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SUMMARY

We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in
one space dimension. In particular, we consider a KdV–BBM-type equation. Explicit and implicit–explicit
Runge–Kutta-type methods are used for time discretizations. The fully discrete schemes are validated by
direct comparisons to analytic solutions. Invariants’ conservation properties are also studied. Main applica-
tions include important nonlinear phenomena such as dispersive shock wave formation, solitary waves, and
their various interactions. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Water wave modeling is a complicated process and usually leads to models that are hard to analyze
mathematically as well as to solve numerically. Under certain simplifying assumptions, approx-
imate models, for example, the Korteweg-de Vries (KdV) equation [1], the Benjamin Bona and
Mahony (BBM) equation [2], and Boussinesq systems [3–5], are obtained. All these models assume
the wave to be weakly nonlinear and weakly dispersive, propagating mainly in one space direction.
These approximate models consider mainly unidirectional or bidirectional wave propagation on flat
or complex bathymetries.

In this paper, we study the application of some finite volume schemes to a scalar nonlinear dis-
persive PDE modeling unidirectional wave propagation. Specifically, we consider the KdV–BBM
equation in its general form:

ut C ˛ ux C ˇ uux ! ! uxxt C ı uxxx D 0, (1)

for x 2 R, t > 0, where ˛, ˇ, ! , and ı are positive real numbers [2]. The finite volume method
is well known for its accuracy, efficiency, robustness, and excellent local conservative properties.
Most often, this method is employed to approximate solutions to hyperbolic conservation laws. The
system of nonlinear shallow water equations is a classical example of the successful application of
modern finite volume schemes to water wave problems.

A wide range of numerical methods have been employed to compute approximate solutions to
dispersive wave equations of KdV–BBM type: finite difference schemes [6, 7], finite element meth-
ods [8–10], and spectral methods [11–14]. Recently discontinuous Galerkin schemes have also been
employed to dispersive wave equations [15–17] (the list is far from being exhaustive). However, the
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application of finite volume or hybrid finite volume/finite difference methods remain most infre-
quent for this type of problems. To our knowledge, only a few recent works are in this direction
[18–23].

In order to apply the finite volume method to the KdV–BBM Equation (1), we rewrite it in a
conservative form, including a nontrivial evolution operator and an advective and a dispersive flux
function. In the finite volume literature, there exist several ways to approximate these fluxes. For the
advective part, we test three different numerical fluxes, each one representing a particular family of
finite volume method:

" average flux (m scheme);
" central flux (KT scheme), as a representative of central schemes [24, 25]; and
" characteristic flux (CF scheme), as a representative of upwind schemes and linearized Riemann

solvers [26, 27].

The average flux is simply used to discretize dispersive term, whereas high-order approximations
are used for the BBM term (!uxxt ). The central flux and the characteristic flux are widely used
in the case of conservation laws. On the other hand, the average flux, known to be unstable for
conservation laws, performs equally well.

The evaluation of the numerical flux functions require approximate values of the solution at the
cell interfaces. The order of the approximation determines the space accuracy of the underlying
finite volume scheme. We consider first-order schemes, taking simply piecewise constant approx-
imations, as well as high-order schemes. The high-order accuracy is achieved through application
of various reconstruction techniques such as Total Variation Diminishing (TVD) [28], Uniformly
Non-oscillatory (UNO) [29], and Weighted essentially non-oscillatory (WENO) [30].

The time discretization of (1) is based on Runge–Kutta (RK) methods. The stability of the result-
ing system of ODEs depends on the interplay between the BBM term (! uxxt ) and the KdV-type
dispersive term (ı uxxx). An explicit discretization of the ODE system is sufficient when these terms
are of the same order. Thus, strong stability preserving RK (SSP-RK) methods, which preserve the
TVD property of the finite volume scheme [31, 32], are used for the explicit discretization.

However, when ! # ı, the resulting semidiscrete system of ODEs is highly stiff; therefore,
implicit methods with strong stability characteristics are preferable. To balance the high compu-
tational cost of fully implicit methods and stability considerations, we rely on implicit–explicit
(IMEX) RK methods [33]. Indeed IMEX RK methods turned out to be well suited for the time
discretization of the KdV–BBM Equation (1), exhibiting excellent stability behavior.

The validated numerical method is applied to study the KdV–BBM Equation (1) in a systematic
way through a series of numerical experiments. In particular, we focus on the following issues:

" accuracy of the finite volume method for solitary wave propagation and invariants conservation;
" dispersive shock formation (we underline that the finite element as well as spectral methods

break down for this experiment, whereas the finite volume method provides robust and accurate
results); and

" interactions of solitary waves (overtaking collisions).

This paper is organized as follows. In Section 2, the governing Equation (1) is presented briefly
along with its basic properties. In Section 3, the finite volume discretization as well as fully dis-
crete schemes are presented in details. In Section 4, we validate the discretization procedure by
comparisons with analytical solution. Several important test cases are also presented.

2. DISPERSIVE WATER WAVE MODEL EQUATION

We present briefly the mathematical model under consideration and some of its basic properties.
The KdV–BBM equation takes the following general form:

ut C ˛ ux C ˇ uux ! ! uxxt C ı uxxx D 0, (2)

where x 2 R, t > 0, u denotes the free surface elevation above the still water level u D 0, and
˛, ˇ, ! , and ı are positive real numbers. Equation (2) incorporates nonlinear and dispersive effects
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and has been suggested as a model for surface water waves in a uniform channel with flat bottom
(cf. [2, 34]).

When ı D 0, (2) reduces to the BBM equation [2], whereas taking ! D 0 leads the celebrated KdV
equation [1]. The KdV–BBM model (2) has been studied thoroughly in the past, and the Cauchy
problem is known to be well posed in appropriate Sobolev spaces, at least locally in time. Also,
the well posedness of some initial boundary value problems, including the initial periodic boundary
value problem, can be proved (cf., e.g., [2, 34, 35] and the references therein).

