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Abstract

A generalization and extension of a finite difference method for calculating numerical solutions of the
two dimensional shallow water system of equations is investigated. A previously developed non-oscillatory
relaxation scheme is generalized as to included problems with source terms in two dimensions, with empha-
sis given to the bed topography, resulting to a class of methods of first- and second-order in space and time.
The methods are based on classical relaxation models combined with TVD Runge–Kutta time stepping
mechanisms where neither Riemann solvers nor characteristic decompositions are needed. Numerical
results are presented for several test problems with or without the source term present. The wetting and
drying process is also considered. The presented schemes are verified by comparing the results with docu-
mented ones.
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1. Introduction

During the past decades the shallow water model has been widely used to model physical phe-
nomena of water flows such as, flood waves, dam-breaks, tidal flows in estuary and coastal water
regions, and bore wave propagation in rivers, among others. Substantial effort has been devoted
to the development of computational techniques for that kind of fluid flow simulations, and par-
ticular in the field of finite volumes for systems of conservation laws. There has been a growing
trend in favor of Riemann or Godunov-type based methods constructed within the finite volume
framework, see for example [37] and [24]. Such methods are noted for their good conservation and
shock capturing capabilities. Higher order explicit and implicit TVD schemes for non-linear con-
servation laws utilize exact or approximate Riemann solvers and local characteristic decomposi-
tion when applied to the shallow water equations (SWEs), see for example [1,12,13,27–29,40,43],
which theoretically can be rather complicated and expensive computationally. More recently
many methods were proposed for the numerical approximation of solutions of hyperbolic conser-
vations laws incorporating source terms, with application to the SWEs, based on such methods,
see for example [4,5,11,16,31,39], producing very accurate results.

In general one can classify the different approaches as follows. The first class of methods, so-
called upwind methods rely on approximate solutions of non-linear Riemann problems. This type
of scheme go back to Godunov�s original work. The second class are the central schemes and their
new interpretation as Godunov-type schemes on staggered grids. A third approach to compute the
non-linear fluxes is via relaxation. The concept is based on an approximation on the continuous
level before any kind of discretization. This is a entirely different approach leading to high-reso-
lution and Riemann-solver-free methods. This is important since in the case of complicated sys-
tems of conservation laws (for example in two-phase flow problems where in general we cannot
expect to have an analytical expression for the physical flux or it is not possible to express the flux
in terms of the conserved variables) when the Riemann problem is difficult to solve, even approxi-
mate solvers are difficult to use. The complexity increases even more for high resolution algo-
rithms, where the unknowns are represented with higher order reconstructions. Such
reconstructions should be applied to the local characteristic variables instead of the conserved
ones, as to avoid oscillations on the numerical solution. Again, the computation of the character-
istic variables is a local transformation which can be expensive to compute.

Relaxation schemes, as presented in [17], are based on a relaxation approximation to the non-
linear conservation law, that has linear convection term and does not need a Riemann solver nor
characteristic decomposition and thus enjoy great simplicity. This simplicity can be of great sig-
nificance when one has to solve large scale engineering problems. The key issues, as pointed out in
[30], is that relaxation is a flux approximation that formally can work for any flux function and
that relaxation linearizes the Riemann problem. The above constitute relaxation approximations
an alternative promising approach.

The purpose of the present work is to report on the applicability of recently developed relax-
ation algorithms, introduced in [14] for the one-dimensional case, in order to obtain numerical
solutions for the two-dimensional SWEs. Thus far no application of relaxation schemes has been
reported in solving two-dimensional shallow water problems. The class of relaxation schemes
introduced in [17] has been subsequently widely studied but in a more theoretical context, see
[2,3,7,8,10,19,22,21,26,33,36,38]. Recently in [23] the connection between a simple relaxation
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scheme of the type proposed in [17] and a class of approximate Riemann solvers has been estab-
lished. Using finite volume shock capturing spatial discretizations and a Runge–Kutta method to
provide the time stepping mechanism, the proposed schemes combine simplicity and high effi-
ciency and as thus can be considered as an alternative to finite volume methods based on approx-
imate Riemann solvers. Their performance in various test problems shows that they can provide a
reliable alternative for shallow water wave computations in two dimensions.

This paper is organized as follows: The two-dimensional SWEs are presented in Section 2. The
relaxation systems for two different treatments of the geometrical source term for the SWEs are
introduced in Section 3. The semi-discrete first and second-order schemes are presented in Section
4, and Section 5 is devoted in the presentation of the fully discrete schemes. Finally, in Section 6 a
series of experiments displaying the features of the methods presented.
2. The 2D shallow water equations

The well known two-dimensional shallow water model, which represents mass and momentum
conservation, can be obtained by depth averaging the Navier–Stokes equations. Neglecting diffu-
sion of momentum due to viscosity and turbulence, wind effects and Coriolis terms, the model can
be written in differential conservation law form as a single vector equation
Ut þ FðUÞx þGðUÞy ¼ SðUÞ; ðx; yÞ 2 X; t P 0 ð2:1Þ
in which
U ¼
h

hu1
hu2

0B@
1CA ¼

h

q1
q2

0B@
1CA; SðUÞ ¼

0

�gh
oZ
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ðx; yÞ � ghSx
f

�gh
oZ
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ðx; yÞ � ghSy
f

0BBBB@
1CCCCA;

FðUÞ ¼

q1
q21
h
þ 1

2
gh2

q1q2
h

0BBBB@
1CCCCA; GðUÞ ¼

q2
q1q2
h

q22
h
þ 1

2
gh2

0BBBB@
1CCCCA:
System (2.1) describes the flow at time t at point (x,y) 2 X, where h(x,y, t) P 0 is the height of
the fluid at point (x,y) at time t, X denotes the projection of the domain occupied by the fluid onto
the x–y plane and Z(x,y) is the bottom elevation function (bottom topography). The vector field
(u1,u2) is the average velocity components, and g the gravitational acceleration. Finally, the con-
served variable q (unit discharge) is given by (q1,q2) = (hu1,hu2).

