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Abstract. We prove a posteriori error estimates for time discretizations by
the discontinuous Galerkin method dG(q) and the corresponding implicit Runge-
Kutta-Radau method IRK-R(q) of arbitrary order q ≥ 0 for both linear and non-
linear evolution problems of the form u′ + F(u) = f , with γ2-angle bounded
operator F. The key ingredient is a novel higher order reconstruction Û of the
discrete solution U , which restores continuity and leads to the differential equation
Û ′ + ΠF(U) = F for a suitable interpolation operator Π and piecewise polyno-
mial approximation F of f . We discuss applications to linear PDE, such as the
convection-diffusion equation (γ ≥ 1

2 ) and the wave equation (formally γ = ∞),
and nonlinear PDE corresponding to subgradient operators (γ = 1), such as the
p-Laplacian, as well as Lipschitz operators (γ ≥ 1

2 ). We also derive conditional a
posteriori error estimates for the time-dependent minimal surface problem.

1. Introduction

In this paper we study the time discretization, via the discontinuous Galerkin
method dG(q) and the corresponding implicit Runge-Kutta-Radau IIA method IRK-
R(q) of any order q ≥ 0, of the dissipative initial value problem

(1.1) u′ + F(u) = f, u(0) = u0,

governed by a γ2-angle bounded operator F in a Hilbert space (H, 〈·, ·〉, | · |). We
present a rigorous energy a posteriori error analysis based on the novel idea of re-
construction. Our results can be viewed as extensions of the optimal error estimates
of Nochetto, Savaré and Verdi for the implicit Euler method (q = 0) [34, 35] to the
higher order dG(q) and IRK-R(q) methods; see also [31, 32].

We would like first to place our contributions in context. A posteriori error anal-
ysis for time dependent partial differential equations (PDE) has received a great
deal of attention in the last few years, particularly so for low order methods. The
existing estimators can be classified as either analytical or computational, and they
have been derived by two different, though somewhat related, techniques. They
are the energy and duality methods, which are briefly described below. The former
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consists of testing the error representation formula with the error (or an integral or
derivative of it) and employing stability properties of the PDE. This technique has
been used by Nochetto, Savaré and Verdi [35] to study the backward Euler method
for a class of dissipative PDE closely related to those in this paper; see [31, 32] and
also [4, 8, 37, 43, 44] for analogous results for fully discrete schemes. In contrast, the
duality method, initiated by Johnson, relies on the stability properties of a linear
backward dual problem [3, 11, 12, 10, 13, 16, 17, 26]. This theory is sharp for linear
PDE [3, 11, 10, 13, 26]. For nonlinear PDE an analysis based on duality has to
overcome a subtle issue: the strong stability of the linearized dual problem. The
nonlinear PDE must be linearized around a convex combination of the exact and
discrete solution to ensure an exact error representation formula [17, Section 2.3].
This leads to a posteriori bounds provided one is able to show that the linearized
dual problem is stable with a stability factor independent of the exact solution. This
question, being problem dependent, remains open in general; we refer to [36] for a
successfull application to nonlinear (degenerate) parabolic problems, which possess
rather weak stability properties. Treating higher order methods, and extending
their applicability to nonlinear problems under realistic and computationally verifi-
able assumptions, requires new ideas. In this paper we bridge the gap for the class
of γ2-angle bounded operators upon deriving new error representation formulas for
the discontinuous Galerkin method dG(q) and the corresponding implicit Runge-
Kutta-Radau IIA method IRK-R(q) of any order q ≥ 0. These formulas can be used
then to obtain error estimates by either energy or duality methods; here we use the
former because it handles easily the nonlinearities under study. Since these error
estimates hinge upon analysis of the underlying PDE, they are analytical.

In contrast, recent activity has centered around the actual computation of the
dual solution, see e.g., [3, 14, 17, 22]. For nonlinear PDE, this entails replacing
the unknown exact solution u by the computed discrete solution in the coefficients
of the linearized dual problem. In addition, the choice of terminal data for the
dual problem requires special care except when estimating a linear functional of
the solution [17, Section 42]; this is for instance the case of [3, 21, 22]. However,
if the goal is to compute a norm of the error, as in this paper, then the choice of
data is unclear because it depends on the error itself. To deal with this matter,
a probabilistic approach is proposed in [17, Section 4.2], whereas computational
evidence is provided in [14] that the strong stability factors are of moderate size and
somewhat insensitive to the terminal condition as well as time. Once this crucial
issue has been resolved, this approach gives a computational upper error estimate.

If u denotes the exact solution of (1.1), U an approximation of u and ‖ ·‖ a norm,
not necessarily | · |, the aim of this paper is to obtain a posteriori error estimates of
the form

‖u− U‖ ≤ η(U, f, u0)

where the estimator η(U, f, u0) exhibits the following properties:
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• η(U, f, u0) is a computable quantity which solely depends on U , f and u0;
• η(U, f, u0) is of optimal order and entails minimal regularity;
• η(U, f, u0) utilizes explicit and computable constants for linear problems.

To this end, we restrict ourselves to the class of γ2-angle bounded operators. The
operator F : D(F) → H is γ2-angle bounded provided

(1.2) 〈F(v)− F(w), w − z〉 ≤ γ2〈F(v)− F(z), v − z〉 ∀ v, w, z ∈ D(F)

with γ ≥ 1
2

[6, 7, 34, 35]. This class of operators is a natural extension of linear
sectorial operators [6]; this connection is explored in Sections 3 and 4. Upon taking
w = z, the structural condition (1.2) implies that F is monotone

(1.3) 0 ≤ 〈F(v)− F(z), v − z〉 ∀ v, z ∈ D(F),

but it is indeed much stronger; we formally write γ = ∞ in (1.2) to indicate (1.3).
We develop most of the theory under the assumption (1.2), which yields optimal
order-regularity error estimates. We also consider monotone operators for which
optimal order comes at the expense of extra regularity. In addition to (1.2), we
assume that F satisfies coercivity conditions with respect to a norm ‖ · ‖ on D(F),
namely

(1.4) 〈F(v)− F(w), v − w〉 ≥ ‖v − w‖2 ∀ v, w ∈ D(F).

This is the case of linear problems with smoothing effect (F sectorial) in Section 3,
and several nonlinear counterparts in Sections 4 and 5. Other notions of dissipativity
weaker than (1.4) have been studied in [18, 40] and [17] from the dynamical sys-
tem and invariant regions point of view, respectively. The emphasis has then been
on qualitative properties of the numerical scheme, particularly long time behavior,
rather than rigorous error analysis. Since the class of gamma2-angle bounded oper-
ators is intimately related to optimal regularity [7], and this concept is equivalent to
optimal approximability, the class of operators (1.2) might perhaps be the largest one
admiting optimal order-regularity a posteriori and a priori error estimates [34, 35].
Monotonicity alone is certainly not enough [38]; see also Section 3.4.

The key novel ingredient of our approach to a posteriori error analysis is a higher

order reconstruction Û , of degree q + 1, which yields the differential equation

(1.5) Û ′ + ΠF(U) = F.