One may easily check that (2) admits exact solitary wave solutions of the form

u.x, t / D 3
cs ! ˛

ˇ
sech2

!
1

2

r
cs ! ˛

!cs C ı
.x ! cst /

"
, (3)

which travel rightwards with a given speed cs . We are going to exploit this solution later in order to
validate our discretization procedure and measure the order of convergence of proposed numerical
schemes. Further, it is well known that (2) possesses two quantities invariant under its evolution
dynamics. Assuming either the solution has compact support or u ! 0 x ! ˙1, one can easily
check that quantities

I1.t/ D
Z

R
u.x, t /dx , I2.t/ D

Z
R

#
u2.x, t / C !u2

x.x, t /
$
dx, (4)

are conserved in time, that is, I1.t/ D I1.0/ and I2.t/ D I2.0/, 8t > 0. The invariant I1 reflects
the physical property of the mass conservation, whereas invariant I2 can be assimilated to the gen-
eralized kinetic energy. Invariants conservation is a fundamental property important not only for
theoretical investigations but also for numerics because it allows to validate numerical schemes and
to quantify the accuracy of the obtained results.

For more realistic situations, one has to consider bidirectional models with uniform or variable
bathymetry (cf., e.g., [4, 5]). For a systematic numerical study of such Boussinesq-type systems
using finite volume methods analogous to those presented in this paper, including the run-up
algorithm, we refer to [36].

3. FINITE VOLUME DISCRETIZATION

We proceed to the discretization of (2) by a finite volume method. Our motivation stems from
the observation that the KdV–BBM equation can be seen as a dispersive perturbation (because
the wave is assumed to be weakly nonlinear and weakly dispersive) of the following inviscid
Burgers equation:

ut C
!

˛ u C ˇ

2
u2

"
x

D 0.

Consequently, the proposed finite volume schemes are based on the corresponding schemes for
scalar conservation laws. A special treatment is introduced for the discretization of dispersive terms.

Let T D ¹xiº, i 2 Z, be a partition of R into cells Ci D
%
xi! 1

2
, xiC 1

2

&
, where xi D%

xiC 1
2

C xi! 1
2

&
=2 denotes the midpoint of the cell Ci . Let "xi D xiC 1

2
! xi! 1

2
denote the length

of the cell Ci and let "xiC 1
2

D xiC1 ! xi . Herein, we assume the partition T to be uniform, that is,
"xi D"xiC 1

2
D"x, i 2 Z. For a scalar function w.x, t /, let wi denote its cell average on Ci :

wi .t/ D 1

"x

Z
Ci

w.x, t /dx.

We rewrite (2) in a conservative-like form:
#
I ! !@2

x

$
ut C ŒF .u/#x C ŒG.uxx/#x D 0, (5)
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where the advective flux is F.u/ D ˛ u C ˇ
2 u2 and the dispersive flux is G.v/ D ıv. We underline

that F is a convex flux function. A simple integration of (5) over a cell Ci yields

d

dt

h
ui .t/ ! !

"x

%
ux

%
xiC 1

2
, t

&
! ux

%
xi! 1

2
, t

&&i

C 1

"x

h
F

%
u

%
xiC 1

2
, t

&&
! F

%
u

%
xi! 1

2
, t

&&i

C 1

"x

h
G

%
uxx

%
xiC 1

2
, t

&&
! G

%
uxx

%
xi! 1

2
, t

&&i
D 0,

(6)

where the values of the advective and dispersive fluxes on the cell interfaces have to be
properly defined.

3.1. Semidiscrete scheme

We proceed to the construction of the semidiscrete finite volume approximation. Let $Ci
be

the characteristic function of the cell Ci . We define a piecewise constant function uh.x, t / DP
i2Z Ui .t/$Ci

.x/, where Ui .t/ are solutions of the following system of ODEs:

d

dt

'
Ui ! !

"x

!
UiC1 ! 2Ui C Ui!1

"x

"(
C 1

"x

%
FiC 1

2
!Fi! 1

2

&
C 1

"x

%
GiC 1

2
! Gi! 1

2

&
D 0, (7)

with initial conditions defined as a projection onto the space of piecewise constant functions on T :

Ui .0/ D 1

"x

Z
Ci

u.x, 0/dx, i 2 Z.

In (7), F and G denote the advective and the (KdV-type) dispersive numerical fluxes, respectively.

More specifically, FiC 1
2

D F
!

U L
iC 1

2

, U R
iC 1

2

"
and GiC 1

2
D G

!
W L

iC 1
2

, W R
iC 1

2

"
are approximations

of F
%
u

%
xiC 1

2
, t

&&
and G

%
uxx

%
xiC 1

2
, t

&&
, respectively, at cell interfaces. Values U L

iC 1
2

, U R
iC 1

2

are approximations to the point value u
%
xiC 1

2
, t

&
from cells Ci and CiC1, respectively, whereas

W L
iC 1

2

and W R
iC 1

2

are corresponding approximations to the point value of the second derivative

uxx

%
xiC 1

2
, t

&
. All quantities U L

iC 1
2

and U R
iC 1

2

as well as W L
iC 1

2

and W R
iC 1

2

are computed by a

reconstruction process described in Section 3.1.2.

3.1.1. Advective and dispersive numerical fluxes. Over the last 20 years, numerous numerical fluxes
F have been proposed to discretize advective operators [37–41]. We select three quite different flux
functions. Namely, we consider a simple average flux Fm, a central-type flux FKT [24, 25], and a
characteristic flux FCF [26, 27, 41]:

Fm.U , V / D F

!
U C V

2

"
, (8)

FKT.U , V / D 1

2
¹ŒF .U / C F.V /#! A.U , V /ŒV ! U #º, (9)

FCF.U , V / D 1

2
¹ŒF .U / C F.V /#! A.U , V /ŒF.V / ! F.U /#º. (10)

The average flux is perhaps the simplest one and is known to be unconditionally unstable for
nonlinear conservation laws. However, this flux shows very good performance for dispersive waves
(see Section 4).

The central flux is of Lax–Friedrichs type and is a representative of the family of central schemes.
The operator A in the KT scheme is related to characteristic speeds of the flow and is given by
this expression:

A.U , V / D max
)ˇ̌

F 0.U /
ˇ̌
,
ˇ̌
F 0.V /

ˇ̌*
. (11)
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The characteristic flux function is somehow similar to the Roe scheme [37], and the operator A
in this case is defined as

A.U , V / D sign
!