Source terms in the above shallow water system can be divide in two types: bed slopes in the x
and y direction given by �oZ/ox, �oZ/oy, respectively and friction slopes Sx

f and Sy
f in the same

directions. In the model, the friction slope can be estimated by using the empirical resistance rela-
tionships in the Manning form
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Sx
f ¼ n2mu1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22

q
h�4=3; Sy

f ¼ n2mu2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22

q
h�4=3;
where nm is the Manning roughness coefficient.
It is well known that the solutions of system (2.1) present steep fronts and shock discontinuities,

which need to be resolved accurately in applications, and can cause severe numerical difficulties.
Thus, computing numerical solutions of system (2.1) is not trivial due to non-linearity, the pres-
ence of the convective term and the coupling of the equations through the source term. The
important part of the source term in that taken from the bottom topography and thus we will con-
centrate on that when creating relaxation models for the SWEs. On the other hand, the lack of
spatial derivatives in the friction slopes makes its semi-implicit discretization practical. Friction
terms in the SWEs are of relaxation type. However since Manning�s coefficient is typically of order
10�2, it can be verified (see [18]) that the related cell Peclet number is small and that the resulting
relaxation terms are not stiff.
3. Relaxation systems for the 2D SWEs

Relaxation systems for the SWEs are motivated by the relaxation system of [17] for the 2-D
scalar conservation laws. Consider the classical 2-D conservation law
ut þ f ðuÞx þ gðuÞy ¼ 0; ðx; yÞ 2 R2; t > 0;

uðx; y; 0Þ ¼ u0ðx; yÞ; ðx; yÞ 2 R2:
ð3:1Þ
Introducing the artificial variables v, w (relaxation variables) to (3.1), the linear relaxation system
of [17] reads as follows:
ut þ vx þ wy ¼ 0;

vt þ c2ux ¼ � 1

�
ðv� f ðuÞÞ;

wt þ d2uy ¼ � 1

�
ðw� gðuÞÞ

ð3:2Þ
with initial data
uðx; y; 0Þ ¼ u0ðx; yÞ;
vðx; y; 0Þ ¼ v0ðx; yÞ ¼ f ðu0ðx; yÞÞ;
wðx; y; 0Þ ¼ w0ðx; yÞ ¼ gðu0ðx; yÞÞ;
where the small parameter � is the relaxation rate (0 < �� 1) and c,d positive constants. System
(3.2) is dissipative under the following subcharateristic condition
f 0ðuÞ2

c2
þ g0ðuÞ2

d2
6 1 8u; ð3:3Þ
and guarantees that system (3.2) is non-linearly stable, and then in the small relaxation limit
� ! 0+ we recover (3.1).
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Following the previous motivation and the works in [14] and [20], we generalize and extend the
relaxation system for the SWEs in 2D with the topography source term present, replacing the con-
servation law (2.1) by the larger system
ht þ v1x þ w1y ¼ 0; ð3:4aÞ

q1t þ v2x þ w2y ¼ �ghZx; ð3:4bÞ

q2t þ v3x þ w3y ¼ �ghZy; ð3:4cÞ

v1t þ c21hx ¼ � 1

�
ðv1 � q1Þ; ð3:4dÞ

v2t þ c22q1x ¼ � 1

�
v2 �

q21
h
þ g
2
h2

� �� �
; ð3:4eÞ

v3t þ c23q2x ¼ � 1

�
v3 �

q1q2
h

� �� �
; ð3:4fÞ

w1t þ d2
1hy ¼ � 1

�
ðw1 � q2Þ; ð3:4gÞ

w2t þ d2
2q1y ¼ � 1

�
w2 �

q1q2
h

� �� �
; ð3:4hÞ

w3t þ d2
3q2y ¼ � 1

�
w3 �

q22
h
þ g
2
h2

� �� �
: ð3:4iÞ
Setting now
u ¼
h

q1
q2

264
375; v ¼

v1
v2
v3

264
375; w ¼

w1

w2

w3

264
375; ð3:5Þ
system (3.4) can be rewritten as
ut þ vx þ wy ¼ SðuÞ;

vt þ C2ux ¼ � 1

�
ðv� FðuÞÞ

wt þD2uy ¼ � 1

�
ðw�GðuÞÞ;

ð3:6Þ
where now u; v;w 2 R3 and C2;D2 2 R3�3 are positive diagonal matrices. We assume without loss
of generality that C,D have positive eigenvalues cj, dj > 0 for j = 1,2,3. Consequently, in the limit
�! 0+ system (3.6) approaches the original system (2.1) by the local equilibrium v = F(u) and
w = G(u).
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System (3.6) can now be further reformulated as
u

v

w

26664
37775
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þ

0 I 0

C2 0 0

0 0 0
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37775

u

v

w
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x

þ
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v

w
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y

¼

SðuÞ

� 1
�
ðv� FðuÞÞ

� 1
�
ðw�GðuÞÞ

26664
37775: ð3:7Þ
We also consider the following two novel variants, of the above relaxation system:
ht þ v1x þ w1y ¼ 0; ð3:8aÞ

q1t þ v2x þ w2y ¼ 0; ð3:8bÞ

q2t þ v3x þ w3y ¼ 0; ð3:8cÞ

v1t þ c21hx ¼ � 1

�
ðv1 � q1Þ; ð3:8dÞ

v2t þ c22q1x ¼ � 1

�
v2 �

q21
h
þ g

2
h2

� �� �
þ 1

2

1

�

Z x

ghðs; yÞ oZ
ox

ðs; yÞds; ð3:8eÞ

v3t þ c23q2x ¼ � 1

�
v3 �

q1q2
h

� �� �
þ 1

2

1

�

Z x

ghðs; yÞ oZ
oy

ðs; Þds; ð3:8fÞ

w1t þ d2
1hy ¼ � 1

�
w1 � q2ð Þ; ð3:8gÞ

w2t þ d2
2q1y ¼ � 1

�
w2 �

q1q2
h

� �� �
þ 1
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1

�

Z y
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ðx; sÞds; ð3:8hÞ
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þ 1
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1
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ðx; sÞds; ð3:8iÞ
and the alternative form
ht þ v1x þ w1y ¼ 0; ð3:9aÞ

q1t þ v2x þ w2y ¼ 0; ð3:9bÞ

q2t þ v3x þ w3y ¼ 0; ð3:9cÞ

v1t þ c21hx ¼ � 1

�
v1 � q1ð Þ; ð3:9dÞ

v2t þ c22q1x ¼ � 1

�
v2 �

q21
h
þ g

2
h2

� �� �
þ 1

�

Z x

ghðs; yÞ oZ
ox

ðs; yÞds; ð3:9eÞ
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v3t þ c23q2x ¼ � 1

