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Abstract In this work we consider a new class of Relaxation Finite Element schemes for
hyperbolic conservation laws, with more stable behavior on the limit area of the relaxation
parameter. Combining this scheme with an efficient adapted spatial redistribution process
considered also in this work, we form a robust scheme of controllable resolution. The results
on a number of test problems show that this scheme can produce entropic-approximations
of high resolution, even on the limit of the relaxation parameter where the scheme lacks
of the relaxation mechanism. Thus we experimentally conclude that the proposed spatial
redistribution process, has by its own interesting stabilization properties for computational
solutions of conservation law problems.

Keywords Finite element methods · Relaxation model · Adaptive mesh redistribution ·
Hyperbolic conservation laws

1 Introduction

In this paper we consider finite element schemes and adaptive strategies for the ap-
proximation of nonlinear Hyperbolic Systems of Conservation Laws (HSCL); find u :
R

d × [0, T ] → R
M such that

u(·,0) = u0 given,

∂tu +
d∑

i=1

∂xi
Fi(u) = 0.

(1.1)
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Finite Element (FE) methods was not a very popular choice for computing solutions of (1.1).
When applied directly to this system, the method will result in approximate solutions with
oscillatory character close to the shock. This well known phenomenon is related to the fact
that direct finite element discretization of (1.1) behave as dispersive approximation. The
study of dispersive schemes for approximating HSCL was an important issue since the works
of von Neumann, see the very interesting work by Lax and Hou [14] and its references.

To overcome this difficulty several modifications of the standard finite element
schemes have been proposed in the literature. Two main classes of these methods are the
streamline diffusion type methods, and the Discontinuous Galerkin-Runge Kutta methods
[9, 10, 16, 18]. In both cases the necessary stability and viscosity mechanisms are imposed
by hand. Streamline diffusion methods include artificial viscosity and complicated shock
capturing terms, and Discontinuous Galerkin methods are stabilized by upwind discrete
fluxes across the interfaces of elements and mainly by additional limiters. Recently a new
class of finite element methods was introduced in [1, 2]. These methods are based on re-
laxation models, they do not include additional stabilization terms other than relaxation, but
alternatively are designed to be used in conjunction with appropriate mesh refinement.

Mesh adaptation is a main current stream towards the efficient numerical solution of com-
plex systems. In the case of Hyperbolic Systems, the finite elements are still a natural choice
since the development of supportive structures (finite element spaces of any order, flexibility
in mesh construction, etc.) in adaptive finite element literature and software implementation
is at a remarkable level. In this paper we focus on the behavior of finite element schemes for
HSCL when combined with adaptive meshes. In particular, our aim in this work is

• To propose and experimentally study new finite element schemes for HSCL.
• To introduce adaptive strategies for shock computations.
• To conclude new and rather unexpected observations for the behavior of dispersive-type

finite element schemes under the regime of adaptively evolving mesh.

New Finite Element Schemes. Our schemes are based on the idea of Relaxation Finite
Element schemes of [1] but are further developed. The new schemes consist an extremely
robust class of finite element methods for HSCL. The idea of the schemes in [1, 2] was to
use the simple and very appropriate for computational purposes model of Jin and Xin [17] to
construct finite element schemes without additional stabilization mechanisms. In this work
we suggest a modification of these schemes that computationally decouples the action of
relaxation parameter ε and the time step size. The resulting scheme, called Switched Re-
laxation Finite Element, shows remarkable stability even for extremely small values of ε.
As a natural extension then we consider the limiting case ε = 0. The resulting scheme is
called Limit Relaxation Finite Element. This scheme although connected to the Relaxed
difference schemes of Jin and Xin [17] has a major difference. Namely, in the case of Re-
laxed schemes the main stabilization mechanism is of “upwinding” type (inherited by the
upwind discretization of the linear part of the relaxation system), while in our case the Limit
Relaxation Finite Element scheme is left with no stabilization mechanism of viscosity or re-
laxation type. Still, when these schemes are used in conjunction with the adaptive strategies
of this paper, yield computational solutions with surprisingly stable behavior.

Adaptive Mesh Redistribution. The adaptive strategy studied in this work is based on a
uniform distribution of appropriate measures which evolves with time (time steps). At a
given time step, the basic principles of the suggested mesh redistribution are:

(a) Locate the regions of space where increased resolution is required, through a positive
functional g.
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(b) Find a partition of the space with density that follows the estimator function g.
(c) Reconstruct the solution on the FE space corresponding to that partition and advance to

the next time step by applying the finite element scheme.

These steps are studied in detail in the sequel. A crucial point is the choice of appropriate
estimator functions that are used to redefine the mesh of the space domain. The correspond-
ing partitions are called G-uniform since, the Riemann-Stieltjes measure G, induced from
the estimator g, is uniformly distributed on them. We use two different estimator functions
that we consider appropriate for approximating HSCL. One is motivated by available a pos-
teriori estimates in the scalar case, [1, 12]. It turns out that a more successful one is based
on a discrete form of the curvature of the approximate solution already computed at the
given time step. The above steps are studied in detail in the one-dimensional with respect
to x setting. Having in mind the extension of the algorithms in higher dimensions, we have
chosen to present our adaptive strategy in a rather abstract framework and for arbitrary parti-
tions of elements without being specific on the choice of estimators and on important issues
related to the implementation of the method in more than one space dimensions. Let us note
finally that, in view of our extensive computational experiments, it seems that a successful
extension of our approach in more than one space dimensions is a challenging task directly
related to issues such as anisotropic mesh refinement for conservation laws.

The adaptive mesh redistribution stabilizes Finite Element Dispersive Schemes. A main
result in this paper is the rather surprising computational behavior of finite element schemes
with very little or no artificial viscosity/relaxation. It turns out that the adaptive mesh se-
lection suggested here is by itself a strong stabilization mechanism for shock computations.
Even the direct finite elements discretization of conservation laws, that is known to produce
approximate solutions with spurious oscillations, when combined with the mesh adaptation
yields stable solutions free of oscillations.

We present here a few numerical results from a series of numerical experiments we have
performed; our main conclusions are:

• Switched Relaxation Finite Element schemes consist a robust class of schemes. Like every
class of Finite Element schemes they allow to use high order as well as lower order el-
ements and can be applied on uniform or non-uniform meshes without modifications.
Because of the relaxation mechanism, it can be applied immediately on HSCL problems
without the need of additional stabilization terms. Moreover the relaxation parameter ε

can take even negligible positive values without affecting the time step size.
• The same schemes with uniform mesh and with mesh redistribution have different qual-

itative behavior: In the cases of Limit Relaxation and of the Direct Finite Element, the
schemes on uniform mesh approximate solutions with expected oscillations. The same
schemes on adaptive meshes are almost free of oscillations. In cases where the conserva-
tion law admits non classical shocks, the schemes on uniform mesh seem to approximate
the non classical shock, while, when mesh adaptation is used, they approximate the en-
tropic solution.