F 0
!

U C V

2

""
D sign

!
˛ C ˇ

U C V

2

"
. (12)

For the dispersive numerical flux G, we choose to work with the average flux function (8):

G.W , R/ D ı
W C R

2
, (13)

where W and R are standard central approximations of the second derivative from each side. The
numerical flux G can be evaluated using either simple cell averages, denoted by Gm, or higher-order
approximation based on a reconstruction procedure, denoted by Glm.

3.1.2. Reconstruction process. The values U L
iC 1

2

and U R
iC 1

2

are approximations to u
%
xiC 1

2
, t

&
from

cells Ci and CiC1, respectively. The simplest choice is to take the piecewise constant approximation
in each cell:

U L
iC 1

2

D Ui , U R
iC 1

2

D UiC1. (14)

The resulting semidiscrete finite volume scheme is formally first-order accurate in space. To achieve
a higher-order accuracy in space, we have to adopt more elaborated reconstruction process. The main
idea is to use the cell averages Ui to reconstruct more accurate approximation to the solution at cell
interfaces u.xiC 1

2
, t /. For this purpose, we consider three different reconstruction methods: the clas-

sical MUSCL-type (TVD2) piecewise linear reconstruction [42,43], the UNO2 reconstruction [29],
and WENO-type reconstructions [30].

" The classical TVD2 scheme uses a linear reconstruction:

U L
iC 1

2

D Ui C 1

2
%.ri /.UiC1 ! Ui /, U R

iC 1
2

D UiC1 ! 1

2
%.riC1/.UiC2 ! UiC1/, (15)

where ri D Ui !Ui!1

UiC1!Ui
and % is an appropriate slope limiter function [28]. There exist many

possible choices of the slope limiter. Some of the usual choices are

ı MinMod limiter: %.&/ D max.0, min.1, &//;
ı van Leer limiter: %.&/ D !Cj! j

1Cj! j ;
ı monotonized central limiter: %.&/ D max .0, min..1 C &/=2, 2, 2&//; and
ı van Albada limiter: %.&/ D !C!2

1C!2 .

The last three limiters have been shown to produce sharper resolution of discontinuities and, in
our case, less dissipative numerical results. The TVD2 reconstruction is formally second-order
accurate except at local extrema where it reduces to the first order. Reconstructions considered
here were proposed to remove this shortcoming.

" The UNO2, like the TVD2, is also a linear reconstruction process that is second-order accurate
even at local extrema. The values U L

iC 1
2

and U R
iC 1

2

are defined as

U L
iC 1

2

D Ui C 1

2
Si , U R

iC 1
2

D UiC1 ! 1

2
SiC1, (16)

where

Si D m
#
SC

i , S!
i

$
, S˙

i D di˙ 1
2
U % 1

2
Di˙ 1

2
U ,

diC 1
2
U D UiC1 ! Ui , DiC 1

2
U D m.DiU , DiC1U /,

DiU D UiC1 ! 2Ui C Ui!1, m.x, y/ D 1

2
.sign.x/ C sign.y// min.jxj, jyj/

The UNO2 reconstruction is formally second-order accurate even at local extrema.
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" We also consider WENO-type reconstructions [30, 44]. Namely, we implement the third-
order and fifth-order accurate WENO methods, hereafter referred to as WENO3 and WENO5,
respectively. For the sake of clarity, we present here only WENO3 scheme. First of all, we
compute the third-order reconstructed values:

U
.0/

iC 1
2

D 1

2
.Ui C UiC1/, U

.1/

iC 1
2

D 1

2
.!Ui!1 C 3Ui /,

U .0/

i! 1
2

D 1

2
.3Ui ! UiC1/, U .1/

i! 1
2

D 1

2
.Ui!1 C Ui /.

Then, we define the smoothness indicators

ˇ0 D .UiC1 ! Ui /
2, ˇ1 D .Ui ! Ui!1/2,

and constants d0 D 2
3 , d1 D 1

3 , Qd0 D d1, and Qd1 D d0. The weights are defined as

!0 D ˛0

˛0 C ˛1
, !1 D ˛0

˛0 C ˛1
, Q!0 D Q̨0

Q̨0 C Q̨1
, Q!1 D Q̨1

Q̨0 C Q̨1
,

where ˛i D di

"Cˇi
, Q̨ i D Qdi

"Cˇi
, and ' is a small, positive number (in our computations, we set

' D 10!15).
Finally, the reconstructed values are given by formulas:

U L
iC 1

2

D
1X

rD0

!rU
.r/

iC 1
2

, U R
i! 1

2

D
1X

rD0

Q!rU
.r/

i! 1
2

. (17)

Remark 1
The elliptic operator approximation in (7) is only second-order accurate. In the case where a high-
order WENO reconstruction is used, we need to increase also the elliptic solver accuracy, for
example, the following semidiscrete scheme:

d

dt

'
Ui!1 C 10Ui C UiC1

12
! ! UiC1 ! 2Ui C Ui!1

"x2

(
C Hi!1 C 10Hi CHiC1

12
D 0 (18)

where Hi D 1
#x

%
FiC 1

2
!Fi! 1

2

&
C 1
#x

%
GiC 1

2
! Gi! 1

2

&
is a fourth-order approximation. Thus, in

the WENO3 case, a global third-order accuracy is observed, whereas for WENO5 interpolation, we
profit only locally by the fifth-order accuracy of the reconstruction (cf. Section 4.1).

Remark 2
In computation of the dispersive flux, we distinguish between the simple averaging of cell-centered
values in Gm and Glm, where higher-order reconstructions of the second-order derivatives are used.

3.2. Fully discrete schemes

We consider now fully discrete schemes for the ODE system (7). The time discretization is based on
RK-type methods. Explicit schemes based on TVD-preserving RK methods are presented. In certain
cases where stiffness becomes dominant, we use an IMEX strategy on the basis of IMEX-type RK
methods.

3.2.1. Explicit schemes. The initial value problem (7) can be discretized by various methods. When
the parameter ! is of the same order as ı, the system of ODEs appeared to be nonstiff and therefore
can be integrated numerically by any explicit time stepping method. We use a special class of RK
methods that preserve the TVD property of the finite volume scheme [31, 32, 45].

