
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, Vol.4(2004), No.4, pp.410–430
c© 2004 Editorial Board of the Journal “Computational Methods in Applied Mathematics” Joint Co. Ltd.

A GENERALIZED RELAXATION METHOD FOR

TRANSPORT AND DIFFUSION OF POLLUTANT

MODELS IN SHALLOW WATER

A.I. DELIS

Department of Sciences, Division of Mathematics, Technical University of Crete

University Campus, Chania 73100, Crete, Greece
E-mail: adelis@science.tuc.gr

Th. KATSAOUNIS

Department of Applied Mathematics, University of Crete

Heraklion 71409, Crete, Greece
and

Institute of Applied and Computational Mathematics

FORTH, Heraklion 71110, Crete, Greece

Abstract — We present a numerical method based on finite difference relaxation
approximations for computing the transport and diffusion of a passive pollutant by a
water flow. The flow is modeled by the well-known shallow water equations and the
pollutant propagation is described by a transport equation. The previously developed
nonoscillatory relaxation scheme is generalized to cover problems with pollutant trans-
port, in one and two dimensions and source terms, resulting in a class of methods of
the first and the second order of accuracy in space and time. The methods are based on
the classical relaxation models combined with a Runge–Kutta time splitting scheme,
where neither Riemann solvers nor characteristic decompositions are needed. Numeri-
cal results are presented for several benchmark test problems. The schemes presented
are verified by comparing the results with documented ones, proving that no special
treatment is needed for the transport equation in order to obtain accurate results.
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1. Introduction

Water quality modeling is a big and important area of research since it involves problems
related to public safety. In this work we focused on the study of pollutant (or contaminant)
movement and propagation in water flows. The shallow water model, that has been widely
used to model the physical phenomena of water flows such as flood waves, dam-breaks, tidal
flows in estuary and coastal water regions, and bore wave propagation in rivers, among
others, is being used to provide the hydrodynamic background. Considerable effort has been
devoted to the development of computational methods for that kind of fluid flow simulations,
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and particular in the field of finite volumes for systems of conservation laws. There has been
a growing trend in favor of Riemann or Godunov-type based methods constructed within
the finite volume framework (refer, e.g., to [17] and [14]). Such methods are noted for
their good conservation and shock capturing capabilities. More recently many methods have
been proposed for the numerical approximation of solutions of hyperbolic conservations laws
incorporating source terms, with the application to the shallow water equations, based on
such methods (see, e.g., [2, 6, 8–10,13,16]) producing very accurate results.

The starting point of our investigation is the class of relaxation schemes, first introduced
in [11], which are based on the relaxation approximation to the nonlinear conservation law,
that has a linear convection term and needs neither a Riemann solver nor the character-
istic decomposition and thus enjoys great simplicity. The idea is to use a local relaxation
approximation to construct linear hyperbolic system with a stiff lower order term that ap-
proximates the original nonlinear system with a small dissipative correction.As pointed out
in [15], relaxation is a flux approximation and relaxation linearizes the Riemann problem.
This simplicity can be of great significance when one has to solve large-scale engineering
problems. The amount of computational and theoretical results for the relaxation schemes
found in the literature has grown since they were first introduced (see, e.g., [7, 12] and
references therein).

Following the successful application of the relaxation schemes for solving numerically
the shallow water equations in [7], in this work we are concerned with the advection and
diffusion of a pollutant in the shallow water system, introduced with a transport equation for
the concentration of pollutant. It is important to investigate the behavior of the pollutant
on a discrete level when applying a finite volume scheme, such as the relaxation one, in terms
of conservation, advection and diffusion. Moreover, one has to investigate the interaction
with a nonflat topography. At the moment we are not aware of any other schemes applied
to the specific problem, with the exception of [1], where a two times steps kinetic scheme
was proposed, and [4, 5], where a hybrid finite volume-particle method is presented. Both
of these approaches produced very accurate results. Hence, the objective of this work is
to demonstrate, from the numerical point of view, some of the potential and some of the
limitations of the relaxation schemes as we can observe when applied to the transport of
pollutant model, since it has not been tested before.

In Section 2, we give a detailed presentation of the model we want to solve, in one
and two dimensions. In Section 3, we present a relaxation model and a numerical scheme
for one-dimensional equations. We investigate the performance of the relaxation scheme
in one-dimensional problems in Section 4 and in Section 5 we present some results for the
two-dimensional case.

