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Abstract 

In the Toda shock problem (see [7], (1 11, [S], and also 131) one considers a driving particle moving 
with a fixed velocity 2a and impinging on a one-dimensional semi-infinite lattice of particles, initially 
equally spaced and at rest, and interacting with exponential forces. In this paper we consider the 
related Toda rarefaction problem in which the driving particle now moves away from the lattice at 
fixed speed, in analogy with a piston being withdrawn, as it were, from a container filled with gas. 

We make use of the Riemann-Hilbert factorization formulation of the related inverse scattering 
problem. In the case where the speed 21al of the driving particle is sufficiently large (la1 > l), we 
show that the particle escapes from the lattice, which then executes a free motion of the type studied, 
for example, in [5]. In other words, in analogy with a piston being withdrawn too rapidly from a 
container filled with gas, cavitation develops. 0 1996 John Wiley & Sons, Inc. 

1. Introduction 

The Toda rarefaction problem concerns the long-time behavior of the solution 
of the following initial-boundary-value problem, 

where xu(?) is prescribed by 

and the constant a < 0. 

x d t )  = 2at, 
x A 0 )  = 0, 
yJ0) = 0, 

for all t ,  
for n 2 1 ,  
for n 2 1 ,  
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If a > 0, equations (1.1) and (1.2) describe the so-called Toda shock problem, 
which has been analyzed in [7], [ll],  [8], [3] . It turns out that there is a critical 
value, a = 1. As t - 00 in the case a > 1, the solution develops periodic 
oscillations in the wake of the driving particle, xg = 2at. On the other hand, 
as t - cc in the case 0 < a < 1, the solution decays to a quiescent lattice. 
The name Toda shock arises from the fact that, for a > 0, equations (1.1) and 
(1.2) clearly describe a driving particle impinging at a fixed speed on a lattice 
{xn,n 2 l} at rest, in analogy with a piston compressing a container filled with 
gas. In the case a < 0, the piston is being withdrawn, as it were, at a fixed speed 
from the lattice and this gives rise to the name Toda rarefaction. On the basis of 
numerical computations, and also some analytical considerations (see below), we 
again expect critical behavior, with the critical value now given by a = - 1. In 
this paper we restrict our attention to the case of strong rarefaction, a < - 1. 

Our main result, Theorem 1.1 below, shows that as t - 00, the system (1.1) 
and (1.2) behaves like the semi-infinite Toda lattice, 

(cf. [5]). The intuition (see also Remark 2 below) behind this result is as follows. 
From [5] we learn that, for the initial conditions xn(0) = y,(O) = 0 in (1.3), the 
velocity y,(t) of the nth particle converges as t - 00 to -2. Hence, if we choose 
a < -1 in (1.1) and (1.2), we expect that the driving particle xo escapes from 
the lattice {xn,n B l}, and as the interaction @ o ( f ) - x l ( r )  between the driver and the 
lattice decreases rapidly to zero, the system (1.1) and (1.2) is free to execute the 
motion (1.3). 

As in [7], [ll],  and [8], we can convert (1.1) and (1.2) into an autonomous 
system by doubling up the lattice as follows. First, one changes the reference 
frame so that x&) = 0 for all time. Then one simply sets xn = -x-, and 
yn = - Y - ~ ,  for n < 0. It turns out that the system (1.1) and (1.2) is equivalent to 
the following initial-value problem: 

(1.4) 

with 

(1.5) 

x, = yn, n E Z, 
n , n E Z ,  y = d;.-l-"" - e - x " + l  

x,(O) = 0, n E Z, 
y,(O) = -sgn(n) 2a, n E Z . 

If one uses the Flaschka transformation, 

(1.6) 

Y n  
2 '  

a =- -  
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one can rewrite system (1.4) and (1.5) as 

(1.7) 

with initial conditions 

a, = 2(bi - bi-l), 
b, = b,(a,+i - an), 

n E Z, 
n E Z, 

(1.8) 

In our analysis we will in fact consider the more general problem with initial data 

i such that a$ - sgn(n) a and b! - 5 decay to zero at 2 00 faster than any polynomial, 
and such that a,, bn satisfy the symmetries 
(1.10) a, = -a-,, b-, = b,-l, 

at time t = 0 and hence for all t. 
System (1.7) takes the form of a Lax-pair isospectral deformation 

(1.11) 

where the Lax operator L is the doubly infinite tridiagonal matrix 

_ -  dL - [B(L), L]  = B(L)L - LB(L),  
dt 

and 

B =  
-b-i 0 bo 

-bo 0 bl 
-bl 0 b2 

. . .  . . .  . . .  
Under the conditions (1.9) with a < - 1, the spectrum of L (see Figure 1.1) consists 
of two continuous bands, together with a finite odd number (2m + 1, say) of L2 
eigenvalues, 

‘-k a - 0  a, ‘,+I %I . . . .  . a - m  . . . .  L-pI  . . . . 0.- . . . . 
a- 1 a+ 1 -a- 1 -a+ 1 

Figure 1 .1 .  The spectrum of the Lax operator L. 
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2k + 1 of which lie in the gap (a  + 1, -a - 1). The symmetry (1.10) of a,, b, 
implies that eigenvalues come in pairs (A, = -A-,) and that XO = 0 is always an 
eigenvalue. 

For simplicity, in this paper we will restrict our analysis to the case where 
the Lax operator L is nonresonant (and hence generic) in the sense of inverse 
scattering theory (see Section 2). However, our techniques can also be used to 
analyze the resonant case (see Section 4.8). The following is the main result of 
this paper. 

THEOREM 1 . 1 .  Let {x,(t)},"=, be the solution of ( 1 . 1 )  with the initial condition 
that 

(1.12) 

rapidly as n - m. Suppose that the corresponding Lax operator L is nonresonant. 
Then, forjixed n, U S  t - 00, 

x ,  = 2(A, + a)t  + K ,  + O(e-'Trf), 
x ,  = -2t + (2(n - k )  - 1/2) log t + K, + O( l/t), 

for 1 d n d k ,  
(1.13) 

for n > k ,  

where F,, > 0 is defned in (4.36b) and K ,  is given by (4.39). 

Remark 1.  Theorem 1 . 1  follows immediately from the formulae (4.371, which 
give the asymptotic behavior of bi( t ) .  Formulae (4.37) should be compared with 
the formulae of [5, p. 3911. 

Remark 2. Note that if -1 < a < 0, the gap (a  + 1, -a - 1) in the spectrum 
of L closes up and the analysis of the solution of the rarefaction problem changes 
radically. This constitutes additional a priori evidence that a = -1  is a critical 
value for the rarefaction problem, and indeed, numerical calculations show that 
for - 1  < a < 0 all the particles eventually move at the speed of the piston XO,  

forming a regular lattice behind xo with spacing Ax, = x, -x,+l, which converges 
to 2log(l + a)  as t - co (see also [8]). 

Remark 3. In the resonant case formula (1.13) changes depending on the 
nature of the resonance (see Section 4.8). The results of Section 4.8 should also 
be compared with the calculations of [5,  p. 3911. 

A simple computation (see the remark preceding equations (2.9) in Section 2)  
shows that for the pure shock initial data (1.8), the Lax operator L is nonresonant 
and m = k = 0. 

Remark 4. In Theorem 1.1  the eigenvalues X I , .  . ., A& E (0, -a - 1)  play a 
distinguished role. From the mathematical point of view, the special character 
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of these eigenvalues is rather subtle and emerges only after many detailed calcu- 
lations. However, from the physical point of view, the explanation is clear. As 
noted above, the piston moves to the left with velocity 2a, escaping from the bulk 
of the particles which move with velocity -2. (For this connection see also the 
discussion of [5, pp. 388 and 3891). In addition, the first k particles move with 
velocity 2(An + a), 1 5 n S k, and as 0 < A,, < -a - 1, this means that these 
particles are moving in the vacuum behind the piston and ahead of the bulk of 
the gas. On the other hand, particles moving with velocity 2(A, + a) with A,, < 0 
would escape from the container, which surely cannot happen, whereas particles 
moving with velocity 2(A, + a), A,, > -a - 1, would move into the bulk of the 
gas and not be seen. 

Remark 5. In this paper we have restricted our attention to the symmetric 
case where the coefficients satisfy (1.10). The techniques introduced below can 
also be used to analyze the nonsymmetric case, where a! - sgn(n)a and b$ - 
decay rapidly to zero as n - ?co, but (1.10) may fail (see Section 4.9). 