Let"t be the temporal step size and let tnC1 D tn C"t , n > 0, be discrete time levels; then, (7)
is an initial value problem of the form

TU0 D L.U/, (19)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
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where U D ¹Uiº, i 2 Z, T D I C Œ!! , 2! , !!#="x2 is a tridiagonal matrix, and L is a nonlinear
operator incorporating the contribution of the numerical fluxes F , and G. Assuming at time tn, Un

is known, then UnC1 is defined by

UnC1 D Un ! "t

"x

sX
j D1

bj T!1L
#
Un,j $

,

Un,j D Un ! "t

"x

s!1X
`D1

aj`T!1L
%

Un,`
&

,

(20)

where the set of constants A D .aj`/ and b D .b1, : : : , bs/ define an s-stage RK method. The
following tableau are examples of explicit TVD RK methods, which are of second and third
orders, respectively.

(21)

In our computations, we mainly use the three-stage third-order method.

3.2.2. Implicit–explicit schemes. As the parameter ! decreases to zero, the semidiscretization of
the KdV–BBM equation leads to a stiff system of ODEs. To solve efficiently this system, we apply
an IMEX-type RK method [33]. The linear dispersive terms are treated in an implicit way, whereas
the rest of the terms are treated explicitly. Numerical evidence shows that IMEX methods exhibit
excellent stability and handle stiffness in an efficient and robust way even in the limiting case ! D 0.

We consider an s-stage diagonally implicit RK (DIRK) method, properly chosen, that is given by
the tableau

(22)

and an s C 1 explicit RK (ERK) method

(23)

We rewrite system (19) in the form

TU0 D F.U/ C DU, (24)

where D is the five-diagonal matrix ıŒ!1=2, 1, 0, !1, 1=2#="x3 coming from the discretization of
the KdV term when we use the numerical flux function Gm. Then, the fully discrete scheme can be

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
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written in the form

.T C"tai i D/U.i/ D TUn !"t

iX
j D1

OaijF
%

U.j /
&

!"t

i!1X
j D1

aij DU.j /, i D 1, : : : , s, (25)

TUnC1 D TUn !"t

sX
j D1

ObjF
%

U.j /
&

!"t

sX
j D1

bj DU.j /. (26)

We employ four IMEX RK methods of different numbers of stages, orders of accuracy, and stability
properties. In particular, we consider the following pairs [33]:

" A two-stage third-order DIRK method and a corresponding three-stage third-order accurate
ERK method with ! D

%
3 C

p
3
&

=6. The resulting IMEX method is third-order accurate.

(27)

" A two-stage second-order DIRK method, which is stiffly accurate, with ! D
%
2 !

p
2
&

=2. The

corresponding ERK is a three-stage second-order accurate method with ı D !2
p

2=3. The
resulting IMEX combination is second-order accurate.

(28)

" A three-stage third-order DIRK stiffly accurate method with larger dissipative region than
(28). The corresponding ERK is a three-stage third-order method. The resulting IMEX pair
is third-order accurate.

(29)

" A four-stage, L-stable DIRK method with rational coefficients. The corresponding ERK is a
five-stage third-order method. The resulting IMEX method is of third order.

(30)

We tested these IMEX methods in the case of the KdV equation with ˛ D ˇ D ı D 1 and ! D 0. In
Table I, we summarize the constraints for the time step"t , purely in terms of"x, to obtain a stable
solution. IMEX methods (29) and (30) exhibit excellent stability behavior.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
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Table I. Stability of IMEX for the KdV equation
(˛ D ˇ D ı D 1 and ! D 0).

Method "t="x 6

(27) 1=4
(28) 1=5
(29) 1
(30) 1

4. NUMERICAL RESULTS

In this section, we present a series of numerical results aiming to show the performance and robust-
ness of discretization procedures described previously. There are many possible combinations of
numerical fluxes, types of reconstruction, and slope limiter functions. We begin by examining the
accuracy of the methods by measuring the convergence rates in Section 4.1 and the preservation of
the invariants in Section 4.2. The ability of the schemes to capture a solitary wave solution is demon-
strated in Section 4.3. Solitary wave collisions are studied in Section 4.4. Finally, a dispersive shock
wave formation is investigated in Section 4.5.

Remark 3
The solution of the linear system involved in (19) and (25) is obtained by a variation of Gauss elim-
ination for tridiagonal systems with computational complexity O.d/, with d being the dimension
of the system.

4.1. Rates of convergence and accuracy test

We consider an initial value problem for (2) with periodic boundary conditions in Œ!100, 100#. We
take for simplicity ˛ D ˇ D ! D ı D 1 and consider a solitary wave solution of the form (3) with
cs D 1.1. We take a uniform mesh h D "x D 200=N and compute the solution up to T D 100
by using the three-stage third-order explicit SSP-RK method (21) with time step "t D T=M . The
errors are measured using the discrete scaled norms E2

h and E1
h [16]:

E2
h.k/ D kU kkh=kU 0kh, kU kkh D

 
NX

iD1

"xjU k
i j2

!1=2

,

E1
h .k/ D kU kkh,1=kU 0kh,1, kU kkh,1 D max

iD1,:::,N
jU k

i j,

where U k D
®
U k

i

¯N

iD1
denotes the solution of the fully discrete scheme (20) at the time tk D k"t .

The numerical rate of convergence is defined by

Rate D log.Eh1
=Eh2

/

log.h1=h2/
,

for two different mesh sizes h1 and h2.
We perform several tests by using the TVD2, UNO2, and WENO3 reconstructions. Numerical

solutions are computed with CF, KT, or average fluxes. Table II shows the rates of convergence
for the CF scheme along with UNO2 and WENO3 reconstructions. We observe the theoretical
second-order convergence for the average, TVD2 (not reported), and UNO2 schemes. The WENO3
reconstruction in conjunction with the improved elliptic inversion scheme (18) gives us the expected
third-order convergence. Rates in Table II are obtained with the most dissipative MinMod limiter
function, whereas slightly sharper results are yielded by other limiters. Moreover, the convergence
results for the average m flux and the KT numerical flux are qualitatively identical to those of CF.
Analogous convergence rates were obtained using the IMEX methods.
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Table II. Rates of convergence: CF flux.