�
v3 �

q1q2
h

� �� �
; ð3:9fÞ

w1t þ d2
1hy ¼ � 1

�
w1 � q2ð Þ; ð3:9gÞ
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2q1y ¼ � 1

�
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q1q2
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� �� �
; ð3:9hÞ
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3q2y ¼ � 1

�
w3 �

q22
h
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2
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� �� �
þ 1

�

Z y

ghðx; sÞ oZ
oy

ðx; sÞds; ð3:9iÞ
written in vector form as
u

v

w

264
375

t

þ
0 I 0

C2 0 0

0 0 0

264
375 u

v

w

264
375

x

þ
0 0 I

0 0 0

D2 0 0

264
375 u

v

w

264
375

y

¼

0

� 1

�
ðv� FðuÞÞ � 1

�
eSðuÞ

� 1

�
ðw�GðuÞÞ � 1

�

eeSðuÞ

26664
37775; ð3:10Þ
where
eSðuÞ ¼ 0

�
R x ghðs; yÞ oZ

ox ðs; yÞds
0

264
375 and

eeSðuÞ ¼ 0

0

�
R y ghðx; sÞ oZ

oy ðx; sÞds

264
375
or
eSðuÞ ¼ 0

� 1
2

R x ghðs; yÞ oZ
ox ðs; yÞds

� 1
2

R x ghðs; yÞ oZ
oy ðs; yÞds

264
375 and

eeSðuÞ ¼ 0

� 1
2

R y ghðx; sÞ oZ
ox ðx; sÞds

� 1
2

R y ghðx; sÞ oZ
oy ðx; sÞds

264
375:
Relaxation system (3.10) approaches, in the limit, the original system (2.1) by the local
equilibrium
v ¼ FðuÞ � eSðuÞ and w ¼ GðuÞ � eeSðuÞ:

The original conservation law, in all formulations, has now been replaced by a linear hyperbolic
system with a relaxation source term which rapidly drives to local equilibriums in the relaxation
limit � ! 0+. In some cases it can be shown analytically that solutions to (3.7) approach solutions
to the original conservation law. See for example [9,25,30,42,38,41], for discussions of this condi-
tion and convergence properties.

A general necessary condition for such convergence is that the subcharacteristic condition is
satisfied. For systems (3.7), (3.10) we require that
k2i
c2i

þ l2
i

d2
i

6 1 8i ¼ 1; 2; 3 ð3:11Þ
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with ki, li being the eigenvalues of oF(u)/ou and oG(u)/ou, respectively. By doing so we insure that
the characteristic speeds of the hyperbolic part of (3.7) or (3.10) are at least as large as the char-
acteristic speeds of the original problem. Hence, by choosing the constants ci,di appropriately, so
that the subcharacteristic condition hold true, in the relaxation limit � ! 0+ we recover (2.1), for
both relaxation systems (3.7) and (3.10).
4. Semi-discrete relaxation schemes

We start first with the semi-discrete schemes for the relaxation systems (3.7) and (3.10). We con-
sider a classical first-order upwind scheme and a second-order MUSCL scheme. For brevity we
present the semi-discrete schemes for system (3.10). Since the relaxation system has linear convec-
tion terms, it is rather simple to employ an upwind scheme, in contrast to a non-linear system of
conservation laws where in an upwind scheme the use of a Riemann solver and local characteristic
decomposition are necessary. The relaxation scheme treats the spatial and time discretization
separately.

To discretize the system of equations, a spatially 2D domain of integration, divided into cells
(i, j), is assumed, with a uniform grid widths in each direction, Dx ¼ xiþ1

2
� xi�1

2
, Dy ¼ yiþ1

2
� yi�1

2

and a uniform time step Dt = tn+1�tn, n = 0,1,2, . . .. The approximate solution, denoted as
the discrete value unij, is the approximate cell average of the variable u in the cell
ðxiþ1

2
; xi�1

2
Þ � ðyiþ1

2
; yi�1

2
Þ at time t = tn. The approximate point value of u at ðx; yÞ ¼ ðxiþ1

2
; yjþ1

2
Þ at

time t = tn is denoted by un
iþ1

2;jþ
1
2
.

4.1. The upwind scheme

We start by considering the following one-step conservative system for the homogeneous case
(no source term is present)
o

ot
uij þ

1

Dx
ðviþ1

2;j
� vi�1

2;j
Þ þ 1

Dy
ðwi;jþ1

2;
� wi;j�1

2
Þ ¼ 0;

o

ot
vij þ

1

Dx
C2ðuiþ1

2;j
� ui�1

2;j
Þ ¼ � 1

�
ðvij � FðuijÞÞ;

o

ot
wij þ

1

Dy
D2ðui;jþ1

2
� ui;j�1

2
Þ ¼ � 1

�
ðwij �GðuijÞÞ:

ð4:1Þ
The linear hyperbolic part of the (4.1) has two Riemann invariants (characteristic speeds) in each
direction, v ± Cu in the x-direction and w ± Du in the y-direction, associated with the character-
istic fields ±C and ±D, respectively. The first-order upwind scheme applied to v ± Cu and w ± Du
gives
ðvþ CuÞiþ1
2;j
¼ ðvþ CuÞij; ðv� CuÞiþ1

2;j
¼ ðv� CuÞiþ1;j;