Here Û is a suitable continuous interpolant of the discontinuous discrete solution U ,
constructed elementwise, Π is an operator into the space of discontinuous piecewise
polynomials Vk(q) of degree ≤ q, and F is an approximation of f within Vk(q).
Expression (1.5) extends to q > 0 the pointwise representations of [33, 34, 35] for

q = 0. In these works Û is the natural piecewise linear interpolant of the piecewise
constant backward Euler approximation U. Rewriting (1.5) in the form

(1.6) Û ′ + F(U) = F + F(U)− ΠF(U) =: R
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reveals the fundamental principle behind our a posteriori error analysis: the residual

R measures the amount by which the pair (Û , U) misses to be a solution of (1.1).
Therefore, stability of the continuous problem (1.1) dictates error estimates in terms

of R. Regarding (Û , U) as a relaxed solution is a natural concept developed in [33] in
Banach spaces for q = 0. Higher order reconstruction is also crucial for conservative
schemes such as the Crank-Nicolson method [1]. Theories in both [1, 33] differ from
that herein.

It is interesting to note the relation between our approach and the technique of
Zadunaisky [45] for error control of ODEs. The idea in [45] is to construct a high
degree polynomial by interpolating the approximate values on several consecutive
time intervals, along with a perturbed ODE satisfied by such polynomial. Apply-
ing the same numerical scheme to this auxiliary ODE gives a heuristic estimate
of the error, which sometimes can be made rigorous provided the continuous and
discrete solutions, u and U , of (1.1) are sufficiently close. We refer to Skeel [39],
who describes variations of [45] such as the popular defect-correction methods, and
mentions justifications based on asymptotics. Since our focus is the derivation of

optimal a posteriori estimates, the reconstruction Û and corresponding perturbed
ODE (1.5) are dictated by the following fundamental principles: optimal approx-
imability, global continuity, and elementwise construction. Our estimates do not

require fine partitions on [0, T ] and do not need Û explicitly if F is linear.
We next recall the two time discretizations dG(q) and IRK-R(q) we are interested

in. Let 0 = t0 < t1 < · · · < tN = T be a partition P of [0, T ], In := (tn, tn+1], and
kn := tn+1−tn be the variable time-step. We denote by P(q) the space of polynomials
of degree ≤ q, and by Vk(q) the space of discontinuous piecewise polynomials of
degree ≤ q over P with values in D(F): hence g ∈ Vk(q) reads

g|In(t) =

q∑
j=0

tjwj (wj ∈ D(F) 0 ≤ j ≤ q).

The discontinuous Galerkin method dG(q) of order q ≥ 0 is defined as follows [3, 11,
12, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 29, 40, 41, 42]: given U0 := u0,
seek U ∈ Vk(q) such that

(1.7)

∫
In

(
〈U ′, v〉+ 〈F(U), v〉

)
dt + 〈U+

n − Un, v
+
n 〉 =

∫
In

〈f, v〉dt , ∀v ∈ Vk(q)

for 0 ≤ n ≤ N − 1; hereafter vn := v(tn), v+
n := lims↓0 v(tn + s). We consider also

the corresponding Galerkin method with quadrature at the Radau points: given
V0 := u0, find V ∈ Vk(q) such that

(1.8)

∫
In

(
〈V ′, v〉+ 〈I F(V ), v〉

)
dt + 〈V +

n − Vn, v
+
n 〉 =

∫
In

〈I f, v〉dt , ∀v ∈ Vk(q)
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for 0 ≤ n ≤ N − 1; hereafter I is the interpolation operator onto Vk(q) at the
Radau points of each In. We show in Section 2 that V (tn+1) coincides with V n+1,
the solution of the Implicit Runge-Kutta Radau IIA method with q +1 intermediate
stages [9, 20]; we will thus refer to (1.8) as IRK-R(q) for short. As in [27], writing
the solution U of dG(q) in terms of Radau polynomials turns out to be extremely
useful. This is what establishes the connection between dG(q) and IRK-R(q), leads
to (1.8) and thus to (1.5) (see Section 2).

The paper is organized as follows. We discuss in Section 2 the reconstruction of
either U or V above, along with the crucial pointwise representation (1.5), after
showing the relation between (1.8) and IRK-R(q). In Section 3 we study linear
operators F, for which ΠF = F. We first examine sectorial operators in Subsec-
tion 3.1 and apply our results to convection-diffusion problems in Subsection 3.2.
The estimators are of optimal order-regularity, possess the extremely simple form∑N−1

n=0 kn‖U+
n − Un‖2 just involving jumps, and have absolute and explicit stability

constants as in [34, 35]. Compared with [13], our estimators provide additional con-
trol from above and below of the full energy norm at all times. We analyze monotone
operators in Subsection 3.3 and apply our results to the wave equation in Subsection
3.4. The estimates are of optimal order but require higher regularity, as expected
for hyperbolic problems [25]. We deal with nonlinear γ2-angle bounded operators
(1.2) in Section 4. We consider subgradient operators in Subsection 4.1, such as the
p-Laplacian, and Lipschitz operators in Subsection 4.2. We finally derive a condi-
tional a posteriori error estimate in Section 5 for the minimal surface operator, for
which the condition is also a posteriori and thus verifiable. Conditional estimates
are somehow natural but rare in the literature. We refer to Fierro and Veeser [19]
for (elliptic) problems of prescribed mean curvature and Lakkis and Nochetto [28]
for the (parabolic) mean curvature flow of graphs, both for polynomial degree q = 1.

2. Reconstruction

In this section we derive the representation formula (1.6) for both dG(q) and
IRK-R(q), namely,

(2.1) Û ′ + F(U) = F + F(U)− ΠF(U),

where F := Πf , Π = P is the L2-projection onto Vk(q) for dG(q) and Π = I is
the Lagrange interpolation operator at the Radau points for IRK-R(q). These two
methods are indeed closely related [14, 18, 27, 29].

2.1. Reconstruction Operator. Let {τj}q+1
j=1 be the Radau points in [0, 1]. Then

0 < τ1 < · · · < τq+1 = 1 and for appropriate weights {wj}q+1
j=1 the Radau integration

rule on [0, 1]

(2.2)

∫ 1

0

g(τ)dτ ∼=
q+1∑
j=1

wjg(τj)
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is exact for all polynomials of degree≤ 2q. Let {`j}q+1
j=1 ⊂ P(q) and {̂̀j}q+1

j=0 ⊂ P(q+1)

be the Lagrange polynomials associated with either {τj}q+1
j=1 or {τj}q+1

j=0 with τ0 = 0.

The corresponding Radau points in Īn are denoted by tn,j, the Lagrange polynomials

by `n,j, ̂̀
n,j, and they satisfy

tn,j = tn + τjkn j = 0, . . . , q + 1 (tn,0 = tn, tn,q+1 = tn+1)

`n,j(t) = `j(τ), ̂̀
n,j(t) = ̂̀

j(τ), t = tn + τkn.
(2.3)

The quadrature (2.2) induces a similar formula in In with nodes {tn,j}q+1
j=1 and weights

wn,j = knwj. Moreover, let the interpolation operator I : C(0, T ; D(F)) → Vk(q) be

(2.4) I v|In(t) :=

q+1∑
j=1

`n,j(t)v(tn,j).

Consequently, if V (t) is a polynomial in Vk(q), then V (t) = I V (t) for all t.

The reconstruction operator Î : Vk(q) → Vk(q + 1) is now defined as follows:

Û := Î U ∈ Vk(q + 1) satisfies in In

Û+
n = Un .∫
In

〈Û ′, v〉dt =

∫
In

〈U ′, v〉dt + 〈U+
n − Un, v

+
n 〉, ∀v ∈ Vk(q) .

(2.5)

In the sequel, we show that Û is well defined and exhibits some useful properties.

Lemma 2.1 (Reconstruction). The function Û is uniquely defined by (2.5), is globally
continuous, and satisfies

Û(tn,j) = U(tn,j), j = 0, . . . , q + 1 (U(tn,0) = Un).