"x Rate
#
E2

h

$
Rate

#
E1

h

$

UNO2 MinMod 0.5 2.000 2.015
0.25 2.001 2.014
0.125 2.001 2.012
0.0625 2.001 2.010
0.03125 2.001 2.008

WENO3 0.5 2.604 2.561
0.25 2.790 2.810
0.125 2.905 2.913
0.0625 2.974 2.981
0.03125 2.968 2.995

4.2. Invariants preservation

As already mentioned in Section 2, (2) admits at least two quantities (4), which remain constant
under the equation dynamics. We investigate the conservation of these quantities by computing
their discrete counterparts:

I h
1 D"x

X
i

Ui , I h
2 D"x

X
i

 
U 2

i C !

'
UiC1 ! Ui

"x

(2
!

. (31)

The observation of invariants during numerical computations (20) may also give an idea on the
overall discretization accuracy.

The initial value problem for (2) with periodic boundary conditions is considered. We set
˛ D ˇ D ! D ı D 1 and consider a solitary wave solution with celerity cs D 1.5. We compute its
evolution up to T D 200 by using "x D 0.1 and "t D"x=2.

The first observation is that the mass of the solitary wave I h
1 D 13.41640786499 is preserved in

all computations independently from the choice of any of the numerical flux, reconstruction method,
or the slope limiter function.

The behavior of I h
2 is quite different. Figure 1 shows the evolution of the solitary wave amplitude

and of the invariant I h
2 . The numerical solution is obtained using Fm, FCF, and FKT numerical

fluxes along with TVD2 and UNO2 reconstructions. The limiter MinMod is used, and the dispersive
flux is computed with Glm flux function. The behavior of CF and KT schemes is almost identical.
Perhaps, the CF scheme is slightly less dissipative than the KT scheme. However, the m scheme
appears to be the least dissipative.
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1.495
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(a) Solitary wave amplitude

0 20 40 60 80 100 120 140 160 180 200
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13.95

14

(b) Invariant

Figure 1. Evolution of (a) solitary wave amplitude and (b) invariant I h
2 with Glm flux and MinMod limiter.

O: CF-TVD2; Þ: CF-UNO2; ": KT-TVD2; &: KT-UNO2; ı: m scheme.
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For both KT and CF fluxes, the TVD2 reconstruction preserves neither the invariant I h
2 nor the

amplitude of the solitary wave. At the same time, UNO2 reconstruction shows excellent behavior.
Despite its simplicity, the m scheme, using Fm and Gm, performs very well too in preserving I h

2
and the solitary wave amplitude.

In Figure 2, we show the influence of the choice of dispersive fluxes Gm and Glm. One observes
that Glm flux shows better behavior than the simpler Gm flux. A comparable performance is
achieved with CF scheme using WENO3 and WENO5 reconstructions.

Finally, in Figure 3, we show a comparison between the various slope limiter functions (MinMod,
van Albada, van Leer, and monotonized central) tested with CF scheme. MinMod limiter exhibits a
small dissipative effect, whereas other limiters we tested show comparable behavior. The choice of
the time stepping method does not induce any difference.

4.3. Propagation of solitary waves

We continue the presentation of numerical results by the classical test case of a solitary wave prop-
agation. This class of solutions (3) plays a very important role in the nonlinear physics, and any
practical numerical scheme should be able to compute with good accuracy this type of solutions.
For simplicity, we will set to unity all coefficients ˛ D ˇ D ! D ı D 1 in (2).
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Figure 2. Evolution of (a) solitary wave amplitude and (b) invariant I h
2 , UNO2 reconstruction with Min-

Mod limiter. O: FCF ! Glm; Þ: FCF ! Gm; ": FKT ! Glm; &: FKT ! Gm; G: FCF ! WENO3; F:
FCF ! WENO5; ı: Fm ! Gm. (Notice the scale difference on the vertical axis with respect to Figure 1.)
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Figure 3. Evolution of (a) solitary wave amplitude and (b) invariant I h
2 , FCF!Glm fluxes and UNO2 recon-

struction: O: MinMod; Þ: monotonized central; ": van Albada; ı: van Leer. (Notice the scale difference on
the vertical axis with respect to Figure 1.)
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Figure 4. Comparison between the analytical and numerical solutions: (a) solitary wave solution,
(b) magnification, and (c) E`.x/ error. : : : : analytical solution; —: CF-TVD2; - -: KT-TVD2; -'-: m scheme.

A large-amplitude solitary wave travels rightwards with the speed cs D 1.5. Its propagation is
computed up to T D 100 with discretization parameters "x D "t D 0.1 using KT and CF numer-
ical fluxes and TVD2 reconstruction. In both cases, we use the van Albada limiter. In Figure 4, we
compare the analytical solution with the numerical one. Figure 4(b) is a magnification of the soli-
tary pulse, showing that the solitary wave shape is perfectly retained. Also, we note that up to the
graphical resolution, all curves are undistinguishable. In order to observe the differences between
these solutions, we present in Figure 4(c) the error E` D log10 juexact.x, 100/ ! U.x, 100/j. This
shows that the difference between the numerical solution and the exact solution is analogous in all
the cases and is very small.

The behavior of the numerical solutions can be better understood by analyzing the so-called
effective equation, that is, the PDE that the numerical scheme satisfies up to the order of the
method. Obtaining an effective equation is not always feasible. In the case of the m scheme for
the KdV–BBM Equation (2), the numerical solution uh satisfies the following effective equation:

uh,t C ˛uh,x C ˇuhuh,x ! !uh,xxt C ıuh,xxx

C"x2

!
˛

6
uh,xxx C ˇ

6
uhuh,xxx C ˇ

4
uh,xuh,xx C ı

4
uh,xxxx ! !

12
uh,xxxxt

"
D 0.