ðwþDuÞi;jþ1
2
¼ ðwþDuÞij; ðw�DuÞi;jþ1

2
¼ ðw�DuÞi;jþ1:

ð4:2Þ
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Hence,
uiþ1
2;j
¼ 1

2
ðuij þ uiþ1;jÞ �

1

2
C�1ðviþ1;j � vijÞ;

viþ1
2;j
¼ 1

2
ðvij þ viþ1;jÞ �

1

2
Cðuiþ1;j � uijÞ;

ui;jþ1
2
¼ 1

2
ðuij þ ui;jþ1Þ �

1

2
D�1ðwi;jþ1 � wijÞ;

wi;jþ1
2
¼ 1

2
ðwij þ wi;jþ1Þ �

1

2
Dðui;jþ1 � uijÞ:

ð4:3Þ
We can then construct the following first-order upwind semi-discrete approximation of the relax-
ation scheme (3.10):
o

ot
uij þ

ðviþ1;j � vi�1;jÞ
2Dx

þ ðwi;jþ1 � wi;j�1Þ
2Dy

� Cðuiþ1;j � 2uij þ ui�1;jÞ
2Dx

�Dðui;jþ1 � 2uij þ ui;j�1Þ
2Dy

¼ 0;

o

ot
vij þ

C2ðuiþ1;j � ui�1;jÞ
2Dx

� Cðviþ1;j � 2vij þ vi�1;jÞ
2Dx

¼ � 1

�
ðvij � FðuijÞÞ �

1

�
eSðuijÞ;

o

ot
wij þ

D2ðui;jþ1 � ui;j�1Þ
2Dy

�Dðwi;jþ1 � 2wij þ wi;j�1Þ
2Dy

¼ � 1

�
ðwij �GðuijÞÞ �

1

�

eeSðuijÞ:
ð4:4Þ
where eS; eeS as defined for the system (3.10).

4.2. A MUSCL scheme

To construct a second-order accurate in space scheme, the piecewise constant approximation
(4.2) is replaced with an MUSCL piecewise linear interpolation which, applied to the kth compo-
nent of v ± Cu, gives, respectively:
ðvþ ckuÞiþ1
2;j
¼ ðvþ ckuÞij þ

1

2
Dxsx;þij ;

ðv� ckuÞiþ1
2;j
¼ ðv� ckuÞiþ1;j �

1

2
Dxsx;�iþ1;j;

ðwþ dkuÞi;jþ1
2
¼ ðwþ dkuÞij þ

1

2
Dysy;þij ;

ðw� dkuÞi;jþ1
2
¼ ðv� dkuÞi;jþ1 �

1

2
Dysy�i;jþ1;

ð4:5Þ
where u, v and w are the kth (1 6 k 6 3 for the SWEs) components of v,u and w, respectively, with
s being the slopes in the (i, j)th cell, defined as
sx;�ij ¼ 1

Dx
ðviþ1;j � ckuiþ1;j � vij � ckuijÞ/ðhx;�ij Þ ð4:6Þ
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with
hx;�ij ¼ vij � ckuij � vi�1;j � ckui�1;j

viþ1;j � ckuiþ1;j � vi;j � ckuij
ð4:7Þ
and
sy;�ij ¼ 1

Dy
ðwi;jþ1 � dkui;jþ1 � wij � dkuijÞ/ðhy;�ij Þ ð4:8Þ
with
hy;�ij ¼ wij � dkuij � wi;j�1 � dkui;j�1

wi;jþ1 � dkui;jþ1 � wi;j � dkuij
; ð4:9Þ
where / is a limiter function, as defined for example by Sweby [35], satisfying
0 6 /ðhÞ 6 MinModð2; 2hÞ:
There are several options on choosing a limiter function. Some of the most popular ones are,
the MinMod (MM) limiter
/ðhÞ ¼ maxð0;minð1; hÞÞ;
the Superbee (SB) limiter
/ðhÞ ¼ maxð0;minð2h; 1Þ;minðh; 2ÞÞ;
the VanLeer (VL) limiter
/ðhÞ ¼ j h j þh
1þ j h j ;
and the monotonized central (MC) limiter
/ðhÞ ¼ maxð0;minðð1þ hÞ=2; 2; 2hÞÞ:

The last three limiters have been shown to exhibit sharper resolution of discontinuities, since they
do not reduce the slope as severely as MM near a discontinuity.

Following from (4.5) we get:
uiþ1
2;j
¼ 1

2
ðuij þ uiþ1;jÞ �

1

2ck
ðviþ1;j � vijÞ þ

Dx
4ck

ðsx;þij þ sx;�iþ1;jÞ;

viþ1
2;j
¼ 1

2
ðvij þ viþ1;jÞ �

ck
2
ðuiþ1;j � uijÞ þ

Dx
4
ðsx;þij � sx;�iþ1;jÞ;

ð4:10Þ

ui;jþ1
2
¼ 1

2
ðuij þ ui;jþ1Þ �

1

2dk
ðwi;jþ1 � wijÞ þ

Dy
4dk

ðsy;þij þ sy;�i;jþ1Þ;

wi;jþ1
2
¼ 1

2
ðwij þ wi;jþ1Þ �

dk

2
ðui;jþ1 � uijÞ þ

Dy
4
ðsy;þij � sy;�i;jþ1Þ:

ð4:11Þ
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Then the second-order (in space) semi-discrete relaxation scheme is given componentwise by
o

ot
uij þ

1

2Dx
ðviþ1;j � vi�1;jÞ �

ck
2Dx

ðuiþ1;j � 2uij þ ui�1;jÞ �
dk

2Dy
ðwi;jþ1 � 2wij þ wi;j�1Þ

þ 1

4
ðsx;þij � sx;�iþ1;j � sx;þi�1;j þ sx;�ij þ sy;þij � sy;�i;jþ1 � sy;þi;j�1 þ sy;�ij Þ ¼ 0;

o

ot
vij þ

c2k
2Dx

ðuiþ1;j � ui�1;jÞ �
ck
2Dx

ðviþ1;j � 2vij þ vi�1;jÞ

þ ck
4
ðsx;þij þ sx;�iþ1;j � sx;þi�1;j � sx;�ij Þ ¼ � 1

�
ðvij � F kðuijÞÞ �

1

�
eSkðuijÞ;

o

ot
wij þ

d2
k

2Dy
ðui;jþ1 � ui;j�1Þ �

dk

2Dy
ðwi;jþ1 � 2wij þ vi;j�1Þ

þ dk

4
ðsy;þij þ sy;�iþ1;j � sy;þi�1;j � sy;�ij Þ ¼ � 1

�
ðwij � GkðuijÞÞ �

1

�
eeS kðuijÞ

ð4:12Þ
with eSk;
eeS k; F k;Gk being the kth components of eS; eeS ;F and G, respectively. Notice that in the case

the slope s± = 0 or / = 0, the MUSCL scheme (4.12) reduces to the upwind scheme (4.4).
5. Fully discrete schemes

In this section we present the time discretization of the semi-discrete relaxation schemes applied
to the SWEs. The obvious advantage of the relaxation approximation is that partial differential
operator is linear and can easily diagonalized. Moreover, the ODE determined by the right side
is a stiff but linear system, note that ut = 0 and thus implicit methods can be applied without solv-
ing linear systems of equations. That is what makes numerical schemes based on relaxation so
attractive. We will compare the two space discretization, upwind and MUSCL, applying an im-
plicit Runge–Kutta method as the time marching mechanism to advance the solution by one time
step Dt. To simplify the presentation we assume that Z � 0, then

(A) Given un, vn, wn apply a finite volume method to update u, v and w over time Dt by solving the
homogeneous linear hyperbolic system
u

v

w

24 35
t

þ
0 I 0

C2 0 0

0 0 0

24 35 u

v

w

24 35
x

þ
0 0 I

0 0 0

D2 0 0

24 35 u

v

w

24 35
y

¼
0

0

0

24 35: ð5:1Þ
and obtain new values u(1), v(1) and w(1).
(B) Update u(1), v(1), w(1) to un+1, vn+1, wn+1 by solving the equations
ut ¼ 0;

vt ¼ � 1

�
ðv� FðuÞÞ;

wt ¼ � 1

�
ðw�GðuÞÞ;

ð5:2Þ
over time Dt.
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A second-order implicit–explicit (IMEX) Runge–Kutta splitting scheme was introduced in [17]
and is utilized here for both source term formulations. The splitting treats, alternatively, the stiff
source terms 1

�
ðv� FðuÞÞ and 1

�
ðw�GðuÞÞ implicitly in two steps (that due to linearity of v and w

one still solve them explicitly), and the convection terms with two explicit steps. Thus, we have an
explicit implementation of an implicit source term, with stability constraints solely determined by
the non-stiff convection terms, just as in a usual shock capturing scheme.

For the first source term application, corresponding to system (3.7), and temporarily dropping
the subscript indices, given {un,vnwn}, then {un+1,vn+1wn+1} are computed by
un;1 ¼ un; ð5:3aÞ

vn;1 ¼ vn þ Dt
�
ðvn;1 � Fðun;1ÞÞ; ð5:3bÞ

wn;1 ¼ wn þ Dt
�
ðwn;1 �Gðun;1ÞÞ; ð5:3cÞ

uð1Þ ¼ un;1 � DtðDx
þv

n;1 þ Dy
þw

n;1Þ þ DtSðun;1Þ; ð5:3dÞ

vð1Þ ¼ vn;1 � DtC2Dx
þu

n;1; ð5:3eÞ

wð1Þ ¼ wn;1 � DtD2Dy
þu

n;1; ð5:3fÞ

un;2 ¼ uð1Þ; ð5:3gÞ

vn;2 ¼ vð1Þ � Dt
�
ðvn;2 � Fðun;2ÞÞ � 2Dt

�
ðvn;1 � Fðun;1ÞÞ; ð5:3hÞ

wn;2 ¼ wð1Þ � Dt
�
ðwn;2 �Gðun;2ÞÞ � 2Dt

�
ðwn;1 �Gðun;1ÞÞ; ð5:3iÞ

uð2Þ ¼ un;2 � DtðDx
þv

n;2 þ Dy
þw

n;2Þ þ DtSðun;2Þ; ð5:3jÞ

vð2Þ ¼ vn;2 � DtC2Dx
þu

n;2; ð5:3kÞ

wð2Þ ¼ wn;2 � DtD2Dy
þu

n;2; ð5:3lÞ

unþ1 ¼ 1

2
ðun þ uð2ÞÞ; ð5:3mÞ

vnþ1 ¼ 1

2
ðvn þ vð2ÞÞ; ð5:3nÞ

wnþ1 ¼ 1

2
ðwn þ wð2ÞÞ; ð5:3oÞ
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where
Dx
þpij ¼

1

Dx
ðpiþ1

2;j
� pi�1

2;j
Þ

and
Dy
þpij ¼

1

Dy
ðpi;jþ1

2
� pi;j�1

2
Þ:
Further in the case of the system (3.10) with the source term present, we get
un;1 ¼ un; ð5:4aÞ