2. Model equations

We start from the well-known one-dimensional shallow water equations, which represent
mass and momentum conservation,

∂h

∂t
+

∂(hu)

∂x
= Σ(x, t),

∂(hu)

∂t
+

∂

∂x

(
hu2 +

gh2

2

)
= −gh

∂Z

∂x
.

(1)
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System (1) describes the flow at time t > 0 at point x ∈ R, where h(x, t) > 0 is the total
water height above the bottom, u(x, t) is the average horizontal velocity, Σ(x, t) denotes the
sources of water (in m/s), Z(x) is the bottom elevation (bed topography) function, and g
the gravitational acceleration. In the following, we will denote as q = hu the water unit
discharge.

The propagation of a passive pollutant is modeled by the classical transport equation

∂hC

∂t
+

∂(uhC)

∂x
= ΣCΣ, (2)

where C(x, t) is the average pollutant concentration and CΣ is a given concentration of the
pollutant at the sources Σ. Pollutant transport models add extra species equations to the
conventional shallow water equations. Here we consider the case of a single pollutant with
concentration C(x, t) transported with the water velocity, and following from (1), we may
see this by deriving from (2) the following advection equation in the nonconservative form

∂C

∂t
+ u

∂C

∂x
= Σ(CΣ − C)/h.

Equations (1) and (2) are coupled through the source terms and can be written in the
form of a differential conservation law as a single vector equation

∂U

∂t
+

∂F(U)

∂x
= S(U), (3)

with

U =




h
q
Qc


 , F(U) =




q

q2

h
+ g

2
h2

qQc

h


 , S(U) =




Σ

−gh∂Z
∂x

ΣCΣ


 ,

and we denote by Qc = hC the quantity of pollutant in the flow.

In the case where there are no sources of water (Σ = 0), we have a pure advection equation
for the pollutant. For pure advection, equations (1) and (2) are decoupled automatically,
since they are coupled by the source terms and can be solved independently. Nevertheless,
the numerical scheme presented in the next section works in a unified way covering all cases.

For the hyperbolic system (3) there is an additional eigenvalue λ3 = u of the Jacobian
matrix ∂F(u)/∂u (the other two, λ1,2 = u±√gh, are the same as those for the shallow water
equations (1)). As pointed out in [17], use of the Riemann invariants for the characteris-
tic field associated with this additional eigenvalue, shows that the pollutant concentration
changes only on crossing a contact discontinuity defined by this eigenvalue. In this case,
some numerical methods excessively smear the solution resulting in inaccurate predictions.

Assuming now that the flow is mainly two-dimensional, the model in its conservative
form in 2D can be written as follows:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
− ∂F̃(U)

∂x
− ∂G̃(U)

∂y
= S(U), (x, y) ∈ Ω, (4)
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with

U =




h
hu1

hu2

hC


 =




h
q1

q2

Qc


 , S(U) =




Σ(x, y, t)

−gh∂Z
∂x

(x, y)

−gh∂Z
∂y

(x, y)

ΣCΣ




,

F(U) =




q1

q2
1

h
+ 1

2
gh2

q1q2

h

q1Qc

h




, G(U) =




q2

q1q2

h

q2
2

h
+ 1

2
gh2

q2Qc

h




,
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0
0
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hDx
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 , G̃(U) =




0
0
0

hDy
∂C
∂y


 ,

where now h(x, y, t) > 0 is the height of the fluid at point (x, y) at time t, Ω denotes the
projection of the domain occupied by the fluid onto the x− y plane, and Z(x, y) is again the
bottom elevation, u1, u2 are the average velocity components of the water, with the invariant
variables q = (q1, q2) (with discharges) given by q1 = hu1, q2 = hu2, and finally Dx and Dy

are diffusion coefficients.
It is well known that the solutions of systems (3) and (4) present steep fronts and shock

discontinuities, which need to be resolved accurately in applications, and can cause severe
numerical difficulties. Thus, computing numerical solutions is not trivial due to the nonlin-
earity, the presence of the convective term, and the coupling of the equations through the
source terms.

3. Relaxation model and numerical scheme

The starting point for our investigation is the class of relaxation schemes first introduced
in [11] for homogeneous conservation laws and their application in [7] to the shallow water
equations with the geometrical source term present.