(32)

In Figure 5, we illustrate some artifacts of the numerical discretization for the pure BBM equation
(ı D 0). In Figure 5(a), one can observe a small dispersive tail coming mainly from nonlinear terms
discretization. The amplitude of the tail is related to the order of the method. Taking "x ten times
smaller leads the reduction of the amplitude by two orders of magnitude, as it can be observed in
Figure 5(b). The explanation of these phenomena is contained in the straightforward analysis of the
effective Equation (32).
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Figure 5. Dispersive artifacts of the equivalent equation: (a) "x D 0.1, "t D 0.1 and (b) "x D 0.01,
(t D 0.01. : : : : analytical solution; —: CF-TVD2; - -:CF-UNO2; -'-:CF-WENO3.

We underline that the smallest tail is produced by the m scheme and the largest by the KT
scheme. This shortcoming can be further reduced by UNO2 or WENO3 reconstruction procedures.
We conclude that a detailed study of solitary wave interactions would require a combination of a
higher-order method with a finer grid resolution.

4.4. Solitary wave overtaking collisions

The solitary wave solutions (also known as solitons) of the celebrated KdV equation (˛ D ˇ D ı D 1
and ! D 0) have a well-known property to interact in an elastic way during an overtaking collision.
In other words, the solitary waves retain their initial shape after the interaction (cf. [46]). Contrary
to the KdV equation, the overtaking collision of two solitary waves of the BBM model and, in gen-
eral, of the KdV–BBM equation is not elastic. Interacting solitary waves change in shape, and also a
small dispersive tail appears after the process. However, a nonlinear phase shift can be still observed
even in the KdV–BBM equation.

Here, we study the overtaking collision of two solitary waves of the KdV–BBM equation with
˛ D ˇ D ! D ı D 1. Solitary waves are located initially at X1 D !50 and X2 D 50 with speeds
cs D 1.5 and cs D 1.1, respectively. At t D 0, we have two well-separated pulses, and the wave
behind (left) propagates faster. Space and time variables are discretized with "x D "t D 0.01
to capture this process accurately. The solution is computed using the CF scheme and three types
of reconstruction: TVD2 with van Albada limiter, UNO2 reconstruction with MinMod limiter and
WENO3 method, and with the third-order explicit SSP-RK method.

The invariant I h
1 D 18.915498698 is conserved with the digits shown in all cases. With the

invariant I h
2 , the situation is slightly different: UNO2 and WENO3 schemes preserved the value

I h
2 D 15.0633, whereas the more dissipative TVD2 reconstruction yields I h

2 D 15.063.
Figure 6 shows the interaction process at several time instances in the left column and the cor-

responding magnification of the dispersive tail in the right column. Essentially, no difference can
be observed among various numerical solutions even in the magnified region, up to the graphical
resolution. Additional snapshots aiming to illustrate the interaction process are shown in Figure 7.
We observe that the solitary waves propagate connected as a single pulse with a single maximum
for a small time interval contrary to bidirectional models [36] and to Euler equations (cf. [47]).

Figure 8 shows the ‘elastic’ collision of two solitons of the KdV equation (˛ D ˇ D ı D 1
and ! D 0) up to t D 600. In this experiment, we took "x D "t D 0.01 and 0.005 by using
IMEX method (29). Contrary to the analogous collision in the case of the BBM equation, we do
not observe any new dispersive tails. Further magnification of the images show small artifacts of the
order O.10!6/. The invariants are I h

1 D 12.280014566440 and I h
2 D 9.244 for all the computations

with"x D 0.01. When a finer grid is considered,"x D 0.005, we do not observe any improvement
in the conservation of the invariant I h

1 , whereas I h
2 was 9.2442. Analogous to the conservation
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Figure 6. Inelastic overtaking collision of two solitary waves for the KdV–BBM equation: (a) t D 0,
(b) t D 0 (magnification), (c) t D 200, (d) t D 200 (magnification), (e) t D 350, (f) t D 350 (magnification),

(g) t D 600, and (h) t D 600 (magnification).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
DOI: 10.1002/fld



FINITE VOLUME METHODS FOR UNIDIRECTIONAL WATER WAVE MODELS

200 220 240 260 280 300 320 340 360 380 400
0

0.5

1

1.5

2

2.5

3
CF−TVD2
CF−UNO2
CF−WENO3

(a) t = 200 (b) t = 225

(c) t = 250 (d) t = 275

200 220 240 260 280 300 320 340 360 380 400
0

0.5

1

1.5

2

2.5

3
CF−TVD2
CF−UNO2
CF−WENO3

200 220 240 260 280 300 320 340 360 380 400
0

0.5

1

1.5

2

2.5

3
CF−TVD2
CF−UNO2
CF−WENO3

200 220 240 260 280 300 320 340 360 380 400
0

0.5

1

1.5

2

2.5

3
CF−TVD2
CF−UNO2
CF−WENO3

Figure 7. Inelastic overtaking collision of two solitary waves for the KdV–BBM equation (detailed view):
(a) t D 200, (b) t D 225, (c) D 250, and t D 275.

properties observed when we studied the collision for the KdV–BBM equation with the IMEX
method (29), we observed that I h

1 D 18.915498698945, but no other improvement was observed in
the invariant I h

2 D 15.0633.

4.5. Dispersive shock formation

It was proven that smooth solutions to the KdV equation tend to become highly oscillatory as the
parameter ı tends to zero (cf. [48]). These oscillatory solutions are sometimes referred to in the
literature as dispersive shock waves. In this section, we study numerically this special class of solu-
tions. Recently, a discontinuous Galerkin method was employed to study the same problem [15] in
the classical setting of the KdV equation.

Namely, we consider the KdV–BBM equation with ˛ D ˇ D 1, ! D 10!5, and ı D 0. A solitary
wave solution (3) is taken as an initial condition with parameters ˛ D ˇ D ! D 1, ı D 0, and
cs D 1.3. We underline that this initial condition is not an exact solution to the BBM equation under
consideration, because the coefficient ! is different. A fine grid with "x D 0.001 is required to
observe this phenomenon. We note that even much more accurate schemes [15] require almost the
same resolution. Figure 9 shows the formation of a dispersive shock wave. The numerical solution
is computed with four different methods: the m scheme and the CF scheme with TVD2, UNO2, and
WENO5 reconstructions. The KT flux was also tested, producing almost identical to that of the CF
scheme. In all the cases, we took "t D "x=10 except in the case of the WENO5 reconstruction
where "t D"x=2.