vn;1 ¼ vn þ Dt
�
ðvn;1 � Fðun;1ÞÞ þ Dt

�
eSðun;1Þ; ð5:4bÞ

wn;1 ¼ wn þ Dt
�
ðwn;1 �Gðun;1ÞÞ þ Dt

�

eeSðun;1Þ; ð5:4cÞ

uð1Þ ¼ un;1 � DtðDx
þv

n;1 þ Dy
þw

n;1Þ; ð5:4dÞ

vð1Þ ¼ vn;1 � DtC2Dx
þu

n;1; ð5:4eÞ

wð1Þ ¼ wn;1 � DtD2Dy
þu

n;1; ð5:4fÞ

un;2 ¼ uð1Þ; ð5:4gÞ

vn;2 ¼ vð1Þ � Dt
�
ðvn;2 � Fðun;2ÞÞ � 2Dt

�
ðvn;1 � Fðun;1ÞÞ � Dt

�
eSðun;2Þ � 2Dt

�
eSðun;1Þ; ð5:4hÞ

wn;2 ¼ wð1Þ � Dt
�
ðwn;2 �Gðun;2ÞÞ � 2Dt

�
ðwn;1 �Gðun;1ÞÞ � Dt

�

eeSðun;2Þ � 2Dt
�

eeSðun;1Þ; ð5:4iÞ

uð2Þ ¼ un;2 � DtðDx
þv

n;2 þ Dy
þw

n;2Þ; ð5:4jÞ

vð2Þ ¼ vn;2 � DtC2Dx
þu

n;2 ð5:4kÞ

wð2Þ ¼ wn;2 � DtD2Dy
þu

n;2; ð5:4lÞ

unþ1 ¼ 1

2
ðun þ uð2ÞÞ; ð5:4mÞ

vnþ1 ¼ 1

2
ðvn þ vð2ÞÞ; ð5:4nÞ

wnþ1 ¼ 1

2
ðwn þ wð2ÞÞ; ð5:4oÞ
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It is important to note that no information about the eigensystem of the Jacobian of the non-
linear flux is required, except an upper bound of the largest eigenvalue in modulus, in order to
adjust the parameter in C and D according to the subcharacteristic condition. In the relaxation
context the characteristic variables are defined by a global transformation unlike the characteristic
variables of the non-linear conservation law. The characteristic variables are still much simpler
than those of the non-linear conservation law, since the relaxation system has linear characteristic
variables v ± Cu and w ± Du. It is worth noting here that, using the above schemes neither linear
algebraic equation nor non-linear source terms arise. In addition both first and second-order
relaxation schemes are stable under a CFL condition
max ðmax
i

ciÞ
Dt
Dx

; ðmax
i

diÞ
Dt
Dy

� �
6 1: ð5:5Þ
In order to retain the TVD property (see [17,7,36]) a more strict restriction has to be imposed on
the usual CFL condition, and that has been applied in the following section in order to calculate
Dt
CFL ¼ max ðmax
i

ciÞ
Dt
Dx

; ðmax
i

diÞ
Dt
Dy

� �
6

1

2
:

The time discretization in the limit when � ! 0+ converges to the TVD Runge–Kutta schemes
given in [34].
6. Numerical tests and results

In this section we present some classical numerical tests and the obtained results that demon-
strate and validate the performance of the relaxation schemes presented for the 2D SWEs. In all
computations presented here the value of the CFL number used was set to 0.5.

6.1. Initial and boundary conditions

We choose the initial conditions for all the relaxation systems presented above as
uðx; y; 0Þ ¼ u0ðx; yÞ;
vðx; y; 0Þ ¼ v0ðx; yÞ � Fðu0ðx; yÞÞ;
wðx; y; 0Þ ¼ w0ðx; yÞ � Gðu0ðx; yÞÞ:
In the small relaxation limit (�! 0+) the relaxation systems presented here satisfy the local equi-
libriums, and by choosing the above for v and w we avoid the introduction of an initial layer
through the relaxation system.

For the boundary conditions given the physical boundary conditions, ub, that should imposed
for each problem (transmissive or reflective in the following test problems), then we set vb = F(ub)
and wb = G(ub) as to avoid the introduction of artificial boundary layers. In general, any choice
that leads at the limit to the associated boundary and initial equilibrium can be used.
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In practice, the choices of ck, dk, k = 1,2,3, in all the numerical tests are based on rough esti-
mates of the eigenvalues ðu1; u1 �

ffiffiffiffiffi
gh

p
Þ and ðu2; u2 �

ffiffiffiffiffi
gh

p
Þ of the Jacobian matrices oF(u)/ou and

oG(u)/ou, respectively, of the original SWEs, as to satisfy the subcharacteristic condition (3.11).
Another choice is to calculate c and d locally at every cell as
ciþ1
2;j
¼ max

u2fu
iþ1

2
;j
;u
i�1

2
;j
g
j oFðuÞ=ouk j; di;jþ1

2
¼ max

u2fu
i;jþ1

2
;u

i;j�1
2
g
j oGðuÞ=ouk j :
A global choice is simply to take the maximum over the grid points as
ck ¼ dk ¼ max
i;j

ðciþ1
2;j
; di;jþ1

2
Þ:
Other choices can be made as long as numerical stability is maintained. It should be noted here
that larger values for the ck, dk, usually add more numerical viscosity, so for accuracy reasons
it is desirable to have the ck, dk as small as possible. The first choice for calculating the character-
istic speeds was proven sufficient for our calculations, although it is an interesting area of numer-
ical analysis which could benefit from further investigation.

The relaxation parameter � should be small with respect to the time step and space mesh length,
that is Dt� � and Dy,Dx� �. Again here, � plays the role of viscosity coefficient so more numer-
ical diffusion will be added for relatively larger values of �.

Next, two typical examples of 2D dam-break problems are solved and discussed by solving the
SWEs using the above relaxation scheme.

6.2. 2D partial dam-break

The first two-dimensional hypothetical problem is the one presented in [15]. The aim of this test
case is to study the capability of the schemes to simulate different front wave propagations, with
particular attention to the 2D aspects of the flow when different options (e.g. limiters) are used.

For this problem the dam, located in the center of a region, is assumed to partially fail instan-
taneously. The bottom is frictionless (nm = 0). The water depth upstream of the dam is hu = 10 m
and downstream is assumed to be either hd = 5,0.1,0 m (dry). Small (or even dry) downstream
depths consist more severe tests for a numerical scheme. The computational domain is a
200 m · 200 m region which has been subdivided into 41 · 41 square grid. The breach is 75 m
in length, which has distances of 30 m from the left bank and 95 m from the right. The boundary
conditions at x = 0 and x = 200 m are assumed to be transmissive and all other boundaries are
considered as reflective. At the instant of breaking of the dam, water is released through the
breach, forming a positive wave propagating downstream and a negative wave spreading up-
stream. When hd = 5 m the flow is subcritical everywhere.

