capture the effect of diffusion. We are interested here to

investigate whether the couplings with the remaining equations in (3) can lead to the opposite behavior,

of localization, and we seek existence of self-similar solutions with the parameter in the range λ > 0. Note

that profiles of the form (24) with λ > 0 are constant on lines ξ = tλx and are thus expected to localize

in space as time evolves. In order to compare the solutions we intend to construct for λ > 0, with the

8



existing self-similar solutions of nonlinear parabolic equations, we seek solutions where u(t, x) admits a

maximum located at x = 0 for all times. This imposes for self-similar solutions that

U ′(0) = 0 (25)

and as we will see this induces some symmetry properties to solutions.

Introducing the ansatz (24) into (1) gives a system of ordinary differential equations

V ′ = U

Σ′ = bV + λξU

cΘ+ λξΘ′ = ΣU

aΓ + λξΓ′ = U

(26)

together with an algebraic equation,

Σ = Θ−αΓmUn , (27)

obtained from (2). This is viewed as a first order system for the variable (V,Σ,Θ,Γ)(ξ) with U(ξ)

determined by inverting (27). In principle, solutions of (26) will depend on five data inputs: the initial

data (V0,Σ0,Θ0,Γ0) and the parameter λ. The system (26) is non-autonomous and singular at ξ = 0,

what imposes compatibility conditions.

For smooth initial data, solutions of (3) either blow-up in finite time or they are as smooth as the

initial data [27, Theorem 1] (in fact analytic for analytic initial data). Thus the self-similar solutions will

be sought to be smooth with their maxima fixed at the origin. The latter can be always achieved due to

the translation invariance of (3). Next, we discuss the conditions imposed by these requirements: The

initial conditions

V (0) = V0 ∈ R , Σ(0) = Σ0 > 0, Θ(0) = Θ0 > 0 , Γ(0) = Γ0 > 0 , U(0) = U0 > 0 (28)

are supplemented with (25). Since the solution is smooth the singularity at ξ = 0 imposes two compati-

bility conditions on the data which together with (27) imply

aΓ0 = U0 , cΘ0 = Σ0U0 , Σ0 = Θ−α
0 Γm

0 U
n
0 (29)

with a, b, c given by (21). The condition U ′(0) = 0 together with the smoothness of the solution yields

upon differentiating (26) and (27)

(a+ λ)Γ′(0) = U ′(0) = 0

(c+ λ)Θ′(0) = Σ′(0)U(0) + Σ(0)U ′(0)

= −αΣ0U0

Θ0
Θ′(0) +m

Σ0U0

Γ0
Γ′(0).

(30)

By (21) and (23), for λ > 0 we have a > 0, c > 0, hence

Γ′(0) = 0 , Θ′(0) = 0 . (31)

Again by (25), (27), (26)2 and b > 0 ,

Σ′(0) = 0 , V (0) = V0 = 0 . (32)

Finally, since (26) is invariant under the change of variables

ξ → −ξ , V → −V , U → U , Θ → Θ , Γ → Γ

9



it admits solutions such that U , Θ, Γ and Σ are even functions of ξ, while V is an odd function of ξ.

In summary, we proceed as follows: We first construct a solution (V (ξ),Σ(ξ),Θ(ξ),Γ(ξ)) of (26)

defined for ξ ∈ [0,∞) and set U(ξ) by (27). The solution will be sought subject to the data

U ′(0) = Γ′(0) = Σ′(0) = Θ′(0) = 0 (33)

V (0) = 0, U(0) = U0 > 0 , Γ(0) = Γ0 > 0 , Θ(0) = Θ0 > 0 , Σ(0) = Σ0 > 0 . (34)

satisfying the compatibility conditions (29) for some λ > 0. It is not a-priori clear that this problem is

not overdetermined and we give a detailed analysis of this point in Section 6. The constructed solution is

then extended on (−∞, 0] by setting

V (−ξ) = −V (ξ) , U(−ξ) = U(ξ) , Θ(−ξ) = Θ(ξ) , Γ(−ξ) = Γ(ξ) ,

that is we use an odd extension for V and even extensions for U , Θ, Γ and Σ. Given the material constants

(α,m, n) there are two independent parameters in the problem, which may be viewed as Γ0, U0 and λ > 0

subject to the constraint
U0

Γ0
=

2 + 2α− n

D
+

2(1 + α)

D
λ . (35)

The remaining constants Θ0 and Σ0 are determined via (29).

The profiles are constructed in the forthcoming sections 4-7. Then in section 8 we check that the profiles

are localizing according to the definition (5)-(6) in the Introduction. This is based on the asymptotic

behavior of the constructed profiles ξ → ∞, established in Proposition 8.1.

Note that the uniform shearing solution is achieved as a self-similar profile for λ = − 1+m
2(1+α) < 0 and

Γ(ξ) = U(ξ) = U0, V (ξ) = U0ξ, Θ(ξ) =
( 1 + α

1 +m
U1+m+n
0

) 1
1+α

, Σ(ξ) =
( 1 + α

1 +m

) −α
1+α

U
−α+m+n

1+α

0 .

The uniform shear should be contrasted to the solutions that are constructed here which exhibit localizing

behavior: the growth of the strain is superlinear at the origin and the profiles of the solution (at fixed

times) localize as time proceeds, see Section 8.

We give a short roadmap of how we proceed to construct the solution of (26), (33), (34) and determine

its properties.

(a) In section 4 we de-singularize (26) and re-formulate it as an autonomous system, see (S).

(b) In section 5 we determine two equilibria M0 and M1 so that a heteroclinic orbit of (S) provides a

meaningful, for the localization problem, self-similar profile.

(c) Section 6 discusses the behavior of (26) near ξ = 0 and what it implies for the heteroclinic orbit.

(d) Section 7 is the core of the proof: the geometric singular perturbation theory is used to construct a

heteroclinic orbit joining M0 to M1 for system (S).

(e) In Section 8 we show that the self-similar profiles are localizing in the sense of Definition (5), (6) in

the Introduction. In section 9 we outline a continuation method to compute the heteroclinic orbits

via a standard package and provide numerical examples of the emerging solutions.

As an outcome of this construction, it turns out there is a two parameter family of solutions depending

on the data U0 and Γ0 with the rate λ determined via (35). The dynamic stability of the solutions is a

challenging open problem.

10



4 Reduction to the construction of a heteroclinic orbit

The goal of this section is to derive an equivalent system (S) to (26) that is autonomous and to turn the

problem of constructing profiles for (26) to the construction of a heteroclinic orbit for (S). We employ

techniques from [16] and [22]. The novelty of the present analysis lies in the higher dimensionality of the

resulting system especially with regard to the construction of the heteroclinic orbit.

4.1 De-singularization

We regard (26) as a boundary-value problem in the right half-line ξ ∈ [0,∞) subject to the boundary

conditions (33) and proceed to de-singularize it. The system (26) is itself scale invariant: Given a solution
(
Γ(ξ), V (ξ),Θ(ξ),Σ(ξ), U(ξ)

)
the rescaled function

(
Γρ(ξ), Vρ(ξ),Θρ(ξ),Σρ(ξ), Uρ(ξ)

)
defined by

Γρ(ξ) = ρa1Γ(ρξ), Vρ(ξ) = ρb1V (ρξ), Θρ(ξ) = ρc1Θ(ρξ),

Σρ(ξ) = ρd1Σ(ρξ), Uρ(ξ) = ρb1+1U(ρξ) = ρa1U(ρξ)
(36)

is again a solution. The class of functions that remain invariant under this scaling transformation is
(
Γ(ξ), V (ξ),Θ(ξ),Σ(ξ), U(ξ)

)
=
(
Aξ−a1 , Bξ−b1 , Cξ−c1 ,Dξ−d1 , Eξ−a1

)

where A,B,C,D,E constants. Such a function is singular at ξ = 0 and fails to satisfy (33). Nevertheless,

it suggests the change of variables

γ̄(ξ) = ξa1Γ(ξ), v̄(ξ) = ξb1V (ξ), θ̄(ξ) = ξc1Θ(ξ), σ̄(ξ) = ξd1Σ(ξ), ū(ξ) = ξb1+1U(ξ), (37)

with a1, b1, c1 and d1 as in (21), in order to de-singularize the problem. After some cumbersome, but

straightforward calculation, we find that (γ̄, v̄, θ̄, σ̄) satisfies

a0γ̄ + λξγ̄′ = ū,

b0v̄ + λξv̄′ = −d1σ̄ + ξσ̄′,

c0θ̄ + λξθ̄′ = σ̄ū,

−b1v̄ + ξv̄′ = ū,

(38)

and ū is defined by

σ̃ = θ̄−αγ̄mūn.

Next, introduce a new independent variable η = log ξ and define (γ̃, ṽ, θ̃, σ̃, ũ) by

γ̃(log ξ) = γ̄(ξ), ṽ(log ξ) = v̄(ξ), θ̃(log ξ) = θ̄(ξ),

σ̃(log ξ) = σ̄(ξ), ũ(log ξ) = ū(ξ).
(39)

Noticing that d
dη γ̃(η) = ξ d

dξ γ̄(ξ), we obtain an autonomous system

a0γ̃ + λ ˙̃γ = ũ,

b0ṽ + λ ˙̃v = −d1σ̃ + ˙̃σ,

c0θ̃ + λ
˙̃
θ = σ̃ũ,

−b1ṽ + ˙̃v = ũ,

(40)

where the notation ḟ = df
dη is used, and ũ is defined by

σ̃ = θ̃−αγ̃mũn .

The system (40) is autonomous and one might attempt to consider its equilibria. However, it is

easy to conclude that we cannot expect a heteroclinic that tends to equilibria of (40). Indeed, suppose

ũ→ ũ∞ ≥ 0 as η → ∞. Then from the last equation in (40), we conclude that ṽ → ∞. This suggests to

enlarge the scope and consider solutions that grow as polynomials (or faster) at infinities.

11



4.2 The (p, q, r, s)-system derivation

Next, we attempt to come up with a new choice of variables that tend to equilibria as η → ±∞ and

accommodate orbits that have power behavior at infinities. We rewrite (40) in the form

d

dη
(ln γ̃) = 1

λ

(
− a0 +

ũ

γ̃

)
,

d

dη
(ln ṽ) = b1 +

ũ

ṽ
,

d

dη
(ln θ̃) = 1

λ

(
− c0 +

σ̃ũ

θ̃

)
,

d

dη
(ln σ̃) = d1 + b

ṽ

σ̃
+ λ

ũ

σ̃

(41)

and view it as describing the evolution of (γ̃, ṽ, θ̃, σ̃) with ũ determined by ũ =
(

σ̃
θ̃−αγ̃m

) 1
n
.