Proof. Integrating (2.5) by parts we get

−
∫

In

〈Û , v′〉dt + 〈Û−
n+1, v

−
n+1〉 − 〈Û+

n , v+
n 〉

= −
∫

In

〈U, v′〉dt + 〈U−
n+1, v

−
n+1〉 − 〈Un, v

+
n 〉.

(2.6)

Since Û+
n = Un, selecting v constant in time we get that Û−

n+1 = U−
n+1 = Un+1. Since

tn,q+1 = tn+1 and Ûn,q+1 = Un,q+1, using the exactness of the Radau integration rule
(2.2) in In, (2.6) can be written as

q∑
i=1

wn,i〈Ûn,i, v
′
n,i〉 =

q∑
i=1

wn,i〈Un,i, v
′
n,i〉 (wn,i = knwi) .

Since v is arbitrary in Vk(q), we obtain Ûn,j = Un,j for 1 ≤ j ≤ q. This completes
the proof. �
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A consequence of the fact that Û interpolates U at the Radau points is the fol-
lowing crucial properties for the estimates to follow.

Lemma 2.2 (Properties of Û). The following representation of Û − U is valid

(2.7) (Û − U)|In(t) = ̂̀
n,0(t)(Un − U+

n ), ∀ t ∈ In.

In addition, if

(2.8) αp :=
( ∫ 1

0

∣∣̂̀
0(τ)

∣∣pdτ
)1/p

, ∀ 1 ≤ p ≤ ∞,

then for any semi-norm ‖ · ‖ in H

(2.9)
( ∫

In

‖Û − U‖pdt
)1/p

= αp k1/p
n ‖U+

n − Un‖, ∀ 1 ≤ p ≤ ∞.

Proof. Note that Û − U in In is a polynomial of degree q + 1 which, in view of

Lemma 2.1, vanishes at the Radau points {tn,j}q+1
j=1. Since (Û −U)(tn,0) = Un−U+

n ,
we readily deduce (2.7). The identity∫

In

∣∣̂̀
n,0(t)

∣∣pdt = kn

∫ 1

0

∣∣̂̀
0(τ)

∣∣pdτ = knα
p
p,

obviously implies (2.9). The proof is thus complete. �

2.2. Discontinuous Galerkin Methods. In view of (2.5), we can rewrite (1.7) as

(2.10)

∫
In

(
〈Û ′, v〉 + 〈F(U), v〉

)
dt =

∫
In

〈f, v〉dt , ∀v ∈ Vk(q) .

If P is the L2-projection onto Vk(q), then (2.10) readily implies

(2.11) Û ′ + P F(U) = F ,

with F := P f . For piecewise constant solutions U , that is q = 0, we have P F(U) =
F(U). An expression similar to (2.11) was first used in [35] for subgradient and γ2-
angle bounded operators, and later extended in [33] to accretive operators in Banach
spaces for q = 0 and in [1] to the Crank-Nicolson method in Hilbert spaces.

2.3. Runge-Kutta-Radau Methods. We now consider the Implicit Runge-Kutta
Radau IIA method with q +1 intermediate stages {Vn,j}q+1

j=1 [9, 20]. It is known that
the coefficients of this RK method are [20]

(2.12) ai,j =

∫ τi

0

`j(τ)dτ, bi =

∫ 1

0

`i(τ)dτ (= aq+1,i), ∀ 1 ≤ i, j ≤ q + 1,

and that the following implicit relation for {Vn,j}q+1
j=1 holds

(2.13) Vn,i − Vn + kn

q+1∑
j=1

ai,j

(
F(Vn,j)− fn,j

)
= 0, ∀ 1 ≤ i ≤ q + 1,
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where fn,j := f(tn,j) and Vn+1 := Vn,q+1. It is instructive to see the connection

between (2.13) and its Galerkin counterpart (1.8), by using the interpolant V̂ = Î V .
In fact, next lemma links two well known facts: The connection of collocation and
RK Radau methods, [20], and the connection of (1.8) to the RK Radau methods.

Lemma 2.3 (Equivalence between (1.8) and (2.13)). Formulations (1.8) and (2.13)

of IRK-R(q) are equivalent and, in fact, they are a collocation method for V̂ in each

interval In with starting value V̂n,0 = Vn, namely

(2.14) V̂ ′
n,i + F(V̂n,i) = fn,i, ∀ 1 ≤ i ≤ q + 1.

Proof. The exactness of the Radau quadrature for polynomials of degree ≤ 2q on
In implies that

(2.15) 〈I F(V )− I f, v〉 =

q+1∑
j=1

wn,j〈F(Vn,j)− fn,j, v(tn,j)〉, ∀v ∈ Vk(q).

Therefore, (1.8) yields the expression∫
In

〈V ′, v〉dt + 〈V +
n − Vn, v

+
n 〉+

q+1∑
j=1

wn,j〈F(Vn,j)− fn,j, v(tn,j)〉 = 0 , ∀v ∈ Vk(q),

or, with the help of (2.5), the simpler expression

(2.16)

∫
In

〈V̂ ′, v〉dt +

q+1∑
j=1

wn,j〈F(Vn,j)− fn,j, v(tn,j)〉 = 0, ∀v ∈ Vk(q).

Since V̂ ′ ∈ Vk(q) on In, taking v = `n,i for 1 ≤ i ≤ q + 1, and making use again of
the Radau quadrature, we end up with (2.14). Consequently

V̂ ′(t) =

q+1∑
j=1

(
fn,j − F(Vn,j)

)
`n,j(t), ∀ t ∈ In,

whence

Vn,i − Vn =

∫ tn,i

tn

V̂ ′(t)dt

=

q+1∑
j=1

(
fn,j − F(Vn,j)

) ∫ tn,i

tn

`n,j(t)dt = kn

q+1∑
j=1

ai,j

(
fn,j − F(Vn,j)

)
,

which is (2.13). This completes the proof. �
Expression (2.16) also reads∫

In

(
〈V̂ ′, v〉+ 〈I F(V ), v〉

)
dt =

∫
In

〈I f, v〉dt, ∀v ∈ Vk(q),
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or equivalently

(2.17) V̂ ′ + I F(V ) = F ,

with F := I f . A comparison of (2.17) with (2.11) leads to the interesting conclusion
that the pointwise representations of dG(q) and IRK-R(q) differ only in the form of
the operator acting on F and f . This will be instrumental below.

3. A Posteriori Error Estimates for Linear Operators

In this section we assume that F : D(F) → H is linear, whence ΠF(U) = F(U)
and F = Πf for either dG(q) or IRK-R(q), and (2.1) becomes

(3.1) Û ′ + F(U) = F,

as in [33, 34, 35]. In view of (3.1), we now examine both methods at once but
distinguish between sectorial and monotone operators.

3.1. Sectorial Operators. Let F : D(F) → H be linear and monotone (see (1.3)).
We define the energy semi-norm associated with F by

(3.2) ‖v‖ := 〈F(v), v〉
1
2 , ∀ v ∈ D(F),

and V := {v ∈ H : ‖v‖ < ∞}. In addition, we assume that F satisfies the strong
sector condition

(3.3) |〈F(v), w〉|2 ≤ 4γ2‖v‖2 ‖w‖2, ∀ v, w ∈ D(F).