3.1. The relaxation model for 1D systems of conservation laws

Consider an extended (with a general source term present) nonlinear system of conservation
laws in the following form:

∂u

∂t
+

∂f(u)

∂x
= s(u),

u(x, 0) = u0(x),
(5)

with the vector-value functions u and f(u) with values in Rn. Introducing the artificial
variable v (relaxation variable), the corresponding relaxation system is then given by

∂u

∂t
+

∂v

∂x
= s(u),

∂v

∂t
+ C2∂u

∂x
= −1

ε
(v − f(u)) ,

(6)
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with the initial data

u(x, 0) = u0(x),

v(x, 0) = v0(x) = f(u0(x)),

where the small parameter ε is the relaxation rate (0 < ε ¿ 1) and

C2 = diag{c2
1, c

2
2, . . . , c

2
n}

is a positive diagonal matrix to be chosen. For small ε, applying the Chapman-Enskog
expansion to the relaxation system (6), we can derive the following approximation for u:

∂u

∂t
+

∂f(u)

∂x
= s(u) + ε

∂

∂x
(f ′(u)s(u)) + ε

∂

∂x

(
(C2 − f ′(u)2)

∂u

∂x

)
, (7)

where f ′(u) is the Jacobian matrix of the flux f . Equation (7) governs the first-order behavior
of the relaxation system (6). Here we must require that the well-known sub-characteristic
condition

C2 − f ′(u)2 > 0, ∀u, (8)

holds. This condition ensures the dissipative nature of (7). It is clear that for u varying
in a bounded domain, equation (8) can always be satisfied by choosing sufficiently large
values for C2. However, because of the stability constraints on a numerical scheme, it is
desirable to obtain the smallest values for C2 meeting the criterion (8). The size of C2 has
also a decisive influence regarding the numerical dissipation associated with the numerical
schemes derived from (6). For both computational and theoretical purposes it is sometimes
necessary to choose C2 to have distinct diagonal elements so as to avoid the degeneracy in
the relaxation system. The construction of C2 must then be based on rough estimates of
the characteristic speeds of the original problem. Hence, for the one-dimensional case we
require that every eigenvalue λi of f ′(u) should satisfy

|λ| 6 cmax, (9)

where cmax = maxi ci. By doing so we insure that the characteristic speeds of the hyperbolic
part of (6) are at least as large as the characteristic speeds of the original problem. Con-
sequently, in the limit ε → 0+ system (6) approaches the original system (5) by the local
equilibrium v = f(u).

The rigorous theory of kinetic approximation for solutions with shocks is well developed
when the limit equation is scalar. In [15], it was shown that solutions of the relaxation
model in the homogeneous system case converge strongly to the unique entropy solution of
the original conservation laws. The relaxation model and its relaxation mechanisms, provide
a subtle dissipative mechanism against the destabilizing effect of nonlinear response, as well
as a damping mechanism on oscillations.

Using the system of n equations (5), we formulate the larger relaxation system (6) of 2n
equations expressed as

∂w

∂t
+

∂H(w)

∂x
= B(w), (10)
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where w,H, and B ∈ R2n and the new vectors are stated explicitly as

w =




u1
...

un

v1
...

vn




, H =




v1
...

vn

c2
1u1
...

c2
nun




, and B =




s1
...
sn

−1
ε
(v1 − f1)

...
−1

ε
(vn − fn)




.

We can see now that system (3) can easily be converted to the relaxation system (10) in a
straightforward manner. We should note here that the characteristic variables are still much
simpler than those of the nonlinear conservation law, since the relaxation system has linear
characteristic variables, and that no information about the eigensystem of the Jacobian of the
nonlinear flux is required, except for the upper bound of the largest eigenvalue in modulus,
in order to adjust the parameters in C2 according to the subcharacteristic condition.

3.2. The relaxation scheme

To discretize the system of equations (10), we assume a space-uniform spaced grid with
∆x = xi+ 1

2
−xi− 1

2
and a uniform time step ∆t = tn+1− tn, n = 0, 1, 2, . . . The approximate

solution, denoted as the discrete value wn
i , is the approximate cell average of the variable

w in the cell (xi+ 1
2
, xi− 1

2
) at time t = tn. The approximate point value of w at x = xi+ 1

2
at

time t = tn is denoted by wn
i+ 1

2

.