This leads us to define

p :=
γ̃

σ̃
, q := b

ṽ

σ̃
, r =

(
σ̃

θ̃−αγ̃m+n

) 1
n

=
ũ

γ̃
, s :=

σ̃γ̃

θ̃
. (42)

The transformation (p, q, r, s) ↔ (γ̃, ṽ, θ̃, σ̃) is a bijection in the positive orthant with the inverse deter-

mined by

γ̃ = p
1+α
D s

α
D r

n
D , θ̃ = p

1+m+n
D s

m+n−1
D r

2n
D ,

and then

σ̃ =
1

γ̃
p , ṽ =

1

b
σ̃ q =

1

b

pq

γ̃
.

Using (41) and (42), we write

ṗ

p
=

˙̃γ

γ̃
−

˙̃σ

σ̃
=

[
1

λ

( ũ

γ̃
− a0

)]

−
[

d1 + b
ṽ

σ̃
+ λ

ũ

γ̃

γ̃

σ̃

]

q̇

q
=

˙̃v

ṽ
−

˙̃σ

σ̃
=

[

b1 +
ũ

ṽ

]

−
[

d1 + b
ṽ

σ̃
+ λ

ũ

γ̃

γ̃

σ̃

]

n
ṙ

r
= −(m+ n)

˙̃γ

γ̃
+

˙̃σ

σ̃
+ α

˙̃θ

θ̃
=

[−(m+ n)

λ

( ũ

γ̃
− a0

)]

+

[

d1 + b
ṽ

σ̃
+ λ

ũ

γ̃

γ̃

σ̃

]

+

[
α

λ

( σ̃ũ

θ̃
− c0

)]

ṡ

s
=

˙̃γ

γ̃
+

˙̃σ

σ̃
−

˙̃
θ

θ̃
=

[
1

λ

( ũ

γ̃
− a0

)]

+

[

d1 + b
ṽ

σ̃
+ λ

ũ

γ̃

γ̃

σ̃

]

−
[
1

λ

( σ̃ũ

θ̃
− c0

)]

.

We note that

σ̃ũ

θ̃
= rs,

ũ

ṽ
=
bpr

q
,

ũ

σ̃
= pr,

and using (21) and (22), after a cumbersome but straightforward calculation, we derive the (p, q, r, s)-

system:

ṗ = p
( 1

λ
(r − a) + 2− λpr − q

)

,

q̇ = q
(

1− λpr − q
)

+ bpr,

nṙ = r
(α−m− n

λ(1 + α)
(r − a) + λpr + q +

α

λ
r
(
s− 1 +m+ n

1 + α

)
+

nα

λ(1 + α)

)

,

ṡ = s
(α−m− n

λ(1 + α)
(r − a) + λpr + q − 1

λ
r
(
s− 1 +m+ n

1 + α

)
− n

λ(1 + α)

)

.

(S)

12



In the sequel, we analyze (S) as an autonomous system: We begin with sorting its equilibria and ana-

lyzing their linear stability. Most importantly, (S) possesses the fast-slow structure because of the small

parameter n in the left-hand-side of (S)3; the dynamics of r can be distinctively faster than those of the

other variables off the nullcline of r.

5 Equilibria and their linear stability

System (S) admits several equilibria listed in Appendix B. Our region of interest is the sector

P = {(p, q, r, s) | p ≥ 0, q ≥ 0, r > 0, s > 0}.

That p, q ≥ 0 comes from the requirement that γ̃, ṽ, σ̃ ≥ 0. The reason we restrict to r > 0, s > 0 stems

from mechanical considerations: If we transform back to the original variables, then we find

r(η)|η=tλx = t∂t log γ(t, x), r(η)s(η)|η=tλx = t∂t log θ(t, x).

Shear band initiation is related to conditions of loading where both the plastic strain and the temperature

are increasing. This motivates to restrict to self-similar solutions taking values in the region r > 0, s > 0.

From the complete set of equilibria for (S) listed in Appendix B only two reside in the region r > 0,

s > 0, namely

M0 = (0, 0, r0, s0), r0 = a, s0 =
1 +m+ n

1 + α
− n

(1 + α)r0
,

M1 = (0, 1, r1, s1), r1 = a− 1 + α

α−m− n
λ, s1 =

1 +m+ n

1 + α
− n

(1 + α)r1
.

Here, we recall (21), (22):

a = a0 + a1λ =
2 + 2α− n

D
+

2 + 2α

D
λ

D = 1 + 2α−m− n ,

and that the parameters (α,m, n) take values in the range (23). As a consequence r0 > 0, and a simple

calculation shows that r0s0 =
2(1+m)

D + 2(1+m+n)
D λ > 0; hence, r0, s0 > 0 and M0 resides in the region P.

By contrast, M1 can be out of the region r > 0, s > 0 if λ is large enough. Note that r1, s1 > 0 only if
1+m+n
1+α r1 >

n
(1+α) . This reads

1 +m+ n

1 + α

(2 + 2α− n

D
− (1 + α)(1 +m+ n)

D(α−m− n)
λ
)

>
n

(1 + α)
,

and thus M1 resides in the region P only under the constraint

0 < λ <
2(α −m− n)

1 +m+ n

(
1 +m

1 +m+ n

)

. (43)

Henceforth, we restrict attention to rates λ satisfying (43).

We denote the four eigenvalues and four eigenvectors of the vector field linearized at Mi, i = 0, 1, by

µij and Xij with j = 1, 2, 3, 4.

• M0 is a saddle; the matrix of the linearized vector field at M0 has three positive eigenvalues and

one negative eigenvalue.

µ01 = 2, µ02 = 1, µ03 = µ+0 = O
( 1

n

)

> 0, µ04 = µ−0 < 0, (44)
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Figure 2: Eigenvectors around M0 and M1 in pqr-space and in pqs-space respectively (µ11 6= −1 and
n≪ 1).

where µ±0 are respectively a positive and a negative solution of the quadratic equation

(

µ− r0
n

(1− s0
λ

− n

λr0

))(

µ+
s0r0
λ

)

− s0r0(1− s0)(αr0)

nλ2
= 0.

The leading orders of µ±0 are given by

µ+0 =
1

n
2(α−m)(1+α)(1+λ)
λ(1+α)(1+2α−m) +O(1), µ−0 = −2(1+m)(1+α)(1+λ)

λ(1+2α−m) +O(n).

Notice that one of the positive eigenvalue µ03 is O( 1n), which indicates the separably fast dynamics

along the directionX03. We will make use of this structure later. The precise eigenvector components

are presented in Appendix C, the directions of the eigenvectors are pointed out in Fig. 2 for n

sufficiently small.

• M1 is a saddle; the matrix of the linearized vector field at M1 has one positive eigenvalue and three

negative eigenvalues.

µ11 = − 1 +m+ n

α−m− n
, µ12 = −1, µ13 = µ+1 = O

( 1

n

)

> 0, µ14 = µ−1 < 0, (45)

where µ±1 is respectively a positive and a negative solution of the quadratic equation

(

µ− r1
n

(1− s1
λ

− n

λr1

))(

µ+
s1r1
λ

)

− s1r1(1− s1)(αr1)

nλ2
= 0.

The leading orders of µ±1 are given by

µ+1 =
α−m

nλ(1 + α)

(2(1 + α)(1 + λ)

(1 + 2α−m)
− 1 + α

α−m− n
λ
)

+O(1),

µ−1 = −1 +m

λ

(2(1 + α)(1 + λ)

(1 + 2α−m)
− 1 + α

α−m− n
λ
)

+O(n).

Note that the positive eigenvalue µ13 is O( 1n). In constrast to what happens at M0, the eigenvalues

of the linearized vector field at M1 may have multiplicity higher than one. Appendix C describes

the possible cases and provides the generalized eigenvectors when necessary.
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6 Characterization of the heteroclinic orbit

The equilibriumM0 has a three dimensional unstable manifold and a one dimensional stable manifold while

the equilibrium M1 has a three dimensional stable manifold and a one-dimensional unstable manifold.

There is one unstable direction for each equilibrium corresponding to a positive eigenvalue of order O( 1n).

Due to the high dimensionality, it is difficult to read the complete behavior of the flow in phase space.

This section aims to develop a picture of the flow on the positive orthant p, q, r, s > 0 and to associate

the behavior of the system (26) near the singular point ξ = 0 with the behavior of the system (S) around

M0.

6.1 Behavior near the singular point ξ = 0

We begin with the latter point. The following proposition states how (28), (25) are transmitted to the

asymptotic behavior of (p, q, r, s) around the equilibrium M0 as η → −∞.

Proposition 6.1. Let
(
V,Σ,Θ,Γ

)
(ξ) be a smooth solution of (26), U(ξ) be defined by (27), and suppose

the solution is defined for ξ > 0, is smooth, takes values in the positive orthant, and assumes the initial

conditions

V (0) = V0 ≥ 0, Σ(0) = Σ0 > 0 , Θ(0) = Θ0 > 0 Γ0 = Γ0 > 0 and U ′(0) = 0 .

Then
(
V,Σ,Θ,Γ

)
and U satisfy at ξ = 0 the conditions (29), (33), (34). Morever, the orbit defined by

the transformations (37), (39), (42), χ(η) = (p(η), q(η), r(η), s(η)) → M0 as η → −∞. Furthermore, it

tends to M0 along the direction of the first eigenvector X01, in fact

e−2η
(
χ(η)−M0

)
→ κX01, for some constant κ > 0 as η → −∞. (46)

Remark 6.1. The orbit approaches M0 tangent to X01 as η → −∞. Since M0 has a three-dimensional

unstable manifold and µ02(= 1) < µ01(= 2) < µ03(= O( 1n)), the orbits emanating from M0 tangent to

X01 all lie on a two dimensional manifold that at M0 is tangent to the plane spanned by X01 and X03.

This two dimensional submanifold will be referred to as the Strongly unstable manifold of M0.