The results after t = 7.2 s for the upwind relaxation scheme are shown in Fig. 1 in terms of
water depth, contour of depth and velocity field, respectively. The computational parameters used
were � = 10�6 and c1 = 10, c2 = 6, c3 = 11, d1 = 10, d2 = 5, d3 = 11. The improvements in resolu-
tion and the calculation of fine details of the flow, when compare the results with the second-order
MUSCL scheme in Fig. 2 with the MM limiter, can be clearly seen. The differences of applying
different limiters to the MUSCL scheme can be seen when compare with the results obtained in
Fig. 3 using the SB limiter, and the same computational parameters.
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Fig. 1. Water depth and depth contours with the velocity field, for the partial dam-break flow (hd = 5 m) at t = 7.2 s
computed with the upwind relaxation scheme.
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Fig. 2. Water depth and depth contours with the velocity field, for the partial dam-break flow (hd = 5) at t = 7.2 s
computed with the MUSCL relaxation scheme (MM limiter).

A.I. Delis, Th. Katsaounis / Applied Mathematical Modelling 29 (2005) 754–783 769
There is no analytical reference solution for this test case, but in the literature numerical results
of various authors are available (e.g. [15,1,28,29,43,40]) The behavior of the relaxation schemes is
in satisfactory agreement with computed results of these authors.

When there is a finite water depth downstream, a shock front always exists, see Fig. 4. This is
not the case for the dry bed case. In the dry bed case the bore propagates much faster and at time
t = 7.2 s has reached out to the computational domain boundary. There is also a significant dif-
ference in the velocity vector field in the two cases, see Fig. 5. Dealing with dry regions during the
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computational process one or more eigenvalues might vanish. Consequently, the estimation of the
characteristic speeds needed for the relaxation system is not valid anymore. In order to overcome
this difficulty and treat dry cells in the computational domain, we perturbed the values of C and D
by adding a threshold 10�3 to these characteristic speeds whenever they vanish. In the relaxation
method no modifications have been incorporated to either the spatial discretizations or the IMEX
time integration scheme. We point out that, the fact that one can resolve dry areas without
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modification of the scheme is due to the positivity preserving property of the scheme. We refer for
example to [32] where further discussions on positivity-preserving property for the relaxation
schemes can be found.

In the wet bed cases although there is a finite water depth downstream the flow velocity van-
ishes. In the dry case, the water depth is extremely small. We use an 81 · 81 grid to calculate
the solution in the dry case shown in Fig. 5, that was proven more stable to capture the fine details
of the flow. In the numerical scheme, h and q are the calculated variables. Machine precision will
produce finite values for the dependant variable u, calculated as u = q/h, even though to machine
precision h is considered as zero, see [43]. The results in Figs. 4 and 5 compare well with others
found in the literature.

6.3. Circular dam-break in 2D

Another benchmark example is the one presented in [1]. It involves the breaking of a circular
dam, and it is an important test example for the analysis and performance of the presented algo-
rithms when solving complex shallow flow problems, especially for symmetry. Initially, the phys-
ical model is that of two regions of still water separated by a cylindrical wall (with radius 11 m)
centered in a 50 · 50 m square domain. The water depth within the cylinder is 10 m and 1 m out-
side. The wall is then assumed to be removed completely and no slope or friction is considered.
This is like a two dimensional Riemann problem for the 2D SWEs. The circular dam-break bore
waves will spread and propagate radially and symmetrically as the water drains from the deepest
region. Then there is a transition from subcritical to supercritical flow.

The results after t = 0.69 s (calculated in a 51 · 51 grid) are shown and compared for the dif-
ferent spatial accuracy and limiters used in Figs. 6–10, in terms of water depth, contour of depth
and velocity field, respectively. The computational parameters used were � = 10�6 and
c1 = c3 = 12,c2 = 7,d1 = d3 = 12,d2 = 7.
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It can be clearly seen that the waves spread uniformly and symmetrically, with the radial sym-
metry slightly distorted by the effects of the grid due to the inability to represent a circle on a
square grid, but otherwise the solution is very accurate and agrees very well with those presented
for example in [1,28,29]. The second-order relaxation scheme produces sharp resolution of the
abrupt changes. In all the results, there are small secondary waves (produced from the interaction
of the initial discontinuity with that of the representation of the circle) which vanish as the solu-
tion evolves. The influence of the slope limiters used for the simulation can be seen comparing
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Fig. 8. Water depth and depth contours with the velocity field, at t = 0.69 s for the circular dam-break fl ow computed
with the MUSCL relaxation scheme (VL limiter).
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Fig. 9. Water depth and depth contours with the velocity field, at t = 0.69 s for the circular dam-break flow computed
with the MUSCL relaxation scheme (MC limiter).
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Figs. 7–10. As for the partial dam case, the MM limiter introduces the greatest diffusion smooth-
ing the solution. The SB limiter produces the sharpest resolution. Similar observations were made
in [43].

The case of an initially dry bed outside the cylinder is also considered here and presented in Fig.
11 for the MUSCL relaxing scheme with the VL limiter used in a 81 · 81 grid. It can be seen that
no bore forms, instead a rarefaction wave extends into the dry region. The scheme is capable of
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Fig. 10. Water depth and depth contours with the velocity field, at t = 0.69 s for the circular dam-break flow computed
with the MUSCL relaxation scheme (SB limiter).
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handling the dry bed problem. The computational parameters used for this problem were
� = 1E�6 and c1 = c3 = 12.5, c2 = 10,d1 = d3 = 12.5, d2 = 10.

6.3.1. Toro’s reference solution
This is a test problem similar to the one presented above, and it was discussed in [37]. We con-

sider a circular dam of radius 2.5 m in the center of a 40 m · 40 m square domain, with the water
depth within the dam set at 2.5 m high and 0.5 m outside. We apply the MUSCL relaxation
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scheme using the SB limiter in all computations. The computational parameters used were
� = 10�6, c1 = c3 = 5, c2 = 2, d1 = d3 = 5, d2 = 2. We have used a fine mesh of 201 · 201 cells,
as to be consistent with that used to calculate the reference solution in [37]. The purpose of this
test is to compare our results with those produced in [37] using other well establish methods, in
order to study the wave propagation phenomena associated with this problem.