A Runge–Kutta splitting scheme is defined as a five step iterative process for each vector
wn

i and is written in the following notation with the subscript i suppressed:

wn,1 = wn + ∆tB(wn,1), (11a)

w(1) = wn,1 −∆tD+H(wn,1), (11b)

wn,2 = w(1) −∆tB(wn,2)− 2∆tB(wn,1), (11c)

w(2) = wn,2 −∆tD+H(wn,2), (11d)

wn+1 =
1

2
(wn + w(2)). (11e)

This second-order implicit-explicit (IMEX) Runge–Kutta splitting scheme utilized here is
different from the one presented for the shallow water equations in [7]. For the first n
components of w in equations (11a) and (11c) one does not have to solve any implicit
problems due to the special structure of the source term in equation (3) (following from (1)),
while for the second n components one can again solve explicitly the above problem due to
linearity of v. For example, for the first n components of wn,1 in equation (11a) we have

un,1
i = un

i −∆tsi(u
n,1
i ), (12)

while for the second n components we have

vn,1
i = vn

i −
∆t

ε

[
fi(u

n,1
i )− vn,1

i

]
, (13)

which we solve explicitly as

vn,1
i =

[
vn

i − ∆t
ε

fi(u
n,1
i )

]
(
1− ∆t

ε

) . (14)
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Hence, this splitting treats, alternatively, the stiff source terms 1
ε
(v− f(u)) implicitly in two

steps because due to the structure of the source terms and the linearity of v one still solves
them explicitly, and the convection terms with two explicit steps. Thus, we have an explicit
implementation of an implicit source term, with stability constraints solely determined by
the nonstiff convection terms, just as in a usual shock capturing scheme.

The spatial discretization is introduced in (11) by the operator

D+H =
1

∆x
(Hi+ 1

2
−Hi− 1

2
).

To solve for Hi± 1
2

and construct a second-order accurate in space scheme, the MUSCL-TVD
piecewise linear interpolation is applied to the kth component of v±Cu to give respectively

(v + cku)i+ 1
2

= (v + cku)i +
1

2
∆xσ+

i ,

(v − cku)i+ 1
2

= (v − cku)i+1 − 1

2
∆xσ−i+1,

(15)

where u, v are the kth (1 6 k 6 n) components of v,u, respectively, the slopes in the ith
cell are defined as

σ±i =
1

∆x
(vi+1 ± ckui+1 − vi ∓ ckui)φ(θ±i ), (16)

and

θ±i =
vi ± ckui − vi−1 ∓ ckui−1

vi+1 ± ckui+1 − vi ∓ ckui

, (17)

where φ is a limiter function, satisfying

0 6 φ(θ) 6 minmod(2, 2θ). (18)

There are several options on choosing a limiter function. Some of the most popular ones are
the MinMod (MM) limiter

φ(θ) = max(0, min(1, θ)),

the VanLeer (VL) limiter

φ(θ) =
|θ|+ θ

1 + |θ| ,

the Superbee (SB) limiter

φ(θ) = max(0, min(2θ, 1), min(θ, 2)),

and the Monotonized Central (MC) limiter

φ(θ) = max(0, min((1 + θ)/2, 2, 2θ)).

Following from (15), we get

ui+ 1
2

=
1

2
(ui + ui+1)− 1

2ck

(vi+1 − vi) +
∆x

4ck

(σ+
i + σ−i+1),

vi+ 1
2

=
1

2
(vi + vi+1)− ck

2
(ui+1 − ui) +

∆x

4
(σ+

i − σ−i+1).

(19)

slope σ± = 0 or φ = 0, the MUSCL scheme reduces to a first-order upwind scheme.
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It is worth noting here that, in using the above schemes, neither a linear algebraic equation
nor nonlinear source terms arise. In addition both the first- and the second-order relaxation
schemes are stable under the CFL condition

max

(
(max

i
ci)

∆t

∆x

)
6 1. (20)

In order to retain the TVD property (see [3,11]) a more strict restriction has to be imposed
on the usual CFL condition, and the one which was applied in the following section to
calculate ∆t

CFL = max

(
(max

i
ci)

∆t

∆x

)
6 1

2
.

4. 1D numerical tests and results

In this section, we illustrate the performance of the relaxation scheme by a number of
numerical examples in 1D. In all tests the CFL number used was set to 0.5.

4.1. Initial and boundary conditions

For a given initial data u0(x), for the above 1D relaxation system we choose the initial
conditions in the form of

u(x, 0) = u0(x),

v(x, 0) = v0(x) ≡ F(u0(x)).

In the small relaxation limit (ε → 0+), the relaxation system (10) satisfies the above. Hence,
to avoid the introduction of an initial layer through the relaxation system the above initial
value for v is chosen.

For the boundary conditions, given the physical boundary conditions, ub, that should be
imposed for each problem, we set vb = F(ub) to avoid the introduction of artificial boundary
layers. In general, any choice that leads at the limit to the associated boundary and initial
equilibrium can be used.

