
MATHEMATICS OF COMPUTATION
Volume 74, Number 249, Pages 103–122
S 0025-5718(04)01655-2
Article electronically published on April 22, 2004

FIRST AND SECOND ORDER ERROR ESTIMATES
FOR THE UPWIND SOURCE AT INTERFACE METHOD

THEODOROS KATSAOUNIS AND CHIARA SIMEONI

Abstract. The Upwind Source at Interface (U.S.I.) method for hyperbolic
conservation laws with source term introduced by Perthame and Simeoni is

essentially first order accurate. Under appropriate hypotheses of consistency
on the finite volume discretization of the source term, we prove Lp-error esti-
mates, 1≤p <+∞, in the case of a uniform spatial mesh, for which an optimal
result can be obtained. We thus conclude that the same convergence rates hold
as for the corresponding homogeneous problem. To improve the numerical ac-
curacy, we develop two different approaches of dealing with the source term
and we discuss the question of deriving second order error estimates. Nu-
merical evidence shows that those techniques produce high resolution schemes
compatible with the U.S.I. method.

1. Introduction

We consider the initial value problem for a transport equation with nonlinear
source term, in one space dimension,

∂tu+ ∂xu = B(x, u), t ∈ R+, x ∈ R,(1.1)

u(0, x) = u0(x) ∈ Lp(R) ∩ L∞(R), 1 ≤ p < +∞,(1.2)

with u(t, x)∈R and the analytical source operator is defined as

(1.3) B(x, u) = z′(x)b(u), z′ ∈ Lp(R), b ∈ C1(R).

The system (1.1)–(1.3) is a simple model of scalar conservation laws with “geomet-
rical” source term and it is motivated by the shallow water equations.
The entropy inequalities associated with (1.1) are described by the equation

(1.4) ∂tS(u) + ∂xS(u) + S′(u)B(x, u) ≤ 0,

for any convex real-valued entropy function S (refer to [7], for instance).
Under stronger assumptions on the source term (1.3), Kružkov [17] proved

existence and uniqueness of the entropy solution to the problem (1.1)–(1.2) in
L∞([0, T );Lp(R)), for all T ∈R+.

Several results concerning the convergence analysis of numerical approximations
for scalar conservation laws are inspired by this fundamental theory (see references
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in [29] and [3], [11], [19], [26], [27], for instance). Another approach to the global
existence of weak solutions for hyperbolic systems of balance laws is presented in
[8], which is also referred to [12] with some extensions. In the particular case of
singular source terms, a uniqueness result has recently been proved in [33].

In this paper, we consider finite volume discretizations of (1.1)–(1.2) and we
estimate the error induced by these discretizations. In particular, the source term
B(x, u) in (1.3) is approximated by a discrete operator Bh of finite volume type.
The solution u and the function z are approximated by piecewise constants in
each grid cell, while the differential part of (1.1) is not discretized and it is kept in
continuous form (2.4). The discrete source operator Bh satisfies certain consistency
properties (2.7)–(2.9), which are crucial for the convergence analysis.

We first consider piecewise constant approximations of u and z in each grid cell
and we prove in Theorem 2.3 that, under certain regularity assumptions on u and
z, the resulting scheme is first order accurate.

A main theme in this work is to construct second order approximations of the
source term. It turns out that second order accuracy is not obtained by a straight-
forward extension of the standard piecewise linear reconstruction technique to the
source term. Our approach is based on constructing approximations with piecewise
linear reconstructions in each grid cell for u as well as for z and the second order
accuracy is achieved if an extra central term is added to the discrete source opera-
tor Bh in (2.13). Additional hypotheses are required on the slope limiters used for
the piecewise linear reconstructions; see Section 4. We prove in Theorem 2.4 that,
under these hypotheses, our scheme satisfies a second error estimate.

We also consider an alternative way to obtain second order accuracy. In this
case, piecewise linear approximations are used for the solution u, while piecewise
constant approximations are used for z in each grid cell; see (2.14). However, the
discrete source operator Bh has to satisfy a slightly stronger consistency condition
(2.15) in order to achieve second order accuracy; see Theorem 2.5.

The rest of the paper is organized as follows. In Section 2, we introduce the
necessary preliminary material and we state our convergence results. In Section 3
and Section 4, we derive the first and second order error estimates, respectively.
We conclude with some final remarks in Section 5.

2. Notation and preliminaries

We set up a uniform mesh on R, whose vertices are xi, i ∈ Z, and we denote
by Ci = [xi− 1

2
, xi+ 1

2
) the control volume (cell), where xi+ 1

2
= xi+xi+1

2 are the cell
interfaces and the characteristic space-step is h=length(Ci), ∀i∈Z (see Figure 1).
Then, we construct a piecewise constant approximation zh of the function z on the
mesh by

(2.1) zh(x) =
∑
i∈Z

zi 1Ci(x), zi =
1
h

∫
Ci

z(x) dx,

where 1Ci denotes the characteristic function of the cell Ci.
We also introduce a piecewise constant approximation uh of the analytical solu-

tion u of (1.1)–(1.2), given by

(2.2) uh(t, x) =
∑
i∈Z

ui(t)1Ci(x), ui(t) =
1
h

∫
Ci

u(t, x) dx.
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Figure 1. Constant reconstruction on the spatial mesh

In the above framework, the numerical solution obtained from a finite volume
scheme applied to (1.1)–(1.2) is a discrete function vh, whose cell-averages

(2.3) vi(t) =
1
h

∫
Ci

vh(t, x) dx, i ∈ Z,

are interpreted as approximations of the cell-averages of the analytical solution, i.e.
vi(t)≈ui(t), i∈Z. The general semi-discrete scheme for (1.1) reads

(2.4) ∂tv
h + ∂xv

h = Bh(x, vh),

with initial data corresponding to the approximate initial condition

(2.5) vh0 (x) =
∑
i∈Z

vi(0)1Ci(x), vi(0) =
1
h

∫
Ci

u0(x) dx.