Observe that changing t - -t in (1.1) and (1.2) is equivalent to changing 
a - -a. Thus the solution of the rarefaction problem at time -t is the same as 
the solution of the Toda shock problem at time t. In particular, the behavior of 
(1.1) and (1.2) as t - -00 is precisely given by the solution of the Toda shock 
problem as in [ l  11. This leads to the following intriguing situation. It is well- 
known that on E there are three basic types of spectral problems for which the 
spectral/inverse-spectral theory is completely understood, namely, scattering-type 
situations in which the operator coefficients converge as n - 200, situations in 
which the coefficients are periodic functions of it, and half-line scattering problems 
in which the coefficients converge as n - +m. The techniques to solve the 
first kind of problem involve integral equations such as the Fadeev-Marchenko 
equation, and, more recently, Riemann-Hilbert techniques and singular integral 
equations (see [l], and also [2]). The techniques to solve the second kind of 
problem involve the theory of Riemann surfaces and the associated theory of 
theta functions together with the Abel map. On the other hand, the techniques to 
solve the third kind of inverse problem are equivalent to the techniques used in 
the classical theory of orthogonal polynomials. The striking feature of problem 
(1.1) and (1.2) is that for any (finite) t, we solve the problem by the first set of 
techniques (in particular, we use the Riemann-Hilbert approach), but as t - -m 
and the solution develops oscillations, we obtain the asymptotic states by using 
techniques of the second kmd on the other hand, as t - 00, we obtain the 
asymptotic state using techniques of the third kind. Thus the solution of (1.1) and 
(1.2) as t runs from - 00 to + m involves the full range of scattering and inverse 
scattering theory on H. 

To prove Theorem 1.1 we use a Laplace-type method for Riemann-Hilbert 
problems, modeled on the steepest-descent-type method introduced by Deift and 
Zhou (61, to analyze the long-time behavior of the modified Korteweg-de Vries 
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equation. The techniques in [6] have also been applied to the Toda lattice in the 
context of the stability problem in [9]. 

In the text we find it convenient to analyze the particles {x,, n < 0 )  and recover 
the long-time behavior of the original system {x , ,n  > 0} from the symmetries 
x, = -x-, and y ,  = -y-,. However, symmetry is not an essential element in the 
method (indeed, see Remark 5 above). Moreover, it will be clear from Section 
4.9 that the method can be easily modified to analyze the long-time behavior of 
{x , ,n  > 0 )  directly. 

In Section 2, we review basic facts from scattering theory and we pose the 
inverse scattering problem as a Riemann-Hilbert problem. In Section 3, we intro- 
duce a model Riemann-Hilbert problem and show, modulo some estimates, that 
as t - 00, the solution of the full problem converges to the solution of the model 
problem. Finally, in Section 4, we solve the model problem and obtain en route 
the estimates needed in Section 3. 

The steepest-descent method applied to the problem at hand proceeds by a 
sequence of transformations that convert the original Riemann-Hilbert problem 
into an equivalent Riemann-Hilbert problem with jump matrix vequiv of the form 

vequiv = Vmodel -k verror I 

where Vmodel denotes the jump matrix for an explicitly solvable Riemann-Hilbert 
problem and verror contains only terms that are exponentially small as t - 00. 

Solving the Riemann-Hilbert problem corresponding to Vmodel, which turns out 
to be equivalent to a classical problem in the theory of orthogonal polynomials, 
then yields the asymptotic behavior of the lattice up to exponential errors, as in 
Theorem 1.1. 

The sequence of transformations consists of the following steps: 

Step 0. We use the direct scattering problem to derive the vector Riemann- 
Hilbert problem for p(z) described by conditions 1 through 4 following (2.18). 

Step 1 .  The asymptotic condition (2.13) for p(z) is not convenient, as it con- 
tains implicit information about the solution of the Riemann-Hilbert problem. Us- 

ing the symmetry property p(z) = p(z-') (: ;), however, the Riemann-Hilbert 

problem for p is converted into a standard Riemann-Hilbert problem (Theorem 
2.1) for a matrix Q with Q(z) - I as z - co. 

Step 2. The jump matrix for Q across the circle IzI = 1 is oscillatory and, in 
particular, does not converge as t - 00. This difficulty is remedied by introducing 
U ( z )  in (3.11, which satisfies the jump conditions (3.2) through (3.6). Observe that 
A < 0 on Iz( = 1 and A > 0 on [zl,z2] U [zil,z;'], and hence the jump matrices 
in (3.2) through (3.4) diagonalize as t - 00. Also note that the residues in (3.5) 
and (3.6) corresponding to Xi 2 0 converge as t - 00. On the other hand, those 
corresponding to Xi < 0 diverge exponentially. 
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Step 3. Whereas the jump matrices for U across [z1,22] U [ z ~ l , z ~ l ]  trivialize 
as r - 00, the jump matrix across IzI = 1 converges to 

The factors R and R can be removed by using the solution S of the scalar Riemann- 
Hilbert problem (3.8). This leads to the Riemann-Hilbert problem (3.10) through 
(3.12) for G. 

Step 4. As in Step 2, the residues for G in (3.12) with X; < 0 corresponding 
to the points 6- 1, <If,. . ., <-,,<If in the z-plane diverge exponentially as t - 00. 

Finally, and perhaps paradoxically, the diverging residues in (3.12) corresponding 
to these 2m points <-,, <I;, . . ., <& <If can be replaced through a sequence of 
m similar transformations, G - . . ' - Y .  This is done by the jump conditions 
(3.42)acrossthe2mcirclesK-l,L-1, ..., K - , , L - ,  ( < - ; ~ i n t K - , , < I , !  EintL-, ,  
i = 1,. . ., m), which now converge exponentially to 

a s t -  co. 
The hemann-Hilbert problem (3.39) through (3.44) is the desired Riemann- 

Hilbert problem with jump matrix described schematically as vequiv above. Note 
that residues at cl, <;I,. . ., L, corresponding to Xi > 0 remain (see (3.43) and 
(3.44)): Only those corresponding to A; < 0 are removed and replaced by (3.42). 

(The final step). Setting the (exponentially small) off-diagonal term 
in (3.40) to zero and omitting the (exponentially small) jump (3.42), we end up 
with the model Riemann-Hilbert problem (3.47) and (3.48) for M. This model 
problem can be solved explicitly, and we have indeed 

Step 5 .  

veqUiv = vmdel + v,,,, = Vm&l + exponentially small terms . 

2. Inverse Scattering 

In this section, we introduce a number of facts concerning the scattering the- 
ory of the Lax operator L for the Toda rarefaction problem, and we formulate 
the inverse scattering problem as a Riemann-Hilbert factorization problem. We 
consider operators satisfying the general asymptotic conditions (1.9). A general 
reference for this section is [ 101 (see also [ 11, Appendix A. 11). In these two refer- 
ences the case a > 1 is considered, but the same formulae hold, mutatis mutandis, 
when a < - 1 .  
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In the case where a < - 1, the spectrum of L consists of the bands [a - 1, a + 11 
and [-a - 1, -a + 11, together with a finite number of eigenvalues, as in Figure 1.1. 
If we use the Joukowski transformation 

we have a 2:l map from the z-plane to the A-plane such that the union of the 
unit circle (corresponding to the left band), two bands (corresponding to the right 
A-band) and several points (corresponding to the eigenvalues) is mapped onto the 
spectrum (see Figure 2.1). We denote the spectrum of L in the z-plane by Z. Also 
we denote its continuous part by C,. Thus C\ C, consists of the z inverse images 
of the eigenvalues of L. 

It is also convenient to define Z through 

(2.2) 

Note that (2.1) and (2.2) determine Z as a multivalued function of z through the 
relation z + z-l + 4a = z + 2-'. 

We follow [lo] and define the Jost functions as follows: Let f+(n , z )  and 
f-(n,Z) be such that 

Figure 2.1. The inverse image of the spectrum of L in the z-plane. 
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We define the reflection and transmission coefficients by 

on the unit z-circle, and by 

on (IT1 = 1). 
We next state a few analyticity results (for proofs see [ 101 and [ 111). 
k t  B,+ = nFn(2bk)- '  and B; = n[E1!,(2bk)-' . we can write 

(2.6) 

where v,(z) = 1 + c,"=, vn,kZk and u,(Z) = 1 + c,"=, U,,kZk, where the series 
converge uniformly in Iz I S 1 and 121 5 1, respectively. In particular, f+ (n, z )  
and f - (n ,T)  are analytic in Iz(  < 1 and IZJ  < 1, respectively. 