The choices of ci, i = 1, 2, 3, in all numerical tests are based on rough estimates of the
eigenvalues u ± √

gh, u of the Jacobian matrix ∂F(u)/∂u of the original equations, as to
satisfy the sub-characteristic condition (9). Other choices can be made as long as numerical
stability is maintained. It should be noted here that larger values for the ci usually add more
numerical viscosity, so for accuracy reasons it is desirable to have the ci as small as possible.
The relaxation parameter ε should be small with respect to the time step and space mesh
length, that is, ∆t À ε and ∆x À ε. Again here, ε plays the role of the viscosity coefficient
so more numerical diffusion will be added for relatively larger values of ε.

The above ideas can be extended to the 2D case and are not presented here for brevity.

4.2. Advection of pollutant with constant discharge

As a first test problem, we consider the steady state problem in flat bottom (Z = 0) presented
in [1]. Here the stationary solution of the shallow water equations has a constant discharge
and the water height h = 1m. The channel length is L = 500m. The initial polluted
area is I = [20, 70] with CI(x, 0) = 1, with no pollution source turned on. This polluted
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area will be simply transported with the constant speed of the flow. As mentioned in
[1], the numerical solution of this very simple problem clearly exhibits the influence of the
Froude number, Fr = u√

gh
, that characterizes whether the flow is subcritical (Fr < 1) or

supercritical (Fr > 1). It also demonstrates the distinctions between the scheme diffusions
in the numerical solutions obtained by the first order upwind relaxation scheme and the
second order MUSCL scheme (using the SB limiter).

We computed solutions for different Fr values and the simulation time was in each case
tout = 100

Fr
s. The computational parameters used were ∆x = 5m, ε = 1.D − 6. The values

for the constants c1, c2 and c3 have to be adjusted according to the flow parameters and
we have set them for these problems, depending on the Fr value, equal to the values of
u +

√
gh, u − √

gh and u respectively. The results are shown in Figs. 1 and 2. First
the superiority of the second-order relaxation scheme can be clearly seen in all cases. The
solution is only slightly diffused for the second-order scheme in all cases, and as the Fr
number decreases (strongly sub-critical flow), the results are improving.
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Figure 1. Concentration of pollutant for Fr = 10 at tout = 10s (left), and for Fr = 1 at tout = 100s (right).
Exact solution (–), Upwind (*–), MUSCL (o–)
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Figure 2. Concentration of pollutant for Fr = 0.1 at tout = 1000s (left), and for Fr = 0.01 at tout=10000s
(right). Exact solution (–), Upwind (*–), MUSCL (o–)
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4.3. 1D dam-break problems

The first test case is of a dam break on a flat bottom, where the concentration of the pollutant
has different values on each side of the dam. We compare the results with the exact solutions
(presented as solid lines). For this first problem the channel length is L = 50m. The initial
data are those of the Riemann problem, with x0 = 10m being the dam position (position
of the initial discontinuity). The values of hL = 1m,uL = 2.5m/s and CL = 1 are the
initial values on the left side of the dam, with right values of hR = 0.1m,uR = 0m/s and
CR = 0. The simulation time is tout = 7s. Figures 3–5 show the results for the water
height, water discharge and pollutant concentration obtained using the relaxation scheme
with the computational the parameters ∆x = 0.5m, ε = 1.D − 6, c1 = 6.5, c2 = 1.4 and
c3 = 4. The VL limiter was used to obtain these results. We are particularly interested
in the performance of the scheme for the pollutant concentration. The numerical solution
closely follows the exact one, with the pollutant shock front well captured for the coarse grid
used.
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Figure 3. First dam-break problem: water height at tout=7s. Exact solution (–) and MUSCL (o–)
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Figure 4. First dam-break problem: water discharge at tout=7s. Exact solution (–) and MUSCL (o–)
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Figure 5. First dam-break problem: pollutant concentration at tout=7s. Exact solution (–) and MUSCL
(o–)

The second dam-break example is taken from [1] and is similar to the previous one. It
is computed here in order to compare with the results presented in [1]. Here L = 2000m,
x0 = 1000m and the initial values are hL = 1m,uL = 0m/s and CL = 0.7, hR = 0.5m,uR =
0m/s and CR = 0.5. The computational parameters used were ∆x = 20m, ε = 1.D − 6,
c1 = 3.5, c2 = 3 and c3 = 1 with the VL limiter. The results are presented in Figs. 6–8 for
tout = 240s. As would be expected, the results presented in Figs. 6–8 again follow closely
the exact solution and those presented in [1].