In Fig. 12, where the water depth profile is shown for time t = 0.4 s on the left, an outward-
propagating circular shock and an inward-propagating circular rarefaction wave can be clearly
seen. At this time the rarefaction is about to reach the center of the dam. At time t = 0.7 s
(Fig. 12 on the right) the circular rarefaction has by now imploded into the center and has
Fig. 12. Circular dam-break water depth at times t = 0.4 s (left) and t = 0.7 s (right).

Fig. 13. Circular dam-break water depth at times t = 1.4 s side view (left) and bottom view (right).



Fig. 14. Circular dam-break water depth at times t = 3.5 s top view (left) and bottom view (right).

Fig. 15. Circular dam-break water depth at times t = 4.7 s top view (left) and bottom view (right).
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reflected producing a very pronounced fall of the water depth right in the center. As mentioned in
[37] this feature is difficult to resolve numerically.

In Fig. 13 the water depth is displayed at time t = 1.4 s. Here the circular shock has propagated
further outwards and the reflected inner circular rarefaction has overexpanded the flow to the
point that the free surface position has fallen below the initial water depth of 0.5 m outside the
dam, producing a secondary circular shock below this depth as can be seen from the bottom view
in Fig. 13 on the right.

Fig. 14 shows the corresponding top and bottom view of the water depth at time t = 3.5 s,
where the primary circular shock has propagated further away from the center and the secondary
circular shock has propagated towards the center. Fig. 15 shows a top and bottom view of the
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water depth at time t = 4.7 s, which is shortly after the secondary shock has imploded into the
center. This shock has reflected from the center and is now propagating outwards.

All the results presented in Figs. 12–15 are in perfect agreement with those presented in [37],
where this problem has been extensively studied.

6.4. Steady flow over a hump

As a first problem with a source term present we consider the academic test case, presented in
[5], of a 1 m · 1 m square pool with a symmetric hump situated at the center presented in [5]. The
pool is assume totally closed by solid vertical walls. The bump is mathematically defined by
Fig. 17. Water depth propagation at t = 0 s (left) and t = 2 s (right).
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Initial conditions covering totally the bump are h + Z = 0.5 m,u1 = u2 = 0 m/s. The flow evolves
during 60 s and the initial steady-state must be preserved. The results for scheme (3.10) (that was
proven in [14] more accurate for similar 1D problems when compared to scheme (3.7)) are pre-
sented in Fig. 16. A uniform 51 · 51grid was used and the computational parameters were
� = 10�8 and c1 = c3 = 2.5, c2 = 0.5, d1 = d3 = 2.5, d2 = 0.5. The steady-state is correctly main-
tained. The overall equilibrium is conserved with no unphysical velocities appearing in the results
that would alter the steady-state.
Fig. 18. Water depth propagation at t = 5 s (left) and t = 10 s (right).

Fig. 19. Water depth propagation at t = 20 s (left) and t = 30 s (right).
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6.5. Dam-break in a channel with topography and friction

In this test case, the performance of the relaxation scheme as to calculate more realistic situa-
tions is validated. The problem is similar to that presented in Refs. [5,6]. In a channel 75 m long
and 30 m wide the dam is situated at x = 16 m with initial water depth h + Z = 1.875 m while the
rest of the channel is considered dry. Three mounds are located in the channel bottom. The initial
condition and the channel geometry can be seen in Fig. 17 on the left. The Manning coefficient
nm = 0.018 for this problem. Boundary fixed conditions are solid walls. The computational
parameters used were � = 10�8, ci = di = 5, i = 1,2,3, with the application of the MC limiter.
Fig. 21. Water depth propagation at t = 60 s (left) and t = 400 s (right).

Fig. 20. Water depth propagation at t = 40 s (left) and t = 50 s (right).
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Numerical results are presented in Figs. 17–21 for water depth at different times to show the prop-
agation of the flood until steady-state is reached. The small mounds are covered by the water in its
propagation and the effect of advancing and recession over the sloppy bed is clear. The higher
mound is always almost dry and the accumulation of water can be clearly observed. The collision
of the advancing front first with the higher mound and then with the downstream boundary wall
can be seen having the expected physical behavior. The generation of dry bed can also be observed
for the small mounds as time evolves until it reaches a steady-state. The contour plots for h, along
with the velocity field, at times t = 60 s and t = 400 s are also presented in Fig. 22, where one can
clearly see the final state state solution. The time evolution of the mass error calculated, as in [6],
taking into account the initial mass volume (VI) and the mass volume at each time step (Vn), in the
form
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Mass Errorð%Þ ¼ V n � V I

V I
is also presented in Fig. 23 where it is clear that the scheme is highly conservative, with small con-
servation error even when advance takes place over the initially dry bed.
7. Conclusions

In the present work relaxation schemes have been studied in order to compute numerical solu-
tions for the two dimensional shallow water flows with and without source terms present. The
main feature of the schemes is their simplicity and robustness. Finite volume shock capturing spa-
tial discretization, that are Riemann solver free, have been used providing accurate shock resolu-
tion. Novel ways to incorporate the topography source term were applied with the relaxation
model and only small errors were introduced while preserving steady-states. From theoretical
point of view, the reconstruction proposed in the paper for relaxation system can be extended
to the SWEs with space dependent flux and Coriolis forces. All what the relaxation methods re-
quire is the correct local equilibrium used to recover the original system when �! 0. Once the
local equilibrium is given, initial and boundary conditions for the relaxation system can be easily
reconstructed, and an accurate selection of the characteristic speeds can also be estimated. The
benchmark tests have shown that the schemes provide accurate solutions in good agreement with
well documented ones. Though comparable resolutions with other well established methods are
offered, the relaxation schemes have simplicity as their main advantage. The results also demon-
strate that relaxation schemes are accurate, efficient and robust and can be of practical consider-
ation and further development when solving shallow water flow problems.
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