The invariant I h
1 D 7.493997530 conserving the digits shown during all simulations for all numer-

ical schemes was tested. The behavior of I h
2 is considerably different. Figure 10 (left) shows that,

from the time the dispersive shock was formed, all numerical schemes, except the m scheme, lose
the conservation of the invariant I h

2 . As for the m scheme, the I h
2 invariant was conserved to one

decimal digit, during the whole simulation (see Figure 10(b)).
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Figure 8. Elastic overtaking collision of two solitary waves computed with the KdV equation: (a) t D 0, (b)
t D 0 (magnification), (c) t D 200, (d) t D 200 (magnification), (e) t D 350, (f) t D 350 (magnification), (g)

t D 600, and (h) t D 600 (magnification).
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Figure 9. Near the zero dispersion limit, BBM equation: (a) CF-TVD2, (b) CF-UNO2, (c) CF-WENO5, and
(d) m scheme.
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Figure 10. Evolution of I h
2 .

On the other hand, when a solitary wave solution evolves for longer time intervals, using, for
example, the m scheme, we observe that solitary wave-like structures are formed (cf., Figure 11)
while retaining the conservation of the invariant I h

2 up to one digit. Analogous behavior is observed
for the KdV equation where general initial conditions evolved into series of solitary waves (cf. [46]).

In Figure 12, we present the same experiment for the KdV equation (˛ D ˇ D 1, ! D 0, and
ı D 10!5) where the time integration is performed with the IMEX method (29) up to T D 20
with discretization parameters "x D 0.001 and "t D "x=2. We observe that the invariant I h

2 is
conserved with slightly less accuracy, whereas the I h

1 D 6.572670686045. When we use the IMEX
method (29) and the m scheme in the case of the BBM equation, we observe that the invariant I h

2

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
DOI: 10.1002/fld



D. DUTYKH, TH. KATSAOUNIS AND D. MITSOTAKIS

−40 −30 −20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
m−scheme

(a) m-scheme t = 50

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
m−scheme

(b) m-scheme t = 50(magnification)

Figure 11. Near the zero dispersion limit: (a) m scheme, t D 50 and (b) m scheme, t D 50 (magnification).
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Figure 12. Near the zero dispersion limit, KdV equation: (a) CF-TVD2, (b) CF-UNO2, (c) m scheme, and
(d) conservation of I h

2 .

conserves two digits, I h
2 D 4.49, whereas I h

1 D 7.493997530374 conserves the digits shown. Thus,
we conclude that, in this experiment (as also observed in all previous ones), the use of the IMEX
method might improve the conservation of mass.

5. CONCLUSIONS

The main scope of the present article is to extend the framework of finite volume methods to scalar
unidirectional dispersive models. We chose the celebrated BBM–KdV Equation (2) as an important
representative model arising in the water wave theory and having all main features of dispersive
wave equations.
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The BBM–KdV equation can be also viewed as a dispersive perturbation of the inviscid
Burgers equation. Consequently, our method relies on classical finite volume schemes that discretize
the advection operator. Then, a special treatment was proposed for the KdV dispersion term, whereas
an elliptic operator inversion per time step was required for the BBM dispersion, hence providing a
physical regularization to numerical solutions. We propose and implement also several methods to
obtain high-order accurate schemes.

The proposed discretization procedure is validated by comparisons with an analytical solitary
wave solution. The order of convergence is measured, and invariant preservation is studied exten-
sively. The numerical method is applied to several important test cases such as a solitary wave prop-
agation and a dispersive shock formation. We also make use of proposed higher-order extensions to
study the overtaking solitary waves collision for the KdV-BBM equation.

The extension to more realistic bidirectional wave propagation models such as Boussinesq-type
equations [4, 36, 49, 50].

ACKNOWLEDGEMENTS

D. Dutykh acknowledges the support from the French Agence Nationale de la Recherche, project MathOcean
(grant ANR-08-BLAN-0301-01), Ulysses Program of the French Ministry of Foreign Affairs under project
23725ZA, and CNRS PICS project no. 5607. The work of Th. Katsaounis was partially supported by the
European Union FP7 Program Capacities(REGPOT 2009-1), through ACMAC (http://acmac.tem.uoc.gr).

This work was supported by the Publishing Arts Research Council (98–1846389).

REFERENCES

1. Korteweg D, de Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type
of long stationary waves. Philosophical Magazine 1895; 39(5):422–443.

2. Benjamin T, Bona J, Mahony J. Model equations for long waves in nonlinear dispersive systems. Philosophical
Transactions of the Royal Society of London 1972; 272:47–78.

3. Boussinesq J. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en com-
muniquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de
Mathématiques Pures et Appliquées 1872; 17:55–108.

4. Peregrine DH. Long waves on a beach. Journal of Fluid Mechanics 1967; 27:815–827.
5. Bona J, Chen M, Saut J. Boussinesq equations and other systems for small-amplitude long waves in nonlinear

dispersive media. I: derivation and linear theory. Journal of Nonlinear Science 2002; 12:283–318.
6. Bona JL, Pritchard W, Scott L. Numerical schemes for a model for nonlinear dispersive waves. Journal of

Computational Physics 1985; 60:167–186.
7. Wei G, Kirby JT, Grilli ST, Subramanya R. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly

nonlinear unsteady waves. Journal of Fluid Mechanics 1995; 294:71–92.
8. Bona J, Dougalis V, Mitsotakis D. Numerical solution of, KdV–KdV systems of Boussinesq equations: I. The

numerical scheme and generalized solitary waves. Mathematics and Computers in Simulation 2007; 74:214–228.
9. Mitsotakis D. Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation

of tsunami waves. Mathematics and Computers in Simulation 2009; 80:860–873.
10. Avilez-Valente P, Seabra-Santos F. A high-order Petrov–Galerkin finite element method for the classical Boussinesq

wave model. International Journal for Numerical Methods in Fluids 2009; 59:969–1010.
11. Ozkan-Haller H, Kirby J. A Fourier–Chebyshev collocation method for the shallow water equations including

shoreline runup. Applied Ocean Research 1997; 19:21–34.
12. Pelloni B, Dougalis V. Numerical modelling of two-way propagation of nonlinear dispersive waves. Mathematics

and Computers in Simulation 2001; 55:595–606.
13. Dutykh D, Dias F. Dissipative Boussinesq equations. Comptes Rendus Mecanique 2007; 335:559–583.
14. Nguyen H, Dias F. A Boussinesq system for two-way propagation of interfacial waves. Physica D 2008;

237(18):2365–2389.
15. Yan J, Shu CW. A local discontinuous Galerkin method for KdV type equations. SIAM Journal of Numerical Analysis

2002; 40:769–791.
16. Levy D, Shu CW, Yan J. Local discontinuous Galerkin methods for nonlinear dispersive equations. Journal of

Computational Physics 2004; 196(2):751–772.
17. Eskilsson C, Sherwin S. Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations.