The paper is organized as follows. In the next section we introduce the finite element
schemes, on arbitrary partitions. Section 3 is devoted to the mesh redistribution process. In
Sect. 4 we present the numerical tests using the above schemes and finally, we highlight
some conclusions in Sect. 5.
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2 Preliminaries

2.1 Relaxation Finite Element Schemes

Relaxation models that approximate (1.1) are the basis of our schemes. In particular, the
model suggested in [17]:

Find u,v1, . . . , vd : R
d × [0, T ] → R

M such that:

u(·,0) = u0 given, vi(·,0) = Fi(u0), i = 1, . . . , d,

∂tu +
d∑

i=1

∂xi
vi = 0,

∂tvi + Ci · ∂xi
u = −1

ε
(vi − Fi(u)), i = 1, . . . , d,

(2.1)

corresponds to the regularization of each component of (1.1) by a wave operator of or-
der ε, see [1]. Here the relaxation characteristics Ci are symmetric, positive definite ma-
trices of R

M,M that are selected to satisfy certain stability conditions, the subcharacteristic
conditions, see [1, 2, 17, 30]. Thus the relaxation model induces a regularization mechanism
with finite speed of propagation and results in a PDE with linear principal part. On the other
hand the number of unknowns has been increased. Nevertheless, in schemes based on the
discretization of (2.1) the extra cost is compensated by the simplicity and the natural implicit
explicit discretization that this model admits.

We will assume that the solution u has compact support for all t ∈ [0, T ], i.e., it van-
ishes outside an (extended) compact set �1 ⊂ R

d . Let � be a superset of �1 suitable for
discretization and T = {Ki}N

i=1 is a partition of � into N elements, with the usual properties
[8] related to the spatial size h = minK∈T diam(K). We will use the following notation:

• We will use the standard finite element space Sr,T of polynomials of order r , correspond-
ing to a given admissible partition T , i.e.,

Sr,T = {φ ∈ C(�) : φ |K∈ Pr (K),K ∈ T },

for approximating scalar functions defined on the spatial domain. In the case of vector
functions, we will use the Cartesian power SM

r,T of Sr,T space, thus, all the coordinates of
the numerical solution are approximations given from the same space.

• With �Sr,T we denote the interpolant operator on Sr,T , i.e., for any function u defined
on the domain, �Sr,T (u) is an element of the space Sr,T which interpolates u (and/or
its derivatives), on some set of spatial points defined through the elements of the par-
tition T . In the case of linear Finite Elements spaces, the element �S1,T (u) is defined
by interpolating u on the node points {xi}N

i=0 of the partition. For some vector function
u = (u1, . . . , uM)T : � → R

M we denote by �SM
r,T

(u) the interpolant element from the

Cartesian power space SM
r,T , i.e., �SM

r,T
(u) = (�Sr,T (u1), . . . ,�Sr,T (uM))T.

• For any function u on � we shall denote by uT the approximation element from the
corresponding FE space to the partition T .

In this work we consider approximations from FE spaces Sr,T , obtained by Galerkin dis-
cretization of the weak formulation of (1.1) and (2.1), that is:
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• The Galerkin discretization directly to the Conservation Law (1.1): Seek uT ∈ S
M

r,T ×
[0, T ] such that uT (·,0) = �SM

r,T
(u0), and for t ∈ (0, T ],

(∂tuT , φ) +
d∑

i=1

(−Fi(uT ), ∂xi
φ) = 0, ∀φ ∈ SM

r,T . (2.2)

• The Galerkin discretization of the Relaxation model of Conservation Law (2.1):
Seek uT , vT ,1, . . . , vT ,d ∈ SM

r,T × [0, T ] such that uT (·,0) = �SM
r,T

(u0), vT ,i (·,0) =
�SM

r,T
(Fi(u0)), i = 1, . . . , d , and for t ∈ (0, T ], for all φ ∈ S

M

r,T ,

(∂tuT , φ) +
d∑

i=1

(−vT ,i , ∂xi
φ) = 0,

(∂tvT ,i , φ) + (Ci · ∂xi
uT , φ) = −1

ε
(vT ,i − Fi(uT ),φ), i = 1, . . . , d.

(2.3)

2.2 Fully Discrete Schemes

Our finite element schemes are appropriate fully discrete versions of (2.3) and (2.2). We
examine the case of system of conservation laws defined on one-dimensional (d = 1) do-
main � = [a, b]. Let κ be the uniform time step which we intend to use in our calculations,
i.e., we are interested in approximating the instances u(·, tn) of the solution u at moments
tn = n · κ , n = 0,1, . . . .

2.2.1 The Relaxation Finite Element Scheme

We start with the fully discrete Relaxation Finite Element (RFE) scheme, presented in [1].
As it is shown there, a choice that results in to a linear fully discrete scheme well suited to
the structure of (2.3), is a combination of an explicit and a diagonally implicit Runge Kutta
discretization in time. In order to decouple the system (2.3), we discretize the first equation
by using an Explicit RK (ERK) method while for the second we use a Diagonally Implicit
RK (DIRK) method.

Assuming that the Relaxation Finite Element approximation (un
T , vn

T ) of the solutions
instance (u(·, tn), v(·, tn)) of (2.3) has been computed at moment tn, then the approximation
(un+1

T , vn+1
T ) of the solution at the next moment tn+1 is defined such that for every φ in S

M

r,T :

(un+1
T , φ) = (un

T , φ) + κ

q∑

i=1

bi(−∂xv
n,i
T , φ),

(vn+1
T , φ) = (vn

T , φ) + κ

q∑

i=1

b̃i

{
(−C · ∂xu

n,i
T , φ) − 1

ε
(v

n,i
T − F(u

n,i
T ),φ)

}
,

(2.4)

where the intermediate stages (u
n,i
T , v

n,i
T ), i = 1, . . . , q, are given by the following coupled

systems of q-equations:

(u
n,i
T , φ) = (un

T , φ) + κ

i−1∑

j=1

aij (−∂xv
n,j
T , φ),

(v
n,i
T , φ) = (vn

T , φ) + κ

i∑

j=1

ãi j

{
(−C · ∂xu

n,j
T , φ) − 1

ε
(v

n,j
T − F(u

n,j
T ),φ)

}
,

(2.5)
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constants A = (aij ), b = (b1, . . . , bq), Ã = (ãij ), b̃ = (b̃1, . . . , b̃q) define the q-stage of the
ERK and DIRK methods respectively, and constant C denotes the relaxation characteristic.