Proof. Assuming smoothness and boundedness of
(
V,Σ,Θ,Γ

)
and U in a neighborhood of ξ = 0 and the

conditions (25), (28) we deduce first (29), (33), (34) by the argument of section 3. The derivatives of
(
Γ, V,Θ,Σ, U

)
at ξ = 0 are obtained by differentiating the system (26) repeatedly. Re-write (26) as

a+ λξ
Γ′

Γ
=
U

Γ
, c+ λξ

Θ′

Θ
=

ΣΓ

Θ

U

Γ
,

(b+ λ)U + λξU ′(ξ) = Σ
′′

=
(ΣΓ

Θ

Θ

Γ

)′′

,

(
ΣΓ
Θ

)′′

ΣΓ
Θ

= (1 +m+ n)
Γ

′′

Γ
− (1 + α)

Θ
′′

Θ
+ n

(
U
Γ

)′′

U
Γ

,

from where after a computation we conclude

U

Γ
(0) = a = r0,

(U

Γ

)′
(0) = 0,

(U

Γ

)′′

(0) =
Γ(0)

Σ(0)

−2(b+ λ)r0

1−s0
λ − n

r0

(
2
s0

+ r0
λ

)( 1
λ
+2

1+α
λ

r0+
2
s0

) ,

ΣΓ

Θ
(0) =

c

a
= s0,

(ΣΓ

Θ

)′
(0) = 0,

(ΣΓ

Θ

)′′

(0) =
n

r0

(
1
λ + 2

1+α
λ r0 +

2
s0

)
(U

Γ

)′′

(0).
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The Taylor expansions of p(log ξ), q(log ξ), r(log ξ) and s(log ξ) at ξ = 0 are computed using (37), (42),

(33) and the relations above,

p(log ξ) =
γ̄

σ̄
=
ξa1Γ(ξ)

ξd1Σ(ξ)
= ξ2

Γ(ξ)

Σ(ξ)
= ξ2

Γ(0)

Σ(0)
+ o(ξ2) ,

q(log ξ) = b
v̄

σ̄
= b

ξb1V (ξ)

ξd1Σ(ξ)
= bξ

V (ξ)

Σ(ξ)
= bξ2

U(0)

Σ(0)
+ o(ξ2) = ξ2 br0

Γ(0)

Σ(0)
+ o(ξ2) ,

r(log ξ) =
ū

γ̄
=
ξ1+b1U(ξ)

ξa1Γ(ξ)
=
U(0)

Γ(0)
+ ξ
(U

Γ

)′
(0) +

1

2
ξ2
(U

Γ

)′′

(0) + o(ξ2)

=
U

Γ
(0) + ξ2

Γ(0)

Σ(0)

−(b+ λ)r0

1−s0
λ − n

r0

(
2
s0

+ r0
λ

)( 1
λ
+2

1+α
λ

r0+
2
s0

) ,

s(log ξ) =
σ̄γ̄

θ̄
=
ξa1+d1Σ(ξ)Γ(ξ)

ξc1Θ(ξ)
=

ΣΓ

Θ
(0) + ξ

(ΣΓ

Θ

)′

(0) +
1

2
ξ2
(ΣΓ

Θ

)′′

(0) + o(ξ2)

=
ΣΓ

Θ
(0) + ξ2n

( (
1
λ + 2

)
1
r0

1+α
λ r0 +

2
s0

)

Γ(0)

Σ(0)

−(b+ λ)r0

1−s0
λ − n

r0

(
2
s0

+ r0
λ

)( 1
λ
+2

1+α
λ

r0+
2
s0

) + o(ξ2).

Therefore, taking note of the eigenvector X01 in Appendix C, we conclude

χ(log ξ)−M0 =
(
p(log ξ), q(log ξ), r(log ξ), s(log ξ)

)
−M0 =

Γ(0)

Σ(0)
ξ2X01 + o(ξ2),

which implies (46) since η = log ξ → −∞ as ξ → 0.

Remark 6.2. For n small enough, we find that second derivatives have definite signs:
(U

Γ

)′′

(0) < 0,
(ΣΓ

Θ

)′′

(0) < 0, and

Γ
′′
(0)

Γ(0)
=

1

2λ

(U

Γ

)′′

(0) < 0,
Θ

′′
(0)

Θ(0)
=

1

2λ

(

s0

(U

Γ

)′′

(0) + r0

(ΣΓ

Θ

)′′

(0)
))

< 0,

U
′′
(0)

U(0)
=

Γ
′′
(0)

Γ(0)
+

(
U
Γ

)′′
(0)

U
Γ (0)

< 0, Σ
′′

(0) = (b+ λ)U(0) > 0.

(47)

6.2 A heteroclinic orbit

The behavior of (26) near the singular point ξ = 0 suggests to look for an orbit of (S) emanating from

M0 in the direction of the Strongly unstable manifold. At the other end point, as η → ∞, we expect that

the variables p, q, r and s equilibrate to a bounded state as η → ∞. This would imply that the variables

γ̃, ṽ, θ̃, and σ̃ grow at most exponentially in η as seen from (41) and in turn polynomially in ξ. Therefore,

we look for a heteroclinic orbit joining M0 with M1, the only two equilibria in the sector r > 0 and s > 0.

That is we expect χ(η) → M1 as η → ∞. The heteroclinic orbit will be called χ(η) for the rest of this

paper. It will be constructed in the next section.

The two end point behaviors can be interpreted geometrically as well: The end point behavior as

η → −∞ specifies a nontrivial submanifold of the unstable manifold of the equilibrium M0 from which

the orbit emanates. This submanifold will turn out to intersect the stable manifold of M1 and the

intersection of these two manifold is the heteroclinic orbit we search for.

U0, Γ0 are selected.

Given the heteroclinic χ(η), this subsection is devoted to adapting the initial data. By data we refer

to
(
Γ0,Θ0,Σ0, U0

)
.
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6.3 Adapting the initial data

Suppose now that an orbit χ(η) has been constructed that satisfies (S), it emanates from M0 in the

Strongly unstable manifold, i.e. it satisfies (46), and connects to M1. The orbit corresponds to a set

of parameters (λ, α,m, n). We proceed to show how the data input
(
V0,Γ0,Θ0,Σ0, U0

)
fit under the

supposed orbit χλ,α,m,n(η). From (34), (29) we know that V0 = 0 and

Θ0 = c−
1

1+αΓ
m

1+α

0 U
1+n
1+α

0 , Σ0 = c
α

1+αΓ
m

1+α

0 U
−α−n

1+α

0 .

By (35), the rate of growth λ determines the ratio U0
Γ0

λ =
(U0

Γ0
− 2(1 + α)− n

D

) D

2(1 + α)
. (48)

Note finally that the restriction (43) on the growth rate λ implies a restriction on the ratio

2(1 + α)− n

D
<
U0

Γ0
<

2(1 + α)− n

D
+

4(1 + α)(α −m− n)(1 +m)

D(1 +m+ n)2

=
2(1 + α)

1 +m+ n
− n

D

(
4(1 + α)(α −m− n)

(1 +m+ n)2
+ 1

)

.

(49)

It remains to resolve only one degree of freedom. The orbit χ(η) emanating from M0 in the direction

X01 satisfies the asymptotic expansion

χ(η)−M0 = κ1e
µ01ηX01 + κ3e

µ03ηX03 + higher-order terms as η → −∞, (50)

for two constants κ1 and κ3. Any reparametrization χ(η−η0), η0 ∈ R, depicts the same heteroclinic orbit.

Define χ̄(η) = χ(η − η0) and we proceed to select η0 so as to satisfy the data. Then,

lim
η→−∞

(
χ̄(η)−M0

)
e−2η = lim

η→−∞

((
χ(η − η0)−M0

)
e−2(η−η0)

)

e−2η0 = e−2η0κ1X01.

On the other hand, from the proof of Proposition 6.1,

lim
η→−∞

(
χ̄(η) −M0

)
e−2η =

Γ0

Σ0
X01 ,

which dictates we fix the last degree of freedom by selecting

η0 =
1

2
log

(
Γ0

Σ0
κ1

)

. (51)

7 Existence via Geometric theory of singular perturbations

This section is devoted to proving the existence of a heteroclinic orbit χ(η) with limiting behavior as

determined in section 6.

Theorem 1. Let (α,m, n) take values in the range (23). Given λ > 0 satisfying (43) with n = 0, there

is n0(λ, α,m) such that for n ∈ [0, n0) and λ satisfying (43) the system (S) admits a heteroclinic orbit

χλ,α,m,n(η) joining the equilibrium Mλ,α,m,n
0 to the equilibrium Mλ,α,m,n

1 and satisfying the property

e−2η
(
χλ,α,m,n(η)−Mλ,α,m,n

0

)
→ κXλ,α,m,n

01 as η → −∞ for some κ 6= 0. (52)
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The heteroclinic orbit χλ,α,m,n(η) is achieved by applying the geometric singular perturbation theory.

The presence of the small parameter n > 0 in the left-hand-side of (S)3 provides a fast-slow structure to

the system, having r as a fast variable and the rest as slow variables. In the interest of the reader, we

present some preliminary information. Experts on geometric singular perturbation theory may wish to

proceed directly to Sections 7.2, 7.3.

Recall that (S) accounts for a family of dynamical systems parametrized by (λ, α,m, n); the heteroclinic

orbit will be achieved respectively for each admissible (λ, α,m, n). To simplify notations we suppress the

dependence on λ, α, and m but retain the dependence on n.

7.1 Invariant manifold theory and geometric singular perturbation theory

We state here some rudiments of the geometric singular perturbation theory from [11, 12]. Fenichel’s

persistence theorem is developed in [12, Theorem 9.1]. In the present application the versions [25, Theorem

2.2] and [25, Theorem 3.1] are applied.

Let X be a Cr vector field in R
d with r ≥ 2 and let Λ̄ = Λ∪∂Λ be a compact, connected Cr+1 manifold

in R
d. F t : Rd 7→ R

d denotes the time t-map associated with the vector field X and DF t denotes its

differential. Λ̄ is said to be overflowing invariant under X if for every m ∈ Λ̄ and t ≤ 0, F t(m) ∈ Λ̄ and

X is pointing strictly outward on ∂Λ. TRd|Λ̄ denotes the tangent bundle of Rd along Λ̄ and T Λ̄ denotes

the tangent bundle of Λ̄. A subbundle E ⊂ TRd|Λ̄ is said to be negatively invariant if E ⊃ DF t(E) for

all t ≤ 0.