The source term in (2.4) is discretized as (see [29])

(2.6) Bh(x, vh) =
∑
i∈Z

1
h

[
B+(vi−1, vi,∆zi− 1

2
) + B−(vi, vi+1,∆zi+ 1

2
)
]1Ci ,

where we set ∆zi+ 1
2

= zi+1 − zi (here and in the sequel, we drop time and space
dependence in the formulas for simplicity). We assume the following consistency
properties for the discrete source operator (2.6), with respect to (1.3), which are
fundamental for the convergence analysis,

B± ∈ C2, B±(u, v, 0) = 0,
∂B±
∂u

(u, v, 0) =
∂B±
∂v

(u, v, 0) = 0,(2.7)

lim
λ→0

B+(u, u, λ) + B−(u, u, λ)
λ

= b(u).(2.8)

The last limit holds uniformly in u, in particular we assume that

(2.9)
∣∣∣∣B+(u, u, λ) + B−(u, u, λ)

λ
− b(u)

∣∣∣∣ ≤ KB λ,

where KB is a constant (independent of u). Moreover, we denote by LB any
Lipschitz constant associated to the continuous or discrete source operator.

Remark 2.1. We note that the definition of consistency (2.8) for the source term
refers to the interpretation of the upwind interfacial discretization (2.6) in the sense
of finite volume methods.
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Figure 2. Linear reconstruction on the spatial mesh

2.1. Second order extension of the Upwind Source at Interface method.
In order to obtain second order extensions of the discrete solver (2.4)–(2.5), we
apply a slope limiter technique to the numerical functions: the basic idea is to
replace the piecewise constant reconstruction of the approximate solution by more
accurate reconstructions, namely piecewise linear (see [10] and [20]).

We associate to the numerical solution some coefficients, defined as second order
interpolation of the discrete unknowns (2.3), i.e.,

(2.10) v̄i(t, x) = vi(t) + (x − xi) v′i, i ∈ Z, x ∈ Ci,
where v′i indicates a generic numerical derivative, computed by means of an appro-
priate slope limiter (see Section 4). Departing from (2.1) and (2.2), the function z
and the analytical solution u can also be represented in terms of piecewise linear
approximations on the spatial mesh, with coefficients

z̄i(x) = zi + (x− xi) z′i, i ∈ Z, x ∈ Ci,
ūi(t, x) = ui(t) + (x− xi)u′i, i ∈ Z, x ∈ Ci.

At the cell interfaces, the values of the numerical functions are given by

v−i = v̄i(xi− 1
2
) = vi −

h

2
v′i, v+

i = v̄i(xi+ 1
2
) = vi +

h

2
v′i,(2.11)

z−i = z̄i(xi− 1
2
) = zi −

h

2
z′i, z+

i = z̄i(xi+ 1
2
) = zi +

h

2
z′i,(2.12)

so that ∆zi+ 1
2

=z−i+1 − z+
i , for example (see Figure 2).

Therefore, it is natural to perform a discretization of the source term (1.3) by
using the interfacial values (2.11) and (2.12), that is

Bh(x, vh) =
∑
i∈Z

1
h

[
B+(v+

i−1, v
−
i ,∆zi− 1

2
) + B−(v+

i , v
−
i+1,∆zi+ 1

2
)
]1Ci

+
∑
i∈Z

z′i b(vi)1Ci ,
(2.13)

with an additional term in comparison to the discrete source operator (2.6), which
depends on the cell-averages and is necessary to achieve second order estimates
(refer to Section 5 for further details).

An alternative approach to formulating second order extensions of the U.S.I.
method in form (2.6) is based on improving the consistency properties of the nu-
merical source operator. We consider a piecewise constant approximation (2.1)
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of the function z on the mesh and piecewise linear reconstructions (2.10) of the
numerical solution to define the upwind interfacial discretization

(2.14) Bh(x, vh) =
∑
i∈Z

1
h

[
B+(v+

i−1, v
−
i ,∆zi− 1

2
) + B−(v+

i , v
−
i+1,∆zi+ 1

2
)
]1Ci ,

where the numerical functions are computed on the interfacial values (2.11) and
∆zi+ 1

2
= zi+1 − zi. This is suggested by the particular form of source term (1.3),

given by the product of functions which exhibit different orders of derivative. To
obtain second order accuracy, we need to assume that (2.8) holds, along with the
second order hypothesis of consistency

(2.15)
∣∣∣∣B+(u, u, λ) + B−(u, u, λ)

λ
− b(u)

∣∣∣∣ ≤ KB λ
2.

Remark 2.2. In effect, the discretizations (2.13) and (2.14) are strictly related, as
formally verified by means of standard asymptotic expansions on the numerical
functions and simple algebraic calculations with the differences of discrete values
(2.1) or (2.12). We also note that many of the second order schemes proposed in
the literature do not include the additional term (2.13), but it is probably recovered
implicitly in the formulation (see [1], [23] and [28], for instance).

2.2. Convergence and error estimates. To deal with the question of deriving
error estimates for the numerical approximation (2.4)–(2.5) to the problem (1.1)–
(1.2), we introduce the error function

(2.16) e(t, x) = u(t, x)− vh(t, x),

which satisfies the equation

∂te+ ∂xe = B(x, u)−Bh(x, vh)

=
[
B(x, u)−Bh(x, uh)

]
+
[
Bh(x, uh)−Bh(x, vh)

]
:= C(u;uh) + S(uh; vh).

(2.17)

From (2.2) and (2.3), we obtain the usual expression for the cell-averages,

(2.18) ei(t) =
1
h

∫
Ci

e(t, x) dx = ui(t)− vi(t), i ∈ Z.

The operators C(u;uh) and S(uh; vh) in formula (2.17) denote the consistency and
stability error terms, respectively. Now we state our main convergence results.

Theorem 2.3. We assume z ∈ W 2,p, 1≤ p <+∞, and we consider the discrete
source operator (2.6) in (2.17). Then, for all t ∈ R+, the error function (2.16)
verifies the first order estimate

(2.19) ‖e(t)‖Lp ≤ C(t)
(
‖e0‖Lp + h ‖z‖W 2,p + h

∫ t

0

exp{−Cs} ‖u(s)‖W 1,p ds

)
,

where C(t) is a constant independent of h.

The convergence properties of second order schemes are notably affected by
the technique used to construct piecewise linear approximations of the numerical
functions, namely the choice of the slope limiter [15], [25], [35]. Without some
appropriate hypotheses on the coefficients of such approximations, the proof of the
consistency estimate given in Section 4.2 fails and numerical evidence shows that
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the discretization (2.13) loses second order accuracy (refer to Section 5 for details).
The following results extend the one which is established in Theorem 2.3 to the
discretizations (2.13) and (2.14).