In our experiments we use the following ERK methods proposed in [25], [24], which are
of second and third order, respectively,

A =
(

0 0
1 0

)
, b =

(
1/2
1/2

)
, A =

( 0 0 0
1 0 0

1/4 1/4 0

)
, b =

(1/6
1/6
2/3

)
. (2.6)

These explicit RK schemes are known to be appropriate for the discretization of conservation
laws. The corresponding diagonally implicit methods DIRK that we use are

Ã =
(

0 0
1/2 1/2

)
, b̃ =

(
1/2
1/2

)
, Ã =

( 0 0 0
1/2 1/2 0
1/4 0 1/4

)
, b̃ =

(1/6
1/6
2/3

)
. (2.7)

The intermediate stages (u
n,i
T , v

n,i
T ), i = 1, . . . , q , are evaluated at the same time levels

τ = τ̃ = (0,1), and τ = τ̃ = (0,1,1/2), respectively. Note that evaluating the intermedi-
ate stages requires the solution of (2.5) which (since it can be decoupled) is a fully explicit
finite element scheme. As it was observed in [1] the RFE schemes have the following main
characteristics:

• Like every FE scheme they can be defined on non-uniform mesh without modifications,
so they can be combined with mesh redistribution.

• They show a remarkable robustness, in terms of the order of polynomials used in the finite
element space.

• The systems (2.4, 2.5) are easy to solve, since they are explicit except the second system
of (2.5) which is semi-implicit, and the corresponding mass matrix to finite elements
methods is of band type. In our experiments we solve the systems using the band LU
decomposition of the mass matrix which, related to the cardinality N of the partition T , is
a task of linear complexity. In particular for one dimensional domains, the computational
cost of the evolution step is (K1 · r2 + K2 · M · q) · N flops, where K1,K2 are some
constants, and r is the band width which is equal to the order of the used polynomials.

• They converge to the entropic solution without the need of additional stabilization terms,
as long as ε,h → 0, and the discretization steps h,κ satisfying the modified CFL stability
condition

κ < C1ε < C2h, (2.8)

where the constants C1,C2 depends on the flux F of the HSCL (see also [2]).

2.2.2 The Switched Relaxation Finite Element Scheme

Numerical experiments confirm the stability condition (2.8). Indeed, in many cases in order
to get the RFE approximation on a fixed partition for smaller ε the time step has to be
severely reduced (see tables in the numerical experiments section).

To overcome the difficulty and since we are interested in investigating the behavior of the
RFE scheme for very small ε, we introduce the Switched Relaxation Finite Element (SRFE)
scheme; a proper version of the RFE scheme with the difference that every evolution step
begins with the projection of the relaxation variables vT ,i , i = 1, . . . , d to the equilibrium
manifold. The motivation behind the switched scheme is based on the observation:
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The relaxation variables vi, i = 1, . . . , d of the model (2.1), which account for the modifi-
cation of CFL condition (see [2]), initially as well as in the limit (ε = 0), take the values
vi = Fi(u), i = 1, . . . , d .

The proposed switched scheme applies also these settings at the beginning of every evo-
lution step, but not at the intermediate stages of the RK method. The choice of the name
is due to the fact that for the setting vi = F(ui), the relaxation model (2.1) reduces to the
HSCL (1.1), thus, the above process switches instantaneous the solving method from the
RFE (2.3) to the direct FE (2.2) approximation. We proceed to the detailed definition of the
SRFE scheme. Using the same RK timestep notation, let T be a uniform partition of �,
and u0

T = �SM
r,T

(u0). Assuming that the Switched Relaxation Finite Element approximation
un
T of the solutions instance u(·, tn) of (2.3) has been computed at moment tn, then, the

approximation un+1
T at the next moment tn+1 is defined such that, for every φ in SM

r,T , there
holds:

(un+1
T , φ) = (un

T , φ) + κ

q∑

i=1

bi(−∂xv
n,i
T , φ), (2.9)

where the intermediate stages (u
n,i
T , v

n,i
T ), i = 1, . . . , q, are given by the following coupled

systems of q-equations:

(u
n,i
T , φ) = (un

T , φ) + κ

i−1∑

j=1

aij (−∂xv
n,j
T , φ),

(v
n,i
T , φ) = (�SM

r,T
(F (un

T )),φ)

+ κ

i∑

j=1

ãi j

{
(−C · ∂xu

n,j
T , φ) − 1

ε
(v

n,j
T − F(u

n,j
T ),φ)

}
.

(2.10)

Note that at every time step, in the case of RFE schemes the solution vn+1
T of the sec-

ond explicit-equation in (2.4) is required, while in the SRFE case the interpolant of F(un
T )

must be calculated, since the integration in time starts with F(un
T ) instead of vn

T . Thus the
computational cost of the SRFE and RFE schemes is of the same complexity.

These schemes approximate the weak solution of a Relaxation type model where the
relaxation parameter ε is temporally variable, i.e., ε(t) = 0 on the moments tn, n = 0,1, . . . ,

otherwise ε(t) = ε0 some constant. It is an interesting question whether the family {uε(t)
T }

is weakly convergent to the solution of the corresponding HSCL when ε0 tends zero. In
practice, the SRFE scheme gives bounded approximations even for negligible ε0 without
affecting the time step, but in the regime of the proper CFL stability condition for the HSCL,
i.e., κ < C2h. Numerical experiments show that on uniform partitions:

• The parameter ε in the SRFE scheme can be taken arbitrarily small, with no further
change to the time step κ (see tables in the numerical experiments section).

• For ε > 10−5 the time switch does not influence the relaxation mechanism and so in that
range the given approximations from the SRFE schemes coincide with those from the
RFE scheme.

2.2.3 The Limit Relaxation Finite Element and the Direct Finite Element Schemes

Motivated by the computational behavior of the SRFE scheme close to the limit, we intro-
duce also the Limit Relaxation Finite Element (LRFE) scheme which is derived by taking
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the limit of (2.10) as ε → 0. Thus the evolution step from the LRFE approximation un
T of

the solutions instance u(·, tn) to the next approximated instance at moment tn+1, is defined
such that for every φ in S

M

r,T :

(un+1
T , φ) = (un

T , φ) + κ

q∑

i=1

bi(−∂xv
n,i
T , φ), (2.11)

with the intermediate stages (u
n,i
T , v

n,i
T ), i = 1, . . . , q , given by the following system of

q-equations:

(u
n,i
T , φ) = (un

T , φ) + κ

i−1∑

j=1

aij (−∂xv
n,j
T , φ),

(v
n,i
T − F(u

n,i
T ),φ) = 0.

(2.12)

Notice that this scheme is independent from the relaxation parameter ε, so the relaxation
mechanism is not present to guarantee the approximation to entropic solutions. Still, we will
track the results of that scheme, in order to collect evidences for the behavior of the SRFE
scheme on the limit ε = 0.