This implies that F is continuous and ‖F(v)‖? := supw∈D(F)
〈F(v),w〉
‖w‖ satisfies

(3.4)
1

4γ2
‖F(v)‖2

? ≤ ‖v‖2 ≤ ‖F(v)‖2
?, ∀ v ∈ D(F);

hence γ ≥ 1
2
. Condition (3.3) is equivalent to the following inequality for the skew-

symmetric part of the operator [6, Proposition 1]

(3.5)
∣∣〈F(v), w〉 − 〈F(w), v〉

∣∣ ≤ 2µ‖v‖‖w‖, ∀ v, w ∈ D(F),

with γ2 = (µ2 + 1)/4; note that µ = 0 and thus γ = 1
2

if F is symmetric.

Lemma 3.1 (Linear γ2-Angle Bounded Operators). The strong sector condition (3.3)
is equivalent to the γ2-angle bounded condition (1.2), namely,

(3.6) 〈F(v − w), w − z〉 ≤ γ2〈F(v − z), v − z〉 ∀ v, w, z ∈ D(F).

Proof. We simply set ṽ = v − z and w̃ = w − z in (3.6) to get the equivalent
formulation (we omit the tildes)

(3.7) 〈F(v), w〉 ≤ γ2〈F(v), v〉+ 〈F(w), w〉, ∀ v, w ∈ D(F).

Then replace v by λv with λ ∈ R, and argue with the resulting quadratic inequality
in λ to realize that (3.3) and (3.7) are equivalent. �
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Lemma 3.2 (Coercivity). If F satisfies (3.3), then for all v, w, z ∈ D(F)

(3.8) 〈F(v − w), w − z〉 ≤ 2γ2〈F(v − z), v − z〉 − 1

2
max

(
‖v − w‖2, ‖z − w‖2

)
.

Proof. Elementary calculations based on (3.4) yield

〈F(v − w), w − z〉 = 〈F(v − w), w − v〉+ 〈F(v − w), v − z〉
≤ −‖v − w‖2 + 2γ‖v − w‖‖v − z‖

≤ −1

2
‖v − w‖2 + 2γ2〈F(v − z), v − z〉.

On the other hand, a symmetric argument implies

〈F(v − w), w − z〉 = 〈F(z − w), w − z〉+ 〈F(v − z), w − z〉

≤ −1

2
‖w − z‖2 + 2γ2〈F(v − z), v − z〉.

Combining these two inequalities, we easily obtain (3.8). �
We are now ready to prove both upper and lower a posteriori error bounds. To

this end, we first need to introduce the error measure E:

(3.9) E :=

{
max

(
max
0≤t≤T

|(u− Û)(t)|2, 1

2

∫ T

0

‖u− Û‖2dt,
1

2

∫ T

0

‖u− U‖2dt
)}1/2

.

Theorem 3.3 (Upper Bound). If u0 ∈ V, then the following estimate is valid for
sectorial operators F and for both dG(q) and IRK-R(q) for any q ≥ 0:

(3.10) E2 ≤ 4γ2α2
2

N−1∑
n=0

kn‖U+
n − Un‖2 + 2

∫ T

0

‖f − F‖2
?dt.

Proof. Subtract (3.1) from (1.1) to obtain the error equation

d

dt
(u− Û) + F(u− U) = f − F.

We next multiply this equation by u− Û to see that

1

2

d

dt
|u− Û |2 − 〈F(U − u), u− Û〉 = 〈f − F, u− Û〉,

whence, in view of (3.8), we deduce with M = max
(
‖u− U‖, ‖u− Û‖

)
1

2

d

dt
|u− Û |2 +

1

2
M2 ≤ 2γ2‖U − Û‖2 +M‖f −F‖? ≤ 2γ2‖U − Û‖2 +

M2

4
+‖f −F‖2

?.

The asserted estimate (3.10) follows from (2.9) after integration in time. �
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Remark 3.4 (Energy Dissipation). A striking property of (3.10) is that, except for
data oscillation, the energy dissipation (or jump discontinuity) ‖U+

n − Un‖ is what
controls the error. This estimate for dG(q) as well as for IRK-R(q) extends the
estimates of Nochetto, Savaré and Verdi for the implicit Euler scheme (q = 0) to
higher order (q > 0) without changing their structure [34, 35]. Similar estimates were
obtained by Eriksson, Johnson and Larsson via duality, but without the coercivity
components of E [13].

Remark 3.5 (Stiff ODE). This theory applies to stiff ODE systems and yields a
posteriori estimates which are dimension independent. The nature of these estimates
is different though from those in [16, 24] in that our results incorporate energy terms
and the estimators accumulate in time in the L2 norm instead of the L∞ norm.

Remark 3.6 (Smooth Data A Priori Error Estimates). We assert that the error esti-
mates in Theorem 3.3 are of optimal order-regularity provided the initial data and
forcing term are smooth. To see this, we consider f = 0 and recall the a priori
estimate of [42, Theorem 12.1] extended to sectorial operators,

(3.11)

∫ T

0

‖u− U‖2 dt ≤ Ck2(q+1)

∫ T

0

‖∂q+1
t u‖2 dt,

where k = maxn kn is the largest step-size. Applying inverse estimates, we get

kn‖U+
n − Un‖2 ≤ 2kn‖U+

n − u(tn)‖2 + 2kn‖Un − u(tn)‖2

≤ C

∫ tn+1

tn

‖U − I u‖2dt + C
kn

kn−1

∫ tn

tn−1

‖U − I u‖2dt,

whence, invoking (3.11) and interpolation theory for
∫ T

0
‖u− I u‖2dt, we deduce

N−1∑
n=0

kn‖U+
n − Un‖2 ≤ Ck2(q+1)

∫ T

0

‖∂q+1
t u‖2 dt,

provided kn ≤ Ckn−1; the latter is a reasonable constraint between consecutive time-
steps. Compared with the estimates of Eriksson, Johnson, and Larsson [11, 12, 10,
13], which require the regularity max0≤t≤T |∂q+1

t u|, we observe that both

max
0≤t≤T

|∂q+1
t u| and

( ∫ T

0

‖∂q+1
t u‖2 dt

)1/2

are bounded by the same constant depending on data. Therefore, in the linear
case considered here, their control require the same regularity on the data (u0, f) of
problem (1.1).

Remark 3.7 (Comparison with Duality). We now show the striking agreement be-
tween the stability constant γ2 in Theorem 3.3 and the corresponding one of Eriks-
son, Johnson and Larsson [13] for analytic semigroups based on duality arguments
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for dG(q). The a posteriori error estimate shown in [13] has the form

(3.12) max
1≤n≤N

|u(tn)− U(tn)| ≤ CICSLN max
0≤n≤N−1

(
|U+

n − Un|+ max
t∈In

kn|f − Pf |
)
,

where CI is an interpolation constant, LN grows logarithmicaly with respect to
kN and CS is the stability constant of an homogeneous backward dual problem. A
sharp bound for CS can be found by a simple energy argument [42]. Upon changing
variables t → T − t, we consider the corresponding homogeneous forward problem

(3.13) wt + F?(w) = 0, w(0) = w0,

where F? is the adjoint of F. Then CS is the constant of the strong stability estimate

(3.14) |F?(w(t))| ≤ CS

t
|w0| .

We assert that CS ≈ γ for sectorial operators. To see this, we deal with v = tw and
the equation that it satisfies. Since vt + F(v) = w, then

vtt + F?(vt) = wt,

whence

〈vtt, vt〉+ 〈F?(vt), vt〉 = 〈wt, vt〉 = −〈F?(w), vt〉 ≤ 2γ‖w‖‖vt‖ ≤ γ2‖w‖2 + ‖vt‖2 .