Theorem 2.4. We assume z ∈ W 3,p, 1≤ p <+∞, and we consider the discrete
source operator (2.13), with numerical derivatives computed in the restricted class
of slope limiters introduced in Section 4. Then, for all t ∈R+, the error function
(2.16) verifies the second order estimate

(2.20) ‖e(t)‖Lp ≤ C(t)
(
‖e0‖Lp + h2 ‖z‖W 3,p + h2

∫ t

0

exp{−Cs} ‖u(s)‖W 2,p ds

)
,

where C(t) is a constant independent of h.

Theorem 2.5. We assume z ∈ W 3,p, 1≤ p <+∞, and we consider the discrete
source operator (2.14) in (2.17), with the consistency property (2.15). Then, for
all t∈R+, the error function (2.16) verifies the second order estimate

(2.21) ‖e(t)‖Lp ≤ C(t)
(
‖e0‖Lp + h2 ‖z‖W 3,p + h2

∫ t

0

exp{−Cs} ‖u(s)‖W 2,p ds

)
,

where C(t) is a constant independent of h.

The suitable convergence of initial data in (2.19), (2.20) and (2.21), as the mesh
size tends to zero, is guaranteed by the first and second order convergence of piece-
wise constant approximations. Indeed, because of definitions (2.2) and (2.5), we
have vh0 =uh0 and we deduce from (2.16) that e0(x)=u0(x)− uh0 (x), x∈R. Besides,
the following statements are classical and are not difficult to prove:

‖e0‖Lp ≤ C h if u0 ∈ W 1,p, 1 ≤ p < +∞,
‖e0‖Lp ≤ C h2 if u0 ∈W 2,p, 1 ≤ p < +∞,

for some constant C independent of h.

Remark 2.6. The arguments presented in this paper do not apply directly to nonlin-
ear scalar conservation laws with a source term, to derive complete error estimates
for the U.S.I. method.

3. Error estimates for first order schemes

Before giving details of the estimates, we introduce some relations on the discrete
differences of numerical functions that we will frequently use later on the proofs.
We consider a function w∈C1 whose cell-averages on the spatial mesh are given by
wi= 1

h

∫
Ci
w(x) dx, i∈Z. By performing appropriate expansions, we obtain

wi+1 − wi =
∫
Ci

w′(ξ(x)) dx = hw′(xi) +
∫
Ci

w′′(η(x))(x − xi) dx,(3.1)

wi+1 − 2wi + wi−1 = h

∫
Ci

w′′(ϑ(x)) dx,(3.2)

for some ξ(x), η(x), ϑ(x) ∈ Ci. We also recall the classical Taylor formula, in the
particular form with an integral expression for the remainder,

(3.3) w(x) =
n∑
k=0

1
k!
wk(xi)(x− xi)k +

1
n!

∫ x

xi

(x− s)n wn+1(s) ds.



FIRST AND SECOND ORDER ERROR ESTIMATES 109

3.1. Stability estimate. We begin by estimating the stability term S(uh; vh) in
equation (2.17).

Lemma 3.1. For the assumptions of Theorem 2.3, together with (2.7), there exists
a constant C :=C(LB, ‖z′‖L∞), independent of h, such that

(3.4)
∣∣∣∣∫
R
S(uh; vh) |e|p−1 sgn(e) dx

∣∣∣∣ ≤ C ‖e‖pLp .
Proof. From (2.17), according to (2.2) and (2.6), we deduce that∫

R
S(uh; vh) |e|p−1 sgn(e) dx =

∫
R

[
Bh(x, uh)−Bh(x, vh)

]
|e|p−1 sgn(e) dx

=
∫
R

{∑
i∈Z

1
h

[
B+(ui−1, ui,∆zi− 1

2
) + B−(ui, ui+1,∆zi+ 1

2
)
]
1Ci

−
∑
i∈Z

1
h

[
B+(vi−1, vi,∆zi− 1

2
) + B−(vi, vi+1,∆zi+ 1

2
)
]1Ci

}
|e|p−1 sgn(e) dx

=
∑
i∈Z

[
B+(ui−1, ui,∆zi− 1

2
)− B+(vi−1, vi,∆zi− 1

2
)
]
ep−1
i

+
∑
i∈Z

[
B−(ui, ui+1,∆zi+ 1

2
)− B−(vi, vi+1,∆zi+ 1

2
)
]
ep−1
i

=
∑
i∈Z

[
B+(ui, ui+1,∆zi+ 1

2
)− B+(vi, vi+1,∆zi+ 1

2
)
]
ep−1
i+1

+
∑
i∈Z

[
B−(ui, ui+1,∆zi+ 1

2
)− B−(vi, vi+1,∆zi+ 1

2
)
]
ep−1
i := S1 + S2,

where we have set ep−1
i = 1

h

∫
Ci
|e|p−1 sgn(e) dx. We estimate the terms S1 and S2

separately. In view of properties (2.7), we have

S1 =
∑
i∈Z

[
B+(ui, ui+1,∆zi+ 1

2
)− B+(vi, ui+1,∆zi+ 1

2
)
]
ep−1
i+1

+
∑
i∈Z

[
B+(vi, ui+1,∆zi+ 1

2
)− B+(vi, vi+1,∆zi+ 1

2
)
]
ep−1
i+1

=
∑
i∈Z

(∫ ui

vi

[
∂B+

∂u
(u, ui+1,∆zi+ 1

2
)− ∂B+

∂u
(u, ui+1, 0)

]
du

)
ep−1
i+1

+
∑
i∈Z

(∫ ui+1

vi+1

[
∂B+

∂v
(vi, v,∆zi+ 1

2
)− ∂B+

∂v
(vi, v, 0)

]
dv

)
ep−1
i+1

(3.5)

and we conclude that

(3.6) S1 ≤ LB
∑
i∈Z
|∆zi+ 1

2
| (|ui − vi|+ |ui+1 − vi+1|) |ep−1

i+1 |.