For the second dam-break problem we also present the results for the pollutant concen-
tration for different values of hR in Fig. 9. We chose hR = 0.95m (a very small jump) with
c1 = 3, c2 = 3, c3 = 0.095 and hR = 0.01m (a very large jump) with c1 = 5, c2 = 3, c3 = 3.5.
The speed of the pollutant shock grows as the height of the water height jump decreases.
The resolution of the numerical solution for hR = 0.95m (small Fr number) is very good.
For a more difficult case where hR = 0.01m the numerical solution again follows closely the
exact solution.
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Figure 6. Second Dam Dreak problem: water height at at tout=240s. Exact solution (–) and MUSCL (o–)
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Figure 7. Second Dam Break problem: water discharge at tout=240s. Exact solution (–) and MUSCL (o–)
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Figure 8. Second Dam Break problem: pollutant concentration at tout=240s. Exact solution (–) and
MUSCL (o–)
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Figure 9. Second Dam Break problem: pollutant concentration for hR = 0.95m (left) and for hR = 0.01m

(right), tout = 240s. Exact solution (–) and MUSCL (o–)
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4.4. Peak in the concentration of pollutant

This test problem was also presented in [1], as to test the scheme when the concentration of
pollutant has rapid oscillations. The initial data is still a dam-break problem with the same
values as in the first example in the previous section, with the exception of a peak in the
initial pollutant concentration just before the jump. So CI(x, 0) = 0.9 for x ∈ I = [900, 1000].
There in no exact solution for this problem. On the other hand we know that the initial
value at x0 = 1000 will be simply transported to the right with its maximum value staying
equal to CI . In Figure (10) the numerical result is presented at tout = 250s along with the
initial data. Using ∆x = 20m, ε = 1.D − 8, c1 = 4 = c2 and c3 = 2.5 with the VL limiter,
the scheme computes exactly the exact maximum concentration with small diffusion added
in the overall solution, comparing well with the result presented in [1].
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Figure 10. Concentration of the pollutant for the peak problem. Initial concentration (- -) and concentration
at tout = 250s for the MUSCL relaxation scheme (o–).

4.5. A two rarefaction problem

This test problem is due to [17] and has initial data as to produce two strong rarefaction
waves travelling in opposite directions. Here L = 50m, x0 = 25m, the initial values are
hL = 1m,uL = −5m/s and CL = 1, hR = 1m, uR = 5m/s and CR = 0. At tout = 2.5s the
water depth in the middle of the two rarefaction waves becomes very shallow (nearly dry).
It is well known that a large class of schemes will compute a negative depth in the vicinity
of a very shallow water depth and this may lead to problems when one wants to calculate
the pollutant concentration. For this test, the exact solution for the pollutant concentration
is that of the stationary contact discontinuity, which is very difficult to calculate exactly as
a perfect discontinuity by most schemes (see [17]). The results for the relaxation scheme are
presented in Figs. 11–13, using ∆x = 0.5m, ε = 1.D − 6, c1 = 6 = c2 and c3 = mini ui with
the VL limiter. While the resolution of the solutions for h and q is in very good agreement
with the exact solution, the stationary contact discontinuity is poorly resolved. Nevertheless,
the result obtained is better than those obtained by other schemes and has almost the correct
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behavior. This is a limitation of the relaxation scheme presented, since it has no inherent
property to deal with this situation. This is an interesting problem which can benefit from
further investigations, possibly in the line of the works in [1, 5].
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Figure 11. Two rarefaction problem: water height at tout = 2.5s. Exact solution (–) and MUSCL (o–)
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Figure 12. Two rarefaction problem: water discharge at tout = 2.5s. Exact solution (–) and MUSCL (o–)
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Figure 13. Two rarefaction problem: pollutant concentration at tout = 2.5s. Exact solution (–) and
MUSCL (o–)

4.6. Advection of pollutant over topography

In this example, we assume that the initial water level is constant, i.e., h+Z = 1, the initial
discharge q = 0.1 and the gravitational constant is g = 1, with L = 1m and the bottom
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topography Z(x) given by the hump

Z(x) =

{
0.25(cos(10π(x− 0.5)) + 1), 0.4 6 x 6 0.6,

0, otherwise.

The initial polluted area is I = [0.4, 0.5] with CI(x, 0) = 1, with no pollution source turned
on.