Since 〈F?(vt), vt〉 = ‖vt‖2, vt(0) = w(0), and
∫ t

0
‖w‖2 ds ≤ 1

2
|w0|2 , we thus obtain

|vt|2 ≤ 2γ2

∫ t

0

‖w‖2 dt + |w0|2 ≤ (γ2 + 1)|w0|2 .

Moreover, the fact that |w(t)| ≤ |w0|, in conjunction with vt = w+twt, finally yields

t|F?(w)| = t|wt| ≤ |w|+ |vt| ≤
(
(γ2 + 1)1/2 + 1

)
|w0|.

Therefore (3.14) holds with

CS = (γ2 + 1)1/2 + 1 .

This shows that although the approach of this paper is based on simple energy argu-
ments, it gives a posteriori error bounds that for linear sectorial operators compare
remarkably well with the estimates based on duality techniques [13].

Theorem 3.8 (Lower Bound). If u0 ∈ V, then the following estimate is valid for
sectorial operators F and for both dG(q) and IRK-R(q) for any q ≥ 0:

(3.15) α2
2

N−1∑
n=0

kn‖U+
n − Un‖2 ≤ 8E2.
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Proof. This is a trivial consequence of (2.9) because

α2
2

N−1∑
n=0

kn‖U+
n − Un‖2 =

∫ T

0

‖Û − U‖2dt

≤ 2

∫ T

0

(
‖u− Û‖2 + ‖u− U‖2

)
dt ≤ 8E2. �

Remark 3.9 (Dominant Term). A simple by-product of (3.10) and the above proof
is the following upper bound

max
0≤t≤T

|(u− Û)(t)|2 ≤ 8γ2 max
( ∫ T

0

‖u− Û‖2,

∫ T

0

‖u− U‖2
)

+ 2

∫ T

0

‖f − F‖2
?.

This shows that, up to data oscillation, the energy error L2(V) dominates the L∞(H)
error.

3.2. Application: Convection-Diffusion Equation. Let Ω be a bounded Lips-
chitz domain in Rd with any d ≥ 1. Consider the initial boundary value problem

(3.16)

ut − ε2∆u + b · ∇u + cu = f, in Ω× [0, T ],

u(·, 0) = u0, in Ω,

u = 0, on ∂Ω× [0, T ],

with H := L2(Ω) and norm | · |. The coefficients b ∈ W 1,∞(Ω), c ∈ L∞(Ω) satisfy

(3.17) |b(x)| ≤ b0, d(x) := −1
2
div b(x) + c(x) ≥ d2

0 ≥ 0, a.e. x ∈ Ω,

and ε2 > 0. The underlying elliptic operator F(v) := −ε2∆v+b·∇v+cv has a domain
D(F) := {v ∈ H1

0 (Ω) : ∆v ∈ H}, and induces the energy norm in V := H1
0 (Ω)

(3.18) ‖v‖2 = 〈F(v), v〉 =

∫
Ω

(ε2|∇v|2 + d|v|2)dx ∀ v ∈ V .

Let pD > 0 be the constant of the Poincaré inequality pD|w| ≤ |∇w| for all w ∈ V .
The following result is well known [35, Lemma 5.1], but we prove it for completeness.

Lemma 3.10 (F is Sectorial). The operator F satisfies (3.3) with constant γ given
by

(3.19) γ2 =
1

4

(
1 +

b2
0

ε2(d2
0 + ε2p2

D)

)
.

Proof. This proof hinges on (3.5). Since

‖v‖2 ≥ ε2|∇v|2, ‖v‖2 ≥
(
ε2p2

D + d2
0

)
|v|2 ∀ v ∈ V ,

the skew-symmetric part of F satisfies for all v, w ∈ V∣∣〈F(v), w〉 − 〈F(w), v〉
∣∣ ≤ b0|∇v||w|+ b0|∇w||v| ≤ 2b0

ε
(
ε2p2

D + d2
0

) 1
2

‖v‖‖w‖.
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Consequently µ = b0ε
−1

(
ε2p2

D + d2
0

)− 1
2 and the expression for γ follows from γ2 =

(1 + µ2)/4; see [6, Proposition 1]. This concludes the proof. �
The following a posteriori error estimates is a simple consequence of Theorems

3.3 and 3.8.

Corollary 3.11 (Error Estimates for Convection-Diffusion Equations). If u0 ∈ V, then
the following estimates are valid for the convection-diffusion problem (3.16), (3.17)
with γ given by (3.19) and for both dG(q) and IRK-R(q) for any q ≥ 0:

1

8
α2

2

N−1∑
n=0

kn‖U+
n − Un‖2 ≤ E2 ≤ 4γ2α2

2

N−1∑
n=0

kn‖U+
n − Un‖2 + 2

∫ T

0

‖f − F‖2
?dt.

3.3. Monotone Operators. We consider a monotone linear operator F, cf. (1.3).
In the linear case (1.3) reduces to 〈F(v), v〉 ≥ 0 for all v ∈ D(F). This assumption
is insufficient to guarantee optimal a priori error estimates [38]. The same happens
with the a posteriori error analysis.

Theorem 3.12 (Error Estimates for Monotone Operators). If u0 ∈ D(F), then

max
0≤t≤T

|u− Û | ≤ α1

N−1∑
n=0

kn|F(U+
n − Un)|+

∫ T

0

|f − F | dt.

Proof. We repeat the argument of Theorem 3.3 except that we can no longer
exploit coercivity. Since

1

2

d

dt
|u− Û |2 + 〈F(u− Û), u− Û〉 = 〈F(U − Û), u− Û〉+ 〈f − F, u− Û〉

we deduce
d

dt
|u− Û |2 ≤ 2|u− Û |

(
|F(U − Û)|+ |f − F |

)
.

We now invoke the inequalities

d

dt
a(t)2 ≤ 2a(t)b(t) ⇒ d

dt
a(t) ≤ b(t) ⇒ max

0≤t≤T
a(t) ≤ a(0) +

∫ T

0

b(t)dt.

The assertion finally follows from Lemma 2.2. �

3.4. Application: Wave Equation. Let Ω be a bounded Lipschitz domain in Rd

for any d ≥ 1. We consider the initial boundary value problem:

(3.20)

vtt −∆v = g, in Ω× (0, T ),

v(0) = v0, vt(0) = v1, in Ω,

v|∂Ω = 0 , on ∂Ω× (0, T ),



HIGHER ORDER DISSIPATIVE METHODS FOR EVOLUTION PROBLEMS 15

with D(−∆) = H2(Ω) ∩H1
0 (Ω). To write (3.20) in the form ut + F(u) = f , we set

u = (u1, u2) and reduce the order as follows:

u =

[
v
vt

]
, F(u) = −

[
u2

∆u1

]
, f =

[
0
g

]
.

Let U = (U1, U2) be either the dG(q) or IRK-R(q) approximation of u, and let
G = Πg. The next issue is to state the functional setting. We start with H :=
H1

0 (Ω)×L2(Ω) with scalar product 〈v, w〉 = 〈∇v1,∇w1〉+〈v2, w2〉 and corresponding
norm | · |; hence 〈F(v), v〉 = 0 for all v ∈ D(F) = D(−∆)×L2(Ω). The error is then

E := max
0≤t≤T

(
‖∇(u1 − Û1)‖2

L2(Ω) + ‖u2 − Û2‖2
L2(Ω)

) 1
2
.