We proceed similarly for S2, also recalling (2.18), and we get

S1 ≤ LB
∑
i∈Z
|∆zi+ 1

2
| (|ei|+ |ei+1|) |ep−1

i+1 |,(3.7)

S2 ≤ LB
∑
i∈Z
|∆zi+ 1

2
| (|ei|+ |ei+1|) |ep−1

i |.(3.8)
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By Hölder’s inequality for 1≤p< +∞, we obtain |ep−1
i |≤|ei|p−1. This implies, after

rearranging terms in (3.7)–(3.8) and using Young’s inequality, with the immediate
property |ei|p≤ 1

h

∫
Ci
|e|p dx, that∣∣∣∣∫

R
S(uh; vh) |e|p−1 sgn(e) dx

∣∣∣∣
≤ LB

∑
i∈Z
|∆zi+ 1

2
|
(
|ei|p + |ei|p−1|ei+1|+ |ei||ei+1|p−1 + |ei+1|p

)
≤ 2LB

∑
i∈Z

|∆zi+ 1
2
|

h

(∫
Ci

|e|p dx+
∫
Ci+1

|e|p dx
)
.

(3.9)

In the case of (2.1), by applying (3.1), a direct estimate provides the first order

approximation
|∆z

i+ 1
2
|

h ≤ ‖z′‖L∞ . The proof of (3.4) is thus completed. �

3.2. Consistency estimate. We turn our attention to the consistency error term
C(u;uh) in (2.17), for which an optimal result in terms of the rate of convergence
is obtained.

Lemma 3.2. For the assumptions of Theorem 2.3, together with (2.7)–(2.9), there
exists a constant C :=C(LB,KB, ‖z′‖L∞), independent of h, such that

(3.10)
∣∣∣∣∫
R
C(u;uh) |e|p−1 sgn(e) dx

∣∣∣∣ ≤ C h (‖z‖W 2,p + ‖u‖W 1,p) ‖e‖p−1
Lp .

Proof. From (2.17), we have

(3.11)
∫
R
C(u;uh) |e|p−1 sgn(e) dx =

∫
R

[
B(x, u)−Bh(x, uh)

]
|e|p−1 sgn(e) dx.

Setting B = B++ B− and ep−1
i = 1

h

∫
Ci
|e|p−1 sgn(e) dx, we compute the integral of

the discrete source operator as follows:∫
R
Bh(x, uh) |e|p−1 sgn(e) dx

=
∫
R

{∑
i∈Z

1
h

[
B+(ui−1, ui,∆zi− 1

2
) + B−(ui, ui+1,∆zi+ 1

2
)
]1Ci

}
|e|p−1 sgn(e) dx

=
∑
i∈Z
B(ui, ui,∆zi+ 1

2
) ep−1
i +

∑
i∈Z

[
B(ui, ui+1,∆zi+ 1

2
)− B(ui, ui,∆zi+ 1

2
)
]
ep−1
i

+
∑
i∈Z

[
B+(ui−1, ui,∆zi− 1

2
)− B+(ui, ui+1,∆zi+ 1

2
)
]
ep−1
i := T1 + T2 + T3.

We estimate each term separately. For T2, we use (2.7) to write

T2 =
∑
i∈Z

(∫ ui+1

ui

[
∂B
∂v

(ui, v,∆zi+ 1
2
)− ∂B

∂v
(ui, v, 0)

]
dv

)
ep−1
i

≤ LB
∑
i∈Z
|∆zi+ 1

2
||ui+1 − ui||ep−1

i |.
(3.12)

Then we consider (3.1) applied to (2.1) and (2.2) for concluding that

(3.13) T2 ≤ LB ‖z′‖L∞
∑
i∈Z

(∫
Ci

|u′| dx
)(∫

Ci

|e|p−1 dx

)
.
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Similarly for the last term T3, we proceed as in (3.5) and (3.6) to get

T3 =
∑
i∈Z

[
B+(ui−1, ui,∆zi− 1

2
)− B+(ui, ui,∆zi− 1

2
)
]
ep−1
i

+
∑
i∈Z

[
B+(ui, ui,∆zi− 1

2
)− B+(ui, ui,∆zi+ 1

2
)
]
ep−1
i

+
∑
i∈Z

[
B+(ui, ui,∆zi+ 1

2
)− B+(ui, ui+1,∆zi+ 1

2
)
]
ep−1
i

≤ LB
∑
i∈Z

(
|∆zi− 1

2
||ui − ui−1|+ |∆zi+ 1

2
−∆zi− 1

2
|+ |∆zi+ 1

2
||ui+1 − ui|

)
|ep−1
i |,

from which, by means of (3.1) and (3.2), we conclude that

T3 ≤ 2LB‖z′‖L∞
∑
i∈Z

(∫
Ci

|u′| dx
)(∫

Ci

|e|p−1 dx

)
+ LB

∑
i∈Z

(∫
Ci

|z′′| dx
)(∫

Ci

|e|p−1 dx

)
.

(3.14)

Concerning the principal term T1, it can be further decomposed into three parts

T1 =
∑
i∈Z

B(ui, ui,∆zi+ 1
2
)

∆zi+ 1
2

[∆zi+ 1
2

h
− z′(xi)

]
h ep−1

i

+
∑
i∈Z

[
B(ui, ui,∆zi+ 1

2
)

∆zi+ 1
2

− b(ui)
]
z′(xi)h e

p−1
i

+
∑
i∈Z

z′(xi) b(ui)h e
p−1
i := T 1

1 + T 2
1 + T 3

1 .

(3.15)

We give details for each part. From (3.1) and (2.7), we deduce that

T 1
1 ≤

∑
i∈Z

∣∣∣∣∣B(ui, ui,∆zi+ 1
2
)− B(ui, ui, 0)

∆zi+ 1
2

∣∣∣∣∣
∣∣∣∣∆zi+ 1

2

h
− z′(xi)

∣∣∣∣ h |ep−1
i |

≤ LB
∑
i∈Z

(∫
Ci

|z′′| dx
)(∫

Ci

|e|p−1 dx

)
.

(3.16)

Because of the consistency property (2.9) and (3.1) applied to (2.1), we have

(3.17) T 2
1 ≤ KB ‖z′‖L∞

∑
i∈Z

(∫
Ci

|z′| dx
)(∫

Ci

|e|p−1 dx

)
.

Finally, the third term in (3.15) is equivalent to the integral of the analytical source
operator in (3.11). Indeed, by means of standard Taylor expansions, we obtain for
(2.2) the midpoint formula as

ui = u(xi) +Ri, Ri =
1
h

∫
Ci

u′(ξ(x))(x − xi) dx,

for some ξ(x)∈Ci, and the regularity assumed for (1.3) guarantees that

b(ui) = b(u(xi)) + b′(νi)Ri, |b′(νi)| ≤ LB, ∀ i ∈ Z.
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We thus write

(3.18) T 3
1 =

∑
i∈Z

z′(xi) b(u(xi))h e
p−1
i +R1,

where the remainder satisfies the estimate

(3.19) R1 ≤ LB ‖z′‖L∞
∑
i∈Z

(∫
Ci

|u′| dx
)(∫

Ci

|e|p−1 dx

)
.