Let E ⊂ TRd|Λ̄ be a subbundle that is negatively invariant and contains T Λ̄. Given such E, TRd|Λ̄
then splits into TRd|Λ̄ = E ⊕ E′ = T Λ̄ ⊕ N ⊕ E′, where N ⊂ E is any complement of T Λ̄ in E and

E′ ⊂ TRd|Λ̄ is any complement of E in TRd|Λ̄. Next, the subundles are distinguished according to

the growth or decay rates of the linearized flow as t → −∞, following [12]: Let m ∈ Λ̄ and v0 ∈ TmΛ;

w0 ∈ Nm; x0 ∈ E′
m; vt = DF t(m)v0; wt = πNDF t(m)w0; xt = πE

′
DF t(m)x0, where πN and πE

′
are

bundle projections onto N and E′ respectively. Define

νs(m) , inf
{

ν > 0 :
1

|x−t| = o(νt) as t→ ∞ ∀x0 ∈ E′
m

}

.

If νs(m) < 1, define

σs(m) , inf
{

σ > 0 : |v−t| = o(|x−t|σ) as t→ ∞ ∀x0 ∈ E′
m, v

0 ∈ TmΛ
}

.

Next, define

αu(m) , inf
{

α > 0 : |w−t| = o(αt) as t→ ∞ ∀w0 ∈ Nm

}

.

If αu(m) < 1, define

ρu(m) , inf
{

ρ > 0 :
|w−t|
|v−t| = o(ρt) as t→ ∞ ∀w0 ∈ Nm, v

0 ∈ TmΛ
}

.

If ρu(m) < 1, define

τu(m) , inf
{

τ > 0 : |v̂−t| = o

(( |v−t|
|w−t|

)τ
)

as t→ ∞ ∀w0 ∈ Nm, v
0 ∈ TmΛ, v̂0 ∈ TmΛ

}

.

Definition 7.1. Let Λ̄ = Λ∪∂Λ be an overflowing invariant manifold such that TRd|Λ̄ admits a splitting

by E as described above. We say an overflowing invariant manifold Λ̄ satisfies assumptions (Ar) and

(Br′), r
′ ≤ r − 1 if for all m ∈ Λ̄ the growth rates hold

νs(m) < 1, σs(m) <
1

r
, (Ar)

αu(m) < 1, ρu(m) < 1, τu(m) <
1

r′
. (Br′)
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Remark 7.1. Given the bundle splitting, the conditions (Ar) and (Br′) suffice to construct the unstable

manifold of Λ̄ as well as the finer foliation structure within it; see [10, Theorem 4] and [11, Theorem 3].

Moreover, for the special case E = T Λ̄, Fenichel in [9] proved the persistence of the overflowing manifold

Λ̄ of X0 when only (Ar) is assumed.

Next, suppose that a Cr family of vector fields Xǫ is given depending on a small parameter for

ǫ ∈ [−ǫ0, ǫ0] is given. If Λ̄ǫ exists as a Cr family of overflowing invariant manifolds for each sufficiently

small ǫ, then the unstable manifold and its foliation structure are persistent in an appropriate sense; see

section 16 of [12], and the discussion in [12, p. 90].

Next, we introduce the notion of normal hyperbolicity for manifolds without boundary, [12, p.89] and

[9, p.221].

Definition 7.2 (Normally Hyperbolic Invariant Manifold [12]). Let Λ be a compact, invariant under

X manifold without boundary. Let Es and Eu be subbundles of TRd|Λ such that Es + Eu = TRd|Λ,
Es ∩Eu = TΛ, Eu is negatively invariant under X and Es is negatively invariant under −X. We say Λ

is r-normally hyperbolic if Λ is an overflowing invariant manifold with a subbundle Eu satisfying the rate

assumptions (Ar) and Λ is so with Es under −X.

The geometric singular perturbation theory [12, Theorem 9.1] applies the invariant manifold theory

to the fast-slow structure induced by the dynamical system
{

ẋ = f(x, y, ǫ),

ǫẏ = g(x, y, ǫ),
where ǫ ∈ (−ǫ0, ǫ0), ǫ0 > 0 small, x ∈ R

ℓ, y ∈ R
k, ℓ+ k = d. (53)

We say x is a slow variable and y is a fast variable. We assume that f and g are sufficiently smooth, and

the terms slow and fast variable originate from the two limiting asymptotic problems :

(Reduced Problem)

{

ẋ = f(x, y, 0),

0 = g(x, y, 0),
(Layer Problem)







x′ = 0,

y′ = g(x, y, 0), (·)′ = d

d(t/ǫ)
.

The zeroset S of g(x, y, 0) defines a manifold the orbits of the Reduced problem take values. In

general, S is not realized as a graph as it can have many branches. This manifold consists of equilibria

of the Layer problem. We consider

S =
{

(x, y)
∣
∣
∣ g(x, y, 0) = 0

}

,

SR ⊂
{

(x, y) ∈ S

∣
∣
∣Dyg(x, y, 0) has the full rank k

}

open,

SH ⊂
{

(x, y) ∈ SR

∣
∣
∣ all eigenvalues of Dyg(x, y, 0) have nontrivial real parts

}

open.

On SR, the equation 0 = g(x, y, 0) is locally solvable for y in terms of x and we speak of the reduced

vector field XR on slow variables. (See equation (7.8) in [12].) On a compact subset K ⊂ SH Fenichel’s

persistence Theorem [12, Theorem 9.1] applies.

In the sequel, we need the notion of transversal intersections:

Definition 7.3 (Transversal Intersection). ([25, Definition 3.1]) Let M1 and M2 be submanifolds of a

manifold M . The manifolds M1 and M2 intersect transversally at a point m ∈ M1 ∩ M2 iff

TmM = TmM1 + TmM2

holds, where TmM denotes the tangent space of the manifold M and similarly for M1 and M2.

It is shown in [25] that when heteroclinic orbits are realized as transversal interesections of a stable

and an unstable manifold they are persistent under perturbations.
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7.2 Singular orbits for the inviscid system with n = 0

Let us describe how we apply the perturbation theory to the case of (S). We take two normally hyperbolic

manifolds N0 and N1, which are simply the equilibrium points M0 and M1. The goal of this section is

to establish the transversal intersection of the N u
0 , the unstable manifold of N0 in pqrs-space, and N s

1 ,

the stable manifold of N1.

A bunch of symbols and series of notations, following [25], are introduced and used for the remaining

section. K ⊂ SH denotes a compact critical manifold to be specified later. The reduced vector field

problem is defined in K and XR denotes the reduced vector field. As the reduced vector field is defined

in K, K may contain a finer invariant manifold N ′ →֒ K that is normally hyperbolic to the reduced

vector field. As usual N ′, W u(N ′), and W s(N ′) will be respectively the manifold, its unstable, and its

stable manifolds embedded in K. In particular, W u
0 denotes the reduced unstable manifold of N0 and

W s
1 denotes the reduced stable manifold of N1 embedded in K. Inside of W u(N ′) are foliations Fu

x (see

[12, Theorem 12.2]), meaning a foliation that passes through x ∈W u(N ′). F s
x stands for the analogous

foliation of W s(N ′). Finally, when geometric objects are extended via the invariant manifold theory,

those objects for n > 0 are denoted by a superscript n, for example Kn, N n
0 , N

u,n
0 , W u,n

0 , Mn
0 , · · · .

Next, we identify the Reduced problem,

ṗ = p
( 1

λ
(r − a) + 2− λpr − q

)

,

q̇ = q
(

1− λpr − q
)

+ bpr,

0 = r
( α−m

λ(1 + α)
(r − a) + λpr + q +

α

λ
r
(
s− 1 +m

1 + α

))

,

ṡ = s
( α−m

λ(1 + α)
(r − a) + λpr + q − 1

λ
r
(
s− 1 +m

1 + α

))

,

(R)

and the Layer problem for the system (S),

p′ = 0, q′ = 0, r′ = r
( α−m

λ(1 + α)
(r − a) + λpr + q +

α

λ
r
(
s− 1 +m

1 + α

))

, s′ = 0. (54)

Here, (·)′ = d
dη̃ := d

d(η/n) denotes differentiation with respect to the fast independent variable η̃. The

zero-set of the function

g(p, q, r, s) , r
( α−m

λ(1 + α)
(r − a) + λpr + q +

α

λ
r
(
s− 1 +m

1 + α

))

(55)

consists of the equilibria of (54).

7.2.1 Choice of the critical manifold K

The algebraic equation g(p, q, r, s) = 0 specifies three dimensional hypersurfaces. Away from the r ≡ 0

plane, one may obtain the hypersurface as a graph of the function

r = r̂(p, q, s) =

α−m
λ(1+α)a− q

α−m
λ(1+α) + λp+ α

λ

(
s− 1+m

1+α

) ,

or implicitly in the form

α−m

λ(1 + α)
(r̂ − a) + λpr̂ + q +

α

λ
r̂
(
s− 1 +m

1 + α

)
= 0. (56)

The level sets of r̂ can be used in the pqs-space in order to visualize the hypersurface; they are affine

due to (56). Fig. 3 illustrates a few marked affine surfaces of r̂(p, q, s) = R, in the range 0 ≤ R ≤ a.
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PSfrag replacements

p

q

s− 1+m
1+α

M0

M1

r̂(p, q, s) = a

r̂(p, q, s) = R1
r̂(p, q, s) = R2

Figure 3: Affine level sets r̂(p, q, s) = R, 0 ≤ R ≤ a in pqs-space

When R = a(= r0), it passes through
(

0, 0, 1+m
1+α

)

, which is the equilibrium M0. As R decreases the affine

level sets sweep the positive p, q sector. The surface crosses the other equilibrium M1 when R = r1. Then

R continues to decrease until it touches the r ≡ 0 plane.

The critical manifold K is selected taking account of the properties of r̂(p, q, r). The domain of r̂ is a

trapezoid in pqs-space

D ,

{

(p, q, s)
∣
∣
∣ p ≥ −ǫ, |q| ≤ 2,

∣
∣
∣
∣
s− 1 +m

1 + α

∣
∣
∣
∣
≤ 1

2
min

{
α−m

α(1 + α)
,
1 +m

(1 + α)

}

,

r̂(p, q, s) ≥ 1

2
min{1, r1}

}

.

where ǫ is a positive parameter selected sufficiently small. K is then defined by setting K ,
(
D, r̂(D)

)
.

Note that K is chosen so that (i) M0 and M1 are on K; (ii) s and r = r̂(p, q, s) have positive lower bound

PSfrag replacements

p

q

s− 1+m
1+α

M0 M1

r̂(p, q, s) = 1
2
min{1, r1}

Figure 4: The trapezoid D, the domain of the graph.

on K. See the trapezoid D in Fig. 4.