One may observe that if we apply the switched technique on the LRFE scheme at the
intermediate time levels (2.12) of the RK-method, i.e. setting v

n,i
T = F(u

n,i
T ), i = 1,2, . . . , q ,

the LRFE scheme is transformed to the fully discrete scheme of the Direct Finite Element
(DFE) approximation (2.2) for the HSCL, defined by:

(un+1
T , φ) = (un

T , φ) + κ

q∑

i=1

bi(F (u
n,i
T ), ∂xφ), (2.13)

where the intermediate stages u
n,i
T , i = 1, . . . , q, are given by the following q-equations:

(u
n,i
T , φ) = (un

T , φ) + κ

i−1∑

j=1

aij (F (u
n,j
T ), ∂xφ). (2.14)

Numerical experiments on uniform partitions, show that:

• While ε → 0 the given approximations from the SRFE scheme tend to the approximation
from the LRFE scheme.

• In certain cases the given approximations from the LRFE and DFE schemes are different
(see the Burgers experiment).

For the LFE scheme (2.11, 2.12) the reduction of the cost compared to the RFE scheme
is significant. In that case the second vector-equation of (2.5), i.e. the semi-implicit term,
is replaced with the calculation of an L2 projection element, which also is a task of linear
complexity but with smaller multiplying constant. Finally, in the DFE scheme (2.13, 2.14)
all the systems are explicit without the inserted relaxation variables vn

T , thus the amount of
calculations is the lowest possible.

3 Adaptive Mesh Redistribution

Adaptive mesh redistribution is a main current stream towards efficiently computing nu-
merical solutions of high resolution. Several redistribution techniques have been recently
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introduced for proper mesh selection, starting with the “One shot method” of Babuška and
the “Self-Adjusting method” of Harten, Hyman to the “Moving Mesh” methods of LeV-
êque, Russell, Tao Tang and others (see bibliography [3–6, 11, 13, 15, 20–22, 26–29, 32],
and [31] for a complete survey on the “spatial rezoning” and its contribution to moving mesh
methods). These methods calculate the spatial positions of the nodes of the new mesh, some
of them by solving an Euler-Lagrange equation, while others by optimizing proper energy
metrics. An interesting version based on the Lagrangian form of HSCL can be found in [23].

Our approach in this work is different and is based on a uniform distribution principle of
appropriate measures defined through density functionals. This approach in some primitive
form was introduced in [1] and is related although different to the “one shot method” of
Babuška [4, 5]. Here we shall treat the problem of proper mesh selection in a general way.
Our aim is to sketch the outline of a simple and of low complexity algorithm which can be
inserted as an independent substep in numerical applications.

For some partition T = {K} of � into elementary sets, we shall use the following nota-
tion:

• For some positive integer N , we denote with PartN(�) the family of partitions of � into
N elementary sets K , i.e.

PartN(�) = {T ⊂ ℘(�) : T partition of �, card(T ) = N},
where ℘(�) denotes the powerset of �, i.e., the set of all subsets of �.

• σ(T ) denotes the σ -algebra generated by the partition T ; for finite partitions, the corre-
sponding σ -algebra coincide with the set containing unions of partition elements, i.e., if
T = {Ki}N

i=1 then

σ(T ) =
{

N⋃

i=1

Ki
ji : j1, . . . , jN ∈ {0,1}

}
,

where by K1
i ,K0

i we denote the set Ki and the empty set ∅ respectively.
• With resolutionT we shall denote a measure which for any proper subset A ⊂ � is defined

by

resolutionT (A) := card{K ∈ T : K ⊂ A},
i.e., the resolutionT of the partition T over some subset A represents the number of ele-
ments from T that are contained in A.

3.1 Mesh Redistribution Policy

In general the following observation holds true for numerical calculations based on some
partition T of the domain:

The accuracy of any numerical approximation over some subset A of the domain is an
increasing function of the resolutionT (A), which in turn must be bounded from above
(e.g. in the case of HSCL the CFL condition imposes an upper bound on resolutionT (A)

for stability reasons).

This observation motivates our redistribution policy:

Seek a partition T̃ with resolutionT̃ so that, over any area of the domain, it must be
proportional to the local needs in partition elements, as they are measured by some given
function.
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Analyzing the above we conclude that the redistribution process is described by the follow-
ing two steps:

1. Estimate the “needs in partition elements” over the spatial domain, according to a given
strictly positive and bounded functional g, called in sequel estimator function.

2. Construct the new partition by properly using the estimator function g. Let G be the
measure of density g with respect to the Lebesgue measure μ, i.e., the G measure of a
Lebesgue measurable set A ⊂ � is

G(A) =
∫

A

g dμ. (3.1)

By (3.1) the “local needs in partition elements” over some set A of the domain are rep-
resented by the G(A) measure so the redistribution policy reads now as follows:

Seek a finite partition T̃ = {K} of � such that, at least for sets A from σ(T̃ ) the
resolutionT̃ (A) must be proportional to the G(A) measure, i.e., for some constant C

it holds

∀A ∈ σ(T̃ ) G(A) = C resolutionT̃ (A). (3.2)

In particular if N = card(T̃ ) is given, then by (3.2) for A = � we get C = G(�)/N and so,
for the elementary sets K ∈ T̃ (for which resolutionT̃ (K) = 1) we conclude from (3.2) that:

∀K ∈ T̃ G(K) = G(�)

N
. (3.3)

Using the additive property of measures, one can conclude (3.2) from (3.3), so these relations
are equivalent.

Definition 1 In sequel, a finite partition T = {K} ∈ PartN(�) shall be called G-uniform
related to a given estimator function g, if the corresponding measure G : σ(T ) → R s.t.
G(A) = ∫

A
g dμ is uniformly distributed on σ(T ), i.e., ∀K ∈ T G(K) = G(�)/N . In such a

case the set
⋃

K∈T ∂K shall be called a G-uniform mesh related to the estimator function g.
Let us note some properties of G-uniform partitions.

(I) If T = {K} ∈ PartN(�) is a G-uniform partition, then from the corresponding G mea-
sure (3.1) and by relation (3.3), it follows:

∀K ∈ T C ≤ max
x∈K

{g(x)}μ(K) ≤ max
x∈K

{g(x)}diam(K)d, (3.4)

where d = dim(�),C = G(�)/N .
(II) For a given estimator function g let G be the corresponding measure (3.1). By the

additive property of measures we have that for any partition T = {K} ∈ PartN(�):

G(�)

N
= 1

N

∑

K∈T
G(K) ≤ max

K∈T
{G(K)}.

Thus, in the case where T is a G-uniform partition then by (3.3) the above relation
holds as equality, so this class of partitions solves the min-max problem:

Seek a finite partition T̃ ∈ PartN(�) such that for the corresponding measure G it
holds

max
K∈T̃

{G(K)} = min
T ∈PartN (�)

max
K∈T

{G(K)}. (3.5)
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Property (3.5) links G-uniform partitions with most of the moving mesh methods of the
bibliography where the node positions of the new mesh constitute the minimizer of a
proper metric.