As the solution evolves in time, the initial pollutant concentration propagates down-
stream. We compute the concentration starting at t = 0s at times tout = 2s, 4s. Using
∆x = 0.005m, ε = 1.D − 6, c1 = 1 = c2 and c3 = 0.2 with the MC limiter, we can observe
in Fig. 14 that at tout = 2 the initial concentration has just passed through the bottom
hump while retaining its maximum value, with no visible distortions of the solution, which
is only slightly diffused. At time tout = 4 the concentration layer has propagated further to
the right while still retaining its maximum value. We can conclude that the interaction with
the nonflat bottom has not resulted in any nonphysical behavior for the solution, such as
numerical oscillations or negative values. Similar observations will be made in the next test
case.
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Figure 14. Advection of Pollutant Over Topography: concentration of the pollutant, at times tout =
0s, 2s, 4s from left to right for the MUSCL relaxation scheme

4.7. Emission of pollutant over topography

This test case is also from [1]. Here we test the introduction of a source of pollutant into a
flow. For this problem, the initial data are h + Z = 2, q = 0.5 with L = 1000m and g = 1
with

Z(x) =

{
0.2− 0.05(x− 10)2, 8 6 x 6 12,

0, otherwise.

We assume that the water is initially clean until the time tb = 100s (the flow has reached a
steady state at this point) when a source of water Σ = 0.01 with a concentration of pollutant
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CΣ = 10 is turned on at the point x = 45m, then at the time te = 300s the pollution source
is turned off. Then we follow the evolution of this pollutant layer.

For ∆x = 4m, ε = 1.D − 6, c1 = 2, c2 = 1 and c3 = 0.5 with the MC limiter, the
numerical results for the pollutant concentration are presented in Figs. 15 and 16 at times
tout = 300s, 350s, 500s and 800s, for the interval I = [0, 500]. The results are in very
good agreement with those presented in [1, 4]. As pointed out in [1], due to the presence
of the water source there is a local modification in space and time of the hydrodynamic
computation. Here we prove that the relaxation scheme can cope with such situations,
producing reliable results.
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Figure 15. Emission of Pollutant Over Topography: concentration of the pollutant at times t = 300s (left)
and t = 350s (right) for the MUSCL relaxation scheme
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Figure 16. Emission of Pollutant Over Topography: concentration of the pollutant at times t = 500s (left)
and t = 800s (right) for the MUSCL relaxation scheme

5. 2D numerical tests and results

In this section, we apply the relaxation scheme to two-dimensional problems. We will not
make a complete presentation of the extension of the scheme in 2D here, since it will be
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detailed elsewhere. The 2D computations are based on extending the 1D strategy.

We will just present the 2D relaxation model that corresponds to equation (5) for the
1D case. Considering the classical 2-D conservation law

∂u

∂t
+

∂f(u)

∂x
+

∂g(u)

∂y
= s(u); (x, y) ∈ R2, t > 0,

u(x, y, 0) = u0(x, y); (x, y) ∈ R2

(21)

with u, f(u) and g(u) ∈ Rn, we introduce the relaxation variables v,w to (21), and the
linear relaxation model in 2D reads as follows:

∂u

∂t
+

∂v

∂x
+

∂w

∂y
= s(u),

∂v

∂t
+ C2∂u

∂x
= −1

ε
(v − F(u))

∂w

∂t
+ D2∂u

∂y
= −1

ε
(w −G(u)),

(22)

where now C2,D2 ∈ Rn×n are positive diagonal matrices. In the limit ε → 0+ system (22)
approaches the original system (1) by the local equilibrium v = F(u) and w = G(u). A
general necessary condition for such convergence is that a subcharacteristic-like condition is
satisfied. For system (22) we require that

λ2
i

c2
i

+
µ2

i

d2
i

6 1, ∀i (23)

with λi, µi being the eigenvalues of ∂F(u)/∂u and ∂G(u)/∂u respectively.

5.1. 2D dam-break peak problem

This problem is similar to the 1D problem presented in Section 4.4, and similar to the one
presented in [1]. The initial data are the same as for the problem in Section 4.4, except
that L = 1m, tout = 0.1s. The channel width is 0.1m. The solution is very close to the 1D
solution and the data are invariant in the y-coordinate.