The Taylor formula (3.3), applied to the source term (1.3), yields∫
R
B(x, u) |e|p−1 sgn(e) dx =

∑
i∈Z

∫
Ci

z′(xi) b(u(xi)) |e|p−1 sgn(e) dx+R2

and we readily check that the remainder satisfies

R2 ≤ LB
∑
i∈Z

(∫
Ci

|z′′| dx
)(∫

Ci

|e|p−1 dx

)
+ LB ‖z′‖L∞

∑
i∈Z

(∫
Ci

|u′| dx
)(∫

Ci

|e|p−1 dx

)
.

(3.20)

Therefore, from (3.18) we conclude that

(3.21) T 3
1 =

∫
R
B(x, u) |e|p−1 sgn(e) dx+R1 −R2,

with the corresponding estimates (3.19) and (3.20). We combine (3.13), (3.14),
(3.16), (3.17) and (3.21), we apply the discrete Hölder inequality for 1≤ p <+∞
and then we deduce (3.10). �

3.3. Proof of Theorem 2.3. We multiply equation (2.17) by |e|p−1 sgn(e) and we
integrate to get∫

R
(∂te+ ∂xe) |e|p−1 sgn(e) dx

=
∫
R
C(u;uh) |e|p−1 sgn(e) dx+

∫
R
S(uh; vh) |e|p−1 sgn(e) dx.

(3.22)

An integration by parts in (3.22) shows that
∫
R ∂xe |e|

p−1 sgn(e) dx = 0; therefore
we deduce from (3.4) and (3.10) that

(3.23)
1
p
∂t‖e(t)‖pLp ≤ C ‖e(t)‖

p
Lp + C h (‖z‖W 2,p + ‖u(t)‖W 1,p) ‖e(t)‖p−1

Lp .

Let t∗ ∈ R+ be such that ‖e(t∗)‖Lp = max t∈R+ ‖e(t)‖Lp . After integrating with
respect to time in (3.23), we rearrange the estimate as

‖e(t∗)‖pLp ≤ ‖e0‖Lp ‖e(t∗)‖p−1
Lp + C p ‖e(t∗)‖p−1

Lp

∫ t∗

0

‖e(s)‖Lp ds

+ C hp t∗ ‖z‖W 2,p ‖e(t∗)‖p−1
Lp + C hp ‖e(t∗)‖p−1

Lp

∫ t∗

0

‖u(s)‖W 1,p ds.

Finally, a straightforward extension of Gronwall’s inequality leads to the desired
result in (2.19), where C(t) := C(t; p, LB,KB, ‖z′‖L∞) is some positive constant
depending on time by the factor exp{−Ct}.
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4. Error estimates for second order schemes

The convergence properties of the approximations (2.13) and (2.14) are proved
by means of analogous arguments as for (2.6) in Section 3. We first derive some
preliminary estimates on the discrete differences of numerical functions.

For a function w∈C2, with cell-averages wi= 1
h

∫
Ci
w(x) dx, i∈Z, we construct

piecewise linear approximations on the spatial mesh by using the coefficients

(4.1) w̄i(x) = wi + (x− xi)w′i, i ∈ Z, x ∈ Ci,

where the numerical derivatives are defined as appropriate interpolations of the
discrete increments between neighboring cells, i.e.,

(4.2) w′i = lmtr
{
wi+1 − wi

h
,
wi − wi−1

h

}
, i ∈ Z.

We consider a general representation of the slope limiter introduced in the above
formula; namely if M = lmtr{α, β}, then M = κα + λβ, with κ, λ ∈ [0, 1] and
κ+ λ = 1 or κ+ λ = 0. In particular, we restrict our analysis to the special class
of numerical operators in (4.2) which satisfy the condition κi +λi = 1, ∀i∈Z (that
excludes, for instance, the classical minmod limiter in the case of nonmonotonic
functions). We also assume that the application (4.2), relating the cell-averages
wj , j= i − 1, i, i+ 1, to the numerical derivative w′i on the mesh cell, is Lipschitz
continuous on its arguments, with constant C

h . Several examples of slope limiter
which satisfy these properties have been formulated in the literature (see [13], [14],
[24], [30] and [32], for instance).

We deduce from (4.2) and those definitions that

(4.3) w′i = κi
wi+1 − wi

h
+ λi

wi − wi−1

h
, i ∈ Z.

The interfacial values of the reconstruction (4.1) are given by

(4.4) w−i = w̄i(xi− 1
2
) = wi −

h

2
w′i, w+

i = w̄i(xi+ 1
2
) = wi +

h

2
w′i

and we are interested in evaluating the jumps at the interfaces, i.e., w−i+1 − w+
i .

Taking (4.3) and (4.4) into account, we have

w−i+1 − w+
i = wi+1 − wi −

h

2
(
w′i + w′i+1

)
=
(

1− κi
2
− λi+1

2

)
Wi+ 1

2
− λi

2
Wi− 1

2
− κi+1

2
Wi+ 3

2
,

(4.5)

where we set Wi+ 1
2

= wi+1 − wi. We use (3.1) and (3.2) to deal with the various
terms in (4.5). Based on Taylor’s expansions (3.3), we observe that

wi+1 − wi =
1
h

∫
Ci

[w(x + h)− w(x)] dx =
1
h

∫
Ci

∫ h

0

w′(x+ s) ds dx;

therefore the following estimate holds:

(4.6)
∣∣∣Wi+ 1

2

∣∣∣ ≤ ‖w′‖L1(Ci), i ∈ Z.
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Besides, the simplest first order approximation reads

w−i+1 − w+
i =

(
1− κi

2
− λi+1

2

)∫
Ci

w′(ξ(x)) dx

− λi
2

∫
Ci

w′(η(x)) dx − κi+1

2

∫
Ci

w′(ϑ(x)) dx,
(4.7)

for some ξ(x), η(x), ϑ(x) ∈ Ci, so it follows from (4.6) that

(4.8) |w−i+1 − w+
i | ≤ Di+ 1

2
‖w‖W 1,1 or |w−i+1 − w+

i | ≤ Di+ 1
2
h ‖w′‖L∞ .