We also have relations for the Wronskian W(X) of f + and f- defined by 

Indeed, 

z-I - z  W(h) = - 
2T+(z)  ' 

IzI = 1 ,  

(2.8) 

Also R+(z- l )  = R+(z). From (2.8) we see that IR+(z)l = 1, and hence we obtain 
( ~ + ( z ) ) - l  = R+(z)  = R+(z- ')  for IzI = I . 

It follows from the properties of the Wronskian that the transmission coef- 
ficients T -  and T +  not only are defined on IzI = 1 and IZI = 1, respectively, 
but can also be extended meromorphically via equation (2.8). For example, T +  is 
meromorphic in { IzI < 1) \ [z, ,  z2], where z ~ ,  z 2  are the inverse images of -a 2 1 
under the map given by (2.1) such that I Z I  I < 1 and Iz2) < 1. They have at most 
a finite number of poles, which in fact correspond to the eigenvalues of the Lax 
operator. In general, however, the reflection coefficient R'(z) has no meromorphic 
extension. We also note that T'(0) = l/B;B;. Finally, it is easy to check that 
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W(A) = W(x) for IzI  d 1, and thus all sides in the two first lines of (2.8) are equal 
there. 

On the circles { IzI = 1) and { IZI = l}, W is nonzero except possibly at the 
points corresponding to A = a + 1 and A = -a + 1. Generically, however, the 
matrix L is not at resonance, which means that generically W(a+ 1) and W(-a+ 1) 
are nonzero, and hence generically T+(z = +1) = 0 and T-(Z = +1) = 0. These 
conditions are satisfied for a dense open set of matrices L, and as mentioned in 
Section 1, we will restrict ourselves to this case. The methods in the nonresonant 
case extend directly to the resonant case (see Section 4.8). 

Remark. In the pure shock case (1.8), the eigenfunctions f' of L are simple 
combinations of powers of z and Z, and we obtain W = f ( Z - '  - 2a - z). If we use 
(2.1) and (2.2), we see that 

w = o  e 2=(2a+z) - '  e. 4 a + z + z - I  
= (2a + z)-' + (2a + z) e 4aA = 0 .  

Thus W = 0 e. A = 0, and hence L is nonresonant and m = k = 0. 

The evolution of the scattering coefficients with time is given by 

Remark. Note that T +  is not well-defined on z E [ZI,ZZ], as it has a jump 
across [z1,z2]. However, by W(A) = W ( i )  and the first relation of (2.8), we see 
that I T +  I is indeed well-defined on [ZI , ZZ]. 

Next we define the following row-vector-valued function in the z-plane: 

(2.10) 

Note that 

(2.11) 

and 

(2.12) 
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Observe that p(n, -) is meromorphic in C\ Z. Standard computations show that 

We now adopt the following convention. For each segment of an oriented 
contour its + side is to the left (according to the given orientation), and its - side 
is to the right as one traverses the segment in the direction of the orientation (see 
Figure 2.1). Accordingly, we denote by p+ and p- the nontangential limits of p 
on an oriented contour from the + side and - side of the contour, respectively. 

Caveat: The 2 signs of the contour should not be confused with the 2 signs 
occurring, for example, in f' and T'. 

From the scattering relation (2.4) at time f ,  we obtain for I z 1 = 1, 

Across [ZI, z 2 ] ,  we have from (2.5) at time r, 

whereas across [z;', z ; ' ]  

Remark. In (2.14) and (2.15) we specify Z (there are two possibilities) by the 
condition Im(Z) 2 0. 

To obtain (2.13-2.15) we use the relations (2.8) above and also the equality of 
the first two lines in (2.8) for IzI 5 1 .  

We denote the poles of T +  in IzI < 1 by el ,  i = 0,+1, .  . ., t m .  As noted above 
these are the inverse images under the transformation (2.1) of the eigenvalues A,, 
i = 0,. . ., +m. The residues at these points can be easily calculated (again see 
1101, [ I  I]), and one obtains 

Resy, p(n ,z )  = (0, -cll,f+'e(c~-c~ f + (61) 1 7 

(2.16) 
Rest, I p(n, z )  = ( c l l , f - ' e ( ~ ~ - ~ ~ ' ) f  f + (<A 0 )  9 

where c, = llf+(e,)ll-2 = ( ~ n ~ - _ , ( f + ( [ l , n ) ) 2 ) - 1  are the norming constants at 
time t = 0. 
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An alternative way (see, e.g., [l]) to express the conditions at the poles is the 
following: 

where 
2n+ I (2.18) yi = -c& . 

We have now arrived at the following vector Riemann-Hilbert factorization 

1 .  p(n, .) is meromorphic in C \ C,. 
2. p(n, .) satisfies the jumps (2.13-2.15) in C,. 
3. The poles of p(n, .) on C \ C, are determined by (2.17). 
4. p(n, .) satisfies (2.12) as z - 03. 

The asymptotic condition (2.12) is not convenient, as it contains implicit in- 
formation about the solution of the inverse problem. As we now show, if we 
use a certain symmetry argument (see [9]) we can reduce our problem to a (2 x 
2)-matrix Riemann-Hilbert problem with the same jump and pole conditions but 
also with a standard condition at 00. 

problem. 

THEOREM 2.1. Let Q(z) be a (2 X 2)-matrix-valued function satisfying the 
following Riemann-Hilbert problem: 
1. Q(z) is meromorphic in C \ X,. 
2. 

>. 1 R+ ( z ,  0)z2ne(Z-Z-1)f 

Q- ( z )  ( - B + ( ~ ,  0)Z-2ne-(7-ZC')t 0 
when IzI = 1 I 

3. Q has poles at <i and cr', i = 0,. . ., +m, with 
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4. Q(z) - I as z - 00. 

Then p(n, 0, t )  can be recovered from Q(0) asfollows: I f  

then 

Proof Let v(z) be the jump matrix for Q. Note that for z E C, 

Furthermore, 

Consider 

It follows from (2.20) and the jump conditions Q+ = Q-v that 

on the contour C,. Now note that Q is invertible. Indeed, because det v = 1 on C 
and det Q clearly has no poles at all, and because det Q = 1 at infinity, then by 
Liouville's theorem det Q = 1 everywhere. Furthermore, the analysis of the poles 
of Q and H using (2.20') shows that HQ-'  is an entire bounded function. Hence 
it is a constant, say Ao, by Liouville's theorem. As both H and Q must have a 
determinant equal to 1 ,  A0 has to be invertible. Hence, 

If we set z = 03 and use Q(m) = I, we find 

(2.21) 
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Next we note that 
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Furthermore, as both p and Q satisfy the same jump and pole conditions and pQ-' 
is bounded by (2.12), we must have 

where a = (a', a 2 )  is a constant vector. From (2.221, 

and letting z - 03, 

that is, 

(2.23) 

At this point we note two facts: First, for all z, the determinant of Q is 1 (see 
above). On the other hand, B + C = 0, as can be seen by setting z = 0 in (2.21). 

Hence the matrix ( :) has eigenvalues 2 1. 

It now follows from (2.23) that 

a = g ( l - C ,  A ) = g ' ( D ,  1 - B ) ,  

for some constants g,g'. But a = p(n, 00, t )  = ( (BT) - ' ,  BT ), by (2.12). Hence 
g, g', A, 1 - C, D, 1 - B are all nonzero. In particular, as det Q = 1, A = (1 - C2)/D,  
and hence 

g(l - C )  = (BT)-', 

which yields g2(1 - C)2(1 + C )  = D and D/(1 + C )  = (BT)-*. If we recall (2.11) 
we obtain (2.19). 

