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Abstract 

This manuscript evaluates a recently proposed times series KKN (KNNTS) methodology, in terms of its accuracy 

in day-ahead forecasting of PV power outputs. Specifically, KNNTS is evaluated against three widely applied 

benchmarks: seasonal ARIMA, spline-based daily profiles (SDP) and the persistence model (PRS). Two different 

solar cell architectures are examined under real operating conditions: Aluminum Back Surface Field (Al-BSF) 

and Back Contact (BC). Our analyses suggest that KNNTS does not dominate the alternative, benchmark 

specifications. However, linear combinations of KNNTS with SDP, may produce significantly improved forecasts. 

The outcomes of the model-building procedure are incorporated in a light online forecasting system for solar 

panels located in KAUST, Thuwal, Saudi Arabia. 
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1. Introduction 

Accurate forecasts of photovoltaic (PV) outputs are essential to Distribution System Operators and Transportation 

System Operators (Antonanzas et al., 2017) for efficient solar energy trading and management of electricity grids 

(EPIA, 2012). The main aim of this work is to develop specifications for day-ahead forecasting of PV energy 

outputs, which are solely based on historical information and combine satisfactory levels of forecasting accuracy 

with low computational and monetary costs. To this purpose, we evaluate a recently proposed, computationally-

light time series KNN-regression scheme (KNNTS) (Martinez et al., 2019a), using observed energy yields (EY) 

from 2 panel technologies: Aluminum Back Surface Field (Al-BSF) and Back Contact (BC). 

KNNTS is straightforward to implement online as it is based solely on historical data and does not require next-

day meteorological predictions as input. Of course, advanced predictive models (e.g. penalized regressions, 

random forests, neural networks; Nespoli et al., 2019) that use meteorological information should dominate such 

relatively simple schemes by a significant margin, to justify their substantially increased cost (both computational 

and in terms of the price to acquire continuously updated meteorological forecasts). Online forecasting systems 

for PV and wind-farm energy outputs are expected to employ such benchmark specifications while in “safe-mode” 

operation, when for instance, access to day-ahead meteorological forecasts has been interrupted. 

In what follows, KNNTS is evaluated against three frequently adopted benchmark specifications: seasonal 

ARIMA, spline-based daily profiles (SDP) and the persistence model (PRS).  Evaluation is based primarily on 
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conventional RMSE; in addition, the relative accuracy metric proposed by Tofallis (2015) is monitored.  

2. Methodology 

The adopted KNNTS methodology proposed recently by Martinez et al., (2019a), is implemented in R via the 

tsfknn package (Martinez et al., 2019b). Given a recently observed daily profile of PV outputs, conventional 

KNN identifies k profiles that are closest based on a chosen distance metric and reports the average of k, neighbor-

specific subsequent values. The number of nearest neighbors is a decision variable that should be tuned.  On the 

other hand, in KNNTS, Martinez et al., (2019a) propose an ensemble scheme that instead of choosing k, averages 

forecasts corresponding to k=3,5,7. This scheme provided very satisfactory levels of accuracy in our preliminary 

analyses; hence all results depicted in the next sections are based on forecast combinations for k=3, 5, 7. In the 

application, a sensitivity analysis similar to the one presented in Martinez et al., (2019a) is performed, to evaluate 

alternative combination schemes (mean, median, weighted mean). Additional tuning decisions should be 

performed regarding a) the distance metric used to identify nearest neighbors (e.g. the widely adopted Euclidean, 

versus Manhattan distance; b) the multi-step ahead forecasting strategy and c) the time lags used as input variables. 

The first two choices are investigated in the application whereas for the third, we follow the recommendation in 

Martinez et al., (2019a) for periodic time series and set the number of time lags equal to the number of time-

periods per day. 

In contrast with KNNTS, SDP reports daily profiles that utilize all measurements observed during a pre-specified 

time interval. Cowpertwait and Metcalfe (2009) present parametric specifications for SDP, based on a) dummy 

variables (SDPa), or b) sine and cosine functions (SDPb). Our preliminary experiments revealed that a non-

parametric procedure based on regression splines can be more accurate relative to SDPa and substantially faster 

to compute, relative to SDPb without compromising forecasting performance. The procedure implemented herein, 

fitted piece-wise cubic polynomials with 15 knots (knots are breakpoints in the third derivative; the number of 

knots was chosen by performing a cross-validation experiment) arranged at equally-spaced time instants. The 

function bs in the R package splines is used to construct B-spline basis expansions. Daily profiles are then 

derived using conventional least squares estimation, which is compatible with the primary adopted accuracy 

criterion (RMSE). It is worth stressing that a simplified SDP-variant of the procedure applied here, typically 

computes static, month-specific daily profiles. This results in a straightforward online implementation which does 

not require computations on a daily basis; instead, reported forecasts are retrieved from a small database. On the 

contrary, here SDP is updated on a daily basis in terms of training data. Furthermore, the number of training weeks 

is a tuning parameter.     