Recalling that κi + λi = 1, ∀i∈Z, we obtain the second order approximation

w−i+1 − w+
i =

(
1− κi

2
− λi+1

2

)∫
Ci

w′′(ξ(x))(x − xi) dx

+
λi
2

∫
Ci

w′′(η(x))(x − xi) dx−
3
2
κi+1

∫
Ci

w′′(ϑ(x))(x − xi) dx,

for some ξ(x), η(x), ϑ(x) ∈ Ci, and then it follows that

(4.9) |w−i+1 − w+
i | ≤ Di+ 1

2
h ‖w‖W 2,1 or |w−i+1 − w+

i | ≤ Di+ 1
2
h2 ‖w′′‖L∞.

Remark 4.1. We note that the constantDi+ 1
2

in (4.8) and (4.9) satisfies the estimate

Di+ 1
2
≤ max

{(
1− κi

2 −
λi+1

2

)
, λi2 ,

3
4 κi+1

}
≤ 1, uniformly for i ∈ Z. Moreover,

for any set of values (κi, λi)i∈Z, the bounds on these quantities are always not
degenerate.

Finally, some long but straightforward computations, involving the third order
expansions in (3.3), lead to conclude that

w−i+1 − w+
i = (λi+1 − κi)

h2

2
w′′(xi)(4.10)

+
(

1− κi
2
− λi+1

2

)∫
Ci

w′′′(ξ(x))(x − xi)2dx

− λi
2

∫
Ci

w′′′(η(x))(x − xi)2dx

− κi+1

2

∫
Ci

w′′′(ϑ(x))(x − xi)2dx,

for some ξ(x), η(x), ϑ(x) ∈ Ci.

Remark 4.2. According to the piecewise linear reconstruction (4.1), discrete inter-
facial jumps approximate the second derivative of the numerical functions, as can
be deduced from (4.5).

4.1. Stability estimate. The following result corresponds to that presented in
Section 3.1 and we adapt the proof of Lemma 3.1 in the case of the discrete source
operator (2.13).

Lemma 4.3. For the assumptions of Theorem 2.4, together with (2.7), there exists
a constant C :=C(LB, ‖z′‖L∞ , ‖z′′‖L∞), independent of h, such that

(4.11)
∣∣∣∣∫
R
S(uh; vh) |e|p−1 sgn(e) dx

∣∣∣∣ ≤ C ‖e‖pLp .
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Proof. From (2.17), we deduce for (2.13) that

∫
R
S(uh; vh) |e|p−1 sgn(e) dx

=
∫
R

{∑
i∈Z

1
h

[
B+(u+

i−1, u
−
i ,∆zi− 1

2
) + B−(u+

i , u
−
i+1,∆zi+ 1

2
)
]1Ci

−
∑
i∈Z

1
h

[
B+(v+

i−1, v
−
i ,∆zi− 1

2
) + B−(v+

i , v
−
i+1,∆zi+ 1

2
)
]1Ci

}
|e|p−1 sgn(e) dx

+
∫
R

{∑
i∈Z

z′i b(ui)1Ci −
∑
i∈Z

z′i b(vi)1Ci
}
|e|p−1 sgn(e) dx

=
∑
i∈Z

[
B+(u+

i , u
−
i+1,∆zi+ 1

2
)− B+(v+

i , v
−
i+1,∆zi+ 1

2
)
]
ep−1
i+1

+
∑
i∈Z

[
B−(u+

i , u
−
i+1,∆zi+ 1

2
)− B−(v+

i , v
−
i+1,∆zi+ 1

2
)
]
ep−1
i

+
∑
i∈Z

z′i [b(ui)− b(vi)]h ep−1
i := S1 + S2 + S3,

(4.12)

where we have set ep−1
i = 1

h

∫
Ci
|e|p−1 sgn(e) dx. To estimate S1 and S2, we proceed

as in (3.5)–(3.6). According to (4.3), (4.4) and the Lipschitz properties of the
numerical derivative (4.2), a simple computation shows that

|u+
i − v+

i | ≤ C (|ui − vi|+ |ui+1 − vi+1|+ |ui−1 − vi−1|) ,

and an analogous relation is satisfied by |u−i − v−i |, i∈Z. Hence, we can establish
similar estimates to (3.7) and (3.8) also for the second order method. On the other
hand, a direct treatment of the last term in (4.12) yields

(4.13) S3 ≤ LB
∑
i∈Z
|z′i| |ui − vi|h |e

p−1
i |.

We give some details about the estimates of the numerical derivative (4.3), in
the particular case of (2.1), that we will use later on the proofs. By performing
appropriate expansions, also recalling that κi + λi = 1, ∀i ∈ Z, we obtain

z′i =
κi
h

∫
Ci

z′(ξ(x)) dx +
λi
h

∫
Ci

z′(η(x)) dx

= z′(xi) + (κi − λi)
h

2
z′′(xi) +

κi
3
h

∫
Ci

z′′′(ϑ(x)) dx +
λi
3
h

∫
Ci

z′′′(%(x)) dx,

(4.14)

for some ξ(x), η(x), ϑ(x), %(x)∈Ci , which implies that |z′i| ≤ ‖z′‖L∞ in (4.13). For
the arguments used in (3.9) and the first order approximation (4.8) of the values
(2.12), we then conclude (4.11). �

4.2. Consistency estimate. The proof of the following result is also an extension
of that of Lemma 3.2.
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Lemma 4.4. For the assumptions of Theorem 2.4, together with (2.7)–(2.9), there
exists a constant C :=C(LB,KB, ‖z′‖L∞ , ‖z′′‖L∞), independent of h, such that

(4.15)
∣∣∣∣∫
R
C(u;uh) |e|p−1 sgn(e) dx

∣∣∣∣ ≤ C h2 (‖z‖W 3,p + ‖u‖W 2,p) ‖e‖p−1
Lp .