Remark 1.  It is not a priori clear that a matrix solution of the Riemann- 
Hilbert problem of Theorem 2.1 exists. The situation is similar to the Schrodinger 
case, where one can show (see [2, chap. 381) that matrix solutions may not in fact 
exist if poles are present in the Riemann-Hilbert problem. However, we will show 
explicitly in the calculations that follow that for fixed n, a matrix solution Q(t) of 
the Riemann-Hilbert problem indeed exists for t B T(n) for some T(n) < 03. 
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Remark 2. Observe that condition (2.11) is a consequence of (2.12) and the 
symmetry 

3. Reduction to a Model Problem 

The goal in this section is to derive a Riemann-Hilbert problem for a matrix Y 
(see (3.39) through (3.45) below) that is equivalent to the original Riemann-Hilbert 
problem for Q, but from which the leading behavior of the driven lattice (1.7) and 
(1.9) can be readily deduced. A crucial part of the derivation is the replacement, 
rather paradoxically, of the exponentially growing terms at some of the residues of 
Q by exponentially decaying terms. Moreover, when these (exponentially small) 
terms are dropped from the Riemann-Hilbert problem, one obtains a model prob- 
lem that can be solved explicitly and that yields the leading asymptotics for the 
full problem Y. The solution of the model problem is deferred to Section 4. 

We write R = R f ( z , t  = O), 

and 
1 0  

0 3 = ( 0  J' 

the third Pauli matrix. 
3.1. If we define U ( z )  as follows: 

when IzI > 1 ,  

we end up with the following Riemann-Hilbert problem. The problem is to find 
a 2 X 2 matrix U meromorphic in the complement of C with poles at 6; and 

i = 0,. . ., t m .  The matrix must be equal to the identity at infinity and be 
such that 

(3.2) 

on the unit circle, 

(3.3) 

on the band [zl, ZZ], and 

(3.4) 
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on the band [ ~ 2 ~ , z 7 ’ ] .  Also 

(3.5) 

and 

(3.6) 

where the norming constants ci are defined as before by c; = 1 If+(r;, t = 0)l 
3.2. The first step in the solution of this Riemann-Hilbert problem is to remove 

the R factor from the diagonal in (3.2). To do this, we need information on the 
winding number of R. 

LEMMA 3.1.’ 
d log R = -2m.  

Proof Let X I  be the unit circle oriented counterclockwise, and X 2  be a cycle 
around the band [ z l ,  z2] oriented clockwise, as shown in Figure 3.1. 

From formulae (2.7) and (2.8) we see immediately that W(z) has no poles in 
(0 < JzJ  < 1) \ [z1,22] and has simple zeros at the poles (i, i = 0 , .  . ., Zrn of T , .  
Also, (2.7) and (2.6) show that W(z)  has a simple pole at z = 0. Thus 

1 J dlogW + - 
21ri xI 27ri l J  x2 

dlogW = 2m.  

Now, the symmetry a_, = -un, b-, = b,-l implies that if Lh = Ah, then 
Lh = -Ah, where h, = (-lyh-,. This implies f - ( z , n )  = ( - l ) ” f + ( z ’ ,  -n),  where 
z’ = z‘(z) is defined through ( z  + 2 - ’ ) / 2  + u = A, (z’ + ( z ’ ) - ’ ) / 2  + a = -A. 
If we insert this relation for the Jost functions into (2.7), we find that W(z) = 
-W(z’). Moreover, a simple calculation shows that as z goes around the unit 
circle counterclockwise, then z’ goes around the band [ZI , 221 in the clockwise - 

direction. Thus 
J dlogW = 

27ri ,z, 

and hence (1/27ri) Jzl d log W = m. If we recall from (2.8) that R = -W/W, 
Lemma 3.1 follows immediately. 

’ Recall that we are in the generic case (see Section 2) and have W f 0 on { l z l  = 1 )  and on = 1). 
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Figure 3.1. 

We need the following result: 

LEMMA 3.2. Let 

(3.7) 
~ ( z )  = exp (I J log(R(s)s*")ds) 

2r i  l z l = ~  s - z  

Then 6 is analytic in the complement of the unit circle and continuous and nonzero 
up to the circle, whereas on the unit circle 

(3.8) 6+(z) = 6-(z)R(z)z2" 

and 6(m) = 1. 

Proof The proof is immediate, as Rz'" has no winding, and hence the func- 
tion log(R(z)z*") is smooth on { l z l  = 1). 

Remark. From the uniqueness of solutions of (3.8) and the symmetries of 
R+(z) (in particular R(z-') = (R(z))-' = &,) on 121 = 1; see Section 2), together 
with R+(l)  = -1 (recall that is nonresonant), it follows easily that 

In particular S(0) = -6( 00) = - 1. 
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Let 

Then by using R(z) = (R(z ) ) - ' ,  we have 

(3.10) 

and 

on [ 2 I J 2 l r  

on [z~',z;'I 

2 1  ") 1 
_ , ~ - 2 ~ - 2 X t  2n 

2 1  

(3.1 1) G+ = { 1; [ 1 
-Ta-2e-2Xt -2n 

However, at the poles 

because s2(G') = S 2 ( ( i )  by (3.9). The condition at 00 remains 

(: 3 and also, if one notes that Q(0) = 

(3.13) 

3.3. As seen from (3.12) the contribution from the negative eigenvalues (cor- 
responding to e- and er', i = - 1,. . ., -m) grows exponentially. We now employ a 
procedure that will enable us to restate our problem so that the contribution from 
these eigenvalues becomes exponentially decaying. 
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The intuition for this procedure is as follows: First, observe that singularities of 
type (3.12) can be removed, provided we add an additional circle to the Riemann- 
Hilbert problem. For example, suppose Z solves a Riemann-Hilbert problem on 
a contour CZ with a pole at some point zo,  with 

(3.14) Res,,, Z = lim Z(z) 
I-Z,I 

for some constant CZ. Then we note that 

is analytic in a neighborhood of ZO, and conversely if 2(z) is analytic in a neigh- 
borhood of ZO, then 

has a singularity of type (3.14) at ZO. If we let K,,, be a small clockwise-oriented 
circle that surrounds zo and does not intersect the rest of CZ, then 

Z(z),  z E C \ CZ, z outside K,,, , { Z(Z)(-: y ) ,  z insideK,,, 
(3.15) a z )  = 

z-zll 

solves a Riemann-Hilbert problem on 2, = CZ U K,,, with the same jumps 0 = v 
on CZ, but on K:,,: 

(3.16) 

By the above remarks the Riemann-Hilbert problem for 2 is equivalent to the 
original Riemann-Hilbert problem for Z. 

Second, observe that we are concerned with poles of type (3.141, where c, - 
e-2Xr,A < 0, which is exponentially growing. The origin of such terms is in the 
fact that time enters into the problem in the form of conjugation of the jump 

The case above corresponds to b = 0 and A = A-i < 0. However, if we could 
convert our basic jump matrices from lower-triangular form (b = 0) to upper- 
triangular form (c = O),  then time enters only through the factor be2", and for 
X = A-i < 0 this is exponentially decreasing. So our goal is to turn jump matrices 
of type (3.16) into upper-triangular form. 
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One proceeds as follows: In the above Riemann-Hilbert problem for 2 on 
CZ U Kz, set 

2(z), z E C \ CZ, z outside K,,, , { z ( z ) J - ' ( z ) ,  z inside K,,, , Z"z) = 

where J ( z )  is analytic and invertible inside K,,,. Then on K,,, we have 

where 

We want 

for some constant cp. Then 

We see that, unfortunately, J ( z )  is not analytic inside K,,,. However, by con- 
jugating ZP(z) by a diagonal matrix, it turns out that we can remove those poles 
and still obtain a matrix vp  that is upper triangular. 

Figure 3.2. 
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We proceed as follows: For technical reasons we must consider pairs of poles, 
1 simultaneously (see Figure 3.2). Let q = c-I S(c- I )-2c2_;’1e-2X- i t .  Set say c- I ,  

[ G(z), z E C \ C, z outside K or L ,  

Then, as above, G solves a Riemann-Hilbert problem on 2 = (E \ { 6- 1 ,  (I }) U 
K U L with the same jumps 3 = v on C and 

(3.19) 

Set 

G ( z ) J i l ( z )  ( 
(d I 

) , IzI > 1 ,  z outside L ,  

) , z inside L ,  

I ) , z inside K , 

di (z) i d’l(z) 

(3.20) Gfi := 

where dl (z), J K ( z ) ,  J L ( z )  will be determined below. On K, we have 

where 

(3.22) 

and similarly on L 
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where 

(3.24) 

We require 

(3.25) 

and 

(3.26) 

$ I t  for some constants cK,  cL. Thus inside K ,  

(3.27) 

and inside L, 

(3.28) 

Choose 

z - <- 1 inside L . 