The persistence model (PRS) is a typical benchmark in PV-output forecasting experiments. PRS implies that 

current conditions remain unaltered and that a future daily profile will be very close to the one most recently 

observed. Hence observations that correspond to the most recent, fully observed day, are used to forecast an 

unknown daily profile. ARIMA models constitute a second widely adopted benchmark specification. In fact, PV-

outputs behave similar to the classic textbook example of periodic time series with a trend [e.g. the airline series 

used in Brockwell and Davis (2009)]. In the example application ARIMA model building is performed with the 

auto.arima function, which is available in the forecast package. A-priori, PV-outputs are expected to 

behave as non-stationary processes, as daily periodicities are coupled with a decreasing trend, due to declining 

PV efficiencies. Non-stationarity is accounted for, by treating the number of training weeks for KNNTS, ARIMA 

and SDP, as a tuning parameter. This ensures that the computational scheme in the online implementation is 

computationally light, with low requirements in terms of training data.  

The prioritized accuracy metric in the example application, is RMSE, which is compatible with conventional least 

squares estimates. An alternative, widely used accuracy metric is the mean absolute percentage error (MAPE). 

Tofallis (2015) showed that MAPE systematically favors specifications that produce low forecasts. Specifically, 

MAPE regression can be viewed as a weighted median regression with the observed measurements taking the role 

of weights (Tofallis, 2015); hence the lowest measurements are more influential and the predictive specification 

is pulled towards them. To overcome the shortcomings of MAPE, Tofallis (2015) proposed an alternative relative 

error metric, namely LnQ, which, is formulated as follows: 

𝐿𝑛𝑄 =
1

𝑁
∑ [𝑙𝑛 (

�̂�(𝑡)

𝑌(𝑡)
)]

2
𝑁
𝑡=1     (eq. 1) 
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with 𝑌(𝑡) denoting observed and �̂�(𝑡) forecasted values.  

3. Data 

EY measurements (W/m2) are collected at KAUST, Thuwal, Saudi Arabia: a challenging location for solar panels, 

which often need to operate in the presence of dust and/or at temperatures far beyond the Standard Test Conditions 

(STC). The analysed data are recorded every 10 minutes, from 8AM to 5PM (as reported EY is negligible before 

8AM and later than 5PM), for 364 consecutive days (52 weeks) in 2016, with starting (ending) date, 01 January 

2016 (29 December 2016). Data cleaning (removal of extremely high, clearly erroneous measurements) has been 

applied to eliminate statistical artefacts. However, Fig. 1A suggests that some outliers still remain. In addition to 

outlying measurements the observed power output series contain gaps, which hamper application of the 

forecasting techniques that follow, especially TSKNN and ARIMA.  

Specifically, missing values constitute 5.9% (6.9%) of the Al-BSF (BC) measurements. Typically sequences of 

missing values are short as in the vast majority of examined days the percentage of missing values is clearly below 

10% (Fig.2). A simple linear interpolation scheme would have been sufficient in the presence of occasional short 

gaps. However, given a) the relatively large proportions of missing values occasionally observed [47 (52) days 

with missing percentage larger than 10% for Al-BSF (BC)] and b) available historical data included measurements 

of solar irradiance (W/m2), an irradiance-based imputation scheme, which reveals intriguing characteristics of the 

two panel types, is adopted herein. 

 

 
Fig. 1: Scatterplots for the associations between (A) Al-BSF versus BC energy outputs; (B) Al-BSF energy outputs versus 

irradiance; (C) BC energy outputs versus irradiance. 
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Fig. 2: Daily percentages of missing values for the two solar panel technologies. A horizontal line designates the 10% threshold, 

whereas vertical lines depict the days that comprise the first testing dataset. 

 

A naïve imputation scheme would assume fixed performance rates for the two PV-technologies during the whole 

study period: 

�̃�𝑖(𝑡) = 𝑐𝑖𝑋(𝑡)    (eq. 2) 

with 𝑋(𝑡) denoting observed irradiance at time t, 𝑐1, 𝑐2 designating Al-BSF and BC efficiencies and �̃�1(𝑡), �̃�2(𝑡), 

imputed Al-BSF and BC power outputs, respectively. The overly parsimonious approximation in (2) should 

achieve subpar levels of accuracy (Fig. 1), given the expected decreasing trend for PV efficiencies. A more flexible 

scheme, which allows for monthly-varying efficiencies is formulated as: 

�̃�𝑖(𝑡) = 𝑐𝑖
𝑚𝑋(𝑡)    (eq. 3)  

with 𝑚 = 1,… ,12 denoting a monthly index.  Fig. 3, presents outlier-robust, least absolute deviation (LAD, a.k.a. 

median regression) estimates of monthly efficiencies, which indeed decrease with time. Interestingly, although 

Al-BSF appears to perform slightly better than BC in the first six months, BC clearly outperforms Al-BSF during 

the last six months of the study period. 
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Fig. 3: LAD estimates for monthly efficiency rates corresponding to the specification shown in (3). 