Proof. We compute the integral of the discrete source operator (2.13), applied to
the approximation (2.2) of the analytical solution,∫

R
Bh(x, uh) |e|p−1 sgn(e) dx

=
∑
i∈Z

[
B+(u+

i−1, u
−
i ,∆zi− 1

2
) + B−(u+

i , u
−
i+1,∆zi+ 1

2
)
]
ep−1
i +

∑
i∈Z

z′i b(ui)h e
p−1
i ,

with ep−1
i = 1

h

∫
Ci
|e|p−1 sgn(e) dx. Setting B = B+ + B−, we decompose the first

part of the above formula into two terms, which we shall treat separately, namely

(4.16) T1 =
∑
i∈Z
B(u+

i , u
+
i ,∆zi+ 1

2
) ep−1
i

and its remainder, which can be rewritten as

T2 =
∑
i∈Z

[
B(u+

i , u
−
i+1,∆zi+ 1

2
)− B(u+

i , u
+
i ,∆zi+ 1

2
)
]
ep−1
i

+
∑
i∈Z

[
B+(u+

i−1, u
−
i ,∆zi− 1

2
)− B+(u+

i , u
−
i ,∆zi− 1

2
)
]
ep−1
i

+
∑
i∈Z

[
B+(u+

i , u
−
i ,∆zi− 1

2
)− B+(u+

i , u
−
i ,∆zi+ 1

2
)
]
ep−1
i

+
∑
i∈Z

[
B+(u+

i , u
−
i ,∆zi+ 1

2
)− B+(u+

i , u
−
i+1,∆zi+ 1

2
)
]
ep−1
i .

We adopt the same procedure as in (3.12), by means of (2.7), to deduce

T2 ≤ LB
∑
i∈Z

(
|∆zi+ 1

2
| |u−i+1 − u+

i |+ |∆zi− 1
2
| |u+

i−1 − u+
i |

+ |∆zi− 1
2
−∆zi+ 1

2
|+ |∆zi+ 1

2
| |u−i − u−i+1|

)
|ep−1
i |.

(4.17)

According to (4.3) and (4.4), we easily obtain

|u+
i − u+

i−1| =
∣∣∣∣ui − ui−1 +

h

2
(
u′i − u′i−1

)∣∣∣∣ ≤ ∫
Ci

|u′| dx,

and an analogous estimate also holds for |u−i+1 − u−i |, i∈ Z, while a second order
approximation is needed for the central term in (4.17), that is,

|∆zi+ 1
2
−∆zi− 1

2
| =

∣∣∣∣(zi+1 − 2zi + zi−1)− h

2
(
z′i+1 − z′i−1

)∣∣∣∣ ≤ h2

∫
Ci

|z′′′| dx.
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These estimates, together with (4.7) and (4.9), lead to us conclude that

T2 ≤ 3LB h ‖z′′‖L∞
∑
i∈Z

(∫
Ci

|u′| dx
)(∫

Ci

|e|p−1 dx

)
+ LB h

∑
i∈Z

(∫
Ci

|z′′′| dx
)(∫

Ci

|e|p−1 dx

)
.

(4.18)

Because of (4.10), the principal term (4.16) is further decomposed as

T1 =
∑
i∈Z

B(u+
i , u

+
i ,∆zi+ 1

2
)

∆zi+ 1
2

[∆zi+ 1
2

h
−Qi+ 1

2

h

2
z′′(xi)

]
h ep−1

i

+
∑
i∈Z

[
B(u+

i , u
+
i ,∆zi+ 1

2
)

∆zi+ 1
2

− b(u+
i )

]
Qi+ 1

2

h

2
z′′(xi)h e

p−1
i

+
∑
i∈Z

Qi+ 1
2

h

2
z′′(xi) b(u+

i )h ep−1
i := T 1

1 + T 2
1 + T 3

1 ,

(4.19)

where we set Qi+ 1
2

= λi+1 − κi ≤ 1, ∀i∈Z. We give a few details of the estimate
for each part. We proceed as in (3.16) and we obtain from (4.10) that

(4.20) T 1
1 ≤ LB h

∑
i∈Z

(∫
Ci

|z′′′| dx
)(∫

Ci

|e|p−1 dx

)
.

Besides, using (4.7), we derive from the consistency condition (2.9) that

(4.21) T 2
1 ≤ KB h ‖z′′‖L∞

∑
i∈Z

(∫
Ci

|z′| dx
)(∫

Ci

|e|p−1 dx

)
.

We then pass to the crucial point of the proof, to show the convergence towards
the integral of the analytical source operator (1.3). On the one hand, by applying
classical Taylor expansions, we have∫

R
B(x, u) |e|p−1 sgn(e) dx =

∑
i∈Z

∫
Ci

z′(xi) b(u(xi)) |e|p−1 sgn(e) dx

+
∑
i∈Z

∫
Ci

(z′ b(u))′ (ξ(xi)) (x− xi) |e|p−1 sgn(e) dx,(4.22)

for some ξ(xi)∈Ci. On the other hand, recalling the definition of interfacial values
(2.11)–(2.12) and for the regularity assumed in (1.3), we can write

b(u+
i ) = b(ui) + b′(νi)

h

2
u′i, |b′(νi)| ≤ LB, ∀i ∈ Z,

so that from (4.19) we deduce

(4.23) T 3
1 =

∑
i∈Z

Qi+ 1
2

h

2
z′′(xi) b(ui)h e

p−1
i +R1

and we use analogous approximations to (4.14) for the numerical derivatives of the
analytical solution to obtain

(4.24) R1 ≤ LB h ‖z′′‖L∞
∑
i∈Z

(∫
Ci

|u′| dx
)(∫

Ci

|e|p−1 dx

)
.
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To conclude, we take into account the contribution of the additional term in the
discrete source operator (2.13). The following second order approximation of cell-
averages on the mesh,

(4.25) ui = u(xi) +Ri, Ri =
1
h

∫
Ci

u′′(ξ(x))
(x− xi)2

2
dx,

for some ξ(x)∈Ci, associated with the standard Taylor expansion

(4.26) b(ui) = b(u(xi)) + b′(νi)Ri, |b′(νi)| ≤ LB, ∀i ∈ Z,

and proceeding according to (4.14), leads to∑
i∈Z

z′i b(ui)h e
p−1
i =

∑
i∈Z

z′(xi) b(u(xi))h e
p−1
i +R2

+
∑
i∈Z

Pi+ 1
2

h

2
z′′(xi) b(ui)h e

p−1
i +R3,

(4.27)

where we set Pi+ 1
2

=κi − λi, i∈Z, while the remainders are estimated as

R2 ≤ LB h ‖z′‖L∞
∑
i∈Z

(∫
Ci

|u′′| dx
)(∫

Ci

|e|p−1 dx

)
,(4.28)