Next, we verify that K ⊂ SH .

Proposition 7.1. We have that K ⊂ SH , i.e., the partial jacobian ∂g
∂r (p, q, r, s)|r=r̂(p,q,s) > 0 for all

(p, q, r, s) ∈ K.

Proof.

∂g

∂r

∣
∣
∣
∣
K

=
( α−m

λ(1 + α)
(r̂ − a) + λpr̂ + q +

α

λ
r̂
(
s− 1 +m

1 + α

))

+ r̂
( α−m

λ(1 + α)
+ λp+

α

λ

(
s− 1 +m

1 + α

))

= r̂
( α−m

λ(1 + α)
+ λp+

α

λ

(
s− 1 +m

1 + α

))

≥ 1

2
min{1, r1}

( α−m

2λ(1 + α)
− λǫ

)

.

It suffices to take ǫ < α−m
4λ2(1+α)

, independently of n.
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7.2.2 Nested invariant manifold structures in K

The flow (R), strictly restricted on K, is further analyzed. The three dimensional flow

ṗ = p
( D

λ(1 + α)
(r̂ − a0) +

α

λ
r̂
(
s− 1 +m

1 + α

))

,

q̇ = q
(

1− λpr̂ − q
)

+ bpr̂,

ṡ = −1 + α

λ
r̂s
(

s− 1 +m

1 + α

)

.

(R′)

augmented in the r-direction by r = r̂(p, q, s) is the flow of the Reduced system (R).

It is necessary to pinpoint a few finer invariant structures of the reduced flow (R′), on which the

invariant manifold theory can equally well be applied. This will be crucial ingredient of our arguments.

To summarize, in the three dimensional reduced space K, we consider the embeddings

M0,M1 →֒ p ≡ 0 line on s ≡ 1+m
1+α plane →֒ s ≡ 1+m

1+α plane →֒ K ,

which consist of manifolds all of which are invariant under the flow (R′). Indeed, on the plane s ≡ 1+m
1+α ,

(R′) decouples,

ṗ = p
( D

λ(1 + α)
(r̂ − a0)

)

,

q̇ = q
(

1− λpr̂ − q
)

+ bpr̂,

(57)

where r̂ = r̂
(
p, q, 1+m

1+α

)
. Restricting to p ≡ 0 we obtain yet another invariant line and importantly this

line contains the equilibrium points M0 and M1.

PSfrag replacements

p

q

s− 1+m
1+α

N ′: segment in q-axis

normal foliations

M0 M1

Figure 5: Nested invariant manifold structures

Fig. 5 illustrates the rest of the program. The justification of the following descriptions will be the

subject of the next section. M1 is a stable node; the three dimensional volume surrounding M1 in Fig.

5 depicts its stable manifold. M0 is a saddle; M0 has two unstable dimensions in s ≡ 1+m
1+α , and has one

stable dimension in its oblique direction. The vector aligned to q-axis and the one to the green orbit are

two eigenvectors for the unstable dimensions. This explains how our heteroclinic orbit (the green one)

appears in K.

Not all of the manifolds appearing are normally hyperbolic to the reduced vector field (R′): M0 and

M1 are hyperbolic equilibrium points; N̂ 0, a segment of p ≡ 0 line (the blue portion in Fig. 5) will be

identified as an overflowing manifold satisfying the rate assumptions (Ar) and (Br′). However, the plane

s ≡ 1+m
1+α , in general, does not satisfy the necessary rate assumptions. See Remark 7.2
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7.2.3 Analysis of the flow of (R′).

In the phase space K, the flow of (R′) can be completely analyzed. We visualize the overall flow by first

analyzing the flow when restricted to the invariant plane s ≡ 1+m
1+α , and then noting that off the invariant

plane the flow amounts to a stable relaxation process towards the invariant plane at s ≡ 1+m
1+α , see Fig. 6.

The flow in the plane s ≡ 1+m
1+α is characterized by using planar dynamical systems theory.

PSfrag replacements

p
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Figure 6: Flow on and around s ≡ 1+m
1+α

Remark 7.2. The property that the invariant plane s ≡ 1+m
1+α has one stable direction in K may lead

one to believe that the plane is normally hyperbolic. Indeed, the plane s ≡ 1+m
1+α admits a splitting

TR3 = T Λ̄ ⊕ Es with the normal direction decaying. However, the notion of normal hyperbolicity

requires stronger properties than merely admitting a splitting: Note that in (Ar) and (Br′) upon a given

splitting we demand σs < 1/r and ρu < 1/r′. The latter for example leads to demanding that the

negative eigenvalue µ14 of M1 is strictly less than all other negative eigenvalues, which is not always the

case. As a consequence, the persistence Theorem does not apply and we do not assert its persistence

under perturbations.

We turn to the reduced linear stability of M0 and M1 in pqs-space. To summarize, the expressions in

Section 5 also hold for n = 0, with the exception that the third eigenvalue µ03 and the third eigenvector

X03 of M0 (µ13 and X13 respectively of M1) are no longer used. Indeed when n = 0, the flow is restricted

on the three dimensional set K.

The following Lemma utilizes planar dynamical systems theory to characterizes the flow on a triangle

T in the pq-plane.

Lemma 7.1. Let T be the closed triangle on s ≡ 1+m
1+α enclosed by p = 0, q = 0, and the level set

r̂(p, q, 1+m
1+α ) =

1
2 min{1, r1} that is intersected by s ≡ 1+m

1+α . Then T \M0 ⊂W s(M1).

Proof. T is a two dimensional compact positively invariant set: (1) on p = 0, ν = (1, 0) and XR ·ν = ṗ = 0,

where XR stands for the reduced vector field of (R′); (2) on q = 0, ν = (0, 1) and XR · ν = q̇ = bpr̂ ≥ 0

(b in (21) is always positive); lastly on the hypotenuse, let r = 1
2 min{1, r1}. The inward normal vector is

ν = (−λr,−1). We compute

XR · ν = −λrṗ− q̇ = −λrp
(

1− λrp− q +
1

λ
(r− a) + 1

)

− q(1− λrp− q
)
− brp

= (1− λrp− q)(−λrp− q)− rp
(

(r− a) + λ+ b
)

=

(
α−m

λ(1 + α)

)2

(r− r0)(r − r1) + rp(1− r) ≥ δ > 0. (58)

Let Ω be an ω-limit set of the orbit from x0 ∈ T \M0. It is non-empty because T is compact. It

cannot contain M0, because for the flow restricted in T , M0 does not have a stable manifold. It cannot

contain a periodic orbit; if it did then there would be a fixed point in the interior of T and this is not the
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Figure 7: The schematic sketch of the flow on the invariant plane s = 1+m
1+α . Restricted on s = 1+m

1+α , M0

is an unstable node and M1 is a stable node. Two directions of unstable subspaces of M0 are denoted by
X01 and X02; the straight lines emanating from the point α−m

λ(1+α)

(
− 1

λ , a
)
are the intersections of the level

sets of r̂ with the plane s = 1+m
1+α ; the curve in the fourth quadrant is the nullcline of the equation (R′)2;

the triangle T is a 2-dimensional positively invariant set; the trapezoid A is a 2-dimensional negatively
invariant set; the ω-limit set of any point in T is M1; the α-limit set of any point in A is M0; in particular
there is a heteroclinic orbit (green one) that emanates from M0 in the direction X01 lying in the strongly
unstable manifold of M0.

case. It cannot contain a separatrix cycle because T has only two fixed points M0 and M1 and again M0

does not have a stable manifold. By Poincaré-Bendixson Theorem, the ω-limit set is M1.

Now we are able to state: We call Fu
M0

⊂ W u
0 the strongly unstable manifold of M0 satisfying (52)

(the green line in Fig. 5) that is characterizable by the Unstable manifold theorem for the hyperbolic

fixed point. That Fu
M0

ends up arriving at M1 follows by Lemma 7.1, and this gives the proof for n = 0

of Theorem 1. The following proposition shows that the one dimensional manifold Fu
M0

⊂W u
0 intersects

the three dimensional manifold W s
1 (=W s(M1)) transversally (see Fig. 5).

Proposition 7.2. Let N0 = M0, N1 = M1, Fu
M0

⊂ W u
0 the strongly unstable manifold of M0 satisfying

(52), W s
1 = Φ−t0(W

s
loc(M1)), the time −t0 image of the local stable manifold of M1 for large enough

t0 <∞. Then Fu
M0

intersects W s
1 transversally in pqs-space.

Proof of Proposition 7.2. For large enough t0 < ∞, by Lemma 7.1 the orbit point x ∈ Fu
M0

must be

attained in W s
1 as an interior point. Therefore the tangent space TxW

s
1 is the whole of TxR

3. Then the

intersection with Fu
M0

is trivially transversal.

7.3 Persistence for n > 0

Having set forth the critical manifold K in SH and the reduced vector field XR on K, the theorem of

Fenichel holds in K; the family Kn of slow manifolds persistently exist provided n is sufficiently small.

Now we show the finer hyperbolic structure of Fu
M0

→֒ K.

Lemma 7.2. Let N0 = M0, Fu
M0

⊂ W u
0 the strongly unstable manifold of M0 satisfying (52). Then,

for sufficiently small n, Fu
M0

perturbs in a Cr−1 manner to F
u,n
Mn

0
the strongly unstable manifold of Mn

0

satisfying (52).

Proof. In the pqs-space we select the line segment ˆN 0 that is the transversal intersection of the invariant

plane
{

(p, q, s) | p = 0 and q ∈ [−1
2 ,

1
2 ]
}

and the unstable manifoldW u
0 .

ˆN n is defined as the intersection

of the same plane with W u,n
0 . We see that ˆN 0 =

{

(p, q, s) | p = 0, q ∈ [−1
2 ,

1
2 ] and s =

1+m
1+α

}

.
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N̂ 0 is the one dimensional orbit in W u
0 that is not strongly unstable. We claim that ˆN 0 is an

overflowing invariant manifold as in Definition 7.1 of the reduced problem. More precisely, it satisfies

(Ar) and (Br′) with r
′ = r − 1 and E the tangent pq-plane.