 
Fig. 4: LAD estimates of month-specific, daily efficiency rate profiles, captured by the slopes in (4). Row numbers 

correspond to months whereas columns represent time periods within a day: 𝒕𝒅 = 𝟏 (𝒕𝒅 = 𝟓𝟓) denotes 8AM 

(5PM). 
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The adopted imputation scheme extends the model shown in (3) by allowing for month-specific, daily efficiency-

rate profiles:  

�̃�𝑖(𝑡) = 𝑐𝑖
𝑚,𝑡𝑑𝑋(𝑡)    (eq. 4) 

with 𝑡𝑑 = 1,… ,55 designating 10-minute intervals [𝑡𝑑 = 1 (𝑡𝑑 = 55) corresponds to 8AM (5PM)]. Essentially 

the above specification takes (indirectly) into account dependence of PV efficiencies on operating temperatures 

(Skoplaki and Palyvos, 2009). Figures 4 and 5 depict curvilinear, increasing daily profiles, which are derived with 

outlier robust, median regression (Koenker, 2005). During the first months of the study period, differences in PV 

efficiencies are mainly observed when the levels of irradiance are low (around 8AM and 5PM). These differences 

increase with time; as shown in Fig. 5, BC achieves superior efficiency rates relative to Al-BSF towards the end 

of the study period, during the whole day.           

 

Fig. 5: LAD estimates of month-specific, daily profiles for the PV efficiency rates in (4).  

 

As noted by a reviewer, Figures 4 and 5 indicate higher panel efficiencies in the afternoon, which is not in 

accordance with what one would expect, based for instance in Skoplaki and Palyvos (2009). Typically, cell 

temperature is lower in the morning and lower in the afternoon; on the other hand, an evaluation of the dataset 

analyzed in Katsaounis et al., (2019), which relates strongly to the data analyzed here, suggests that both air 

and cell temperatures drop substantially in the afternoon (< 30 °C) to reach similar magnitudes. Furthermore, 

Skoplaki and Palyvos (2009) assume that the open circuit voltage, one of the critical factors that influence 

electrical efficiency of a PV cell/module, decreases with temperature. Such a decreasing association is not 

clearly manifested in the dataset analyzed in Katsaounis et al., (2019). 

Robust imputation is prioritized here, that is why alternative imputation procedures are evaluated via mean 

absolute error (MAE). Fig. 6 displays results of a leave-2-week-out cross-validation experiment, which 

evaluates imputation accuracy achieved from specifications (2), (3) and (4). In this experiment, measurements 

are divided in 16 consecutive 2-week periods. Each period is used as a testing subset, with the remaining 
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periods utilized as training data. Fig. 6 clearly demonstrates the superiority of the daily profiles in (4): the 

average MAE achieved from (4) across all periods is close to 5 W/m2, whereas for the parsimonious scheme 

in (3) it is close to 10 W/m2 for both technologies. Median regression estimates performed better than 

conventional least squares in terms of average MAE; that is why the adopted imputation scheme utilized (4) 

with coefficients estimated via LAD. Fig.7 presents observed and imputed data for the performance profiles 

that constitute the last week of the study period. 

 

Fig. 6: MAE of alternative imputation schemes for Al-BSF (a) and BC (b). LM denotes conventional least-squares whereas RQ 

corresponds to outlier-robust median regression estimates (LAD). MDS1 represents the static model in eq. (2), MDS2 stands for 

the specification shown in eq. (3) and MDS3 is the adopted imputation scheme shown in (4). 

 

4. Forecasting Experiment 

This section presents a forecasting experiment which mimics real world, online implementation of the 

examined specifications. Specifically, the experiment comprises D = 76 testing days: sometime during each 

testing day d = 1,…,D (in reality around noon), a forecast is computed for the PV outputs of the next day. Days 

with significant percentages of missing data are not included in the testing set (Fig. 2). Training data consist of 

days before d and forecasts correspond to the day d+1. Computational times were less than 5 seconds for both 

SDP and KNNTS, even when the number of training weeks, 𝑁𝑊 = 8. ARIMA model building is substantially 

slower, with computational times close to 5 minutes on average, when 𝑁𝑊 = 8.  