We compare the first-order upwind relaxation and the second-order MUSCL relaxation
schemes. We use a uniform mesh with ∆x = ∆y = 0.01 and computational parameters
ε = 1.D− 6, c1 = 4 = c3, c2 = 1 = c4 and d1 = 4 = d3, d2 = 0.01 = d4 for both schemes. The
initial data for the pollutant concentration and the computed results are presented in Figs.
(17)–(19). With the upwind schemes the results are diffusive, while the MUSCL scheme
uniformly preserves the peak value of the pollutant concentration.
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0.50.60.70.80.9

Figure 17. Initial data for the pollutant concentration of the 2D dam-break problem

0.50.550.60.650.70.750.80.85

Figure 18. Pollutant concentration computed with the upwind scheme for the 2D dam-break problem and
at tout = 0.1s

0.50.60.70.80.9

Figure 19. Pollutant concentration computed by the MUSCL relaxation scheme for the 2D dam-break
problem and at tout = 0.1s

5.2. 2D partial dam-break

This problem is similar to the one considered in [5] and is the case of a 2D square domain
1400m × 1400m, where the water flows from the left to the right through a breach located
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between y = 560 and y = 840. The initial data are uL = uR = vL = vR = 0 and hL = 0.5m
and hR = 1m. The initial pollutant concentration is given by

C(x, y, 0) =

{
e−0.0001[(x−650)2+(y−600)2], 0 6 x 6 700, 0 6 y 6 1400

0.5 700 6 x 6 1400, 0 6 y 6 1400.

The boundary conditions at x = 0 and x = 1400m are assumed to be transmissive and all
the other boundaries are considered as reflective. At the instant of breaking of the dam,
water is released through the breach, forming a positive wave propagating downstream and
a negative wave spreading upstream. The computational parameters used were ε = 10−6

and c1 = 10, c2 = 6, c3 = 11, d1 = 10, d2 = 5, d3 = 11. The VL limiter was applied in all
computations. The solution computed on a 500 × 500 grid at time tout = 200s is shown
in Figs. 20 and 21. The scheme provides a very high resolution of the circular shock wave
and the vortices formed on the breach. The results for the pollutant concentration correctly
describe the physical behavior and are comparable to those presented in [5].

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

X

Y

Figure 20. 2D partial dam-break: 3D plot (left) and contour plot (right) for the water height at tout = 200s

computed by the MUSCL relaxation scheme

Figure 21. Partial dam-break: 3D plot (left) and magnified top view (right) for the pollutant concentration
tout = 200s computed by the MUSCL relaxation scheme
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5.3. Emission of pollutant in a reservoir

This test problem is to simulate the transport and diffusion in a reservoir. The computational
domain is a 200m×200m region subdivided into an 81×81 square grid. The initial stagnant
water depth in the reservoir is h = hL = 1m = hR and u1 = u2 = 0, with no pollutant present
inside the domain. The values of the diffusion coefficients are Dx = Dy = 29.2m2/s. A breach
exists, it is located in the middle of the reservoir, and is 75m in length, having distances
of 30m from the left bank and 95m from the right. The boundary conditions at x = 0
and x = 200m are assumed to be transmissive and all the other boundaries are considered
as reflective. At the beginning at the inlet of the reservoir we impose u1 = 0.1m/s and a
pollutant is released with C = 0.7. The computational parameters used were ε = 1.D−6 and
c1 = c3 = 4, c2 = c4 = 0.25, d1 = d3 = 4, d2 = d4 = 0.15, with the MC limiter. The results
for two consecutive representations in terms of velocity fields and pollutant concentration
distribution are presented in Figs. 22 and 23. We can clearly see the discharge effect on the
evolution of the pollutant concentration on the initially stagnant reservoir water.
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Figure 22. Emission of pollutant in a reservoir: velocity field (left) and pollutant concentration contours
(right) at time t = 40s computed by the MUSCL relaxation scheme
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Figure 23. Emission of pollutant in a reservoir: velocity field (left) and pollutant concentration contours
(right) at time t = 80s computed by the MUSCL relaxation scheme
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6. Conclusions

In the present work, relaxation schemes have been rigorously studied in order to compute
the transport and diffusion of a pollutant in shallow water flows with and without source
terms present. The main feature of the schemes is their simplicity and robustness. Finite
volume shock capturing spatial discretizations, that are Riemann solver free, have been used
to provide an accurate shock resolution and pollutant advection and diffusion. Some of the
limitations of the schemes are also presented, they require further research. The schemes
have been extended in two dimensions. The benchmark tests have shown that the schemes
provide accurate solutions that are in good agreement with analytical or reference solutions.
The results also demonstrate that the relaxation schemes are accurate, simple, efficient and
robust and can be of practical consideration and need further study and development.
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