Remark 1 For one dimensional domains (� = [a, b]), relation (3.2) indicates immediately
the nodes of the corresponding G-uniform partition T̃ . Indeed, due to the topology of real
line, the unknown nodes can be numbered in an increasing order, i.e., a = x̃0 < x̃1 < · · · <

x̃N−1 < x̃N = b so, applying (3.2) with the sets A = [a, x̃i), i = 1,2, . . . ,N − 1 we obtain:

∫ x̃i

a

g(x) dx = i

N

∫ b

a

g(x) dx. (3.6)

Since we assume that g is strictly positive, (3.6) has as unique solution the set of the un-
known nodes x̃i , i = 1,2, . . . ,N − 1. Note that only for simplicity we examine strictly pos-
itive estimator functions. If the range of g contains the zero value, then the unknown nodes
is not a uniquely defined set. In that case, we can select one of the possible sets by proper
treatment of (3.6) (see more about the quantile function in [7], pp. 189–191).

For more than one dimensions, the domain partitioning is a very complex task. In these
cases the domain �1 can be approximated by a union of hypertetrahedra of R

d , so the corre-
sponding computational mesh can be described by the topological structure “simplicial com-
plex”; a union of chains containing the neighbourhoods of simplices, starting from vertices
(0-simplices), edges (1-simplices) and faces (2-simplices), up to facets ((d − 1)-simplices).
Our aim in future work is to construct G-uniform meshes for higher dimensional domains,
by sequentially equidistributing proper measures of R

d ,R
d−1, . . . ,R

1 in order to create the
corresponding simplicial complex structure with low computational cost.

Working with G-uniform meshes is a flexible way to produce partitions which also satis-
fies further restrictions, simply by selecting the proper estimator function g. The following
remarks could be thought also as examples.

Remark 2 In the case of vector approximations w = (w1, . . . ,wM)T, the redistribution
process can be used to define either a different partition for each component or a common
partition for all components, as follows:

Let gk be the estimator function for the k-th component wk , k = 1, . . . ,M . Then we
can use as common estimator function some weighted average, i.e., for positive weights
a1, . . . , aM :

g(x) =
M∑

k=1

akgk(x). (3.7)

In our experiments we use weights that normalize the terms of the sum, i.e., ak =
1/

∫
�

gk dμ, k = 1, . . . ,M .

Remark 3 As initially mentioned, in many cases the mesh density needs to be bounded
above for stability reasons. Therefore, if we choose as estimator function some power gp

(for p ∈ [0,1]) instead of the function g, then the corresponding G measure will be defined
by:

G(A) =
∫

A

gp dμ. (3.8)
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For p = 0 or if the estimator is constant function, we observe from (3.8) that the G mea-
sure becomes proportional to the Lebesgue measure of the domain. Thus in these cases we
conclude from (3.3) that the above redistribution process produces a uniform partition of �.
While p increases and if g is not constant function, the G measure (3.8) is distributed non
uniformly in space, forcing this way the redistribution procedure to generate a non uniform
partition with the property (3.4), thus the minimum diameter of the partition elements satis-
fies the relation

min
K∈T

{(
C

maxx∈K{gp(x)}
)1/d}

≤ min
K∈T

{diam(K)}. (3.9)

So choosing p appropriately, the resolutionT of the generated partition T follows the esti-
mator function g while it respects a given upper bound.

Computational Issue: At computational level, the function xy is not well defined when x

and y are both negligible positive numbers. For negligible y and while x tends to zero, this
function oscillates in the range [0,1] due to the finite cardinality of machine numbers (for
implementations on ANSI C see ISO/IEC 9899 for proper range of the parameters x, y). In
our calculations with double precision on ANSI C, we use the function (max{10−20, x})y

as proper computational version of the power xy . In this way the result behaves always
monotonically with respect to x and produces positive quantities even for the cases x = 0
and/or y = 0.

3.2 Application to Evolution PDE’s

The numerical solution of evolution PDE’s can be constructed in several ways. In this work
we examine the case where the numerical solution is constructed like a sequence of FE spa-
tial approximations of solution instances, calculated by the evolution steps of the numerical
schemes RFE, SRFE, LRFE, DFE. In this case, the redistribution process can be applied
at the start of every evolution step in order to produce partitions that improve the resolu-
tion of the approximated instance, coming to an end with the reconstruction of the above
approximation to the new mesh.

Definition 2 We shall denote with GMesh(T ,wT ), any numerical process which produces
a G-uniform partition T̃ for some approximation wT using calculations on a given parti-
tion T . The reconstruction step shall be denoted by Rec(T ,wT , T̃ ) since it depends on the
given data and the new partition.

Using these definitions, if wT is a given approximation defined on some partition T , then
the proposed Adaptive G-Mesh Redistribution (AGMR) returns a pair which contains a new
partition T̃ and a reconstructed approximation w̃T̃ . The process can be represented by the
equation:

(T̃ , w̃T̃ ) = AGMR(T ,wT ),

where

T̃ = GMesh(T ,wT ),

w̃T̃ = Rec (T ,wT , T̃ ).
(3.10)

Although the above theory is valid in any space dimension, in the sequel we restrict the
presentation on one dimensional domain � = [a, b] ⊂ R. Let T be a finite partition of the
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domain � = [a, b] and {xi}N
i=0 be the corresponding nodes numbered in an increasing order,

i.e., a = x0 < x1 < · · · < xN−1 < xN = b. In this work we assume that the estimator is a
piecewise constant function defined on the partition T , i.e., g(x) = g(xi), x ∈ [xi, xi+1),
i = 0,1, . . . ,N − 1, so the corresponding distribution G([a, x)) = ∫ x

a
g(z) dz used in (3.6),

is piecewise linear. Thus, having the values Gi = G([a, xi)), i = 0,1, . . . ,N, on the node
points {xi}N

i=0 of the old partition then, (3.6) can explicitly be solved and produce the nodes
{x̃i}N

i=0 of the new partition, i.e., x̃0 = a and for G̃0 = 0, k0 := 0, i = 1,2, . . . ,N they given
by:

G̃i = i

N
GN, ki = max

ki−1≤�≤N
{� : G� ≤ G̃i}, x̃i = xki

+ G̃i − Gki

Gki+1 − Gki

(xki+1 − xki
). (3.11)

In most of the moving mesh methods in bibliography, the reconstruction on the new
mesh, is based on a mass conservative interpolation. In the recent work [31] the L2 projec-
tion was used as a reconstruction function, and in such a way so that the reconstructed
approximation preserves in addition the momentum. In our experiments we use as re-
construction function the interpolant operator �S

r,T̃
(wT ) of the corresponding FE space

Sr,T̃ to the new partition T̃ , thus the reconstruction step here is defined by the equation
w̃T̃ = �S

r,T̃
(wT ). Especially for the case of linear FE spaces, the values w̃T (x̃i) of the re-

constructed function on the new nodes can explicitly be found, i.e., for the same sequences
of distribution values {G̃i}N

i=0 and indices {ki}N
i=0 as in (3.11), the values on the new partition

are, w̃T̃ (x̃0) = wT (x0) and for i = 1,2, . . . ,N they given by:

w̃T̃ (x̃i) = wT (xki
) + x̃i − xki

xki+1 − xki

(wT (xki+1) − wT (xki
)). (3.12)

It comes out that the AGMR is an algorithm of linear complexity, since in relations (3.11),
(3.12) the indices ki can be easily obtained.