Corollary 3.13 (Energy Norm Estimate). If v0 ∈ D(−∆) and v1 ∈ H1
0 (Ω), then

E ≤ α1

N−1∑
n=0

kn

(
‖∆(U+

1,n − U1,n)‖2
L2(Ω) + ‖∇(U+

2,n − U2,n)‖2
L2(Ω)

) 1
2

+

∫ T

0

‖g −G‖L2(Ω).

This estimate provides an optimal order error bound at the expense of additional
regularity. In order to reduce the regularity demands, we seek an alternative choice
of H which leads to an estimate in a weaker norm but also with lower data regularity
requirements.

Let T := (−∆)−1 be the restriction to L2(Ω) of the inverse Laplacian with zero
Dirichlet condition. Let H := L2(Ω)×H−1(Ω) with scalar product, [2]

〈v, w〉 := 〈v1, w1〉+ 〈Tv2, w2〉, ∀ v, w ∈ H;

hence 〈F(v), v〉 = −〈v2, v1〉+ 〈T (−∆)v1, v2〉 = 0 for all w ∈ D(F). The error is

E := max
0≤t≤T

(
‖u1 − Û1‖2

L2(Ω) + ‖u2 − Û2‖2
H−1(Ω)

) 1
2
.

Corollary 3.14 (Weak Estimate). If v0 ∈ H1
0 (Ω) and v1 ∈ L2(Ω), then

E ≤ α1

N−1∑
n=0

kn

(
‖∇(U+

1,n − U1,n)‖2
L2(Ω) + ‖U+

2,n − U2,n‖2
L2(Ω)

) 1
2

+

∫ T

0

‖g −G‖H−1(Ω)dt.

Remark 3.15 (Hyperbolic vs. Parabolic Character). A posteriori error estimates for
the fully discrete discontinuous Galerkin method were proved in [25] for q = 1 via
duality. In contrast to the parabolic case, the estimators were expressed in terms
of discrete-time L1 norms. This is due to the fact that strong stability estimates
of the form (3.14) are not valid for the wave equation. Our estimators in this case
are also expressed in terms of discrete-time L1 norms. Compared to the parabolic
case, the increased regularity required in the estimators appears also in [25]. This
is expected for problems of non-parabolic character as the a priori results for the
Schrödinger equation show [27]; see also [2]. Compare also with the a priori and a
posteriori results for first order hyperbolic problems derived in [21, 22, 41].
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4. A Posteriori Error Estimates for Nonlinear Operators

In this section we consider the nonlinear case. The notion of linear γ-angle
bounded operators (3.6) extends naturally to nonlinear F [6, 34, 35].

Definition 4.1 (Nonlinear γ2-Angle Bounded Operators). The (possibly) nonlinear
operator F is called γ2-angle bounded if it satisfies for some γ > 0

(4.1) 〈F(v)− F(w), w − z〉 ≤ γ2〈F(v)− F(z), v − z〉 ∀ v, w, z ∈ D(F).

We derive our results under the assumption that an amount of coercivity is inher-
ited by (4.1). To this end we introduce the nonnegative quantity for η ≥ γ:

(4.2) ση(v, w, z) := η2〈F(v)−F(z), v−z〉−〈F(v)−F(w), w−z〉 ∀ v, w, z ∈ D(F),

and assume the following coercivity condition.

Definition 4.2 (p−Coercivity). Let D(F) be equiped with a lower semicontinuous
(l.s.c) seminorm ‖ · ‖. The operator F is called p-coercive if for some p ≥ 2 and
η ≥ γ there exists δ > 0, depending on η, such that

(4.3) ση(v, w, z) ≥ δ

p
max

(
‖v − w‖p , ‖w − z‖p

)
, ∀ v, w, z ∈ D(F).

This notion of coercivity is a natural extension of the linear case (3.8) in Lemma
3.2, where p = 2, η =

√
2 γ, and δ = 1; likewise, we set V := {v ∈ H : ‖v‖ < ∞}.

Note that even in the linear case we need η > γ to gain the above coercivity.
Examples of (4.3) are given in Subsections 4.1 and 4.2.

We are now ready to prove a posteriori error bounds in the nonlinear case similar
to Theorem 3.3. By analogy with (3.9), we introduce the following error measure

E :=

{
max

(
max
0≤t≤T

|(u− Û)(t)|2, δ

p

∫ T

0

‖u− Û‖pdt,
δ

p

∫ T

0

‖u− U‖pdt
)}1/2

.

Theorem 4.3 (Error Bound for Nonlinear Operators). Let F be γ2-angle bounded and
p-coercive with respect to the seminorm ‖ · ‖ for η ≥ γ. We denote by ‖ · ‖? the dual
of the seminorm ‖ · ‖. If p? = p/(p− 1), then the following estimate is valid for both
dG(q) and IRK-R(q) for any q ≥ 0:

(4.4)

E2 ≤ 2η2

∫ T

0

〈F(Û)− F(U), Û − U〉dt

+
2

p?

(2

δ

)p?/p
∫ T

0

(
‖F(U)− ΠF(U)‖? + ‖f − F‖?

)p?

dt.

Proof. Subtract (2.1) from (1.1), to obtain the error equation

d

dt
(u− Û) + F(u)− F(U) = (ΠF(U)− F(U)) + (f − F ) ∀ 0 ≤ t ≤ T.
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Testing with u− Û and using (4.3), we see that

1

2

d

dt
|u− Û |2 +

δ

p
max

(
‖u− U‖p , ‖u− Û‖p

)
≤ η2〈F(Û)− F(U), Û − U〉+ 〈(ΠF(U)− F(U)) + (f − F ), u− Û〉 .

Next, we use Young’s inequality, ab ≤ ε
p
ap + ε−p?/p

p? bp?
, with ε = δ

2
to arrive at

|〈(ΠF(U)− F(U)) + (f − F ), u− Û〉| ≤ δ

2p
‖u− Û‖p

+
1

p?

(δ

2

)−p?/p(
‖F(U)− ΠF(U)‖? + ‖f − F‖?

)p?

,

whence (4.4) follows immediately upon integration. �

Remark 4.4 (Nonlinearity). In contrast with Theorem 3.3, we notice two nonlinear

effects. First, we can no longer express 〈F(Û)− F(U), Û − U〉 in terms of the jump
residual ‖U+

n − Un‖2. Secondly, the new estimator ‖F(U) − ΠF(U)‖? accounts for
the approximation of F(U) /∈ Vk(q) by piecewise polynomials of degree ≤ q.

4.1. Application: Subgradient Operators. A subclass of γ2-angle bounded op-
erators are the subgradient operators, which are characterized by the existence of a
proper lower semicontinuous convex function

φ : H → (−∞, +∞], D(φ) = {v ∈ H : φ(v) < ∞},
such that F = ∂φ is the subgradient of φ. This means that F and φ satisfy

(4.5) φ(w)− φ(v)− 〈F(v), w − v〉 ≥ 0, ∀ v ∈ D(F), w ∈ D(φ).

Moreover, the following well-known characterization has been used in [34, 35] to
derive a posteriori error estimates for the implicit Euler method.

Lemma 4.5 (Subgradient Operators are 1-Angle Bounded). All subgradient operators
F are 1-angle bounded. If, in addition, φ is Frechet differentiable and F satisfies

(4.6) ‖v − w‖p ≤ 〈F(v)− F(w), v − w〉, ∀ v, w ∈ D(F)

then F is p-coercive with δ = 1; moreover, it holds

(4.7) σ1(v, w, z) ≥ 1

p

(
‖v − w‖p + ‖w − z‖p

)
, ∀ v, w, z ∈ D(F).