From (57), q̇ = q(1−q) on q-axis, it is clear that ˆN 0 is overflowing invariant. Let E be pq-plane along
ˆN 0 and E′ be the lines parallel to the s-axis. Then, TR3| ˆN 0 splits into three one dimensional bundles

T ˆN 0 ⊕N ⊕ E′ with N complementary to T N̂ 0 in E such that NM0 is parallel to X01. The asymptotic

rates are determined at M0 by the eigenvalues of M0. At M0, E
′
M0

is the stable subspace with eigenvalue

−µ04 and NM0 and TM0
ˆN 0 are the unstable ones with µ01 = 2 and µ02 = 1 respectively. From these, we

compute

νs = e−µ04 , σs = 0, αu = e−2, ρu = e−1, τu = 0.

Therefore, for the given family of overflowing manifolds ˆN n, the strongly unstable manifold and its

foliations Fu(x, n) := F
u,n
x exist as a Cr−1 family in both arguments x and n. In turn, the foliation

Fu(Mn
0 , n) that passes through M

n
0 is a Cr−1 map in n.

Persistence of the stable manifold W s
1 (= W s(M1)) is a consequence of the classical stable manifold

theorem. Theorem 1 follows in the same way as in [25, Theorem 3.1] by the transversal intersection.

Proof of Theorem 1. By the theorem of Fenichel, for given (λ, α,m, 0) satisfying (23) and (48), n0 can

be taken sufficiently small so that if n ∈ [0, n0) then (λ, α,m, n) satisfies (23) and (48) and the system

(S) admits a transversal heteroclinic orbit joining equilibrium Mn
0 to equilibrium Mn

1 : Fu
M0

perturbs

to F
u,n
Mn

0
by Lemma 7.2 and W s

1 perturbs to W s,n
1 and the transversal intersection is stable under the

perturbation.

8 Emergence of localization

By transforming back using (24), (37), (39), and (42), we recover the profile
(
Γ(ξ), V (ξ),Θ(ξ),Σ(ξ)

)
and

U(ξ) by (27) and the associated solution. We replace t→ t+ 1 to obtain the final expression:

γ(t, x) = (t+ 1)aΓ((t+ 1)λx), v(t, x) = (t+ 1)bV ((t+ 1)λx), θ(t, x) = (t+ 1)cΘ((t+ 1)λx),

σ(t, x) = (t+ 1)dΣ((t+ 1)λx), u(t, x) = (t+ 1)b+λU((t+ 1)λx) .

We interpret
(
Γ(ξ), V (ξ),Θ(ξ),Σ(ξ)

)
=
(
γ(0, x), v(0, x), θ(0, x), σ(0, x)

)
|x=ξ as the initial state. For given

material parameters (α,m, n), there are two available degrees of freedom giving rise to a two-parameters

family of solutions. As noted in Section 6.3, the choices of U0 and Γ0 determine the self-similar profile

while the remaining boundary values (Θ0, Σ0) and the rate λ are induced by them. The range of U0 and

Γ0 is such that

2(1 + α)− n

D
<
U0

Γ0
<

2(1 + α)− n

D
+

4(1 + α)(α −m− n)(1 +m)

D(1 +m+ n)2
.

The localizing rate λ satisfies (48) and takes values 0 < λ < 2(α−m−n)
1+m+n

(
1+m

1+m+n

)

. In the sequel, we

establish properties of the profiles and the emergence of localization, in the sense of definition (5), (6).

8.1 Properties of the self-similar profiles

We first list some information on the behavior of the profiles near ξ = 0 and as ξ → ∞. The latter

determines the behavior of the induced solutions off the localization zone.

Proposition 8.1. Let
(
Γ(ξ), V (ξ),Θ(ξ),Σ(ξ)

)
be the self-similar profiles defined by transformations of

(37), (39), (42) from the heteroclinic orbit χ(η) =
(
p(η), q(η), r(η), s(η)

)
constructed in Theorem 1 in the

range of parameters Γ(0) = Γ0 and U(0) = U0 depicted by (49). U(ξ) is defined by (27). Then,
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(i) The self-similar profile achieves the boundary condition at ξ = 0,

V (0) = Γξ(0) = Θξ(0) = Σξ(0) = Uξ(0) = 0, Γ(0) = Γ0, U(0) = U0.

(ii) Its asymptotic behavior as ξ → 0 is given by

Γ(ξ)− Γ0 = Γ
′′

(0)
ξ2

2
+ o(ξ2), Γ

′′

(0) < 0,

Θ(ξ)− c−
1

1+αΓ
m

1+α

0 U
1+n
1+α

0 = Θ
′′

(0)
ξ2

2
+ o(ξ2), Θ

′′

(0) < 0,

Σ(ξ)− c
α

1+αΓ
m

1+α

0 U
−α−n

1+α

0 = Σ
′′

(0)
ξ2

2
+ o(ξ2), Σ

′′

(0) > 0,

U(ξ)− U0 = U
′′

(0)
ξ2

2
+ o(ξ2), U

′′

(0) < 0,

V (ξ)− U0ξ = U
′′

(0)
ξ3

6
+ o(ξ3), U

′′

(0) < 0.

(59)

(iii) Its asymptotic behavior as ξ → ∞ is given by

if µ11 6= −1, or µ11 = −1 but b = λ,

Γ(ξ) = O
(
ξ−

1+α
α−m−n ), V (ξ) = O

(
1), Θ(ξ) = O

(
ξ−

1+m+n
α−m−n ),

Σ(ξ) = O
(
ξ), U(ξ) = O

(
ξ−

1+α
α−m−n )

(60)

otherwise

Γ(ξ) = O
(
ξ−

1+α
α−m−n

(
log ξ

) 1+α
D
)
, V (ξ) = O

((
log ξ

)−α−m−n
D

)
,

Θ(ξ) = O
(
ξ−

1+m+n
α−m−n

(
log ξ

) 1+m+n
D

)
,

Σ(ξ) = O
(
ξ
(
log ξ

)−α−m−n
D

)
, U(ξ) = O

(
ξ−

1+α
α−m−n

(
log ξ

) 1+α
D
)

(61)

Proof. The proof of the Proposition 6.1 and Remark 6.2 contains (i) and (ii) and thus we are left to prove

(iii). In a similar fashion to (50), any orbit ψ(η) in the local stable manifold of W s(M1) is characterized

by a triple (κ′1, κ
′
2, κ

′
3) in association with the asymptotic expansion

ψ(η) −M1

=

{

κ′1e
µ11ηX11 + κ′2e

µ12ηX12 + κ′4e
µ14ηX14 + high order terms if µ11 6= −1, or µ11 = −1 but b = λ,

κ′1ηe
µ11ηX ′

11 + κ′2e
µ12ηX12 + κ′4e

µ14ηX14 + high order terms if µ11 = µ12 = −1 and b 6= λ

(62)

as η → ∞. The second formula reflects the presence of a generalized eigenvector.

Now, we have q → 1, r → r1, s → s1 but p → 0 and the leading order of p is to be found. We

can determine the coefficient of X11, above, because the p-component of the vectors X12 and X14 is 0.

Since the plane p ≡ 0 is an invariant plane for a non-linear flow, triplets of the form (0, κ′2, κ
′
3) spans

this invariant plane. Because our heteroclinic orbit χ(η) ventures out from the plane p ≡ 0, κ′1 for the

expansion of χ(η) cannot be 0. This implies that the leading order of p(log ξ) is

p(log ξ) =

{

O(ξµ11) if µ11 6= −1 or µ11 = −1 but b = λ,

O(ξµ11 log ξ) otherwise

as ξ → ∞.
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Asymptotics (60) and (61) are the straightforward calculations obtained from the reconstruction for-

mulas

γ̃ = p
1+α
D r

n
D s

α
D , ṽ =

1

b
p−

α−m−n
D qr

n
D s

α
D , θ̃ = p

1+m+n
D r

2n
D s−

1−m−n
D ,

σ̃ = p−
α−m−n

D r
n
D s

α
D , ũ = p

1+α
D r

n
D
+1s

α
D ,

via (37) and (39).

8.2 Emergence of localization

As time proceeds, the initial nonuniformity evolves into localization. This section is devoted to describing

the behavior of the various fields as time advances. We only present the generic case − 1+m+n
α−m−n 6= −1; in

the non-generic case we would have to add a logarithmic correction according to Proposition 8.1.

• Strain : The strain keeps increasing as time proceeds. The growth at the origin is faster than the

growth rate at all other points:

γ(t, 0) = (1 + t)
2+2α−n

D
+ 2+2α

D
λΓ(0),

γ(t, x) ∼ t
2+2α−n

D
−

(1+α)(1+m+n)
D(α−m−n)

λ|x|−
1+α

α−m−n , as t→ ∞, x 6= 0.

Recall that the condition 2+2α−n
D − (1+α)(1+m+n)

D(α−m−n) λ > 0 was the ground for imposing (43), placed to

guarantee that the plastic strain is growing even outside the localization zone. On the other hand,

the difference between the rate of growth of γ at x = 0 and the rate at x 6= 0 is easily computed as
1+α

α−m−nλ > 0, which indicates localization of the profile of γ around x = 0.

• Temperature : For the temperature , the growth at the origin is again faster than other points,

θ(t, 0) = (1 + t)
2(1+m)

D
+ 2(1+m+n)

D
λΘ(0),

θ(t, x) ∼ t
2(1+m)

D
− (1+m+n)2

D(α−m−n)
λ|x|−

1+m+n
α−m−n , as t→ ∞, x 6= 0.

Again, the positivity of the growth rate 2(1+m)
D − (1+m+n)2

D(α−m−n)λ is a consequence of (43).

• Strain rate : The growth rates of the strain-rate is by definition less by one to those of the strain,

again illustrating localization.

u(t, 0) = (1 + t)
1+m
D

+ 2+2α
D

λU(0),

u(t, x) ∼ t
1+m
D

− (1+α)(1+m+n)
D(α−m−n)

λ|x|−
1+α

α−m−n , as t → ∞, x 6= 0.

• Stress : The stress decays with time at all points, but the decay at x = 0 is much faster than the

decay in other places, indicating stress-collapse in the interior of the band:

σ(t, 0) = (1 + t)
−2α+2m+n

D
+−2α+2m+2n

D
λΣ(0),

σ(t, x) ∼ t
−2α+2m+n

D
+ 1+m+n

D
λ|x|, as t→ ∞, x 6= 0,

The difference of the two rates is
(
1+m+n

D − −2α+2m+n
D

)
λ = λ.