R3 ≤ LB h
∑
i∈Z

(∫
Ci

|z′′′| dx
)(∫

Ci

|e|p−1 dx

)
.(4.29)

Therefore, up to bounded remainders (4.24), (4.28) and (4.29), by combining (4.22),
(4.23) and (4.27), we have∫

R
B(x, u) |e|p−1 sgn(e) dx − T 3

1 −
∑
i∈Z

z′i b(ui)h e
p−1
i

=
∑
i∈Z

∫
Ci

z′′(ξ(xi)) b(u(ξ(xi))) (x − xi) |e|p−1 sgn(e) dx

+
∑
i∈Z

∫
Ci

z′(ξ(xi)) b′(u(ξ(xi)))u′(ξ(xi)) (x− xi) |e|p−1 sgn(e) dx

−
∑
i∈Z

(Pi+ 1
2

+Qi+ 1
2
)
h

2
z′′(xi) b(u(xi))h e

p−1
i

−
∑
i∈Z

(Pi+ 1
2

+Qi+ 1
2
)
h

2
z′′(xi) b′(νi)Ri h e

p−1
i ,

(4.30)

where again we used (4.25)–(4.26) and Pi+ 1
2
+Qi+ 1

2
= λi+1−λi, i∈Z. We introduce

an appropriate hypothesis on the slope limiter in (4.2), as discussed in Section 2.2,
namely an additional condition for its coefficients (4.3), that is,

(4.31) ∃ Λ0 > 0 such that λi+1 − λi ≥ Λ0, ∀i ∈ Z.



FIRST AND SECOND ORDER ERROR ESTIMATES 119

This condition allows us to rewrite the difference between the first and third terms
in the right-hand side of (4.30) in an integral form to derive∣∣∣∣∣∑

i∈Z

∫
Ci

z′′(ξ(xi)) b(u(ξ(xi))) (x − xi) |e|p−1 sgn(e) dx

−
∑
i∈Z

(Pi+ 1
2

+Qi+ 1
2
)
h

2
z′′(xi) b(u(xi))h e

p−1
i

∣∣∣∣∣
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)
.

(4.32)

Similarly, we can prove an estimate for the difference between the second and fourth
terms in the right-hand side of (4.30), which is analogous to (4.28). We apply the
same arguments as in Lemma 3.2 to estimate (4.18), (4.20), (4.21) and (4.32), with
its related computations, to conclude the proof of (4.15). �

4.3. Proof of Theorem 2.4 and Theorem 2.5. We proceed as in Section 3.3,
by using the stability estimate (4.11) and the consistency estimate (4.15), to prove
the second order error estimate (2.20).

The proof of Theorem 2.5 involves the main tools introduced for the results in
Section 3 and Section 4. Because of the consistency hypotheses (2.7)–(2.8) and
(2.15), the same techniques as in Lemma 3.2 extend to the case of the discrete
source operator (2.14), while we can apply the arguments formulated in Lemma 4.3
to deduce analogous stability estimates.

5. Remarks and numerical evidence

The principal issue in the proof of Theorem 2.3 and Theorem 2.4 is to establish
consistency estimates (3.10) and (4.15), in particular to show the convergence of
the numerical source operator towards the analytical source term (1.3) from the
relation (3.18) and (4.23), respectively.

Table 1. VanLeer limiter with TVD reconstruction

||e(t)||L1 ||e(t)||L2 ||e(t)||L∞
Error Rate Error Rate Error Rate

50 0.323743E-02 0.772868E-02 0.368811E-01

100 0.816610E-03 1.987 0.270992E-02 1.512 0.184893E-01 0.996

200 0.207343E-03 1.982 0.951254E-03 1.511 0.921217E-02 1.001

400 0.516765E-04 1.990 0.336009E-03 1.508 0.461648E-02 0.999

800 0.128919E-04 1.993 0.118745E-03 1.506 0.231075E-02 0.999

1600 0.321149E-05 1.995 0.419888E-04 1.505 0.115659E-02 0.999
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Table 2. VanLeer limiter with ENO reconstruction

||e(t)||L1 ||e(t)||L2 ||e(t)||L∞
Error Rate Error Rate Error Rate

50 0.129563E-02 0.148671E-02 0.324608E-02

100 0.326417E-03 1.989 0.368537E-03 2.012 0.814699E-03 1.994

200 0.819300E-04 1.992 0.917495E-04 2.009 0.203996E-03 1.996

400 0.205217E-04 1.993 0.228873E-04 2.007 0.509962E-04 1.997

800 0.513540E-05 1.995 0.571567E-05 2.006 0.127479E-04 1.998

1600 0.128447E-05 1.996 0.142815E-05 2.005 0.318655E-05 1.998

We point out that, due to the introduction of piecewise linear reconstructions
of the function z, the differences of discrete interfacial values approximate the sec-
ond order derivative, as given in (4.10), and the upwind part (4.23) of the dis-
cretization (2.13) “overtakes” the desired result; an additional term (4.27) is thus
needed to recover the first order derivatives from the Taylor expansions of the source
term (4.22). Moreover, some restrictions (4.31) on the definition of the slope lim-
iter are also required, to guarantee the occurrence of suitable error estimates (refer
also to [5], [21] and [22]). Without these assumptions, only suboptimal results are
derived (see [18] and [34], for instance).

These questions can also be justified numerically. Tables 1 and 2 reproduce the
convergence rates for the U.S.I. method applied to the simple problem

∂tu = z′(x), u(0, x) = u0(x),

with z(x)=sin(πx), x∈ [0, 1], for which an analytical solution is available to make
direct comparisons, i.e., u(t, x) = u0(x) + z′(x) t. The results correspond to the
discretization (2.13) for the standard VanLeer limiter [32], associated with a simple
TVD reconstruction (see [31]) in Table 1 and with an appropriate ENO reconstruc-
tion (see [13]) in Table 2.

The problems just discussed do not generally arise in the case of the second order
discretization (2.14), for which stronger consistency hypotheses (2.15) are made, to
compensate for reduced accuracy in the reconstructions.

Although the question of preserving stationary solutions at the discrete level is
only handled rigorously for first order U.S.I. methods (see [29] and its references),
the numerical results obtained for the Saint-Venant system indicate that the second
order discretization (2.13) exactly simulates simple steady states (refer to [16] for
details). As far as we know, similar issues are only addressed in [4] and [9]. Further
applications of these methods to different situations are also proposed in [2].
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