3.2.1 Estimator Functions for Conservation Laws Problems

Two estimator functions for the AGMR process which experimentally have been proved
good choices for applications on Conservation Laws problems are:

• The a posteriori estimator A natural choice of estimator function for HSCL problems
comes from the a posteriori error analysis presented in [1, 12]. For this choice the GMesh
process will increase the resolution over areas with big estimating error which in turn
we hope to increase the accuracy. Moreover, as it is shown in [1, 12] the estimated error
increases significantly over the shock areas, so dispersive terms which are dominant on
these areas will be vanished on the corresponding G-uniform partition. The fundamen-
tal tool for the a posteriori error is the local variation of the approximate solution uT ,
therefore this estimator is defined as follows:

g(x) =
∫

D
Var(uT (s)) ds, (3.13)

where D is an interval containing the point x. At the discrete level, given a partition
{xi}N

i=0, we approximate g(xi) on the interval [xi−1, xi+1] by gi , given from the discretiza-
tion of (3.13) using the trapezoidal integration rule

gi = 1

2
(|uT (xi+1)−uT (xi)|(xi+1 −xi)+|uT (xi)−uT (xi−1)|(xi −xi−1)), i = 1, . . . ,N.

(3.14)
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• The curvature estimator A useful family of estimator functions is based on geometrical
characteristics of the solution. Since in HSCL problems the most interesting areas are
over discontinuities (either of the solution or of its derivatives), one possible choice as
estimator function is an appropriate approximation of the curvature of the already com-
puted solution. The curvature of some smooth function v, is the Euclidean norm of the
vector curvature of the corresponding graph {(x, v(x)) : x ∈ Domain(v)}, and thus it is
defined by

curvature(v(x)) = |v′′(x)|
(1 + v′(x)2)

3
2

.

At discrete level, given the graph points {(xi, uT (xi))}N
i=0 of the numerical solution, our

choice for the corresponding estimator to the curvature, is the piecewise constant function
defined from the values gi ; the inverse radius of the occluding circle on the plane points
Aj = (xj , uT (xj )), j = i − 1, i, i + 1, that is:

gi = 2
‖(Ai+1 − Ai) × (Ai − Ai−1)‖

‖Ai − Ai−1‖‖Ai+1 − Ai‖‖Ai+1 − Ai−1‖ , i = 1, . . . ,N − 1, (3.15)

where ‖ · ‖ denotes the Euclidean norm. An elementary calculation shows that

gi =
2

xi+1−xi−1
| uT (xi )−uT (xi−1)

xi−xi−1
− uT (xi+1)−uT (xi )

xi+1−xi
|

(1 + (
uT (xi )−uT (xi−1)

xi−xi−1
)2)1/2(1 + (

uT (xi+1)−uT (xi−1)

xi+1−xi−1
)2)1/2(1 + (

uT (xi+1)−uT (xi )

xi+1−xi
)2)1/2

(3.16)
which, for smooth function uT , is an approximation of the curvature(uT (xi)).

3.2.2 Graphical Representation of the AGMR Process and the Effect of the Parameter p

The GMesh step of the AGMR process can be represented graphically like in Fig. 1
(left). Starting with some initial data (solid line) we calculate the estimator function g(x)

Fig. 1 Graphical representation of the AGMR procedure (left) and the effect of the parameter p on the
reconstructed function to the new mesh (right)
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(dotted line) and the distribution function of the corresponding measure G([a, x)) (increas-
ing dotted line). The proposed mesh (x position of the vertical lines under the distribution
function) is given by inverting through the distribution function a uniform mesh of N + 1
points applied on the y-axis (y position of the horizontal lines, over the distribution func-
tion). Note that in these graphic representations the y-coordinates are valid only for the data
while either the estimator or its distribution function were shifted and scaled vertically. In
Fig. 1 (right) we see the effect of the parameter p on the AGMR procedure. While p in-
creases the resulting mesh becomes more dense over discontinuity areas while it rarefies
over smooth areas. The parameter p must be bounded from above, since it may lead to a
mesh with poor resolution over the smooth areas. For the cases “a posteriori”, “curvature”
we experimentally know that p varies successfully in the interval [0.005,0.05] (when the
AGMR process cooperates with finite element methods).

3.2.3 Finite Element Schemes on Adaptive G-uniform Meshes

Let Solver be one of the studied schemes RFE, SRFE, LRFE, DFE. We shall examine the
pair which contains a partition and a corresponding approximation on it, during the evo-
lution steps of the Solver. In the case where the Solver applies always on uniform spatial
partition T0, the evolution step for that pair can be represented by the equation:

(Tn+1, u
n+1
Tn+1

) = (T0,Solver(Tn, u
n
Tn

)), n = 0,1, . . . ,

while, in the adaptive G-uniform case, by the system of equations:

(Tn+1, ũTn+1) = AGMR(Tn, u
n
Tn

)

(Tn+1, u
n+1
Tn+1

) = (Tn+1,Solver(Tn+1, ũTn+1)), n = 0,1, . . . .

We present the AGMR version of the SRFE schemes while the other schemes are defined
in similar way. Let T0 be a uniform partition of � with card(T0) = N , Sr,T0 be the corre-
sponding FE space and u0

T0
= �SM

r,T0
(u0). Assuming that at tn, the pair (Tn, u

n
Tn

) has been

computed, then the pair (Tn+1, u
n+1
Tn+1

) at the moment tn+1 of the Switched Relaxation ap-
proximation on G-uniform mesh is defined by:

(Tn+1, ũTn+1) = AGMR(Tn, u
n
Tn

) and for every φ in S
M

r,Tn+1

(un+1
Tn+1

, φ) = (ũTn+1 , φ) + κ

q∑

i=1

bi(−∂xv
n,i
Tn+1

, φ)
(3.17)

with intermediate stages (u
n,i
Tn+1

, v
n,i
Tn+1

), i = 1, . . . , q, given by the following coupled systems
of q-equations:

(u
n,i
Tn+1

, φ) = (ũTn+1 , φ) + κ

i−1∑

j=1

aij (−∂xv
n,j
Tn+1

, φ),

(v
n,i
Tn+1

, φ) = (�SM
r,Tn+1

(F (ũTn+1)),φ)

+ κ

i∑

j=1

ãi j

{
(−C · ∂xu

n,j
Tn+1

, φ) − 1

ε
(v

n,j
Tn+1

− F(u
n,j
Tn+1

),φ)

}
.