Results of the experiment are depicted in Figures 8, 9 and Table 1. Interestingly, focusing on RMSE, SDP 

outperforms both KNNTS and ARIMA; in accordance with prior expectations, PRS is the worst performing 

method by a significant margin. Regarding KNNTS the optimal combination function used to aggregate the 

targets associated with the nearest neighbors is the median, by a small margin relative to the mean. ARIMA 

(KNNTS) performance is optimal when the training data comprise 3 (8) weeks for both PV technologies. On 
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the other hand, SDP achieves minimum RMSE with 5 (3) training weeks for BC (Al-BSF). It should be stressed 

however that RMSE performances by SDP are very close when the number of training weeks, 𝑁𝑊 > 1. 𝑁𝑊 =

3 can be viewed as a choice that results in satisfactory performance for all examined models, while resulting 

in computationally fast implementations.          

 

 

 

 

Fig. 7: Observed (imputed) measurements for the last week of the study period are shown as colored (empty) triangles: Al-BSF 

(top), BC (bottom). 

 

 

The above evaluation is not insensitive to the chosen accuracy metric. A practitioner that focuses on relative 

accuracy and adopts 𝐿𝑛𝑄 to compare models, would not discard PRS, which despite its simplicity achieves 

levels of accuracy very close to ARIMA and SDP. Interestingly, KNNTS is by far the worst performing 

methodology in terms of 𝐿𝑛𝑄.  The optimal combination function used to aggregate the targets associated with 

the nearest neighbors is again the median. SDP appears to dominate in terms of 𝐿𝑛𝑄 as it did for RMSE. It is 

worth emphasizing though, that its performance degrades significantly when 𝑁𝑊 ≠ 2 and that SDP is far from 

the best performing method when  𝑁𝑊 is chosen with a priority on RMSE performance. Fig. 10 shows that 

forecasts from different methodologies are very strongly correlated. Hence the expected gains from a forecast 

combination scheme are not dramatic in this application. 
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Fig. 8: RMSE performance of the persistence model, versus ARIMA, SDP, and 3 KNNTS variants, with increasing training data. 

In TSKNN the combination function used to aggregate the targets associated with the nearest neighbors is the mean, in 

TSKNN_MED it is the median whereas in TS_WMEAN a weighted average is computed, with distance-based weights. 

 

Tab. 1: RMSE and LnQ performance of the persistence model, versus ARIMA, SDP and KNNTS. Reported accuracies depend on 

the number of training weeks NW, which is shown in parentheses. 

PV Type Model RMSE LnQ 

Al-BSF PRS 26.619 42.462 

Al-BSF SDP 22.809 (5) 41.441 (2) 

Al-BSF ARIMA  24.582 (3) 43.601 (4) 

Al-BSF KNNTS  23.120 (8) 56.394 (8) 

BC PRS 27.125 43.447 

BC SDP 23.314 (3) 42.072 (2) 

BC ARIMA  25.072 (3) 42.620 (3) 

BC KNNTS  23.624 (8) 56.395 (8) 
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Fig. 9: LnQ performance of the persistence model, versus ARIMA, SDP, and 3 KNNTS variants, with increasing training data. In 

TSKNN the combination function used to aggregate the targets associated with the nearest neighbors is the mean, in 

TSKNN_MED it is the median whereas in TS_WMEAN a weighted average (with distance-based weights) is computed. 
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Fig. 10: Scatterplots and Pearson’s bivariate correlation metrics for Al-BSF. Stars designate strong evidence against the null 

hypothesis that assumes zero correlation. Observed values (OBS), PRS, ARIMA with NW=3, TSKNN with NW=8 and SDP with 

NW=5 forecasts, are shown. 

 

5. Concluding Remarks 

This work evaluated a recently proposed time series KNN procedure against spline-based daily profiles, seasonal 

ARIMA and the persistence model, for day-ahead forecasting of PV outputs. Two types of solar panels are 

examined: Al-BSF and BC. Contrary to what one may expect, an extensive forecasting experiment revealed that 

KNN-based ensembles are not superior relative to the examined alternatives when performance is evaluated in 

terms of the widely adopted RMSE criterion. In fact, if one adopts a relative error metric, KNNTS is by far the 

worst performing method. Despite the poor performance on the example application KNNTS forecasts are expected 

to perform well when environmental conditions are highly variable, with regime-specific variability. The 

specifications examined here can be combined to result in a forecast combination scheme that is expected to 

perform as well as the best performing method. Such ensembles can be easily incorporated in a light (in terms of 

computations and data requirements) forecasting system. Construction of such ensembles via weighted 

combination schemes, is a research topic that we plan to examine next.     
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