• Velocity : The velocity is an odd function of x. At fixed t, v(t, x) is an increasing function of x

ranging from −v∞(t) to v∞(t), where v∞(t) , limx→∞ v(t, x). The velocity field is contrasted with

the linear field of uniform shear motion. The self-similar scaling ξ = (1 + t)λx implies that most
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of the transition takes place around the origin leading eventually to step-function behavior as time

goes to infinity. The asymptotic velocity is

v∞(t) = (1 + t)bV∞ = (1 + t)
1+m
D

+ 1+m+n
D

λV∞, V∞ , lim
ξ→∞

V (ξ) <∞.

Note that the far field loading condition is different from the linear profile of uniform shearing. This

deviation is a consequence of our simplifying assumption of self-similarity.

9 Numerical computation of the heteroclinic orbit

In this section we present in detail the process we followed to capture numerically the heteroclinic orbit

connecting M0 andM1. This is a challenging computational task since bothM0 andM1 are saddle points

and the heteroclinic orbit connecting them is the intersection of two 3-dimensional manifoldsW u(M0) and

W s(M1) in R
4. Here, we use the software package AUTO, [6], [7], [8] to compute the heteroclinic orbit

connecting M0 and M1. One of the main capabilities of AUTO is that it can perform limited bifurcation

analysis for parametric systems of ordinary differential equations of the form : u′(t) = f(u(t), χ) where

f(·, ·), u(·) ∈ R
d and χ could be one or a set of free parameters.

A direct application of AUTO for solving system (S) and computing the desired heteroclinic orbit

will fail. A more careful approach has to be considered, starting from some well prepared data and

continuing by exploiting the continuation capabilities of AUTO. Indeed, we start with an exact solution

of system (S) available for a specific value of the parameter α and variable p, followed by a projection

and two continuation steps escaping from these particular choices for α and p allowing us to compute the

heteroclinic orbit. We proceed by describing these four steps in detail.

9.1 Continuation by AUTO

Step 1. (Exact solution) The system (S) admits an explicit solution for certain values of the parameters

α, n and the variable p. First for α = 0 the equations for p, q, r in (S) decouple from the equation of

s. This reduced system carries only the three dimensional unstable manifold of M0 characterizing the

heteroclinic orbit as a node-saddle connection. Hence, in principle, by running time backwards and using

a shooting argument in a small neighbourhood of M1, any heteroclinic orbit can be computed as accurate

as the numerical time integrator allows. However we can be more precise and prepare the data even better

by noticing that for p ≡ 0 the equation for q in (S) decouples completely from the rest and can be solved

explicitly. Further, using this analytic value of q an exact solution can be also derived for r in the case

when n =
1

k
, k ≥ 1, k ∈ Z :

α = 0, p ≡ 0, q(η) =
1

1 + e−η
,

r(η) =
r0 (1 + eη)k

k∑

j=0

kW0

kW0 − j

(
k
j

)

ejη

, where W0 = −(m+ n)r0
λ

. (63)

Step 2. (Projection step, α = 0, p ≡ 0) At this step we integrate numerically the equation for s using

the exact values of q(η), r(η) found in the previous step. The integration can be performed by either AUTO

or any other numerical integrator. The integration timespan is chosen to be η ∈ [−ηmax, ηmax] so that the

starting point (p, q, r, s)|η=−ηmax and the ending point (p, q, r, s)|η=ηmax both fall in small neighbourhoods

of M0 and M1 respectively. In particular we choose the starting point so that (p, q, r, s)|η=−ηmax =

28



M0 + ǫ0ν0, ν0 = X02 and ǫ0 as small parameter. Using this an initial value we integrate numerically the

following non-autonomous equation for s

ṡ = s
(−m− n

λ
(r(η)− a) + q(η)− 1

λ
r(η)

(
s− (1 +m+ n)

)
− n

λ

)

.

At the end of the calculation we project the vector (p, q, r, s)|η=ηmax −M1 to the stable subspace ofM1. In-

deed, we can find explicitly ǫ1 ≪ 1 and ν1 ∈ Span{X11,X12,X14}, |ν1| = 1 such that π
(
(p, q, r, s)|η=ηmax −

M1

)
= ǫ1ν1, where π denotes the projection. At the completion of Step 2 we have the solution (p, q, r, s)(η), η ∈

[−ηmax, ηmax] at discrete levels ηi, i = 0, . . . N for α = 0 and lying in the plane p ≡ 0.

Step 3. (Continuation with α 6= 0, p = 0) The goal in this step is to create a set of orbits in the

plane p ≡ 0 but with α not any more trivial. To that effect, we use the well prepared data obtained in

Step 2 and we run AUTO with ν0 fixed but allowing α, m, λ, ǫ0, ǫ1, ν1 be continued. The continuation

process performed by AUTO creates a family of orbits with the following characteristics : a) emanate

from a small neighbourhood of size ǫ0 of M0 in the direction of ν0, b) terminate in a small neighbourhood

of size ǫ1 of M1, c) lie in the plane p ≡ 0 but with α 6= 0.

Step 4. (Continuation with α 6= 0, p 6= 0) In this step we capture the desired heteroclinic orbit

connectingM0 andM1. From the family of orbits obtained in Step 3 we select one according to the physical

relevance of the parameters α, m, n and λ. We run AUTO again allowing ν0 in span{X01,X02,X03} to

be continued, thus leaving the plane p ≡ 0. AUTO generates a family of orbits emanating from M1,

terminating in a neighbourhood of size ǫ0 of M0 and is the 2-surface of heteroclinic orbits of W u(M0) ∩
W s(M1). One of these orbits is the desired heteroclinic orbit with ν0 = X01.

Remark 9.1. We note that the exact solution of r in (63) is valid only for values of n of the form

n = 1
k , k ≥ 1, k ∈ Z. In the case that n is not of this form then one can rely on an numerical integrator

for solving as accurately as possible the equation for r using the exact value of q.

9.2 Numerical Results

In this section we illustrate the computation of the heteroclinic orbit of (S), following the steps described

in detail above. Further, using the heteroclinic orbit (p, q, r, s) of system (S) we compute the associated

self-similar solution in terms of the original variables v(x, t), u(x, t), θ(x, t), σ(x, t).

We begin by giving the explicit relation of the variables (p(η), q(η), r(η), s(η)) to the original variables

v(x, t), u(x, t), θ(x, t), σ(x, t). Indeed, collecting the transformations and change of variables described

in (24), (37) and (39), we obtain

v(x, t) =
1

b
tb ξ−b1 p

(−α+m+n)
D s

α
D r

n
D u(x, t) = tb+λ ξ−b1−1 p

(1+α)
D s

α
D r1+

n
D

θ(x, t) = tc ξ−c1 p
(1+m+n)

D s
m+n−1

D r
2n
D , σ(x, t) = td ξ−d1 p

(−α+m+n)
D s

α
D r

n
D

(64)

where η = log ξ, ξ = tλx and a, b, c, d,D as in (21), (22). We present now the results of three numerical ex-

periments. All the computations where performed with ηmax = 10 and λ = 1
2λmax where λmax is the upper

bound of λ in (43). The initial values of α, m are taken as α = 0 and m = −0.6, −0.5, −0.5, respectively.

The corresponding values of n remained fixed throughout the process and were n = 0.025, 0.0125, 0.01.

Following the process described in Section 9.1, the software AUTO was able to perform the continuation

process and capture the desired heteroclinic orbit. The resulting values for α and m are shown in the

figures, along with the value of the parameter Lp = −α+m+ n. The change of sign of Lp from positive

to negative signals the onset of localization.

Figures 8, 9 and 10 illustrate the emergence of localization by depicting the profiles of the original

variables v, u, θ, σ at a few time instances. The vertical axes, except for the velocity v, are in logarithmic

scale, however the corresponding y−range of values for each variable, is the same in all figures. In part
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Figure 8: α = 1.572, m = 0.02246, n = 0.025, Lp = −1.52454.

(a) of each figure the velocity profile is depicted, which eventually, attains the shape of a step function.

Parts (b) and (c) of the figures present the localization in strain rate and temperature respectively. In

both cases the initial profile is a small perturbation of a constant state which at later time localizes at

the origin. On the other hand, part (d) of figures shows the collapse of the stress to zero. The rate of

localization at the origin differs for each numerical experiment and depends on the values of the materials

parameters α, m, n and Lp. In particular, the onset of localization is characterized by the parameter Lp

taking a negative value. Further, the rate of localization is determined by the magnitude of this negative

value, with larger negative values indicating faster localization, as it is observed in Figures 8-10.

There is the possibility of constructing the heteroclinic orbits via a shooting method, but this works

only in the special cases α = 0, m < 0 and m = 0, see [18] and [19] respectively. The shooting method

does not work in the general case where all parameters are nonzero.

A The loss of hyperbolicity for n = 0

Consider the system (1) when n = 0, that is the viscoplastic effects are neglected. Then (2) reads

σ = τ(θ, γ) = θ−αγm (65)

and (1) is written as a first order system





vt
θt
γt



 =





0 τθ(θ, γ) τγ(θ, γ)
τ(θ, γ) 0 0

1 0 0





︸ ︷︷ ︸

, B(θ, γ)





vx
θx
γx



 . (66)
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Figure 9: α = 1.1698, m = 0.2057, n = 0.0125, Lp = −0.9516.
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Figure 10: α = 0.5957, m = 0.3437, n = 0.01, Lp = −0.242.
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We check hyperbolicity for (66). The characteristic speeds are the roots of

det
(
B − λI

)
= −λ

(
λ2 − (τθτ + τγ)

)
= 0

The system is thus hyperbolic when τθτ+τγ > 0 and elliptic in the t-direction when τθτ+τγ < 0. Observe

that along the evolution of (66) and under the conditions for loading of interest in our problem, we have

that γ is increasing; the equation

θt = τ(θ, γ)γt

implies that

τθτ + τγ =
d

dγ
τ(θ, γ) .

We conclude that the system is hyperbolic before the maximum of the stress-strain curve, and elliptic

beyond the maximum point. For the constitutive law (65) a computation shows

τθτ + τγ = θ−αγm−1
(
− α

γm+1

θ1+α
+m

)

=
−α+m

1 + α
+
α(1 +m)

θ1+α

(θ0(x)
1+α

1 + α
− γ0(x)

1+m

1 +m

)

In the region α > m the stress-strain curve may be initially increasing (depending on the data) but

eventually decreases.