(3.18)
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4 Numerical Experiments

In this section we present the experiments we have performed with the RFE, SRFE, LRFE
and DFE schemes. In the first problem we study the behavior of the AGMR procedure using
the DFE scheme on mesh of 101 points. In the rest of the presented results, the integration
in time was done with the 3rd order of the proposed ERK–DIRK methods and the spatial
approximations were given by Periodic Linear Finite Elements on partitions of 201 node
points. The schemes were tested on uniform and adaptive G-uniform partitions with estima-
tor function the curvature of the numerical solution.

The results from the RFE scheme were always coincided with those from the SRFE
scheme, for every tested value of parameter ε in the range [10−5,10−2]. Therefore instead
of presenting results from this scheme, we give some comparison tables with the minimum
number of uniform time steps, needed by the schemes, on uniform spatial mesh, for approx-
imating the solution at a given time end. From these tables one can observe that:

• The minimum number of uniform time steps needed by some scheme in order to produce,
on uniform spatial mesh, the approximation of the solution at a given time end, in the
cases of SRFE, LRFE and DFE schemes depends only on the CFL condition while in the
case of the RFE scheme it depends also on the relaxation parameter ε.

For the other schemes we present the results in groups of figures for comparison reasons.
Each group contains two separate figures presenting the results on uniform and on adaptive
G-uniform partitions. The first group shows the approximations from the SRFE scheme
for middle and small value of ε and also the approximation from the LRFE scheme. The
next group contains results from the LRFE and the DFE schemes. The last group contains
only one figure presenting the results from the DFE scheme on either partition cases, in
comparison with some reference solution. From these figures one can observe that:

• There exist proper ranges for the parameters ε, p for which the SRFE schemes on
G-uniform partitions, produce approximations of the entropic solution almost free of dis-
persive oscillations.

• In either uniform or G-uniform partitions, as ε tends to zero the approximation from the
SRFE scheme becomes similar to the LRFE’s scheme approximation.

• The LRFE and DFE approximations even though can be different on uniform partitions,
are always similar on adaptive G-uniform partitions (see Burgers example).

• It seems that the DFE scheme on adaptive G-uniform partitions can produce approxima-
tions of the entropic solution free of dispersive oscillations.

4.1 The Stationary Equation

In the first problem we study the diffusive behavior of the AGMR process. We consider
the stationary equation ∂tu = 0 with initial data u(x,0) = u0(x), over some spatial interval.
This problem can be thought as a conservation law problem with flux F(u) = 0, so in this
case all the adaptive schemes reduce to the AGMR substep. Therefore, since the solution is
u(x, t) = u0(x), ∀t ≥ 0, we expect that the sequence {(Tn, u

n
Tn

)}n∈N, defined by:

T0 is uniform partition of �,u0
T0

= �SM
r,T0

(u0),

(Tn+1, u
n+1
Tn+1

) = AGMR(Tn, u
n
Tn

), n = 0,1, . . . ,
(4.1)

should be convergent to some limit pair (T�, u
�
T�

), with the term u�
T�

being an approximation
of the initial data u0

T0
. Numerical evidences show that indeed the resulting pair (Tn, u

n
Tn

)
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Fig. 2 Iteratively application of the AGMR process on discontinuous data (N = 101 nodes, p = 0.03), after
5 iterations (first column) and after 20 iterations (second column). The results in the first row were given by
using the a-posteriori estimator function while in the second row by using the curvature estimator function

after a number of iterations remains steady suggesting that the sequence (4.1) attains its
limit. This number depends on the cardinality N of the partition, the complexity of the data
structure as well as on the estimator function.

In Fig. 2 we present examples for partitions of 100 elements where the resulting solution
(Tn, u

n
Tn

) remains steady after about 15 iterations. Observe that the final reconstructed data
are indeed diffusive approximation of the initial data u0

T0
. Therefore we must conclude that

the AGMR process admits diffusion in the solution. From these figures one can also observe,
that the approximation on G-uniform mesh related to the variance is more diffusive than the
one on G-uniform mesh related to curvature.

4.2 A Burgers Equation

The next problem we consider, is a Burgers equation with Riemann initial data:

{
u0 = X[0,5) − X[−5,0)∪[5,6],

∂tu + ∂x(
u2

2 ) = 0,
x ∈ [−5,6], t ∈ [0,2]. (4.2)

The exact solution of this problem contains a centered rarefaction wave emanating from the
point x = 0 and a steady shock at x = 5.

The following table contains the minimum number of uniform time steps needed by
the RFE, SRFE, LRFE and DFE schemes, in order to produce on uniform spatial mesh the
approximation of the solution at the time t = 2.0. Observe that for ε ≤ 10−5 the RFE scheme
needs an unacceptable number of uniform time steps.
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Scheme ε C Time steps

RFE ε = 10−4 10 3800

RFE ε = 10−5 10 >10000

SRFE ε = 10−4 10 200

SRFE ε = 10−6 10 200

LRFE – – 200

DFE – – 200

Fig. 3 Burgers problem (t = 2.0), SRFE (while ε drops down) and LRFE schemes, on uniform mesh (left)
and on G-uniform mesh for p = 0.035 (right)

Fig. 4 Burgers problem (t = 2.0), LRFE and DFE scheme on uniform mesh (left) and on G-uniform mesh
for p = 0.035 (right)

In Figs. 3, 4, 5 we present results for the moment t = 2.0. The exact solution was cal-
culated using the corresponding characteristic lines and is given by u(x,2) = −X[−5,−2) +
0.5xX[−2,2) +X[2,5) −X[5,6]. Observe from Fig. 4 that in this problem the LRFE and DFE ap-
proximations are different on uniform partitions while they coincide on adaptive G-uniform
partitions. Note that the finite differences scheme of Roe as well as the high resolution TVD
schemes of MUSCL type, need a proper modification (entropy fix) in order to overcome an
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Fig. 5 Burgers problem (t = 2.0), DFE scheme on uniform mesh and on G-uniform mesh for p = 0.035 and
the exact solution

entropy violation at the point x = 0 (see [19]), while, the adaptive finite element schemes
produce satisfactory approximations without further modifications (figures).

4.3 A Buckley–Leverett Equation

The next problem we consider, is a Buckley–Leverett equation with Riemann initial data:
⎧
⎨

⎩

u0 = X[0,0.1)∪[0.5,1],

∂tu + ∂x

(
u2

u2+0.5(1−u)2

) = 0,
x ∈ [0,1], t ∈ [0,0.4], (4.3)

and has been chosen for testing the proposed FE schemes on conservation laws with non
convex flux. In this problem, two rarefaction waves are evolving emanating from steady
points, at x = 0.1 and x = 0.5, and terminating to moving shocks.

The following table contains the minimum number of uniform time steps, needed by
the RFE, SRFE, LRFE and DFE schemes in order to produce on uniform spatial mesh the
approximation of the solution at the time t = 0.4.