Journal of Computational Physics 2006; 212(2):566–589.
18. Bellotti G, Brocchini M. On the shoreline boundary conditions for Boussinesq-type models. International Journal

for Numerical Methods in Fluids 2001; 37(4):479–500.
19. Erduran KS, Ilic S, Kutija V. Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations.

International Journal for Numerical Methods in Fluids 2005; 49:1213–1232.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
DOI: 10.1002/fld



D. DUTYKH, TH. KATSAOUNIS AND D. MITSOTAKIS

20. Benkhaldoun F, Seaid M. New finite-volume relaxation methods for the third-order differential equations. Commu-
nications on Computational Physics 2008; 4:820–837.

21. Tonelli M, Petti M. Hybrid finite-volume finite-difference scheme for 2DH improved Boussinesq equations. Coastal
Engineering 2009; 56:609–620.

22. Shiach JB, Mingham CG. A temporally second-order accurate Godunov-type scheme for solving the extended
Boussinesq equations. Coastal Engineering 2009; 56:32–45.

23. Brenier Y, Levy D. Dissipative behavior of some fully non-linear KdV-type of equations. Physica D 2000;
137:277–294.

24. Nessyahu H, Tadmor E. Nonoscillatory central differencing for hyperbolic conservation laws. Journal of Computa-
tional Physics 1990; 87(2):408–463.

25. Kurganov A, Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection–
diffusion equations. Journal of Computational Physics 2000; 160(1):241–282.

26. Ghidaglia JM, Kumbaro A, Coq GL. Une méthode volumes-finis à flux caractéristique pour la résolution numérique
des systèmes hyperboliques des lois de conservation. Comptes Rendus de l’Académie des Sciences - Series I -
Mathematics 1996; 322:981–988.

27. Ghidaglia JM. Innovative methods for numerical solution of partial differential equations. In Flux schemes for solv-
ing monlinear systems of conservation laws, in Innovative Methods for Numerical Solution of Partial Differential
Equations. WORLD SCIENTIFIC: Singapore, 2001; 232–242.

28. Sweby P. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical
Analysis 1984; 21(5):995–1011.

29. Harten A, Osher S. Uniformly high-order accurate nonscillatory schemes, I. SIAM Journal on Numerical Analysis
1987; 24:279–309.

30. Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics 1994;
115:200–212.

31. Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of
Computational Physics 1988; 77:439–471.

32. Gottlieb S, Shu CW, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Review
2001; 43:89–112.

33. Ascher U, Ruuth S, Spiteri R. Implicit-explicit Runge–Kutta methods for time-dependent partial differential
equations. Applied Numerical Mathematics 1997; 25:151–167.

34. Fetecau R, Levy D. Approximate model equations for water waves. Communications in Mathematical Sciences 2005;
3:159–170.

35. Bona J, Dougalis V. An initial- and boundary value problem for a model equation for propagation of long waves.
Journal of Mathematical Analysis and Applications 1980; 75:503–522.

36. Dutykh D, Katsaounis T, Mitsotakis D. Finite volume schemes for dispersive wave propagation and runup. Journal
of Computational Physics 2011; 230(8):3035–3061.

37. Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics
1981; 43:357–372.

38. Harten A, Lax P, van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation
laws. SIAM Review 1983; 25:35–61.

39. Osher S. Riemann solvers, the entropy condition, and difference approximations. SIAM Journal on Numerical
Analysis 1984; 21(2):217–235.

40. Ghidaglia JM, Kumbaro A, Coq GL. On the numerical solution to two fluid models via cell centered finite volume
method. European Journal of Mechanics - B/Fluids 2001; 20:841–867.

41. Benkhaldoun F, Quivy L. A non homogeneous Riemann solver for shallow water and two phase flows. Flow,
Turbulence and Combustion 2006; 76:391–402.

42. Kolgan N. Application of the minimum-derivative principle in the construction of finite-difference schemes for
numerical analysis of discontinuous solutions in gas dynamics. Uchenye Zapiski TsaGI [Scientific Notes of Central
Institute of Aerodynamics] 1972; 3(6):68–77.

43. van Leer B. Towards the ultimate conservative difference scheme v: a second-order sequel to Godunov’s method.
Journal of Computational Physics 1979; 32:101–136.

44. Shu CW. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conserva-
tion laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations 1997:325–432. Springer Berlin /
Heidelberg.

45. Spiteri RJ, Ruuth SJ. A new class of optimal high-order strong-stability-preserving time discretization methods.
SIAM Journal on Numerical Analysis 2002; 40:469–491.

46. Drazin PG, Johnson R. Solitons: An Introduction. Univ. Pr (1989): Cambridge, UK, 1989.
47. Craig W, Guyenne P, Hammack J, Henderson D, Sulem C. Solitary water wave interactions. Physics of Fluids 2006;

18:57–106.
48. Venakides S. The zero dispersion limit of the Korteweg–de Vries equation with periodic initial data. AMS

Transactions 1987; 301:189–226.
49. Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port,

Coastal and Ocean Engineering 1993; 119:618–638.
50. Madsen PA, Bingham HB, Schaffer HA. Boussinesq-type formulations for fully nonlinear and extremely dispersive

water waves: derivation and analysis. Proceeding of the Royal Society of London A 2003; 459:1075–1104.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
DOI: 10.1002/fld