(3.29) 

With these definitions, J K  and J L  become 

(3.30) 

and 
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Then J&) and J L ( z )  are analytic and invertible inside K and L provided we choose 

(3.32) 

The result of these computations is that we have a Rremann-Hilbert problem 
for G* on C U K U L that is equivalent to the original Riemann-Hilbert problem 
for G on C, with jumps 

z E K ,  

Z E L .  

Observe that the off-diagonal factors in vp on K and L are now exponentially 
decreasing as q-I - e2'-lf. Apart from the diagonal factors d: and dr2 in v* on 
( z (  = I ,  the Riemann-Hilbert problem for GP is precisely what we want. We can 
remove these diagonal factors by solving a scalar Riemann-Hilbert problem on 
{ l z l  = I }  as follows. Let Al(z) solve 

This problem has a smooth solution as (dlz-1)2 has no winding on the unit circle 
(see (3.29)). 
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One shows easily that 

and hence A1 + = 55 61 -. Finally, set 

(3.36) 

which solves a Riemann-Hilbert problem on (C \ {<-1,5Ii}) U K U L with jumps 
and poles given by 

(3.37) 

and 

(3.37’) 

Here hi = S ( 6 i ) .  
Finally, replacing G(”(Z) by 
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inside K and by 

59 

inside L,  we see that (3.37') takes the form 

The result of the above construction is that we have changed a Riemann-Hilbert 
problem with an exponentially growing factor at two of the poles 5- I ,  5: i ,  into 
a problem of exactly the same type except that the residue factor at the two 
poles has been replaced by a jump matrix on small circles surrounding these poles 
with factors that are now exponentially decreasing. En route the entries of the 
jump matrices are changed by harmless factors of dl and A I .  If we repeat this 
construction ( m -  1) times for Li, GI, i = -2,. . ., -m, we can change the Riemann- 
Hilbert problem into one again of the same form, but now all the exponential 
factors that originally were growing are replaced by jump matrices on circles 
Ki ,  Li, i = - 1,. . ., -m with factors that are now exponentially decreasing. Along 
the way harmless multiplication factors are introduced. 

Remark. Note that although all the exponentially growing factors in the 
specification of the Riemann-Hilbert problem have been converted into exponen- 
tially decreasing factors, this does not mean that elements in the solution of the 
Riemann-Hilbert problem cannot grow exponentially. In particular, note that the 
(2 1) entry of J K ( z )  in (3.30), say, has exponential growth, as does the (1 2) entry 
in (3.60) below. 

3.4. The result of these computations is that we have replaced the original 
Riemann-Hilbert problem on E with an equivalent Riemann-Hilbert problem for 
a matrix Y given by 

(3.39) 

where 

lim Y = I, 
2- 05 
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Furthermore, Y has poles at <;, i = 0, 1, . . ., m, with residues determined by the 
matrices 

(3.43) 

and at i = 0,. . ., m, with residues determined by 

(3.44) 

Here d f  and A, denote the final results of the above computations, 

(3.45) 

j =  1 

where each di is defined by the analog of (3.29) and each Ai is defined in terms 
of di by the analog of (3.34). Also note that A,  solves the Riemann-Hilbert 
problem with jump d;z-2” on { JzI  = l}. Finally, note from (3.29), (3.35), and the 
analogous relations for i = -2,. . ., -m that for IzI < 1 and outside Ut=EIKi, we 
have 

(3.45a) 

If we keep track of the above operations, we see that 

(3.46) 

as di(0) = Ai(0) for each i (cf. (3.35)). 
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3.5. We are now ready to introduce the model problem that will be solved in 
Section 4. Let M solve the kemann-Hilbert problem on a contour 2 = E\{(;, (;I : 
i = -1,...,-m} 

M, = M - 1  
(3.47) 

M(O0) = I ,  

where j agrees with J in (3.41), (3.43), (3.44), and 

(3.48) 

on the unit circle. In particular, M has no jumps across Ki and Li, -m 5 i 5 -1. 
It is well-known (see, e.g., [4]) and easy to verify that a kemann-Hilbert 

problem on the circle { ) z  I = l}  with jump matrix 

( zr z 0 2 n )  

does not have a matrix solution for an n # 0. However, in Section 4 we will 
show that the jumps across [ZI, 221 U [zy , z1 1 and the poles stabilize the Riemann- 
Hilbert problem in the sense that, if n 5 0, then the solution M of the above model 
problem exists. We use results from Section 4 to show in the rest of this section 
that M is indeed a good approximation to Y, and thus the solution of the model 
problem leads to the solution of the Toda rarefaction problem. However, if n > 0, 
then it is easy to see that a matrix solution M does not exist, and indeed the above 
Riemann-Hilbert problem is not the correct model problem for the asymptotic 
behavior of {x, ,n > O} as t - 00. 

Y - I  

Set n‘ = -n 2 0. Let B ( Z )  be defined by 

Set E = Y M - I .  Then E(w) = I. Note that E solves a Riemann-Hilbert 
problem without poles and with jumps only on the oriented contour C E ,  where 
& = { lz l  = 1) u U;Zl(Ki U Li). Note that det M ( z )  = 1, which is proven as in 
the argument following (2.20). 

On { l z l  = 1) 



62 P. DEIFT ET AL. 

and similarly, for each i = -1,. . ., -m, 

It will be shown in (4.5), (4.25), and (4.35) of Section 4 that for any given 
small E > 0, on (121 = l}, 

with similar estimates for M I I  and M21 on the circles Ki,Li, i = -1,. . .,-in. 
Recall that k is the number of positive eigenvalues in the gap (see Section 1). 

With these estimates, we obtain the following lemma. 

LEMMA 3.3. We introduce 

for n' 5 k ,  
.for n' > k ,  -(1 + a) ,  

so we have 

Remark. We will see below in (3.60) that M12- blows up exponentially. For- 
tunately, this matrix element does not appear in the jump matrix for E = Y M - ' ,  
and this makes it easy to show, as above, that M is a good approximation for Y. 

Proof of Lemma 3.3: Let vE denote the jump matrix for E in (3.50) and 
(3.51). Let C -  denote the Cauchy operator 

(3.54) (C-f)(z) = lim -- 
w-z- J zc: s f ( s )  - w 2ni ds 

where w - z-  means that w approaches z from the negative side of the contour 
of z. As is well-known, C- is bounded from L2(&) to itself. 

Define the operator C on (2 X 2)-matrix-valued functions f by 

(3.55) Cf = C-(f(VE - I ) ) .  
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as follows from (3.50) through (3.52) and the fact that C -  is bounded. 
Now a simple algebraic computation (see, e.g., [ 11) shows that for z E C \ &, 

(3.57) 

by (3.56). Write 

(3.59) 

R2(Z)  = 1, $ ( S ) ( V E ( d  - I )  ds 
s - z  h i '  

For z in a compact set away from &, Rl(z) can be estimated using (3.50) 
through (3.52). To estimate R ~ ( z ) ,  we again use (3.50) through (3.52), but in 
addition we need the estimates (3.58) on I 141 )~2(z,) .  If we insert these estimates 
in (3.59), we obtain (3.53). 

In Section 4, we will see in (4.41, (4.20), (4.22), (4.28), and (4.32) that 

MI,(O) = 1 + O W t ) ,  

(3.60) 
M21(0) is of order e-2pn'r,  

M22(0) = 1 + O(l/r) . 

As Y(0)  = E(O)M(O), we then deduce 

(3.61) 
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We will use (3.61) at the end of the next section to deduce Theorem 1.1 from 
the solution of the model problem. 

4. The Model Problem 

4.1. In this section we solve the model problem of Section 3.5. At the end of 
the section we also discuss the modifications in the method that are needed when 
the Lax operator L is resonant and/or nonsymmetric. We define 

(4.1) { -y(6(z)df(z)Af(z))-2 ( z - z l  ) I / *  on [Z;~,.Z;'I, 

(22 '(') - z P  ( s (z ) ) -2d~(z) (Af(z ) ) -2  on [z1,221, 
u(z) := 

~j := c j s ~ 2 d ~ ( r j ) ( A f ( r j ) ) - 2 .  