Scheme ε C Time steps

RFE ε = 5 · 10−4 4 400

RFE ε = 1.25 · 10−4 6 800

RFE ε = 5 · 10−5 10 3400

SRFE ε = 5 · 10−4 10 400

SRFE ε = 5 · 10−6 10 400

LRFE – – 400

DFE – – 400

In Figs. 6, 7, 8 we present results for the moment t = 0.28, when the left shock almost
meets the steady point of the right rarefaction wave. Observe from Figs. 7-right and 8 that
the adaptive LRFE, DFE schemes produce entropic approximations but some oscillations of
small amplitude are still remaining on the shock areas. The approximation from the adaptive
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Fig. 6 Buckley Leverett problem (t = 0.28), SRFE (while ε drops down) and LRFE schemes, on uniform
mesh (left) and on G-uniform mesh for p = 0.035 (right)

Fig. 7 Buckley Leverett problem (t = 0.28), LRFE and DFE scheme on uniform mesh (left) and on
G-uniform mesh for p = 0.035 (right)

Fig. 8 Buckley Leverett problem (t = 0.28), DFE scheme on uniform and on G-uniform mesh for p = 0.035
and the exact solution
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SRFE with ε = 5 · 10−6 is free of oscillations while the same scheme with ε = 5 · 10−8 is
similar to the approximation obtained by the adaptive LRFE scheme. The exact solution was
calculated by first solving the non-linear equation of the characteristic lines:

u

(
x + 0.28 · ∂x

(
u2

0(x)

u2
0(x) + 0.5(1 − u0(x))2

)
,0.28

)
= u0(x),

in terms of x, using the bisection method for 501 points uniformly distributed on the spatial
domain, and then eliminate the multi-valued areas by a correct shock using the equal-area
rule, see [19].

4.4 A Shallow Water System

Finally we consider with the following system of Conservation Law equations, arising in
shallow water mechanics:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
u0,1

u0,2

)
=

(
1 + X[0.3,0.4] + 0.2X[0.6,0.7]

0

)
,

∂t

(
u1

u2

)
+ ∂x

(
u2

u2
2

u1
+ u2

1
2

)
=

(
0
0

)
,

x ∈ [0,1], t ∈ [0,1]. (4.4)

This problem models the gravitational collapse of two liquid towers on a liquid surface (for
gravitational constant g = 1). The hight of the liquid surface is represented by the first com-
ponent of the solution while the second component represents the discharge of the liquid,
see [19]. As time passes, four shocks and rarefaction waves are formed which are moving to
the exterior at opposite directions and approximately at t = 0.085, the middle two interacts
with each other, yielding this way to a rather complicated structure.

The following table contains the minimum number of uniform time steps, needed by
the RFE, SRFE, LRFE and DFE schemes in order to produce on uniform spatial mesh the
approximation of the solution at the time t = 1.0.

Scheme ε C1, C2 Time steps

RFE ε = 5 · 10−4 2, 2 600

RFE ε = 1.25 · 10−4 2, 2 1600

RFE ε = 5 · 10−5 2, 2 3800

SRFE ε = 5 · 10−4 2, 2 400

SRFE ε = 5 · 10−5 2, 2 400

LRFE – – 400

DFE – – 400

In Figs. 9–14 we present results for the moment t = 0.14. The reference solution was
calculated with a TVD finite difference scheme (with the MinMod Limiter) on a uniform
spatial mesh of 950 nodes.
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Fig. 9 First component of the Shallow water problem (t = 0.14), SRFE (while ε drops down) and LRFE
schemes, on uniform mesh (left) and on G-uniform mesh for p = 0.035 (right)

Fig. 10 First component of the Shallow water problem (t = 0.14), LRFE and DFE schemes on uniform mesh
(left) and on G-uniform mesh for p = 0.035 (right)

Fig. 11 First component of the Shallow water problem (t = 0.14), DFE scheme on uniform and on
G-uniform mesh for p = 0.035 and the reference solution
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Fig. 12 Second component of the Shallow water problem (t = 0.14), SRFE (while ε drops down) and LRFE
schemes, on uniform mesh (left) and on G-uniform mesh for p = 0.035 (right)

Fig. 13 Second component of the Shallow water problem (t = 0.14), LRFE and DFE schemes on uniform
mesh (left) and on G-uniform mesh for p = 0.035 (right)

Fig. 14 Second component of the Shallow water problem (t = 0.14), DFE scheme on uniform and on
G-uniform mesh for p = 0.035 and the reference solution
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5 Conclusions

In this work we introduced and studied finite element schemes based on relaxation models
as well as the Adaptive G-Mesh Redistribution process (AGMR).

Among all the presented schemes, probably the most appropriate for shock computa-
tions is the Switched Relaxation Finite Element schemes (SRFE); a proper modification of
the Relaxation Finite Element schemes (RFE) for approximating the solution of the Re-
laxation model with the time step being decoupled from the relaxation parameter ε. The
RFE schemes were improved by setting, at the start of every evolution step, the relaxation
variables to the equilibrium state.

The AGMR process was designed to reconstruct the numerical solution on a new partition
of the spatial domain. The generated partition was determined so its resolution must follows
a given estimator g, which represents some pre selected characteristics of the numerical
solution. From the uniform distribution of the corresponding measure, it was shown in one
dimensional domains, how this policy leads to the new partition and for this reason we called
it G-uniform partition. Choosing gp as estimator function, the AGMR became flexible for
producing a G-uniform mesh with density controllable also from the free parameter p in
order to satisfy given bounds.

Then we experimentally tested the adaptive FE schemes with linear elements on a number
of scalar and/or system of Conservation Law problems. The problems have been chosen
for their well known, in the literature of Conservation Laws, “bad” characteristics (shocks,
rarefaction areas, steady shocks). The tests were performed either on uniform partition or on
G-uniform partition related to a functional analogous to the curvature of smooth functions.
From the corresponding results we made the following conclusions:

• The SRFE schemes on adaptive G-uniform meshes constitute an efficient class for com-
puting solutions for HSCL. On every test problem, this scheme has been proved robust
and capable to produce high resolution approximations of the entropic solution, even in
the limit area of the relaxation parameters and without further modifications.

• The AGMR process has been proved a good algorithm of low computational cost, for
generating partitions leading to high resolution approximations. From the experiments
we are convinced that, in addition, this process has strong stabilization properties, i.e.,
it surpasses the oscillations and produces entropic approximations. It will be very inter-
esting to further develop this algorithm (especially in two and three dimensions) and to
provide theoretical support for its behaviour.

• It seems that the pure DFE scheme when applied on adaptive G-uniform meshes becomes
a robust non-oscillatory entropic scheme.

The development of the SRFE schemes on adaptive G-uniform meshes is the main goal of
this work, but the last two unexpected conclusions might be even more interesting for future
research on the field of computational Conservation Laws.
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