The system (66) admits the class of uniform shearing solutions

vs(x) = x , γs(t) = t+ γ0 , θs(t) is determined by solving

{
dθs
dt = τ(θs, γs)

θs(0) = θ0
(67)

where γ0, θ0 > are the initial strain and temperature, respectively. We linearize around the uniform

shearing solution by setting

v = x+ V̂ (t, x) , θ = θs(t) + Θ̂(t, x) , γ = γs(t) + Γ̂(t, x)

and obtain the linearized system satisfied by the perturbation (V̂ , Θ̂, Γ̂),





V̂t
Θ̂t

Γ̂t



 = B(θs(t), γs(t))





V̂x
Θ̂x

Γ̂x



+





0 0 0
0 τθ(θs, γs) τγ(θs, γs)
0 0 0









V̂

Θ̂

Γ̂



 . (68)

The above calculation shows that, when α > m, the linearized system loses hyperbolicity in finite time,

past the maximum of the curve σs(t)− t.

B The equilibria of the system (S)

We discussed in section 5 the equilibria M0 and M1 of (S). The remaining equilibria of (S) are listed

below, and they are all functions of (α,m, n, λ) that lie outside the the sector

P = {(p, q, r, s) | p ≥ 0, q ≥ 0, r > 0, s > 0}

in the parameter range (23). The reader will find underlined the components indicating that the equilib-

rium lies outside the sector of interest: We recall the notations

a =
2 + 2α− n

D
+

2(1 + α)

D
λ , b =

1 +m

D
+

1 +m+ n

D
λ , D = 1 + 2α−m− n
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while t, t1 and t2 denote arbitrary real numbers.

(1)
(

0, 0, 0, 0
)

,

(2)
(

0, 0, 0, t
)

provided λ = −2α+2m+n
2(α−m−n) ,

(3)
(

0, 0, nα−a(α−m−n)
(1+α)(m+n) , 0

)

,

(4)
(

0, 1, 0, 0
)

,

(5)
(

0, 1, 0, t
)

provided λ = 2α−2m−n
1+m+n ,

(6)
(

0, 1, nα−a(α−m−n)
(1+α)(m+n) + λ

m+n , 0
)

,

(7)
(

t, 0, 0, 0
)

provided λ = 2+2α−n
2(α−m−n) ,

(8)
(

t, 1, 0, 0
)

provided λ = −2−2α+n
1+m+n ,

(9)
(

t1, 0, 0, t2

)

provided 1 + 2α−m− n = 0 and λ = −1−m
1+m+n ,

(10)
(

t1, 1, 0, t2

)

provided 1 + 2α−m− n = 0 and λ = −1−m
1+m+n ,

(11)
(

− (α−m−n)(1+m+n)
(1+α)(1+m) , 2(α−m−n)

1+m b, 2(1+α)
1+2α−m−n ,

1+m+n
1+α − n(1+2α−m−n)

2(1+α)2

)

,

(12)

((
2α(1+m)

D(1−m−n) +
2(α−m−n)

D λ
)(

2α(1+m)
D(1−m−n) − 1+m+n

D λ
)
1−m−n
λ(2−n)

1−m−n
λ(1+m) ,

(
2α(1+m)

D(1−m−n) +
2(α−m−n)

D λ
) (

1+m
D + 1+m+n

D λ
)

1−m−n
λ(1+m) ,

2−n
1−m−n , 0

)

.

The generic equilibria in P are M0, M1, (1), (3-4), (6), and (11 -12); the rest are valid for specific

parameter values.

C The linearized problems around M0 and M1

The coefficient matrix for the linearized system (S) around the equlibrium M0 is









2 0 0 0
br0 1 0 0

r0
n (λr0)

r0
n

r0
n

(
α−m−n
λ(1+α) − nα

λ(1+α)r0

)
r0
n (

αr0
λ )

s0(λr0) s0 s0

(
α−m−n
λ(1+α) + n

λ(1+α)r0

)

s0(− r0
λ )









=








2 0 0 0
br0 1 0 0

r0
n (λr0)

r0
n

r0
n

1
λ

(

1− s0 − n
r0

)
r0
n (

αr0
λ )

s0(λr0) s0 s0
1
λ(1− s0) s0(− r0

λ )








The corresponding eigenvectors X0j are collected in the matrix S0 as j-th column vector, j = 1, 2, 3, 4.

S0 =







1 0 0 0
br0 1 0 0
y1 y2 1 y4
z1 z2 z3 1






,

(
y1
z1

)

= −(λ+ b)r0





1+α
λ

r0+
2
s0

∆1
n
r0

(
1
λ
+2
)

∆1



 ,

(
y2
z2

)

= −





1+α
λ

r0+
µ02
s0

∆2
n
r0

(
1
λ
+µ02

)

∆2





z3 = n

(
1−s0

λ

nr0
λ

+
nµ

+
0

s0

)

, y4 =
r0
λ
+

µ
−
0
s0

1−s0
λ

,

(69)

where ∆1 = 1−s0
λ

(
1+α
λ r0 +

2
s0

)
− n

r0

(
1
λ + 2

)(
r0
λ + 2

s0

)
and ∆2 = 1−s0

λ

(
1+α
λ r0 +

1
s0

)
− n

r0

(
1
λ + 1

)(
r0
λ + 1

s0

)
.

We find that y1, y2, y4 < 0; z1, z2, z3 ∼ O(n), provided n is sufficiently small.
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Next, the coefficient matrix for the linearized system around M1 is








− 1+m+n
α−m−n 0 0 0

(b− λ)r1 −1 0 0
r1
n (λr1)

r1
n

r1
n

(
α−m−n
λ(1+α) − nα

λ(1+α)r1

)
r1
n (

αr1
λ )

s1(λr1) s1 s1

(
α−m−n
λ(1+α) + n

λ(1+α)r1

)

s1(− r1
λ )









=








− 1+m+n
α−m−n 0 0 0

(b− λ)r1 −1 0 0
r1
n (λr1)

r1
n

r1
n

1
λ

(

1− s1 − n
r1

)
r1
n (

αr1
λ )

s1(λr1) s1 s1
1
λ(1− s1) s1(− r1

λ )








In what follows we examine all possible cases: Except for the case µ11 = µ12 = −1, four linearly

independent eigenvectors are attained. In the exceptional case µ11 = µ12 = −1 the repeated eigenvalue

−1 has geometric multiplicity which is strictly less that its algebraic multiplicity.

As to the eigenvectors, notice that the eigenvalues for M1 (differently from those for M0) have the

chance to be repeated. The analysis below shows that, unless µ11 = µ12 = −1, four linearly independent

eigenvectors are attained. If the exceptional case takes place then we will supplement precisely one

generalized eigenvector for the repeated eigenvalue −1.

Case 1. − 1+m+n
α−m−n 6= −1; or − 1+m+n

α−m−n = −1 but b = λ. This case yields four linearly independent

eigenvectors. The eigenvectors X1j are collected in the matrix S1 as j-th column vector, j = 1, 2, 3, 4,

and in the case of repeated eigenvalues the corresponding eigenvectors are understood as a basis for the

associated subspace:

S1 =







1 0 0 0
x1 1 0 0
y1 y2 1 y4
z1 z2 z3 1






,

x1 =

{
(b−λ)r1
1+µ11

if µ11 6= −1,

0 otherwise,

z3 = n

(
1−s1

λ

nr1
λ

+
nµ

+
1

s1

)

, y4 =
r1
λ
+

µ
−
1
s1

1−s1
λ

,

(
y1
z1

)

=







−(λr1 + x1)

(
λ

1−s1

0

)

if µ14 = µ11,

−(λr1 + x1)





1+α
λ

r1+
µ11
s1

∆3
n
r1

(
1
λ
+µ11

)

∆3



 otherwise,

(
y2
z2

)

=







−
(

λ
1−s1

0

)

if µ14 = µ12,

−





1+α
λ

r1+
µ12
s1

∆4
n
r1

(
1
λ
+µ12

)

∆4



 otherwise,

(70)

where

∆3 =
1− s1
λ

(1 + α

λ
r1 +

µ11
s1

)
− n

r1

( 1

λ
+ µ11

)(r1
λ

+
µ11
s1

)

=
−n
r1s1

det

[( r1
n

(
1−s1
λ − n

λr1

)
r1
n

αr1
λ

s1
1−s1
λ −s1 r1λ

)

− µ11I

]

6= 0,

∆4 =
1− s1
λ

(1 + α

λ
r1 +

µ12
s1

)
− n

r1

( 1

λ
+ µ12

)(r1
λ

+
µ12
s1

)

=
−n
r1s1

det

[( r1
n

(
1−s1
λ − n

λr1

)
r1
n

αr1
λ

s1
1−s1
λ −s1 r1λ

)

− µ12I

]

6= 0

respectively for the corresponding cases.

Case 2. − 1+m+n
α−m−n = −1 and b 6= λ: For this case µ11 = µ12 = −1 has algebraic multiplicity two

but its geometric multiplicity is one, so we replace the first column of S1 by the generalized eigenvector
(

1
(b−λ)r1

, 0, y′1, z
′
1

)T
, where

(
y′1
z′1

)

=







(

− λ
1−s1

(
λ

b−λ − n
r1
z2
)

0

)

if µ14 = −1,

− λ
b−λ





1+α
λ

r1+
µ11
s1

∆3
n
r1

(
1
λ
+µ11

)

∆3



+ n
r1






y2
(

r1
λ
+

µ11
s1

)
+z2

αr1
λ

∆3

y2
(

1−s1
λ

)
+z2
(
−

1−s1
λ

+ n
r1

(
1
λ
+µ11

))

∆3




 otherwise.

(71)
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0 =Mat1







w
x
y
z







− µ







w
x
y
z







=









(µ11 − µ)w
(b− λ)r1w + (µ12 − µ)x

r1
n

[

λr1w + x+
(
1−s1
λ − n

r1

(
1
λ + µ

))
y + αr1

λ z
]

s1

[

λr1w + x+
(
1−s1
λ

)
y −

(
r1
λ + µ

s1

)
z
]









,

A ,

(1−s1
λ − n

r1

(
1
λ + µ

)
αr1
λ

1−s1
λ −

(
r1
λ + µ

s1

)

)(
y
z

)

= −(λr1w + x)

(
1
1

)

A−1 =
1

∆

((r1
λ + µ

s1

)
αr1
λ

1−s1
λ −1−s1

λ + n
r1

(
1
λ + µ

)

)

, ∆ =
1− s1
λ

(1 + α

λ
r1 +

µ

s1

)
− n

r1

(1

λ
+ µ

)(r1
λ

+
µ

s1

)
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