We will see below that v is in fact finite and nonzero at 22 and z;'. 
Solving our model problem amounts to solving two vector Riemann-Hilbert 

problems, one for each row of M. If we denote our unknown by (g, h) we have 
two different cases. We write (a, 0) = limz-m(g, h), and we need to consider 
(a,  P )  = (1, 0) and (a, P )  = (0, 1). 

The jump and pole conditions for (g, h) are (recall n' = -n): 

on IzI = 1,  -213' g+ = g-z  
h ,  = h-z2"' on IzI = 1, 

g+ = g- + h(z)v(z)(z2 - z)1/2e-2Xfz-2n' on [ Z l r Z 2 l r  

g+ = g- - h(z)v(z)(z - z;')l/'e-2At z 2n' on [z;',z;'I, (4.2) 

Rest g = h(Q)vie-2Aifl,;2n'+1 , 
Resc;i g = h(r;')vie-2hif5;2n'-1 , 

m Z i 2 0 ,  

m Z i h 0 .  

Note here that we have used the symmetries (3.9) and (3.45a). 
4.2. We begin with the case n = 0 first. 
Case 1. a = 1, 0 = 0 . Then clearly (g(z), h(z)) = (1, 0) is the solution. 
Case 2. (Y = 0, P = 1. In this case h has neither jumps nor poles; thus it 

is entire and bounded, and hence constant. Indeed h(z) = 1. On the other hand, 
from equation (4.2) one concludes 
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It follows that for the matrix solution M of the model problem 

(4.4) 

Also, 

(4.5) 

on both { l z l  = l }  and the small circles Ki ,L , .  
4.3. We next proceed to the case n f 0. Without loss of generality, we will 

restrict ourselves to n < 0. The case n > 0 can be recovered from the symmetries 
(1.10). We write n’ = -n. One observes that h has no jump across the real bands, 
nor does it have poles. Across the unit circle, on the other hand, h+ = h - ~ ~ ~ ‘ .  
Hence there exists a polynomial q(z) such that 

We first remove the jump at the unit circle by defining 

(4.7) 

The jump relations for b are then given by 

for i 2 0. It is immediately verified that 

(4.10) 

with measure 

(4.1 1)  
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It remains to determine the polynomial q(z) = z;:bqiz'. As 

2n'-1) a s z - w o o ,  b(z) = - + 0(z- 
Z2n 

a 

we expand (4.10) as a power series in l /z and are led to the following conditions: 

(4.12) s'q(s)dp(s) = 0 for 0 5 j 5 2n' - 2 

and 

s2"'-lq(s)dp(s) = -a. J (4.13) 

Remark. Note that (4.12) is precisely the statement that the polynomial q(s) 
is orthogonal to all polynomials of degree 5 2n' - 2 with respect to the measure 
dp. It is at this point that we are making contact with the method of orthogonal 
polynomials and the solution procedure for the free semi-infinite Toda lattice as 
described in [5].  

Furthermore, 

and 

(4.15) q2nr = lim h(z) = P .  
z-00 

The combined equations for qO,ql, . . . , 42"' - 1,  g(0) can be written in matrix form 

I !  Js2n'- I  JS2n' . . . JS4n'-2 s s4n' - I( t4.10) 

We proceed to solve this explicitly and to determine the long-time asymptotic 
behavior of the solution. 
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4.4. Case a = 0, p = 1. 
By Cramer's rule we obtain 

(4.17) 

A straightforward calculation shows that the numerator of the fraction in the 
right-hand side of (4.17) can be written as 

(4.18) 

where V denotes the usual Vandermonde determinant. Similarly, the correspond- 
ing denominator can be written as 

(4.19) 

We apply Lemma A.3 in the appendix to determine g(0) by making the obvious 
choicef(s1, . . . , s ~ ~ , + I )  = l/(sl . . . s ~ ~ , + I ) .  Then 

where = min(p,,, - p,,- I ,  pn'+ I - pnO. 
This completes the computation of M21(0) 
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The coefficients of the polynomial q(z)  can be obtained by Cramer's rule and 
by (4.17). One obtains 

JSO ... Jsi-l 

S2n'+i-2 S S 2 n ' + i  . . . 
q; = (-1y 

JS2n'-I ... JS4n'-2 

I - Jd2"'p S;+1 * f . S 2 " 4 2 ( S l , .  . .,SZn') = (- 1)' (2n')! 

&j Jd2"'p v2(sl,. . - 9 ~ 2 n ' )  

We apply parts (a) and (c) of Lemma A.3 and the remark that follows it to conclude 
that the numerator and the denominator of the above fraction are of the same order, 
and hence there exists a q? E R such that 4; = q r ( l  + O(l/t)), for n' > k + 1, 
and q; = qP(1 + O(e-(Pnf-fi~~'-l)t)), for n' S k + 1. 

For i = 0, the situation is especially simple, as 

2n' Here f ( s1 , .  . . ,sM) = njrI s,. 
It follows from equation (4.6) that h(0) = 40: 

(4.22) 

Finally, we have to provide estimates for g(t) on the unit circle and on the 

If we observe that the coefficients q; are bounded in time and we use the time 
circles K j ,  L,, 1 S j S m. 

decay of p (see (4.1 l)), we conclude from (4.12) and (4.13) that 

(4.23) 

We apply Cramer's rule to (4.23) to get 
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for 0 5 i 5 min(k,n' - 1). From equations (4.7) and (4.10) we then see that 

(4.25) g(z) = O(e-2'"n") 

uniformly on the unit circle and on the circles K j ,  15,. We now determine the first 
row of the matrix solution. 

4.5. Case LY = 1, p = 0. 
We proceed as in Section 4.4. Equation (4.16) now gives (recall 4zn, = p) 

Hence 

(4.27) 

From parts (a) and (c) of Lemma A.3, 

1 + O(e-(P"'-P"'-l )'), 

1 + O(j), 
if n' 5 k + 1 
if n' > k + 1 .  (4.28) g(0) = 

For 0 S i 5 2n' - 1, let 

j = i + l  

j =  I 

2n'+l 

f(S1 ,..., S 2 n ' + l )  = n Sil 
j =  I 

Then the ith coefficient of q(z) is given by 

(4.29) 
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Hence 

(4.31) qi(t) = O(e(2pjl'+E)'), for any E > 0 .  

Equations (4.28) and (4.31) yield 

(4.32) ( g(O), NO) = ( 1 + O( Vt) ,  O(e(2pii' +&)') 1, for any E > o 
Finally, we have to find estimates for g(z) on the unit circle and on the small 

circles K j  and Lj.  Again we use (4.11) through (4.13) and (4.31) to obtain 

for 0 5 j 5 2n' - 1, and consequently 

(4.34) 

for 0 I i 5 min(k, n' - 1). By (4.7) and (4.10) we arrive at a uniform estimate for 
g(z )  on the unit circle and on the circles K j ,  L j :  

(4.35) g(z) = O(eE'). 

4.6. We can now summarize our computations. The model problem defined 
by (3.47), (3.41), (3.43), (3.44), and (3.48) has a matrix solution Mn(,'(z) for n' 2 0 
and t > 0 such that as t - 00, we have the following results and estimates: 

When n' = 0, (4.4) holds. When n' > 0, the estimates for M I I ( O )  and M12(0) as 
t - 00 are given by (4.28) and (4.32), the estimates for M21(0) are given by (4.20), 
and the estimates for M22(0) are given by (4.22), once we recall the definitions of 
g, h, and q. Estimates (3.60) follow. 

Furthermore, the following estimates hold uniformly on the union of the unit 
circle and the small circles K j ,  L j ,J  = 1 , .  . ., m: 

1, for n' = 0 (see (4.4)), 
~ ~ l ( z )  = { O(e&'), for n' > 0 (see (4.35)), 

M2l(z) = O(ep2pn") (see (4.25)) . 

Equation (3.52) is then proved. As we have noted at the end of Section 3, these 
estimates suffice to prove that the full problem for Y has a matrix solution for t 
sufficiently large and 

Y ~ , ( o )  = ~ 2 1 ( 0 ) ( 1  + O(ep2p1')), 
~ 2 2 ( 0 )  = ~ 2 2 ( 0 ) ( 1  + O(e-2p1')). 
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4.7. If we use 

(4.36) 

(which follows from (3.46), (3.13), (2.191, and (2.11)) and we recall (4.4), (4.20), 
and (4.22), we obtain the following as t - 00: 

For n' = 0: 

(4.36a) 

-1/2 where Fo := vo . 