Proof. Since

〈F(v)−F(w), w−z〉 = 〈F(v)−F(z), v−z〉+〈F(v), w−v〉+〈F(w), z−w〉+〈F(z), v−z〉,
in view of (4.5), we first see that F is 1-angle bounded, i.e.

〈F(v)− F(w), w − z〉 ≤ 〈F(v)− F(z), v − z〉.
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On the other hand, using the mean value theorem in (4.5) and (4.6), we deduce

φ(w)− φ(v)− 〈F(v), w − v〉 =

∫ 1

0

〈F(ws)− F(v), ws − v〉ds

s

≥
∫ 1

0

‖ws − v‖p ds

s
= ‖w − v‖p

∫ 1

0

sp−1ds =
1

p
‖w − v‖p,

where ws = sw + (1− s)v. This implies (4.7) and concludes the proof. �
In view of (4.7), we now define the error measure to be

E :=

{
max

(
max
0≤t≤T

|(u− Û)(t)|2, 1

p

∫ T

0

‖u− Û‖pdt +
2

p

∫ T

0

‖u− U‖pdt
)}1/2

.

Corollary 4.6 (Error Estimates for Subgradient Operators). Let F = ∇φ be a subgra-
dient operator with φ Frechet differentiable and satisfying (4.6). Then the following
error estimate is valid for both dG(q) and IRK-R(q) for all q ≥ 0:

E2 ≤ 2

∫ T

0

(
‖F(Û)− F(U)‖p?

? +
2p?/p

p?

(
‖F(U)− ΠF(U)‖? + ‖f − F‖?

)p?
)
dt.

Proof. Since η = δ = 1 from Lemma 4.5, it suffices to show

〈F(Û)− F(U), Û − U〉 ≤ ‖F(Û)− F(U)‖p?

? .

This follows from ‖Û −U‖p ≤ ‖F(Û)−F(U)‖p?

? which, in light of (4.6), results from

‖Û − U‖p ≤ 〈F(Û)− F(U), Û − U〉 ≤ 1

p?
‖F(Û)− F(U)‖p?

? +
1

p
‖Û − U‖p .

Consequently, inserting this bound into (4.4) we obtain the asserted estimate. �

Remark 4.7 (p−Laplacian Operator). Given p ≥ 2, let F(v) := − div(|∇v|p−2∇v)
be the p-Laplacian operator [5, 30, 35]. This operator is the subgradient of φ(v) :=
1
p
|∇v‖p

Lp(Ω) in H = L2(Ω), and has the following coercivity property [35]

(4.8) 〈F(u)− F(v), u− v〉 ≥ Λp‖∇(u− v)‖p,

for a suitable constant Λp > 0. Hence F is p-coercive with respect to the norm ‖v‖ =

Λ
1/p
p ‖∇v‖Lp(Ω), and Corollary 4.6 applies with dual norm ‖v‖? := Λ

−1/p
p ‖v‖W−1

p? (Ω).

Remark 4.8 (Porous Medium Operator). Given p ≥ 2, let F(v) := −∆(|v|p−2v) be
the porous medium operator. This prototype of degenerate operator is the subgra-
dient of φ(v) := 1

p
‖v‖Lp(Ω) in H = H−1(Ω), and is p-coercive in Lp(Ω) [35], i.e.

〈F(v)− F(w), v − w〉 ≥ λp‖v − w‖p
Lp(Ω),

for a suitable constant λp > 0. Corollary 4.6 applies again.
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4.2. Application: Lipschitz Operators. We consider now a subclass of nonlinear
operators which extend the class of linear sectorial operators of §3.1. We assume
that F satisfies (4.6) with p = 2, namely,

(4.9) ‖v − w‖2 ≤ 〈F(v)− F(w), v − w〉 ∀ v, w ∈ D(F),

as well as the following Lipschitz condition for some γ > 0

(4.10) ‖F(v)− F(w)‖? ≤ 2γ‖v − w‖ ∀ v, w ∈ D(F);

compare with (3.3). Combining (4.9) and (4.10) gives γ ≥ 1
2
. The following lemma

extends Lemma 3.2, and is proved in [35, Lemma 4.3]. We present its proof here for
completeness.

Lemma 4.9 (Angle Boundedness and Coercivity). If F satisfies (4.9) and (4.10), then
for all v, w, z ∈ D(F)

(4.11) 〈F(v)− F(w), w − z〉 ≤ 2γ2‖v − z‖2 − 1

2
max

(
‖v − w‖2, ‖z − w‖2

)
.

Proof. Proceeding as in Lemma 3.2, we obtain

〈F(v)− F(w), w − z〉 = 〈F(v)− F(w), w − v〉+ 〈F(v)− F(w), v − z〉

≤ −‖v − w‖2 + 2γ‖v − w‖‖v − z‖ ≤ −1

2
‖v − w‖2 + 2γ2‖v − z‖2,

as well as

〈F(v)− F(w), w − z〉 = 〈F(z)− F(w), w − z〉+ 〈F(v)− F(z), w − z〉

≤ −‖z − w‖2 + 2γ‖v − z‖‖w − z‖ ≤ −1

2
‖w − z‖2 + 2γ2‖v − z‖2.

Combining these inequalities, we deduce the estimate (4.11). �
Note that (4.11) implies (4.3) with p = 2, η =

√
2 γ, δ = 1. Therefore Theorem

4.3 is applicable with an error measure E of the form:

E :=

{
max

(
max
0≤t≤T

|(u− Û)(t)|2, 1

2

∫ T

0

‖u− Û‖2dt,
1

2

∫ T

0

‖u− U‖2dt
)}1/2

.

Corollary 4.10 (Error Estimates for Lipschitz Operators). If u0 ∈ V and (4.9) and
(4.10) hold, then the following lower and upper bounds are valid for both dG(q) and
IRK-R(q) for all q ≥ 0:

(4.12)

1

8
α2

2

N−1∑
n=0

kn‖U+
n − Un‖2 ≤ E2 ≤ 4γ2α2

2

N−1∑
n=0

kn‖U+
n − Un‖2

+ 2

∫ T

0

(
‖F(U)− ΠF(U)‖? + ‖f − F‖?

)2

dt.
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Proof. We note that (4.11) with η =
√

2γ yields (4.2) and (4.3) with δ = 1, p = 2.
Then Theorem 4.3 gives the upper bound. To derive the lower bound, we proceed
as in Theorem 3.8, whose proof does not rely on the structure of F. �

5. Conditional Estimates: Minimal Surface Equation

For quasilinear operators F the theory of §4 does not always apply. It may, in
particular, be difficult to find a suitable Sobolev setting. This is the case of the
minimal surface operator over a domain Ω of Rd

(5.1) F(u) := div
∇u

Q(u)
, Q(u) :=

√
1 + |∇u|2,

which is better studied in terms of geometric quantities. One such quantity is

(5.2) N(u) =
(−∇u , 1)

Q(u)
,

the unit normal to the graph Γu := {(x, u(x)) : x ∈ Ω}. The following equality has
been first observed by Fierro and Veeser [19]:

〈F(u)−F(v), u−v〉 = 〈 ∇u

Q(u)
− ∇v

Q(v)
, ∇(u−v)〉 =

∫
Ω

|N(u)−N(v)|2 Q(u) + Q(v)

2
.