Bie" = Fo ( 1  + U(e-2p1')), 

For 1 5 n' 5 k:  

where 

For n' > k:  
p' - k -  l/4 

(4.364 

where 

B+,'ear = F,! ~ e(l+")' ( 1  + U(l/t)), 

Finally, we derive the formulae for b;(t) and for x,(t). If we recall that B: = 
nF,(2bk)-', we obtain from (1.10) for n 2 0 
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where 

(4.37') 

From the symmetry of the system (1.4) and (1.5) it follows that xo = 0 for all 
time. Hence, for n 5 0, 

(4.37") 

Therefore, we use x- , ( t )  = -x,(t) to obtain 

i f l s n s k ,  

if n > k. 
-2( 1 + a)t + (2(n - k )  - 1/2) log t + K, + O( l/t), (4.38) x,(t) = 

where 

(4.39) 

i f l d n s k ,  

if n > k. 

4.8. Discussion of the resonant case. Here we sketch the modifications in 
the calculations that are needed to analyze the long-time behavior of the Toda 
rarefaction problem in the case that the Lax operator L is at resonance. 

Because of the A-symmetry in the problem (W(X) = -W(-A)), there are only 
three cases to consider: 

(a) resonance at the outer edges of the spectral bands; that is, W(a - 1) = 0, 

(b) resonance at the inner edges of the spectral bands; that is, W(a + 1) = 0, 

(c) b is fully resonant; that is, W(a - 1) = W(a + 1) = W(-a - 1) = 

W(-a + 1) = 0; 

W(-a - 1) = 0; 

W(-a + 1) = 0. 
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In case (a), the long-time behavior has the same form as (1.13), but now formula 
(4.39) for the constant K, must be modified. In cases (b) and (c), formula (1.13) 
must be replaced by 

(1.1 3')  
x, = 2(A, + a)r + KA + O(e-'ii'), 

x,, = -2r + (2(n - k )  - 3/2)logt + KA + O(l/t), 
for 1 S n S k ,  
for n > k ,  

where the constant KA can be computed explicitly. 
From the above we see that up to order O(1) only a resonance at the inner edge 

of the spectral bands leads to a change in the long-time behavior of the lattice. 
Moreover, up to order O( 1) the influence of the resonance is felt only in the bulk 
of the lattice, that is, for n > k, where the net effect is simply an addition of half 
an eigenvalue (i.e., k is replaced by k + 

In order to obtain these results we have to make the following modifications 
in the analysis: 

in (1.13)). 

Winding of R. Denote by 2mres the number of resonances; that is, in 
cases (a) and (b) mres = 1, and in case (c) mre, = 2. With this notation 
the formula in Lemma 3.1 is replaced by 

d log R = -2m - mres. 

The proof of this follows from the fact that W can vanish at most to 
first order at z = 1 or z = - 1 (cf. [ 101 and [ 111). If we use 6 as before 
to remove R and R from the diagonal terms, we eventually arrive at 
a Riemann-Hilbert problem for Y ,  where the (1 1) entry of the jump 
matrix at {lzl = l} is given by z ~ ~ - ~ ~ ~ \  and the (2  2)  entry is given by 
z-  2n+m,,, . It follows that the jump matrix for the model problem is given 
by 

Z.2n+m,, O )  

on { IzI = l}, and all other jump matrices have the same form as before. 
This means that the previous techniques apply, and in the case n I 
mres/2, the solution M of the model problem exists and yields a bona 
fide approximation of the solution of the full hemann-Hilbert problem 
for Y. Note that as mres/2 > 0, x,, can be determined directly for n 5 0 
and hence by the symmetry x-, = -x, for all n E H. 

In addition to the above replacement of 2n by 2n - mres, there are two other 
differences that play a role in the detailed calculation of the long-time behavior 
of the rarefaction problem. 

(ii) In the nonresonant case the measure p has edge behavior p(z) - 
const ~ z ~ d z  for z near z' E { z ~ , z ~ , z ~ ~ , z ~ ~ } .  On the other hand, 
in the case that L is resonant at z', the behavior of p ( z )  is given by 
(const / d m ) d z .  From the calculations in the appendix, it is clear 
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that the different behavior at the edge has no new effect on the long-time 
behavior of the lattice up to order O( 1) if the resonance occurs at z' = z I ,  
z: ' .  If the resonance occurs at z2, zT1, however, then the singularity at 
the edge produces the shift k - k + 1 in (1.13'). 

(iii) As noted above in the resonant case, W(z)  vanishes precisely to first 
order at z = 1 and/or z = - 1. In particular, this implies R+( 1) = 1 if 
and only if L is resonant at z = 1. In this case (3.9) is replaced by 

(3.9') 

(4.40) 

and hence 6(0) = 6(m) = 1, which in turn implies, eventually, that 

(cf. formula (4.36)). 

In the detailed calculation the replacement of 2n by 2n-mre, in the jump matrix 
for M on { lz l  = 1) (see (i)) and the modification (iii) above work in tandem to 
ensure that there is no further change in the asymptotic behavior of (1.13) beyond 
that which is produced by (ii). For example, if mres = 2, then Y22 - 1, so that 
a critical cancellation takes place in the numerator of (4.40) to leading order. It 
is a matter of detailed calculation to see that this cancellation counterbalances 
the replacement of 2n by 2n - mres, that is, of n by n - 1, with no further effect 
on (1.13). 

4.9. Discussion of the nonsymmetric case. Here we sketch the modifications 
that are needed in the case that a, - sgn(n)a and b, - decay rapidly as JnJ - 00, 

but the symmetry condition (1.10) is violated. In terms of the scattering theory 
of the operator h,, the difference between this and the symmetric case is that the 
relation W(-A) = -W(A) now fails. Denote by X I , .  . ., A,, the positive eigenvalues 
of L and by A-1,. . ., A,_ the negative eigenvalues of L. If 0 E n(L), then let 
b = 0. It is clear that generically m, f rn- and Ai f -A+. For simplicity we 
will assume that LJ is nonresonant at all four ends of the spectral bands [a- 1, a+ 11 
and [ -a  - 1, -a + 11. Because symmetry plays no crucial role in the preceding 
discussion (Section 4.8) it is easy to incorporate resonances if so desired. 

In the paper we have used symmetry to 

(i) deduce the behavior of {x , ,n  5 0) from the formula (4.37'9, which 
relies on the identity x&) = 0 and which is true in general only in the 
symmetric case, 

(ii) compute the winding of R (cf. Lemma 3.1), 
(iii) recover the long-time behavior of {x,, n > 0) via x-,(t) = -x,(t). 
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We first address the question of how to recover x,(t)  once B,+(t) is deter- 
mined from the solution of the Riemann-Hilbert problem (compare with (i)). From 
x, ( t )  = x,(O) - 2 $ a,(s)ds together with 

la,(s)l S IIL(s)II = 11L)Il (recall that s - L(s) is an isospectral deforma- 
tion), 
x,(O) - xra(0) for n - ?m, 
a,(s) - ?a for n - 200, 

it follows that 
by a telescoping argument that 

x,(t)  = -2at +x+,(O) for all times t. This in turn implies 
= e-2at+xx(0)-xn . Thus 

Remark 1. In the symmetric case we know that xo(t )  = 0. This implies 
0 = - log(v6') + x,(O); that is, by (4.1) 

We know of no direct proof of this interesting relation. 

We now indicate how to compute the asymptotics of B,+ for all n E E ,  in view 
of (ii) and (iii). The effect of (ii) is that we can no longer establish a relation 
between the winding of R and the number of eigenvalues. Instead we simply set 

1 
m w : =  - J dlogW 

2ri xI  

Then 
1 J d logR = -2mw. 2ri zI 

If one follows the procedure of Section 3 and replaces the poles corresponding to 
the negative eigenvalues by jumps on small cicles Ki, L,, one arrives at a model 
problem where the jump matrix across IzI  = 1 is given by 

This implies that the model problem can be solved explicitly and yields a bona 
fide approximation to the full problem if and only if n 5 mw - m-.  

In order to obtain the time-asymptotic behavior of {x, ,n > mw - m-) we 
consider initial conditions for the Toda equation 6: := -a!,, 6: := &-,. These 
initial conditions satisfy the same asymptotic conditions in n as before and it is 
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easy to see that for all times ii,(t) = -up&), &(t) = b-,-,(t). If we apply the 
above methods to the new problem we obtain a solution of the original problem 
for -n 5 mw - h-, where 

m g : =  -/ 1 dlogW 
2xi z, 

and h- denotes the number of negative eigenvalues of %. Thus Bie" can be 
evaluated asymptotically for n 5 mw - m- and also for n 2 -mw + h-. we now 
employ the relation between L and I!,. It is easy to check that W ( A )  = -W(-A), 
which implies in turn that 

(4.41) m- = m+ . ,. 

Furthermore, we conclude (see Figure 3.1) 

= #{eigenvalues of L }  - 1 ; 

that is, 

(4.42) 

From (4.41) and 

Therefore B;eu' 

Remark 2. 

m+ + m- - 1, 
m ,  + m- , 

if 0 6 a(L), 
if 0 E a@). 

mw + mw = 

(4.42) it follows that 

and hence x,(t) can be evaluated asymptotically for all n E Z. 

As described above, the analysis of the nonsymmetric case is 
based on the observation that (u,, b,) - ( - u - ~ ,  i-,-,) takes a solution of the Toda 
lattice into a second solution. Alternatively, in Section 2, we could have chosen Z 
rather than z as the basic variable and so constructed a different Riemann-Hilbert 
problem for the solution of the lattice. In this case one would find that the analo- 
gous model problem is stable for n 2 rEw - m+ where rEw := ~ ~ l z I = , ~  dlog W. 

It is easy to show that rEw - m+ = m e  - h- and that these two approaches 
to evaluating the asymptotic behavior of the lattice for n 2 FEW - m+ are in fact 
equivalent. In the symmetric case, for example, the calculations in the paper pro- 
ceed for n 5 0 by neglecting the contribution from the off-diagonal elements in 
the jump matrix across { IzI = l}, where A < 0. For n 2 0, the Riemann-Hilbert 

1 
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problem is reformulated in terms of the ?-variable, and now the off-diagonal ele- 
ments of the jump matrix across (121 = l} ,  where A > 0, are neglected. In other 
words, the long-time asymptotics of {xn,  n 5 0) is governed by the nonnegative 
spectrum of L, whereas the behavior of {xn,  n 2 0) is governed by the nonpositive 
spectrum. 
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Appendix 

In this appendix we show how to evaluate the time asymptotic behavior of 
integrals of the type 

(A.1) 

where p is the measure defined in (4.1 l ) ,  in terms of which the solution of the 
model problem is determined in Section 4. 

1 l !  /h.. . ,S/)V2(Sl,.  . . , S , ) d P ( S I ) .  . .dP(S/) 9 

We need the following two propositions. 

PROPOSITION A.1. Let r be a natural number and denote by V(s1,.  . ., sr )  the 
Vandemonde determinant. Then 

Proof It is easy to see that the left-hand side of (A.2) equals the determinant 
of the following matrix: 

som e-ssl/2ds . . . 

ST e-\sr-1/2ds e-\Sr+1/2d~ . . . ST e-\S2r-1/2dS 
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Therefore 

Let y be a C' function on [ Z I , Z J  U [ z ~ ~ , z ; ~ ] ~ .  We define, for r E N, 

PROPOSITION A.2. 
y(zr l ,  . . . , z r l )  f 0. Then 

Let y ,  r,Zl,Z2 be as above and assume y(z2,. . . , z 2 )  f 0, 

Proof (a) Recall that h(s) = (s + s - ' ) / 2  + a with h(z2) = -1  - a. On the 
interval [zl , z 2 ]  we obtain 

(A.4) -2A(s)t = 2(1 + a)t - ( z r2  - 1)(z2 - s)t - 2r(s)(z2 - d 2 t ,  
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where r(s) 2 0 as X"(s) 2 0. If we substitute K ,  = ( z i 2  - l)(z2 - sj)r ,  stan- 
dard methods show that the highest-order term of Zl(r, y )  is given by the integral 
calculated in Proposition A. 1. 

(b) Proof as in (a). 

The following lemma provides the formulae used in Section 4. 
For f : R' - R,a a permutation of 1 letters, define uf : [w' - R by 

Let p be defined by (4.1 1). For 1 > 0 let 

where 1' : R' - R denotes the function that is identically equal to 1. 

LEMMA A.3. 

(a) When 1 5 n' S k + 1, 

Assume that f : R' - [w satisfies u f = f for all permutations u 
of I letters and f(sl,. . ., s I )  f 0 for  all SI, . . ., s[ E R. 

(b) When 1 5 n' 5 k, 

(c) When n' > k + 1, and we wrire r = n' - (k  + 11, 
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(d) When n' > k, and we write r = n' - (k + l), 

where z2 is repeated r + 1 (respectively, r )  times in thejrs t  (respectively, second) 
function f ,  and z i t  is repeated r (respectively, r + 1) times in the first (respectively, 
second) function f. 

Remark. With the following argument we can use the above lemma to com- 
pute V'(f) even in the case where f = of does not hold for all permutations 
of I letters. It is easy to see that V,(f) = Vl(af)  for all o E S'. Then define 
f = CoES, of. Hence V,(f) = V'(f) and f satisfies the hypothesis of Lemma 
A.3. 

Proof of Lemma A.3: As af = f and a(V2) = V 2  for all CJ E S', one obtains 

where V denotes the usual Vandermonde determinant. We begin with the case 
I d 2k + 2. 

We look for the configurations of the si's that give the leading term in t .  It is 
immediate from the time dependence of the measure p that, for I = 2n', n' 5 k +  1, 
the least decay is achieved at the configuration where s1 = cnf-L.  s2 = <,,-2, . . . , 
s,' = 60, and s,,+1 = & , . . . , ~ 2 , '  = Similarly, in the case I = 2n' + 1, 
1 d n' 5 k, we obtain the leading order in t by choosing either SI = c a r ,  . . . , 
s,,+l = 50, s,,+2 = <O , ..., ~ 2 ~ 1 + ~  = ..., s,,, = (0, sn,+l = < & I ,  
. . . , ~ 2 , '  + 1 = <.I. From the definition of p (4.11) (a) and (b) follow immediately. 

In the case 1 > 2k + 2, we have to investigate the contribution of the confi 
uration of Figure A.l ,  with rl variables in [ z~ ,zz l  and r2 variables in [zT1,zI I. 
Note that rl + r2 = I - (2k + 2). We evaluate Vy')(f), the contribution of Figure 
A.1 to V,(f), by separating the contribution of poles and bands. 

I I 

I - I  or s1 = 

- F- 
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Figure A.l .  Dominating configurations for Lemma A.3. 

Observe that 

We then arrive at 

We first apply Proposition A.2 (part (b)) for the integral on [ z ~ ' , ~ ~ ' ] ~ ~  and then 
Proposition A.2 (part (a)) for the integral on [z1,z2lrl .  We recall that we are 
restricted to the nonresonant generic case where v(z2) # O,v(z;') f 0 (see (A.8) 
below, together with (2.8) above and the remark that generically W(-a - 1)  # 0). 
We obtain 
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Hence the leading behavior is given by the configuration where rl is chosen such 
that r: + r1/2 + r: + r2/2 is minimal, with r-1 + r2 = 1 - 2k - 2. This corresponds 
to the following choices: 

For 1 = 2n’ : rl = r2 = n’ - k - 1 .  
F o r Z = 2 n ’ + l : r l  =n’ -k- landr2  =n’-k ,or r l  =n’-kandr2 =n’-k-1. 
If we recall the definition of r in parts (c) and (d) of Lemma A.3, respectively, 

we see that 

(A.6) Vdf) = $)( . f ) ( l  + O(l / t ) )  7 

V ~ V )  = (VYW + $+‘b))~ + o(l/r)), 

if Z = 2n’, and 

(A.7) 

if 1 = 2n’ + 1. 
Relations (A.6) and (AS) prove (c). The proof of (d) will follow from (AS) and 

(A.7) once we evaluate v(z2) and v(z2’) .  Using the definition of Z (see Section 2), 
we easily compute 

From the definitions of v and T 

Similarly one derives a formula for v(z7’). If the symmetries (3.9) and (3.45a) are 
used, one observes 

The proof of Lemma A.3 is now complete. 
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