This can be viewed as a geometric notion of coercivity in that we have a weighted
L2-estimate for the normals to the graphs Γu, Γv measured on Ω or, equivalently, an
L2-estimate measured on an ‘average’ of the graphs. For this to make sense we need
u, v ∈ W 1

1 (Ω).
Let U be either the dG(q) or IRK-R(q) approximation to the time-dependent

prescribed mean curvature equation:

(5.3) ∂tu− div
∇u

Q(u)
= f in Ω× (0, T ),

subject to an initial and lateral boundary condition u = u0. We assume that (5.3)
admits a smooth solution in W 1

∞(Ω× (0, T )). We denote by

(5.4) J(U) := U+
n − Un, N(U) :=

∇U

Q(U)
− Π

∇U

Q(U)
;

the piecewise constant jump J(U) is a measure of numerical dissipation and N(U)
is a measure of the nonlinearity of F, which vanishes for q = 0 as in [34, 35, 28].
The latter is used next to quantify proximity to the exact solution u. We first set
H = L2(Ω), and define the notion of coercivity

ρ(v, w; z) :=

∫
Ω

|N(v)−N(w)|2 Q(z) dx ,
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along with that of error for 0 ≤ λ ≤ 1

E := max

{
max
0≤t≤T

|u− Û |2;
∫ T

0

(1

4
ρ(U, u; U) + (1− λ)ρ(U, u; u)

)
dt

} 1
2

.

Proposition 5.1 (Conditional Estimate). If the solution U of dG(q) or IRK-R(q)
with q ≥ 0 verifies the a posteriori condition

(5.5) λ = 2‖N(U)Q(U)2‖L∞(Ω) ≤ 1,

and α∞ is defined as in (2.8), then the error E satisfies

E ≤
{

5α2
∞

∫ T

0

∫
Ω

|∇J(U)|2

Q(U)
dxdt + 9

∫ T

0

∫
Ω

|N(U)|2Q(U)3 dxdt
} 1

2
+

∫ T

0

|F − f |dt.

Remark 5.2 (Coercivity). It is worth noticing that the second term in the definition
of E is not a norm but a geometric quantity without homogeneity. Therefore, the
technique of Lemma 4.5 does not apply to yield coercivity. However, the minimal
surface operator is 1-angle bounded from Lemma 4.5, which leads to an optimal a
posteriori error estimate for polynomial degree q = 0 as in [35]. For q > 0 we need
control of the nonlinear term N(U), which vanishes otherwise, and this is achieved
via the coercivity term.

Remark 5.3 (Conditional Estimates). We point out that the condition (5.5) is a
posteriori, and thus verifiable. It is conceivable that, for a sufficiently fine partition of
[0, T ], (5.5) would be valid. Conditional estimates are somehow natural for nonlinear
equations but rather unusual in a posteriori error analysis. We refer to Fierro and
Veeser [19] for (elliptic) problems of prescribed mean curvature and Lakkis and
Nochetto [28] for the (parabolic) mean curvature flow of graphs, both for q = 1.

Proof of Proposition 5.1. Subtracting (1.1) from (2.1). we obtain the error equation

〈(Û − u)′, v〉 + 〈F(U)− F(u), v〉 = 〈F(U)− ΠF(U), v〉+ 〈F − f, v〉 .

We now choose v = Û − u which, in view of (2.7), reads v = U − u + `J(U) where

`(t) = −̂̀
n,0(t) for t ∈ In. Since

〈F(U)− F(u), U − u〉 =
1

2

(
ρ(U, u; u) + ρ(U, u; U)

)
,

we have
d

dt
|u− Û |2 + ρ(U, u; u) + ρ(U, u; U) ≤ 2|`| |〈F(U)− F(u), J(U)〉|

+ 2〈N(U),∇(Û − u)〉+ 2〈F − f, Û − u)〉 .
(5.6)

Then, since | ∇u
Q(u)

− ∇U
Q(U)

| ≤ |N(u)−N(U)|, it is easily seen that

2|`| |〈F(U)− F(u), J(U)〉| ≤ 1

4
ρ(U, u; U) + 4α2

∞

∫
Ω

|∇J(U)|2

Q(U)
dx .
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It remains to estimate the last two terms in the right hand side of (5.6). Both terms
require finding a bound for |∇(U − u)| in terms of geometric quantities we have
control of. To this end, we proceed as in [19]. If we define p,q ∈ Rd+1 to be

p = (∇u, 1), q = (∇U, 1)

for any (x, t) ∈ Ω× (0, T ), and denote with |p|, |q| their `2-norms, then

|p− q| =
∣∣∣|p| p

|p|
− |q| q

|q|

∣∣∣
≤

∣∣∣ p

|p|
− q

|q|

∣∣∣ |q| +
∣∣∣|p| p

|p|
− |q| p

|p|

∣∣∣ =
∣∣∣ p

|p|
− q

|q|

∣∣∣ |q| +
∣∣∣|p| − |q|

∣∣∣,
whence

(5.7) |∇(U − u)| ≤ |N(u)−N(U)|Q(U) +
∣∣Q(u)−Q(U)

∣∣.
In addition, for a, b ∈ R, we have

|b− a|
b2

≤ |b− a|
ab

+
|b− a|

b

∣∣∣1
a
− 1

b

∣∣∣ =
∣∣∣1
a
− 1

b

∣∣∣ +
∣∣∣1
a
− 1

b

∣∣∣2 a.

Hence, taking a = Q(u), b = Q(U) and using | 1
a
− 1

b
| ≤ |N(u)−N(U)|, we get

(5.8) |Q(u)−Q(U)| ≤ Q(U)2|N(u)−N(U)|+ Q(u)Q(U)2|N(u)−N(U)|2.
Combining (5.7) and (5.8), and making use of Q(U) ≥ 1, we arrive at

|∇(U − u)| ≤ 2|N(u)−N(U)|Q(U)2 + |N(u)−N(U)|2Q(u)Q(U)2.

Consequently, if λ = 2‖N(U)Q(U)2‖L∞(Ω), then we get

|〈N(U),∇(U − u)〉| ≤ 1

4
ρ(U, u; U) + 4

∫
Ω

N(U)2Q(U)3 dx +
λ

2
ρ(U, u; u),

whence, using Q(U) ≥ 1,

2|〈N(U),∇(Û − u)〉| ≤ 1

2
ρ(U, u; U) + λ ρ(U, u; u)

+ 9

∫
Ω

|N(U)|2Q(U)3 + α2
∞

∫
Ω

|∇J(U)|2

Q(U)
.

Inserting the above estimates back into (5.6), we find

d

dt
|u− Û |2 + (1− λ)ρ(U, u; u) +

1

4
ρ(U, u; U)

≤ 9

∫
Ω

|N(U)|2Q(U)3 + 5α2
∞

∫
Ω

|∇J(U)|2

Q(U)
+ 2|F − f | |Û − u|.

Since λ ≤ 1 in view of (5.5), we thus have an expression of the form

d

dt
a2(t) + b2(t) ≤ c2(t) + 2d(t)a(t).
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The following Gronwall-like inequality [35, Lemma 3.7]

max
{

max
0≤t≤T

a(t),
( ∫ T

0

b2(t)dt
) 1

2
}
≤

( ∫ T

0

c2(t)dt
) 1

2
+

∫ T

0

d(t)dt

yields the asserted estimate and completes the proof. �
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[21] P. Houston, B. Senior, and E. Süli. hp-discontinuous Galerkin finite element methods for
hyperbolic problems: error analysis and adaptivity. Internat. J. Numer. Methods Fluids, 40(1-
2):153–169, 2002. ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001).
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